WO2017150346A1 - 分離膜モジュール - Google Patents

分離膜モジュール Download PDF

Info

Publication number
WO2017150346A1
WO2017150346A1 PCT/JP2017/006924 JP2017006924W WO2017150346A1 WO 2017150346 A1 WO2017150346 A1 WO 2017150346A1 JP 2017006924 W JP2017006924 W JP 2017006924W WO 2017150346 A1 WO2017150346 A1 WO 2017150346A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
membrane element
separation
fixed support
elements
Prior art date
Application number
PCT/JP2017/006924
Other languages
English (en)
French (fr)
Inventor
慧 加藤
北出 有
宜記 岡本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017511966A priority Critical patent/JPWO2017150346A1/ja
Publication of WO2017150346A1 publication Critical patent/WO2017150346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/089Modules where the membrane is in the form of a bag, membrane cushion or pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a separation membrane module suitable for water treatment fields such as drinking water production, water purification treatment, waste water treatment, and food industry.
  • separation membranes in the form of flat membranes and hollow fibers have come to be used in the water treatment field and the food industry field.
  • a separation membrane element provided with a separation membrane or a plurality of such separation membrane elements are arranged.
  • Separation membrane modules are used in water purification treatment equipment.
  • Separation membranes used in separation methods using separation membrane elements include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore size and separation function.
  • Membranes are used, for example, in the case of obtaining drinking water from seawater, brine, water containing organic matter, etc., and in production of industrial ultrapure water, wastewater treatment, recovery of valuable materials, etc. It is properly used depending on the separation performance.
  • the separation membrane activated sludge method is a treatment method in which the separation membrane is immersed in an activated sludge tank and the activated sludge and treated water are separated by a membrane. Since MBR is space-saving and provides good water quality, the introduction of MBR is being promoted mainly in small-scale facilities in Japan, and in large-scale facilities exceeding 100,000 m 3 / day overseas.
  • Activating sludge treatment requires aeration into the tank in order to breed aerobic microorganisms in the treatment tank.
  • the aeration block equipped with this air diffuser is installed below the membrane unit (hereinafter referred to as “element block”), the gas-liquid mixed flow caused by the air rises inside the element block, and the membrane surface (membrane surface) ) Can be scraped off, so that solid-liquid separation can be performed while washing the membrane surface, and membrane filtration operation can be performed at low cost.
  • the element and the aeration block are generally referred to as a separation membrane module.
  • a flat membrane-like separation membrane element is obtained by fixing peripheral portions of a membrane (semi-permeable membrane) to the entire front and back surfaces of a flat and strong porous support plate by heat fusion or the like.
  • An element block is formed by stacking a plurality of separation membrane elements in parallel and inserting the separation membrane elements into a rectangular parallelepiped module housing having a groove inside and opening only at the top and bottom.
  • a bag-shaped separation membrane element that does not use a support plate has also been proposed. Since the bag-like separation membrane element is light in weight and flexible, the separation membrane is swung by a gas-liquid mixed flow caused by aeration, and sludge is difficult to adhere.
  • An object of the present invention is to solve the above-mentioned problems, and a highly efficient separation membrane in which sludge hardly adheres due to a gas-liquid mixed flow by air discharged from a diffuser and a swing of the separation membrane by the gas-liquid mixed flow Is to provide modules.
  • a separation membrane module comprising a plurality of flexible separation membrane elements arranged in a horizontal direction with a gap, wherein the lower end of the separation membrane element is a fixed support end and the upper end is fixed support
  • a separation membrane module comprising: a separation membrane element at an end; and a separation membrane element having a fixed support end at a lower end of the separation membrane element and a free support end or a free end at an upper end.
  • the separation membrane elements at both ends in the horizontal direction are both fixed support ends (1) ) Separation membrane module.
  • a separation membrane element adjacent to a plurality of separation membrane elements having an upper end of the separation membrane element having a fixed support end is a separation membrane element having an upper end having a free support end or a free end (1) ) Or (2).
  • the separation membrane element adjacent to a plurality of separation membrane elements having an upper end of the separation membrane element having a free support end or a free end is a separation membrane element having an upper end having a fixed support end (1)
  • the fixed support end and the free support end have at least one through hole in the separation membrane element, and a shaft is passed through the through hole.
  • the separation membrane module according to any one of 1).
  • a spacer is provided between the plurality of separation membrane elements having the fixed support end, each of the spacers has a through hole, and the shaft is passed through each of the through holes of the separation membrane element and the spacer.
  • a water collecting part is provided at a part of the peripheral edge of the separation membrane element, and the water collecting part is arranged in the lower half of the separation membrane element.
  • the present invention suppresses the inclination of the separation membrane element due to the pressure difference between the inside and outside of the element block, and the sludge is generated by the gas-liquid mixed flow caused by the air discharged from the air diffuser and the oscillation of the separation membrane caused by the gas-liquid mixed flow.
  • a highly efficient separation membrane module that is difficult to adhere can be provided.
  • FIG. 1A is a cross-sectional view schematically showing one embodiment of a separation membrane element constituting the separation membrane module of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing another embodiment of a separation membrane element constituting the separation membrane module of the present invention.
  • FIG. 1C is a cross-sectional view schematically showing another embodiment of a separation membrane element constituting the separation membrane module of the present invention.
  • FIG. 1D is a cross-sectional view schematically showing another embodiment of a separation membrane element constituting the separation membrane module of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the embodiment of the separation membrane module of the present invention.
  • FIG. 3 is a perspective view schematically showing an example of an embodiment of the separation membrane module of the present invention.
  • FIG. 4 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 5 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 6 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 7 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 8 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 9 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 10 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 11 is a side view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 12 is a front view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIG. 13 is a front view schematically showing an example of an embodiment of an element block constituting the separation membrane module of the present invention.
  • FIGS. 1A to 1D are cross-sectional views showing an embodiment of a separation membrane element constituting a separation membrane module of the present invention, cut along a plane at the center in the thickness direction of the separation membrane element. Moreover, the water collection pipe
  • the separation membrane elements 4, 5, 6 and 7 are mainly composed of a pair of separation membranes 17 in which two flat membrane-like separation membranes 17 are arranged so that the surfaces on the permeate side face each other.
  • the separation membrane pair has a bag-like structure in which the peripheral edge portion 18 is sealed.
  • the separation membrane constituting the “separation membrane pair” may be two separation membranes that can be separated, or may be one folded separation membrane. A gap is provided between the permeation side surfaces of the opposing separation membrane.
  • the separation membrane element 4 is provided with a water collecting flow path member through which filtered water flows in the permeate-side surface region of the separation membrane 17 inside the sealed peripheral edge 18.
  • the water collecting flow path member may be a sheet-like member having water permeability, such as a nonwoven fabric, a woven fabric, a net, etc., but as shown in FIG. 1A to FIG. It is preferably formed by the resin part 19 that adheres to the surface.
  • the cross-sectional shape of the resin portion 19 is preferably a dot shape, a linear shape, or a lattice shape.
  • a water collecting part is provided in a part of the peripheral part 18, and the water collecting flow path communicates with the outside in this water collecting part, and filtered water is taken out.
  • the separation membrane elements 4, 5, 6, and 7 have flexibility and are swung by the gas-liquid mixed flow, so that sludge is difficult to adhere.
  • the flexible separation membrane element refers to a separation membrane element that can swing without a support plate.
  • a water absorption pipe 8 for taking out filtrated water is disposed in the water collection portion of the separation membrane elements 4, 5, 6, 7, and a water collection pipe 10 is connected to the water absorption pipe 8 via a tube 9.
  • a suction pump (not shown) is connected to the downstream side of the water collecting pipe 10, and negative pressure is applied to the inside of the separation membrane elements 4, 5, 6 and 7 to take out filtered water.
  • the lower end is a fixed support end
  • the upper end is a mixture of a separation membrane element having a fixed support end and a separation membrane element having a free support end or a free end.
  • the fixed support end refers to a support end fixed at at least one position of the end portion.
  • the free support end refers to a support end in which movement in a predetermined direction is restricted at at least one end portion.
  • the free end is an end that is not supported and can move freely.
  • the lower end is a fixed support end
  • the upper end is a fixed support end
  • the lower end is a fixed support end
  • the upper end is a free support end or a free end.
  • the element having the through hole 20 is preferably fixed at the position of the through hole 20, and the element having the through hole 21 is a direction perpendicular to the axial direction of the shaft or the like by allowing the shaft or the like to pass through the through hole 21, for example. It is preferable that the movement to be restricted.
  • the separation membrane element 4 shown in FIG. 1A has through holes 20 for fixing at the four corner positions, and the upper and lower ends of the separation membrane element 4 are fixed support ends.
  • the separation membrane element 5 shown in the plan sectional view of FIG. 1B has through holes 20 for fixing at the positions of the two lower corners, the lower end of the separation membrane element 5 is a fixed support end, and the upper end is free. At the end.
  • the separation membrane element 6 shown in the sectional plan view of FIG. 1C has through holes 20 for fixing at the four corner positions, and the upper and lower ends of the separation membrane element 6 are fixed support ends. Further, the separation membrane element 6 has through holes 21 for restricting the movement below the through holes 20 at the two upper corners.
  • the 1D has through holes 20 for fixing at the positions of the two lower corners, and the through holes 21 for restricting the movement to the two upper corner positions. have.
  • the lower end of the separation membrane element 6 is a fixed support end, and the upper end is a free support end.
  • the present invention is not limited to the arrangement of these through holes.
  • FIGS. 2 and 3 are perspective views illustrating an embodiment of the separation membrane module of the present invention.
  • the separation membrane module 1 includes an element block 2, an aeration block 3, and a water collecting pipe 10.
  • the element block 2 is configured by arranging a plurality of flexible separation membrane elements 4 and 5 in parallel inside the housing frame 16.
  • an aeration block 3 having a diffuser tube 22 is disposed below the element block 2, an aeration block 3 having a diffuser tube 22 is disposed.
  • the air diffuser 22 of the aeration block 3 is connected to a blower (not shown). Air is ejected from the lower aeration block 3 toward the element block 2 of the separation membrane module 1 submerged in the water to be treated in the membrane immersion tank.
  • the element block 2 of the present invention is configured by arranging a plurality of separation membrane elements 4, 5, 6, and 7 having different support ends in parallel.
  • the lower ends of the separation membrane elements 4, 5, 6 and 7 are fixed support ends
  • the upper ends of the separation membrane elements 4 and 6 are fixed support ends
  • the upper ends of the separation membrane elements 5 are free ends
  • the separation membrane elements The upper end of 7 is a free support end.
  • the size of the separation membrane elements 4 and 6 is smaller than that of the separation membrane elements 5 and 7, but the present invention is not limited to the separation membrane elements having different sizes.
  • the lower end two corners of the separation membrane elements 4 and 5 and the upper end two corners of the separation membrane element 4 are fixed by a fixing tool 14, and the fixing tool 14 is fixed to a housing frame 16.
  • the four corners of the membrane element 4 are fixed support ends.
  • the upper end of the separation membrane element 5 is a free end.
  • the separation membrane elements 6, 7 have through holes at the bottom two corners and the separation membrane element 6 at the top two corners, and the shaft 13 passes through the through holes.
  • Upper spacers 11 are arranged between the part through holes and on the left and right sides of the separation membrane element 6 in the horizontal direction.
  • lower spacers 12 and 12 are disposed between the lower end through holes in the separation membrane elements 6 and 7 and on the left and right sides of the separation membrane elements 6 and 7 in the horizontal direction.
  • the separation membrane element 7 has through holes at two upper corners, and the shaft 13 passes through the through holes.
  • the upper end portion of the separation membrane element 7 is a free support end that can move only in the horizontal direction. . Since the shaft 13 that penetrates the through hole at the upper end of the separation membrane element 7 also penetrates the separation membrane element 6, the separation membrane element 6 has a through hole at the same height as the through hole at the upper end of the separation membrane element 7. Have.
  • the fixing method of the separation membrane elements 4, 5, 6, and 7 is not particularly limited as long as the desired effect is not impaired.
  • FIGS. 4 to 11 are side views illustrating an embodiment of the element block 2 constituting the separation membrane module of the present invention.
  • the element block 2 of the present invention is configured by arranging a plurality of separation membrane elements 4, 5, 6, and 7 having different support ends in parallel.
  • the upper spacers 11 and 11 are arranged between the upper end through holes in the separation membrane elements 4 and 6 and on the left and right sides of the separation membrane elements 4 and 6 in the horizontal direction. Further, lower spacers 12, 12 are disposed between the lower end through holes in the separation membrane elements 4, 5, 6, 7, and on the left and right sides of the separation membrane elements 4, 5, 6, 7 in the horizontal direction. Has been placed.
  • the separation membrane elements 4, 6 and the upper spacer 11, the separation membrane elements 4, 5, 6, 7 and the lower spacer 12 are preferably in close contact with each other. As shown in FIGS.
  • the separation membrane elements 4, 5, 6 and 7 have through holes at the installation position of the lower spacer 12, and the upper spacer 11 and the lower spacer 12 have through holes, and the shaft 13 has It is preferable that they are connected and bundled as one body by passing through the respective through holes.
  • both end portions of the shafts 13 and 13 penetrating the upper spacer 11 and the lower spacer 12 are fixed to the housing frame 16 by the fixture 15.
  • the shaft 13 penetrates the through hole at the upper end of the separation membrane element 7, and the upper end of the separation membrane element 7 is a free support end that can move only in the horizontal direction.
  • the separation membrane element 7 is bent by the weight of the separation membrane element 7 itself, and the adjacent separation membrane Damage to the separation membrane surface due to contact with the element can be suppressed.
  • the shaft 13 that penetrates the through hole at the upper end of the separation membrane element 7 also penetrates the separation membrane element 6, the separation membrane element 6 has the same height as the through hole at the upper end of the separation membrane element 7. It has a through hole.
  • the separation membrane element 4 includes a separation membrane element 4 whose upper end and lower end are fixed support ends, and a separation membrane element 5 whose lower end is a fixed support end and whose upper end is a free end.
  • the separation membrane element 6 whose upper end and lower end are fixed support ends and the separation membrane element 7 whose lower end is a fixed support end and whose upper end is a free support end are provided.
  • the upper spacers 11 are not disposed on the upper ends of the separation membrane elements 5 and 7 and are free ends or free support ends.
  • the separation membrane elements 4 that are fixed support ends at both the upper end and the lower end are arranged at both ends in the horizontal direction among the plurality of separation membrane elements arranged in the horizontal direction in the separation membrane module.
  • the separation membrane elements 6 that are fixed support ends at both the upper end and the lower end are disposed at both ends in the horizontal direction in the separation membrane module.
  • the separation membrane elements at both ends in the horizontal direction in the separation membrane module are fixed support ends at both the upper and lower ends, so that a pressure difference between the inside and outside of the element block occurs, or the flow between the separation membrane elements flows When the upward flow of the gas-liquid mixed phase is biased to a specific location, the separation membrane element can be prevented from tilting.
  • the separation membrane element adjacent to the separation membrane element 4 whose upper end and lower end are fixed support ends is the separation membrane element 5 whose upper end portion is a free end.
  • the separation membrane element adjacent to the separation membrane element 6 whose upper end and lower end are fixed support ends is the separation membrane element 7 whose upper end portion is a free support end.
  • the separation membrane element adjacent to the separation membrane element 5 whose upper end is a free end is the separation membrane element 4 whose upper end and lower end are fixed support ends.
  • the separation membrane element adjacent to the separation membrane element 6 whose upper end is a free support end is the separation membrane element 7 whose upper end and lower end are fixed support ends.
  • the separation membrane element adjacent to the separation membrane element whose upper end is the free support end or free end is the upper end is the fixed support end.
  • a certain separation membrane element is preferred. Thereby, when the amplitude of the separation membrane element whose upper end portion is the free support end or the free end is increased, contact between the separation membrane elements can be suppressed, and the separation membrane element can be prevented from being damaged.
  • the arrangement of the separation membrane elements 4, 5, 6, and 7 is not particularly limited as long as the desired effect is not impaired.
  • the lower spacer 12 and the upper spacer 11 are formed in a plate shape or an annular shape, and the shape in plan view can be selected from arbitrary shapes such as a square shape, an elliptical shape, and a diamond shape in addition to a circular shape. Moreover, the through-hole for letting the shaft 13 pass is vacant about each shape.
  • the material constituting the lower spacer 12 and the upper spacer 11 is a material whose durometer hardness (type A) measured according to ISO 7169-1 is at least 20 degrees or more and 95 degrees or less at least on the surface in contact with the adjacent separation membrane element, or It is desirable that the plastic material has a Rockwell hardness (scale R) of 50 degrees or more and 130 degrees or less measured according to ISO 2039-1.
  • the lower spacer 12 and the upper spacer 11 are more preferably made of a material having a durometer hardness (type A) of 20 degrees to 95 degrees.
  • Examples of materials having a durometer hardness (type A) measured in accordance with ISO 7169-1 of 20 degrees or more and 95 degrees or less include, for example, urethane, nitrile, chloroprene, ethylene, butyl, having such durometer hardness (type A), Various rubber materials such as fluorine, silicon, and low elastic rubber can be used.
  • plastic materials having a Rockwell hardness (scale R) of 50 degrees or more and 130 degrees or less measured according to ISO 2039-1 include, for example, general-purpose plastics such as polyethylene terephthalate, polypropylene, polyethylene, and polycarbonate, nylon, polyacetal, General-purpose engineering plastics such as ABS (Acrylonitrile Butadiene Styrene), polyvinylidene fluoride, and tetrafluoroethylene resin can be used.
  • general-purpose plastics such as polyethylene terephthalate, polypropylene, polyethylene, and polycarbonate, nylon, polyacetal
  • General-purpose engineering plastics such as ABS (Acrylonitrile Butadiene Styrene), polyvinylidene fluoride, and tetrafluoroethylene resin can be used.
  • the material of the housing frame 16 can be arbitrarily selected from various metals such as stainless steel and aluminum, various thermoplastic resins such as PVC resin and ABS resin, and various thermosetting resins such as polyurethane resin and epoxy resin.
  • various metals such as stainless steel and aluminum
  • various thermoplastic resins such as PVC resin and ABS resin
  • various thermosetting resins such as polyurethane resin and epoxy resin.
  • a stainless material having high corrosion resistance and rigidity is preferably used.
  • the material of the shaft 13 can be arbitrarily selected from various metals such as stainless steel and aluminum, various thermoplastic resins such as PVC resin and ABS resin, and various thermosetting resins such as polyurethane resin and epoxy resin.
  • a highly rigid stainless material is preferably used.
  • either a solid shaft or a hollow shaft may be used.
  • the cross-sectional shape of the shaft is not limited to a round shape, and may be an arbitrary shape such as an ellipse or a substantially square shape.
  • the casing frame 16 has a multistage configuration in which a bundle of separation membrane elements in which a plurality of separation membrane elements are arranged in parallel is composed of two or more stages.
  • the casing frame configuration may be arbitrary as long as the desired mechanism and effect described above can be obtained.
  • a water absorption pipe 8 for taking out filtrated water is disposed in the water collection portions of the separation membrane elements 4, 5, 6, 7, and a water collection pipe 10 is connected to the water absorption pipe 8 via a tube 9.
  • the arrangement of the water collecting portion attached to the separation membrane elements 4, 5, 6, and 7 is preferably arranged in the lower half of the separation membrane elements 4, 5, 6, and 7. Separation membrane elements 5 and 7 can be effectively swung by setting the water collecting portion at the lower half of the separation membrane element. Furthermore, in order to make the separation membrane elements 5 and 7 swing effectively, the arrangement of the water collecting portion attached to the separation membrane elements 4, 5, 6 and 7 is the lower four minutes of the separation membrane element. 1 is more preferable, and it is more preferable that it is disposed on the lower eighth of the separation membrane element.
  • the fixed support end at the lower end and the water collecting part are close to each other, the shaking around the water collecting part is reduced, the load on the separation membrane element around the water collecting part can be reduced, and the separation membrane element is bonded. Can be prevented from peeling off or being destroyed.
  • the separation membrane is a flat membrane-like separation membrane, and preferably a separation functional layer formed on a non-woven base material.
  • the thickness of the separation functional layer of the separation membrane is too thin, defects such as cracks may occur and the filtration performance may deteriorate. If it is too thick, the water permeability may decrease. 1 ⁇ m to 500 ⁇ m), preferably 0.05 to 0.2 mm (50 ⁇ m to 200 ⁇ m).
  • the separation functional layer is preferably composed of a crosslinked polymer in terms of pore diameter control and durability. From the viewpoint of the separation performance of the components to be separated, a separation functional layer obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide on a porous support layer, an organic-inorganic hybrid functional layer, and the like are preferable.
  • a porous support layer such as a cellulose membrane, a polyvinylidene fluoride membrane, a polyethersulfone membrane, or a polysulfone membrane, which has both a separation function and a support function, can also be used. That is, the separation functional layer and the porous support layer may be realized as a single layer.
  • the separation membrane constituting the separation membrane element of the present invention is preferably composed of a base material and a separation functional layer, and in particular, a separation membrane formed with a separation functional layer made of a polyvinylidene fluoride resin may be used.
  • a layer in which the resin constituting the separation functional layer and the base material are mixed is interposed between the base material and the separation functional layer.
  • the separation functional layer may be present on one side with respect to the base material, or may be present on both sides.
  • the separation functional layer may have a symmetric structure or an asymmetric structure with respect to the base material. Further, when the separation functional layer is present on both sides with respect to the substrate, the separation functional layers on both sides may be continuous through the substrate or may be discontinuous. .
  • the base material has a function of supporting the separation functional layer and giving strength to the separation membrane.
  • the material constituting the base material is not particularly limited, such as an organic base material or an inorganic base material, but an organic base material is preferable from the viewpoint of easy weight reduction.
  • the organic substrate include woven and knitted fabrics and nonwoven fabrics made of organic fibers such as cellulose fibers, cellulose triacetate fibers, polyester fibers, polypropylene fibers, and polyethylene fibers. Among these, a nonwoven fabric whose density is relatively easy to control is particularly preferable.
  • the separation membrane element of the present invention can be applied to any of reverse osmosis membranes, nanofiltration membranes, ultrafiltration membranes, and microfiltration membranes. Further, one or more appropriate membranes may be selected and combined depending on the size of the separation symmetric substance, but ultrafiltration membranes and microfiltration membranes are particularly preferred for treating sewage wastewater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

水平方向に隙間を設けて並べられた、可撓性を有する複数の分離膜エレメントを備えた分離膜モジュールであって、前記分離膜エレメントの下端は固定支持端であり、前記分離膜エレメントの上端は固定支持端と自由支持端または自由端が混在しているものである。

Description

分離膜モジュール
 本発明は、飲料水製造、浄水処理、廃水処理などの水処理分野、食品工業分野に好適な分離膜モジュールに関する。
 近年、平膜状や中空糸状の分離膜は、水処理分野や食品工業分野に使われるようになってきており、例えば分離膜を配設した分離膜エレメントや、この分離膜エレメントを複数配置した分離膜モジュールが水浄化処理装置に使用されている。分離膜エレメントによる分離法に使用される分離膜には、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜などがあり、これらの膜は、例えば海水、かん水、有機物を含んだ水などから飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。
 また、分離膜活性汚泥法(Membrane Bioreactor;MBR)は、活性汚泥槽に分離膜を浸漬し、活性汚泥と処理水を膜で分離する処理方法である。MBRは、省スペースで、良好な水質が得られるため、国内では小規模な施設を中心に、新設の多い海外では10万m/dayを超える大規模な施設に導入が進められている。
 活性汚泥処理は、処理槽内で好気性の微生物を飼育するために槽内への散気が必要である。この散気する装置を具備したエアレーションブロックを膜ユニット(以下、「エレメントブロック」という。)の下方に据え付ければ、散気による気液混合流がエレメントブロック内を上昇し、膜表面(膜面)の汚れをかきとることができるので、膜面洗浄しつつ固液分離を行うことができ、低コストでの膜ろ過運転が可能となる。この場合、通常、エレメントとエアレーションブロックを合わせて分離膜モジュールと称されている。
 従来、平膜状の分離膜エレメントは、平板状で強度のある多孔性の支持板の表裏全面に、膜(半透膜)の周辺部分を熱融着などで固定したものである。この分離膜エレメントを複数枚平行に重ね、内部に溝を有し上下のみを開放した直方体状のモジュールハウジングに挿入したものがエレメントブロックである。
 また、支持板を使用しない袋状の分離膜エレメントも提案されている。袋状分離膜エレメントは、重量が軽く柔軟性を有しているため、分離膜が散気による気液混合流により揺動して、汚泥が付着し難くなる。
 この分離膜エレメントを固定する方法として、四隅を固定する方法が提案されている(特許文献1、2参照)。しかし、すべての袋状分離膜エレメントは上端部と下端部の位置で固定されているために、気液混合流により誘起される分離膜エレメントの揺動は抑制され、汚泥の付着を抑制するのに不十分である。
 気液混合流により分離膜エレメントを効果的に揺動させる固定方法として、袋状の四辺形分離膜エレメントの下端一辺を固定する方法が提案されているが、複数平行に配置した分離膜エレメントの間に気泡が流れることにより、エレメントブロックの中と外での圧力差が生じ、分離膜エレメントが中央へ傾いてしまう(特許文献3参照)。この傾きにより複数平行に配置した分離膜エレメント間の流路が小さくなり、分離膜エレメントの揺動が抑制されることや、分離膜エレメント間に汚泥が詰まる原因となる。
国際公開第2014/010554号 国際公開第2014/084057号 日本国特開平11-244672号公報
 本発明の目的は、上記の問題点を解消し、散気装置から排出したエアによる気液混合流と、その気液混合流による分離膜の揺動で汚泥が付着し難い高効率な分離膜モジュールを提供することである。
 本発明は上記の目的を達成するために、以下に述べる構成からなる。
(1)水平方向に隙間を設けて並べられた、可撓性を有する複数の分離膜エレメントを備えた分離膜モジュールであって、前記分離膜エレメントの下端が固定支持端であり上端が固定支持端の分離膜エレメントと、分離膜エレメントの下端が固定支持端であり上端が自由支持端または自由端の分離膜エレメントとを有することを特徴とする分離膜モジュール。
(2)前記分離膜モジュール内に水平方向に並べられた複数の分離膜エレメントのうちの、水平方向の両端の分離膜エレメントは、上端、下端ともに固定支持端であることを特徴とする(1)に記載の分離膜モジュール。
(3)前記分離膜エレメントの上端が固定支持端を有する複数の分離膜エレメントに隣接する分離膜エレメントは、上端が自由支持端または自由端を有する分離膜エレメントであることを特徴とする(1)または(2)に記載の分離膜モジュール。
(4)前記分離膜エレメントの上端が自由支持端または自由端を有する複数の分離膜エレメントに隣接する分離膜エレメントは、上端が固定支持端を有する分離膜エレメントであることを特徴とする(1)~(3)のいずれかに記載の分離膜モジュール。
(5)前記複数の分離膜エレメントの下方に散気手段を備えていることを特徴とする(1)~(4)のいずれかに記載の分離膜モジュール。
(6)前記固定支持端と前記自由支持端は、分離膜エレメントに少なくとも一つの貫通穴を有し、前記貫通穴にシャフトを貫通させたものであることを特徴とする(1)~(5)のいずれかに記載の分離膜モジュール。
(7)前記固定支持端を有する複数の分離膜エレメントの間にスペーサーを備え、前記スペーサーのそれぞれが貫通穴を有し、前記分離膜エレメントおよび前記スペーサーのそれぞれの貫通穴に前記シャフトが貫通されており、前記分離膜エレメントと前記スペーサーが一体として固定されていることを特徴とする(6)に記載の分離膜モジュール。
(8)前記分離膜エレメントの周縁部の一部に集水部が設けられ、前記集水部は前記分離膜エレメントの下側半分に配置されることを特徴とする(1)~(7)のいずれかに記載の分離膜モジュール。
 本発明は、エレメントブロックの内外での圧力差による分離膜エレメントの傾きを抑制し、散気装置から排出したエアによる気液混合流と、その気液混合流による分離膜の揺動で汚泥が付着し難い高効率な分離膜モジュールを提供することができる。
図1Aは、本発明の分離膜モジュールを構成する分離膜エレメントの一実施形態を模式的に示す断面図である。 図1Bは、本発明の分離膜モジュールを構成する分離膜エレメントの他の実施形態を模式的に示す断面図である。 図1Cは、本発明の分離膜モジュールを構成する分離膜エレメントの他の実施形態を模式的に示す断面図である。 図1Dは、本発明の分離膜モジュールを構成する分離膜エレメントの他の実施形態を模式的に示す断面図である。 図2は、本発明の分離膜モジュールの実施形態の一例を模式的に示す斜視図である。 図3は、本発明の分離膜モジュールの実施形態の一例を模式的に示す斜視図である。 図4は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図5は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図6は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図7は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図8は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図9は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図10は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図11は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す側面図である。 図12は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す正面図である。 図13は、本発明の分離膜モジュールを構成するエレメントブロックの実施形態の一例を模式的に示す正面図である。
 本発明の実施形態について、図面を参照しながら説明するが、本発明はこれら図面に示す実施態様に限定されるものではない。
1.分離膜エレメント
 図1A~図1Dは、本発明の分離膜モジュールを構成する分離膜エレメントの実施形態を、分離膜エレメントの厚さ方向中心の平面で切断して示す断面図である。また、分離膜エレメント4,5,6,7とともに、集水管10およびチューブ9を記載する。
 図1A~図1Dにおいて、分離膜エレメント4,5,6,7は、主として2枚の平膜状の分離膜17を、透過側の面が互いに対向するように配置した分離膜対で構成し、この分離膜対の周縁部18が封止された袋状の構造をしている。
 ここで、「分離膜対」を構成する分離膜は、分離可能な2枚の分離膜であってもよいし、折り畳まれた1枚の分離膜であってもよい。なお、対向する分離膜の透過側の面の間には、間隙が設けられている。
 分離膜エレメント4は、封止した周縁部18より内側の分離膜17の透過側表面領域にろ過水が流通する集水流路部材を備えている。この集水流路部材は、通水性のあるシート状部材、例えば不織布、織布、ネット等でもよいが、図1A~図1Dに示すような、分離膜対の互いに対向する透過側の面の両方に接着する樹脂部19によって形成されることが好ましい。樹脂部19の断面形状は、好ましくはドット状、線状、または格子状であるとよい。また、周縁部18の一部には集水部が設けられ、この集水部において集水流路が外部と連通し、ろ過水が取り出される。この分離膜エレメント4,5,6,7は可撓性を有し、気液混合流により揺動して、汚泥が付着し難くなる。ここで、可撓性を有する分離膜エレメントとは、支持板のない揺動することができる分離膜エレメントをいう。
 この分離膜エレメント4,5,6,7の集水部にはろ過水を取り出す吸水管8が配設されていて、この吸水管8にはチューブ9を介して集水管10が接続される。集水管10の下流側に吸引ポンプ(図示せず)が接続され、分離膜エレメント4,5,6,7内部に陰圧をかけ、ろ過水を取り出す。
 本発明における分離膜モジュールを構成する複数の分離膜エレメントにおいて、下端は固定支持端であり、上端は固定支持端を有する分離膜エレメントと自由支持端または自由端を有する分離膜エレメントが混在している。固定支持端とは、端部の少なくとも一箇所で固定された支持端をいう。自由支持端とは、端部の少なくとも一箇所で所定の方向への移動を制限した支持端をいう。自由端とは、支持されておらず自由に動くことができる端部をいう。
 例えば、図1A~図1Dは、下端は固定支持端であり、上端は固定支持端を有する分離膜エレメントと、下端は固定支持端であり、上端は自由支持端または自由端を有する分離膜エレメントの平面視断面図である。貫通穴20を有するエレメントは、貫通穴20の位置で固定されるのが好ましく、貫通穴21を有するエレメントは、貫通穴21に例えばシャフト等を貫通させることでシャフト等の軸方向に垂直な方向への移動を制限されるのが好ましい。
 図1Aに示した分離膜エレメント4は四隅の位置に固定するための貫通穴20を有しており、分離膜エレメント4の上端と下端は固定支持端である。図1Bの平面視断面図に示した分離膜エレメント5は下端二隅の位置に固定するための貫通穴20を有しており、分離膜エレメント5の下端は固定支持端であり、上端は自由端である。図1Cの平面視断面図に示した分離膜エレメント6は四隅の位置に固定するための貫通穴20を有しており、分離膜エレメント6の上端と下端は固定支持端である。また、分離膜エレメント6は上端二隅の貫通穴20よりも下部に移動を制限するための貫通穴21を有している。図1Dの平面視断面図に示した分離膜エレメント7は、下端二隅の位置に固定するための貫通穴20を有しており、上端二隅の位置に移動を制限するための貫通穴21を有している。分離膜エレメント6の下端は固定支持端であり、上端は自由支持端である。本発明はこれらの貫通穴の配置に限定されるものではない。
2.分離膜モジュール
 図2、図3は本発明の分離膜モジュールの実施形態を例示する斜視図である。
 図2、図3において、分離膜モジュール1は、エレメントブロック2、エアレーションブロック3および集水管10により構成される。エレメントブロック2は、筐体フレーム16の内側に、可撓性を有する分離膜エレメント4,5を複数平行に並べることで構成されている。このエレメントブロック2の下方には散気管22を具備したエアレーションブロック3が配設されている。エアレーションブロック3の散気管22はブロワ(図示せず)に連結されている。膜浸漬槽内の被処理水中に沈められた分離膜モジュール1のエレメントブロック2に向けて下方のエアレーションブロック3からエアが噴出される。
 本発明のエレメントブロック2は、支持端の異なる分離膜エレメント4,5,6,7を複数平行に並べることで構成されている。本例においては、分離膜エレメント4,5,6,7の下端は固定支持端であり、分離膜エレメント4,6の上端は固定支持端、分離膜エレメント5の上端は自由端、分離膜エレメント7の上端は自由支持端である。分離膜エレメント4,6の大きさは、分離膜エレメント5,7よりも小さいが、本発明はこれらの大きさが異なる分離膜エレメントに限定されるものではない。
 図2の例では、分離膜エレメント4,5の下端二隅と分離膜エレメント4の上端二隅を固定具14で固定しており、固定具14は筐体フレーム16に固定されていて、分離膜エレメント4の四隅は固定支持端である。分離膜エレメント5の上端は自由端である。
 図3の例では、分離膜エレメント6,7の下端二隅と分離膜エレメント6の上端二隅に貫通穴を有し、その貫通穴にシャフト13を貫通しており、分離膜エレメント6の上端部貫通穴のそれぞれの間であって、分離膜エレメント6の水平方向の左右両側には、上部スペーサー11,11が配置されている。また、分離膜エレメント6,7における下端部貫通穴のそれぞれの間であって、分離膜エレメント6,7の水平方向の左右両側には、下部スペーサー12,12が配置されている。これにより、分離膜エレメント6の四隅は固定支持端となる。また、分離膜エレメント7の上端二隅に貫通穴を有し、その貫通穴をシャフト13が貫通しており、分離膜エレメント7の上端部は水平方向のみを移動できる自由支持端となっている。分離膜エレメント7の上端部の貫通穴を貫通するシャフト13は、分離膜エレメント6にも貫通するため、分離膜エレメント6は分離膜エレメント7の上端部の貫通穴と同じ高さに貫通穴を有している。
 分離膜エレメント4,5,6,7の固定方法は所望の効果が損なわれない範囲であれば、特に限定されない。
 図4~図11は本発明の分離膜モジュールを構成するエレメントブロック2の実施形態を例示する側面図である。本発明のエレメントブロック2は、支持端の異なる分離膜エレメント4,5,6,7を複数平行に並べることで構成されている。
 分離膜エレメント4,6における上端部貫通穴のそれぞれの間であって、分離膜エレメント4,6の水平方向の左右両側には、上部スペーサー11,11が配置されている。また、分離膜エレメント4,5,6,7における下端部貫通穴のそれぞれの間であって、分離膜エレメント4,5,6,7の水平方向の左右両側には、下部スペーサー12,12が配置されている。分離膜エレメント4,6と上部スペーサー11、分離膜エレメント4,5,6,7と下部スペーサー12は密着していることが好ましく、図4~11に示すように、分離膜エレメント4,6が上部スペーサー11の設置位置に、分離膜エレメント4,5,6,7が下部スペーサー12の設置位置に貫通穴を有し、さらに上部スペーサー11および下部スペーサー12が貫通穴を有し、シャフト13がそれぞれの貫通穴を貫通させることで連結され一体として束ねられていることが好ましい。また上部スペーサー11および下部スペーサー12を貫通するシャフト13,13の両端部が、固定具15により筐体フレーム16に固定されるのが好ましい。分離膜エレメント7の上端部の貫通穴をシャフト13が貫通しており、分離膜エレメント7の上端部は水平方向のみを移動できる自由支持端となっている。これにより、分離膜エレメント7の揺動効果を損なうことなく、分離膜モジュールまたはエレメントボックスの設置や運搬をする際に、分離膜エレメント7自体の重みで分離膜エレメント7が撓み、隣接する分離膜エレメントとの接触による分離膜面の損傷を抑制することができる。この時、分離膜エレメント7の上端部の貫通穴を貫通するシャフト13は、分離膜エレメント6にも貫通するため、分離膜エレメント6は分離膜エレメント7の上端部の貫通穴と同じ高さに貫通穴を有している。
 図4の例では、上端、下端ともに固定支持端である分離膜エレメント4と、下端が固定支持端であり上端が自由端の分離膜エレメント5とを有している。図5の例では、上端、下端ともに固定支持端である分離膜エレメント6と、下端が固定支持端であり上端が自由支持端の分離膜エレメント7とを有している。分離膜エレメント5,7の上端部は、上部スペーサー11が配置されておらず、自由端または自由支持端である。これにより、分離膜エレメントの相互間の流路を流れる気液混相の上昇流は、効果的に分離膜エレメント5および7を揺動させることができ、膜面に付着した汚泥を効率よく剥離させることができる。
 また、上端部が固定支持端である分離膜エレメント4または6を複数枚配置することで、分離膜モジュールまたはエレメントボックスの設置や運搬をする際に、分離膜エレメント5,7自体の重みで分離膜エレメント5,7が撓み、隣接する分離膜エレメントとの接触による分離膜面の損傷を抑制することができる。さらに、端部が固定支持端である分離膜エレメント4または6を複数枚配置することにより、分離膜エレメントの相互間の流路を流れる気液混相の上昇流が特定の箇所に偏った場合に、分離膜エレメント5,7が流速の大きい箇所の方へ傾いてしまうことを抑制することができ、分離膜エレメントが破損することを防ぐことができる。
 図6の例では、上端、下端ともに固定支持端である分離膜エレメント4が、分離膜モジュール内に水平方向に並べられた複数の分離膜エレメントのうちの、水平方向の両端に配置されている。図7の例では、上端、下端ともに固定支持端である分離膜エレメント6が、分離膜モジュール内の水平方向の両端に配置されている。分離膜モジュール内の水平方向の両端の分離膜エレメントが、上端、下端ともに固定支持端であることにより、エレメントブロック内外の圧力差が生じた場合や、分離膜エレメントの相互間の流路を流れる気液混相の上昇流が特定の箇所に偏った場合に、分離膜エレメントが傾くことを抑制することができる。
 図8の例では、上端、下端共に固定支持端である分離膜エレメント4に隣接する分離膜エレメントが、上端部が自由端である分離膜エレメント5である。図9の例では、上端、下端共に固定支持端である分離膜エレメント6に隣接する分離膜エレメントが、上端部が自由支持端である分離膜エレメント7である。
 これにより、分離膜エレメント4と5の間、分離膜エレメント6と7の間の水流が変化し、渦流などが発生することで、分離膜表面に作用するせん断応力が大きくなり、上端、下端ともに固定支持端である分離膜エレメント4および6の洗浄効果が増大する。
 図10の例では、上端部が自由端である分離膜エレメント5に隣接する分離膜エレメントが、上端、下端共に固定支持端である分離膜エレメント4ある。図11の例では、上端部が自由支持端である分離膜エレメント6に隣接する分離膜エレメントが、上端、下端共に固定支持端である分離膜エレメント7ある。上端部が自由支持端または自由端である分離膜エレメントの剛性が低い場合は、上端部が自由支持端または自由端である分離膜エレメントに隣接する分離膜エレメントが、上端部が固定支持端である分離膜エレメントであるほうが好ましい。これにより、上端部が自由支持端または自由端である分離膜エレメントの振幅が大きくなる場合に、分離膜エレメント同士の接触を抑制することができ、分離膜エレメントが破損することを防止できる。
 分離膜エレメント4,5,6,7の配置は所望の効果が損なわれない範囲であれば、特に限定されない。
 下部スペーサー12および上部スペーサー11は、板状または環状に形成され、その平面視形状は、円状のほか、四角状、楕円状、菱状など、任意の形状が選択できる。また、各形状について、シャフト13を通すための貫通穴が空いている。
 下部スペーサー12および上部スペーサー11を構成する材質は、少なくとも隣接する分離膜エレメントと当接する面が、ISO 7169-1に従って測定したデュロメータ硬さ(タイプA)が20度以上95度以下の材質、もしくは、ISO 2039-1に従って測定したロックウェル硬さ(スケールR)が50度以上130度以下のプラスチック材であることが望ましい。下部スペーサー12および上部スペーサー11は、より好ましくはデュロメータ硬さ(タイプA)が20度以上95度以下の材質であるとよい。
 ISO 7169-1に従って測定したデュロメータ硬さ(タイプA)が20度以上95度以下の材質としては、例えば、そのようなデュロメータ硬さ(タイプA)をもつウレタン、ニトリル、クロロプレン、エチレン、ブチル、フッ素、シリコン、低弾性ゴム、などの各種ゴム材料が挙げられる。また、ISO 2039-1に従って測定したロックウェル硬さ(スケールR)が50度以上130度以下のプラスチック材としては、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネートなどの汎用プラスチックや、ナイロン、ポリアセタール、ABS(Acrylonitrile Butadiene Styrene)、ポリフッ化ビニリデン、四弗化エチレン樹脂などの汎用エンジニアリングプラスチックが挙げられる。
 つぎに、筐体フレーム16の材質は、ステンレス、アルミなどの各種金属、PVC樹脂やABS樹脂などの各種熱可塑性樹脂、またポリウレタン樹脂やエポキシ樹脂などの各種熱硬化性樹脂など任意に選択可能であるが、耐食性および剛性の高いステンレス材が好適に使用される。
 シャフト13の材質は、ステンレス、アルミなどの各種金属、PVC樹脂やABS樹脂などの各種熱可塑性樹脂、またポリウレタン樹脂やエポキシ樹脂などの各種熱硬化性樹脂など任意に選択可能であるが、耐食性および剛性の高いステンレス材が好適に使用される。また連結の機能が果たせるのであれば、中実シャフトおよび中空シャフトのどちらのシャフトを使用しても構わない。さらに、シャフトの断面形状について、丸形状に限定されず、楕円、略四角形状など任意形状でも構わない。
 さらに、筐体フレーム16は、分離膜エレメントを複数平行に配列した分離膜エレメントの束を2段以上の多段構成にすることが好ましい。筐体フレーム構成は、前述した所望の機構および効果が得られるのであれば任意でよい。
 分離膜エレメント4,5,6,7の集水部にはろ過水を取り出す吸水管8が配設されていて、この吸水管8にはチューブ9を介して集水管10が接続される。エレメントの集水部が分離膜エレメント4,5,6,7の下側半分に配置されることにより、効果的に分離膜エレメントを揺動させることができる。 
 図12、図13はエレメントブロック2の正面図の一例を示す。分離膜エレメント4,5,6,7に取り付けられている集水部の配置は、分離膜エレメント4,5,6,7の下側半分に配置されることが好ましい。集水部の設置位置を分離膜エレメントの下側半分にすることで、効果的に分離膜エレメント5,7を揺動させることができる。さらには、分離膜エレメント5,7を効果的に揺動させるには、分離膜エレメント4,5,6,7に取り付けられている集水部の配置は、分離膜エレメントの下側4分の1に配置されることがより好ましく、分離膜エレメントの下側8分の1に配置されることがさらに好ましい。また、下端部の固定支持端と集水部が近くなり、集水部の周辺の揺れが小さくなり、集水部の周りの分離膜エレメントの負荷を低減することができ、分離膜エレメントの接着が剥がれたり破壊されたりするのを防ぐことができる。
3.分離膜
 本発明において、分離膜は、平膜状の分離膜であり、好ましくは不織布ベースの基材の上に分離機能層を製膜したものである。 
 分離膜の分離機能層の厚みは、薄すぎるとひび割れなどの欠陥が生じ、ろ過性能が落ちる場合があり、厚すぎると透水量が低下することがあるので、通常0.001~0.5mm(1μm~500μm)、好ましくは0.05~0.2mm(50μm~200μm)の範囲で選定することが好ましい。 
 分離機能層としては、孔径制御、耐久性の点で、架橋高分子で構成されることが好ましい。分離対象にする成分の分離性能の点で、多孔性支持層上に多官能アミンと多官能酸ハロゲン化物とを重縮合させてなる分離機能層、有機無機ハイブリッド機能層などが好適である。また、セルロース膜、ポリフッ化ビニリデン膜、ポリエーテルスルホン膜、ポリスルホン膜のような多孔性支持層であって、分離機能と支持体機能との両方を有する膜を用いることもできる。つまり、分離機能層と多孔性支持層とが、単一の層で実現されてもよい。 
 本発明の分離膜エレメントを構成する分離膜は、好ましくは基材と分離機能層とからなり、特に、ポリフッ化ビニリデン系樹脂からなる分離機能層が形成された分離膜を用いるとよい。ここで、基材と分離機能層との間には、当該分離機能層を構成する樹脂と基材とが混在する層が介在していることが好ましい。基材表面から内部にポリフッ化ビニリデン系ブレンド樹脂が入り込むことで、いわゆるアンカー効果によって分離機能層が基材に堅固に定着され、分離機能層が基材から剥がれるのを防止できるようになる。分離機能層は、基材に対して、片面に偏って存在しても構わないし、また、両面に存在しても構わない。分離機能層は、基材に対して、対称構造であっても、非対称構造であっても構わない。また、分離機能層が基材に対して両面に存在している場合には、両側の分離機能層が、基材を介して連続的であっても構わないし、不連続であっても構わない。 
 分離機能層と基材で形成された分離膜において、基材は、分離機能層を支持して分離膜に強度を与える機能をもつ。基材を構成する材質としては、有機基材、無機基材等、特に限定されないが、軽量化しやすい点から、有機基材が好ましい。有機基材としては、セルロース繊維、セルローストリアセテート繊維、ポリエステル繊維、ポリプロピレン繊維、ポリエチレン繊維などの有機繊維からなる織編物や不織布があげられる。なかでも、密度の制御が比較的容易な不織布が特に好ましい。 
 また、本発明の分離膜エレメントは、逆浸透膜、ナノろ過膜、限外ろ過膜、精密ろ過膜のいずれにも適用することができる。また、分離対称物質の大きさに応じて適当な一種以上の膜を選択、組み合わせればよいが、下廃水処理用としては特に限外ろ過膜、精密ろ過膜が好ましい。
 本出願は、2016年2月29日出願の日本特許出願、特願2016-036912に基づくものであり、その内容はここに参照として取り込まれる。
 1  分離膜モジュール
 2  エレメントブロック
 3  エアレーションブロック
 4,5,6,7  分離膜エレメント
 8  吸水管
 9  チューブ
10  集水管
11  上部スペーサー
12  下部スペーサー
13  シャフト
14  固定具
15  固定具
16  筐体フレーム
17  分離膜
18  周縁部
19  樹脂部
20  貫通穴
21  貫通穴
22  散気管

Claims (8)

  1.  水平方向に隙間を設けて並べられた、可撓性を有する複数の分離膜エレメントを備えた分離膜モジュールであって、前記分離膜エレメントの下端が固定支持端であり上端が固定支持端の分離膜エレメントと、分離膜エレメントの下端が固定支持端であり上端が自由支持端または自由端の分離膜エレメントとを有することを特徴とする分離膜モジュール。
  2.  前記分離膜モジュール内に水平方向に並べられた複数の分離膜エレメントのうちの、水平方向の両端の分離膜エレメントは、上端、下端ともに固定支持端であることを特徴とする請求項1に記載の分離膜モジュール。
  3.  前記分離膜エレメントの上端が固定支持端を有する複数の分離膜エレメントに隣接する分離膜エレメントは、上端が自由支持端または自由端を有する分離膜エレメントであることを特徴とする請求項1または2に記載の分離膜モジュール。
  4.  前記分離膜エレメントの上端が自由支持端または自由端を有する複数の分離膜エレメントに隣接する分離膜エレメントは、上端が固定支持端を有する分離膜エレメントであることを特徴とする請求項1から3のいずれか1項に記載の分離膜モジュール。
  5.  前記複数の分離膜エレメントの下方に散気手段を備えていることを特徴とする請求項1から4のいずれか1項に記載の分離膜モジュール。
  6.  前記固定支持端と前記自由支持端は、分離膜エレメントに少なくとも一つの貫通穴を有し、前記貫通穴にシャフトを貫通させたものであることを特徴とする請求項1から5のいずれか1項に記載の分離膜モジュール。
  7.  前記固定支持端を有する複数の分離膜エレメントの間にスペーサーを備え、前記スペーサーのそれぞれが貫通穴を有し、前記分離膜エレメントおよび前記スペーサーのそれぞれの貫通穴に前記シャフトが貫通されており、前記分離膜エレメントと前記スペーサーが一体として固定されていることを特徴とする請求項6に記載の分離膜モジュール。
  8.  前記分離膜エレメントの周縁部の一部に集水部が設けられ、前記集水部は前記分離膜エレメントの下側半分に配置されることを特徴とする請求項1~7のいずれか1項に記載の分離膜モジュール。
PCT/JP2017/006924 2016-02-29 2017-02-23 分離膜モジュール WO2017150346A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017511966A JPWO2017150346A1 (ja) 2016-02-29 2017-02-23 分離膜モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-036912 2016-02-29
JP2016036912 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150346A1 true WO2017150346A1 (ja) 2017-09-08

Family

ID=59742978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006924 WO2017150346A1 (ja) 2016-02-29 2017-02-23 分離膜モジュール

Country Status (2)

Country Link
JP (1) JPWO2017150346A1 (ja)
WO (1) WO2017150346A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261254A (ja) * 1992-03-18 1993-10-12 Mitsubishi Rayon Co Ltd 中空糸膜モジュール
JPH08155277A (ja) * 1994-12-05 1996-06-18 Nitto Denko Corp 膜分離装置
JP2009011965A (ja) * 2007-07-06 2009-01-22 Mitsubishi Rayon Eng Co Ltd 中空糸膜モジュールおよびこれを用いた中空糸膜ユニット
WO2014084057A1 (ja) * 2012-11-27 2014-06-05 東レ株式会社 分離膜モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261254A (ja) * 1992-03-18 1993-10-12 Mitsubishi Rayon Co Ltd 中空糸膜モジュール
JPH08155277A (ja) * 1994-12-05 1996-06-18 Nitto Denko Corp 膜分離装置
JP2009011965A (ja) * 2007-07-06 2009-01-22 Mitsubishi Rayon Eng Co Ltd 中空糸膜モジュールおよびこれを用いた中空糸膜ユニット
WO2014084057A1 (ja) * 2012-11-27 2014-06-05 東レ株式会社 分離膜モジュール

Also Published As

Publication number Publication date
JPWO2017150346A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP6413764B2 (ja) 分離膜モジュール
JP6164216B2 (ja) エレメントユニット、分離膜モジュール、分離膜エレメントの着脱方法
JP4445862B2 (ja) 中空糸膜モジュール、中空糸膜モジュールユニット及びこれを用いた膜濾過装置と、その運転方法
CA2825674C (en) Membrane treatment method using antifouling particles
JP2015536825A (ja) ろ過装置
TW200920471A (en) Membrane element and membrane separating apparatus
US20180001263A1 (en) Submerged hyperfiltration system
WO2017150346A1 (ja) 分離膜モジュール
KR100856385B1 (ko) Mbr용 분리막 모듈 지지프레임
WO2017150531A1 (ja) 平膜型分離膜エレメント、エレメントユニット、平膜型分離膜モジュールおよび平膜型分離膜モジュールの運転方法
JP2017080688A (ja) 分離膜エレメントおよび分離膜モジュール
JP2003112017A (ja) 濾過膜モジュールおよび造水方法
JPH06342A (ja) 中空糸膜モジュール及びその組立体
JP2003190746A (ja) 膜エレメントおよび造水方法
JP2020131159A (ja) 分離膜エレメント及び分離膜モジュール
JPH07299337A (ja) 膜モジュール
JP2023080452A (ja) 平膜型分離膜エレメントユニット及び平膜型分離膜モジュール
JP4853453B2 (ja) ろ過膜エレメントの取り出し方法
JPH0747238A (ja) 中空糸膜モジュール及びその支持方法
JP2002273177A (ja) ろ過膜エレメントおよび造水方法
JP2020131160A (ja) 分離膜エレメント及び分離膜モジュール
JPH067646A (ja) 中空糸膜モジュールユニット
KR20130088299A (ko) 내오염성이 향상된 평막모듈 및 이를 이용한 오폐수의 처리방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017511966

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759812

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759812

Country of ref document: EP

Kind code of ref document: A1