WO2017150043A1 - 銅張積層板の製造方法 - Google Patents

銅張積層板の製造方法 Download PDF

Info

Publication number
WO2017150043A1
WO2017150043A1 PCT/JP2017/003344 JP2017003344W WO2017150043A1 WO 2017150043 A1 WO2017150043 A1 WO 2017150043A1 JP 2017003344 W JP2017003344 W JP 2017003344W WO 2017150043 A1 WO2017150043 A1 WO 2017150043A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
copper
roughened
thermoplastic resin
clad laminate
Prior art date
Application number
PCT/JP2017/003344
Other languages
English (en)
French (fr)
Inventor
歩 立岡
眞 細川
彰太 川口
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US15/570,846 priority Critical patent/US10244635B2/en
Priority to KR1020177031868A priority patent/KR101846141B1/ko
Priority to SG11201708903SA priority patent/SG11201708903SA/en
Priority to CN201780001695.7A priority patent/CN107614753B/zh
Priority to JP2017513163A priority patent/JP6178035B1/ja
Publication of WO2017150043A1 publication Critical patent/WO2017150043A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/12Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/385Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by conversion of the surface of the metal, e.g. by oxidation, whether or not followed by reaction or removal of the converted layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/472Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/028Paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/20Thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites

Definitions

  • the present invention relates to a method for producing a copper clad laminate.
  • Patent Document 1 International Publication No. 2014/126193
  • Patent Document 2 International Publication No. 2015/040998
  • each of the roughening treatment layers having fine irregularities disclosed in Patent Documents 1 and 2 is formed through a redox treatment after a preliminary treatment such as alkaline degreasing.
  • the fine irregularities thus formed have a specific shape composed of needle-shaped crystals of a copper composite compound, and the roughened surface provided with such fine irregularities is a roughened surface formed by adhesion of fine copper grains. It is generally finer than the treated surface and the roughened treated surface provided with irregularities by etching.
  • a printed wiring board is provided with a copper foil processed into a wiring pattern and an insulating resin base material, but the transmission loss is a conductor loss due to the copper foil and a dielectric loss due to the insulating resin base material. From the main. Therefore, it would be advantageous if a low dielectric constant thermoplastic resin could be used to reduce dielectric loss due to the insulating resin substrate.
  • a low dielectric constant thermoplastic resin represented by a fluororesin such as polytetrafluoroethylene (PTFE) or a liquid crystal polymer (LCP) resin has low chemical activity, Therefore, the adhesion with the copper foil is low.
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • the surface of the copper foil to be joined to the thermoplastic resin is subjected to a roughening treatment that brings a certain degree of surface roughness to the resin. And improved adhesion.
  • a copper foil with a smooth surface is desired. Therefore, a technique for improving the adhesion between the copper foil and the thermoplastic resin while using a low-roughness copper foil is desired. It is.
  • the present inventors have recently determined that oxidation is determined in terms of thickness by continuous electrochemical reduction analysis (SERA) in a roughened copper foil having a roughened surface with fine irregularities composed of needle-like crystals.
  • SERA continuous electrochemical reduction analysis
  • the inventors obtained knowledge that high adhesion to a low dielectric constant thermoplastic resin can be realized by controlling the amounts of copper and cuprous oxide within a predetermined range.
  • a copper-clad laminate in which a copper foil and a resin are bonded with high adhesion can be produced while using a thermoplastic resin having a low dielectric constant.
  • an object of the present invention is to produce a copper clad laminate in which a copper foil and a resin are bonded with high adhesion while using a low dielectric constant thermoplastic resin.
  • a method for producing a copper clad laminate Preparing a roughened copper foil having a roughened surface on at least one side provided with fine irregularities composed of needle-like crystals containing copper oxide and cuprous oxide; A step of attaching a sheet-like thermoplastic resin to the roughened surface of the roughened copper foil to obtain a copper-clad laminate; And the roughened surface has a copper oxide thickness of 1 to 20 nm determined by continuous electrochemical reduction analysis (SERA) at the time of applying the thermoplastic resin, and continuous electrochemical reduction analysis
  • SERA continuous electrochemical reduction analysis
  • the present invention copper clad laminate, a method for manufacturing a copper clad laminate.
  • the method of the present invention includes (1) a step of preparing a roughened copper foil, and (2) a step of attaching a sheet-like thermoplastic resin to the roughened surface of the roughened copper foil.
  • the roughened copper foil is a copper foil having a roughened surface on at least one side provided with fine irregularities composed of needle-like crystals containing copper oxide (CuO) and cuprous oxide (Cu 2 O). .
  • the roughened surface has a copper oxide thickness of 1 to 20 nm determined by continuous electrochemical reduction analysis (SERA) at the time of applying the thermoplastic resin, and has a continuous electrochemical reduction analysis (SERA).
  • the cuprous oxide thickness is 15 to 70 nm.
  • a thermoplastic resin having a low dielectric constant such as a fluororesin such as polytetrafluoroethylene (PTFE) or a liquid crystal polymer (LCP) resin is chemically different. The activity is low and, therefore, the adhesive strength with the copper foil is inherently low.
  • each amount of copper oxide and cuprous oxide determined by SERA in terms of thickness is controlled within the predetermined range so as to obtain a specific oxidation state.
  • a thermoplastic resin is affixed to the roughened surface of the state.
  • the copper foil used in the method of the present invention is a roughened copper foil.
  • This roughened copper foil has a roughened surface on at least one side.
  • the roughened surface is provided with fine irregularities composed of needle-like crystals containing copper oxide and cuprous oxide.
  • the roughened surface has a copper oxide thickness determined by continuous electrochemical reduction analysis (SERA) of 1 to 20 nm, preferably 1 to 18 nm, more preferably, at the time of applying the thermoplastic resin.
  • the cuprous oxide thickness is 15 to 70 nm, preferably 20 to 65 nm, more preferably 25 to 40 nm, as determined by continuous electrochemical reduction analysis (SERA).
  • This SERA analysis can be performed, for example, by the following procedure using a commercially available SERA analyzer (for example, QC-100 manufactured by ECI Technology).
  • a commercially available SERA analyzer for example, QC-100 manufactured by ECI Technology.
  • the value of the constant K for CuO is 6.53 ⁇ 10 ⁇ 5 (cm 3 / A ⁇ sec), and the value of K for Cu 2 O is 2.45 ⁇ 10 ⁇ 4 (cm 3 / A ⁇ sec). ).
  • the fine unevenness can be formed through oxidation-reduction treatment, and is typically observed in a shape (eg, a lawn shape) in which needle-like crystals grow substantially perpendicularly and / or obliquely to the copper foil surface.
  • the height of the acicular crystal (that is, the height measured in the vertical direction from the root of the acicular crystal) is preferably 50 to 400 nm, more preferably 100 to 400 nm, and still more preferably 120 to 350 nm.
  • the acicular crystal height is more suitable for fine pitch circuit formation and high frequency applications.
  • such low roughness reduces the skin effect of copper foil, which is a problem in high-frequency signal transmission, and reduces conductor loss due to copper foil, thereby significantly reducing high-frequency signal transmission loss. can do.
  • the thickness of the roughened copper foil of the present invention is not particularly limited, but is preferably 0.1 to 70 ⁇ m, more preferably 0.5 to 18 ⁇ m.
  • the roughening copper foil of this invention is not restricted to what roughened the surface of normal copper foil, Even if it roughened the copper foil surface of copper foil with a carrier. Good.
  • the roughened copper foil has an organic rust preventive layer on the roughened surface.
  • the organic rust preventive layer is not particularly limited, but preferably contains at least one of a triazole compound and a silane coupling agent.
  • the triazole compound include benzotriazole, carboxybenzotriazole, methylbenzotriazole, aminotriazole, nitrobenzotriazole, hydroxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, and naphthotriazole.
  • silane coupling agents include epoxy-functional silane coupling agents such as 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane, or 3-aminopropyltriethoxysilane, 3-amino Amino-functional silane coupling agents such as propyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, or 3-mercaptopropyltrimethoxysilane Mercapto-functional silane coupling agents, vinyl-functional silane coupling agents such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or methacryl-functional silane coupling agents such as 3-methacryloxypropyltrimethoxysilane Or 3-acryloxypropyltrimethoxysilane acrylic-functional silane coupling agent such as, or imidazo
  • the organic rust preventive layer preferably contains a triazole compound, and preferred examples of the triazole compound include benzotriazole (BTA) and carboxybenzotriazole (CBTA).
  • BTA benzotriazole
  • CBTA carboxybenzotriazole
  • An organic rust preventive layer containing a triazole compound such as BTA or CBTA is particularly preferable when the thermoplastic resin is a fluororesin.
  • the reason why the triazole compound is more preferable is as follows.
  • the triazole compound forms a copper complex with the cuprous oxide on the roughened surface, so that compared to the case where it is formed on a normal copper foil, the component adheres more densely to the surface, so it can exhibit an excellent rust prevention function. Conceivable.
  • the copper oxide thickness and the cuprous oxide thickness during long-term storage of the roughened copper foil can be easily maintained within the predetermined ranges described above. Moreover, when exposed to severe environments, such as high temperature, since the fine unevenness
  • thermoplastic resin Adhesion of thermoplastic resin
  • the thermoplastic resin may be attached to the roughened copper foil according to a known copper clad laminate manufacturing procedure, and is not particularly limited.
  • a technique of attaching a copper foil to the inner layer substrate via a thermoplastic resin can be employed.
  • a known technique such as a so-called build-up method may be used.
  • the respective amounts of copper oxide and cuprous oxide determined by SERA in terms of thickness are controlled within the predetermined range, respectively, so as to have a specific oxidation state.
  • thermoplastic resin is affixed to the roughened surface in the oxidized state.
  • high adhesiveness ie, high peeling strength
  • Affixing the thermoplastic resin to the roughened copper foil is preferably performed by pressing while heating, so that the thermoplastic resin can be softened to enter the fine irregularities of the roughened surface. it can.
  • the temperature at the time of pressing may be appropriately determined according to the properties of the thermoplastic resin to be used, and is not particularly limited, but is preferably 150 to 500 ° C, more preferably 180 to 400 ° C.
  • the pressing pressure is not particularly limited, but is preferably 1 to 10 MPa, and more preferably 2 to 5 MPa.
  • the sheet-like thermoplastic resin may be a cut sheet piece or a long sheet drawn from a roll, and its form is not particularly limited.
  • Preferred examples of the thermoplastic resin include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), polyetheretherketone (PEEK), thermoplastic polyimide (PI). , Polyamideimide (PAI), fluororesin, polyamide (PA), nylon, polyacetal (POM), modified polyphenylene ether (m-PPE), polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cycloolefin (COP), and any combination thereof.
  • thermoplastic resin examples include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), poly Ether ether ketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI), fluororesin, and any combination thereof.
  • PSF polysulfone
  • PES polyethersulfone
  • PAR amorphous polyarylate
  • LCP liquid crystal polymer
  • PEEK poly Ether ether ketone
  • PI polyimide
  • PAI polyamideimide
  • fluororesin fluororesin
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. Copolymers (ETFE) and any combination thereof are mentioned.
  • the roughened copper foil may be provided on one side of the sheet-like thermoplastic resin or may be provided on both sides.
  • the sheet-like thermoplastic resin only needs to contain a thermoplastic resin, and may further contain other materials. Therefore, the sheet-like thermoplastic resin may be a prepreg.
  • the prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin.
  • the thermoplastic resin may further contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving the insulating properties.
  • the thickness of the sheet-like thermoplastic resin is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 2 to 400 ⁇ m, and further preferably 3 to 200 ⁇ m.
  • the resin layer may be composed of a plurality of layers.
  • the roughened copper foil according to the present invention may be produced by any method, but is preferably produced through an oxidation-reduction treatment.
  • This preferable manufacturing method includes a step of preparing a copper foil and a roughening step (oxidation-reduction treatment) in which a preliminary treatment, an oxidation treatment, and a reduction treatment are sequentially performed on the surface.
  • the copper foil As copper foil used for manufacture of a roughening process copper foil, use of both electrolytic copper foil and rolled copper foil is possible, More preferably, it is electrolytic copper foil. Further, the copper foil may be a non-roughened copper foil or a pre-roughened copper foil. The thickness of the copper foil is not particularly limited, but is preferably 0.1 to 70 ⁇ m, more preferably 0.5 to 18 ⁇ m. When the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is prepared by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
  • a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method
  • a dry film formation method such as sputtering and chemical vapor deposition
  • the surface of the copper foil to be roughened preferably has a maximum height Sz measured in accordance with ISO25178 of 1.5 ⁇ m or less, more preferably 1.2 ⁇ m or less, and even more preferably 1 0.0 ⁇ m or less.
  • the surface profile required for the roughened copper foil of the present invention, in particular, the maximum height Sz of 1.5 ⁇ m or less can be easily realized on the roughened surface.
  • the lower limit value of Sz is not particularly limited, but Sz is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • Roughening treatment (redox treatment)
  • a copper compound containing copper oxide (cupric oxide) is formed on the surface of the copper foil by oxidizing the surface of the copper foil by a wet method using a solution.
  • the copper compound is reduced to convert a part of the copper oxide into cuprous oxide (cuprous oxide), thereby forming a needle-like crystal composed of a copper composite compound containing copper oxide and cuprous oxide. Fine irregularities can be formed on the surface of the copper foil.
  • the fine irregularities are formed of a copper compound containing copper oxide as a main component at the stage where the surface of the copper foil is oxidized by a wet method.
  • the copper compound is reduced, a part of the copper oxide is converted into cuprous oxide while maintaining the shape of the fine irregularities formed by the copper compound, and the copper oxide and the cuprous oxide are reduced.
  • corrugation which consists of a copper complex compound to contain.
  • pretreatment Prior to the oxidation treatment, pretreatment such as degreasing is preferably performed on the electrolytic copper foil.
  • pretreatment such as degreasing is preferably performed on the electrolytic copper foil.
  • the electrolytic copper foil is immersed in an aqueous sodium hydroxide solution to perform an alkaline degreasing treatment and then washed with water.
  • the electrolytic copper foil in which the alkaline degreasing process was performed in sulfuric acid type aqueous solution it is preferable to wash with water.
  • the sulfuric acid concentration of the sulfuric acid aqueous solution is not particularly limited, but is preferably 1 to 20% by mass.
  • the immersion time of the electrolytic copper foil in the sulfuric acid aqueous solution is not particularly limited, but is preferably 2 seconds to 2 minutes.
  • the copper foil subjected to the above pretreatment is subjected to an oxidation treatment using an alkaline solution such as a sodium hydroxide solution.
  • an alkaline solution such as a sodium hydroxide solution.
  • the temperature of the alkaline solution is preferably 60 to 85 ° C.
  • the pH of the alkaline solution is preferably 10 to 14.
  • the alkaline solution preferably contains chlorate, chlorite, hypochlorite and perchlorate from the viewpoint of oxidation, and the concentration is preferably 100 to 500 g / L.
  • the oxidation treatment is preferably performed by immersing the electrolytic copper foil in an alkaline solution, and the immersion time (that is, the oxidation time) is preferably 10 seconds to 20 minutes, more preferably 30 seconds to 10 minutes.
  • the alkaline solution used for the oxidation treatment preferably further contains an oxidation inhibitor. That is, when the surface of the copper foil is oxidized with an alkaline solution, the convex portion may grow excessively and exceed the desired length, making it difficult to form the desired fine irregularities. Become. Therefore, in order to form the fine irregularities, it is preferable to use an alkaline solution containing an oxidation inhibitor capable of suppressing oxidation on the copper foil surface.
  • An example of a preferred oxidation inhibitor is an amino silane coupling agent.
  • the amino silane coupling agent in the alkaline solution is adsorbed on the surface of the copper foil, and the copper foil surface by the alkaline solution Can be suppressed.
  • the amino silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyl.
  • Examples include trimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, and the like.
  • the preferred concentration of the amino-based silane coupling agent eg, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane
  • the preferred concentration of the amino-based silane coupling agent is 0.01 to 20 g / L, more preferably 0.02 to 20 g. / L.
  • the copper foil that has been subjected to the oxidation treatment (hereinafter referred to as the oxidation-treated copper foil) is subjected to a reduction treatment using a reduction treatment solution.
  • the copper foil has fine irregularities composed of needle-like crystals made of a copper composite compound containing copper oxide and cuprous oxide. Can be formed on the surface.
  • This reduction treatment may be performed by bringing the reduction treatment solution into contact with the oxidation treatment copper foil, a method of immersing the oxidation treatment copper foil in the reduction treatment solution, or a method of applying the reduction treatment solution to the oxidation treatment copper foil with a shower.
  • the treatment time is preferably 2 to 60 seconds, more preferably 5 to 30 seconds.
  • a preferable reducing treatment liquid is a dimethylamine borane aqueous solution, and this aqueous solution preferably contains dimethylamine borane at a concentration of 10 to 40 g / L.
  • the aqueous dimethylamine borane solution is preferably adjusted to pH 12 to 14 using sodium carbonate and sodium hydroxide.
  • the temperature of the aqueous solution at this time is not particularly limited, and may be room temperature.
  • the copper foil thus subjected to the reduction treatment is preferably washed with water and dried.
  • the copper foil may be subjected to a rust prevention treatment with an organic rust prevention agent to form an organic rust prevention layer.
  • a specific oxidation state in which each amount of copper oxide and cuprous oxide determined by SERA in terms of thickness is controlled within a predetermined range as long as possible. It can be maintained over a period of time, and it becomes easy to attach the thermoplastic resin to the roughened surface in the maintained oxidized state.
  • moisture resistance, chemical resistance, adhesion with an adhesive, and the like can be improved.
  • the organic rust preventive layer is not particularly limited, but preferably contains at least one of a triazole compound and a silane coupling agent.
  • triazole compounds include benzotriazole, carboxybenzotriazole, methylbenzotriazole, aminotriazole, nitrobenzotriazole, hydroxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, and naphthotriazole, particularly preferably benzotriazole. is there.
  • silane coupling agents include epoxy-functional silane coupling agents such as 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane, or 3-aminopropyltriethoxysilane, 3-amino Amino-functional silane coupling agents such as propyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, or 3-mercaptopropyltrimethoxysilane Mercapto-functional silane coupling agents, vinyl-functional silane coupling agents such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or methacryl-functional silane coupling agents such as 3-methacryloxypropyltrimethoxysilane Or 3-acryloxypropyltrimethoxysilane acrylic-functional silane coupling agent such as, or imidazo
  • the copper clad laminate of the present invention is preferably used for production of a printed wiring board. That is, according to the preferable aspect of this invention, the printed wiring board obtained using the said copper clad laminated board is provided.
  • the printed wiring board include a single-sided or double-sided printed wiring board in which a circuit is formed on the copper-clad laminate of the present invention, a multilayer printed wiring board obtained by multilayering these, and the like.
  • the multilayer printed wiring board may be a circuit formed on a multilayer copper-clad laminate in which a copper foil is bonded to the inner layer substrate via a thermoplastic resin layer, and further a build-up layer may be formed. Good.
  • the circuit formation method may be a subtractive method or a modified semi-additive method (MSAP method).
  • the printed wiring board produced using the copper clad laminate of the present invention is used in applications such as automobile antennas, mobile phone base station antennas, high-performance servers, collision prevention radars, etc., which are used in a high frequency band with a signal frequency of 10 GHz or more. It is suitably used as a high-frequency substrate to be used.
  • Examples 1-8 (1) Preparation of roughened copper foil (1a) Preparation of electrolytic copper foil A sulfuric acid copper sulfate solution having the composition shown below is used as the copper electrolyte, a titanium rotating electrode is used as the cathode, and a DSA is used as the anode. (Dimensionally stable anode) was used for electrolysis at a solution temperature of 45 ° C. and a current density of 55 A / dm 2 to obtain an electrolytic copper foil having a thickness of 18 ⁇ m. The maximum height Sz of the deposited surface and electrode surface of this electrolytic copper foil was measured using a laser microscope (manufactured by Keyence Corporation, VK-X100) in accordance with ISO25178.
  • VK-X100 laser microscope
  • the surface Sz was 1.2 ⁇ m.
  • Roughening treatment (oxidation reduction treatment) Roughening treatment (oxidation reduction treatment) was performed on the deposition surface side of the obtained electrolytic copper foil by a three-stage process shown below. That is, the following pretreatment, oxidation treatment, and reduction treatment were performed in this order.
  • the electrolytic copper foil obtained in the above (1) was immersed in a 40 g / L sodium hydroxide aqueous solution at 40 ° C. for 30 seconds to perform an alkaline degreasing treatment, and then washed with water.
  • the electrolytic copper foil subjected to the alkaline degreasing treatment was immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 10% by volume at 40 ° C. for 30 seconds and then washed with water.
  • ⁇ Oxidation treatment> An oxidation treatment was performed on the electrolytic copper foil subjected to the preliminary treatment.
  • This was performed by immersing in a sodium hydroxide solution of L for 3 minutes (Examples 1 to 6 and 8) or 7 minutes (Example 7). In this way, fine irregularities composed of needle-like crystals made of a copper composite compound were formed on both surfaces of the electrolytic copper foil.
  • ⁇ Reduction treatment> A reduction treatment was performed on the sample subjected to the oxidation treatment.
  • the temperature of the aqueous solution at this time was room temperature.
  • the sample thus reduced was washed with water and dried.
  • part of the copper oxide on both surfaces of the electrolytic copper foil was reduced to cuprous oxide, and a roughened surface having fine irregularities made of a copper composite compound containing copper oxide and cuprous oxide was obtained. In this way, a roughened copper foil having a roughened surface provided with fine irregularities composed of needle-like crystals on at least one side was obtained.
  • organic rust preventive layer Formation of organic rust preventive layer An organic rust preventive layer was formed on the roughened copper foil. The formation of this organic rust preventive is carried out using a roughened copper foil as an organic rust preventive agent, benzotriazole (Examples 1, 6 and 7), 3-aminopropyltrimethoxysilane (Examples 2 to 5) or carboxybenzotriazole (Example 8) ) was immersed in an aqueous solution containing 6 g / L at a liquid temperature of 25 ° C. for 30 seconds and then dried under the conditions shown in Table 1.
  • benzotriazole Examples 1, 6 and 7
  • 3-aminopropyltrimethoxysilane Examples 2 to 5
  • carboxybenzotriazole Example 8
  • Copper oxide (CuO) thickness and cuprous oxide (Cu 2 O) thickness were measured on the roughened surface of the roughened copper foil by continuous electrochemical reduction analysis (SERA).
  • SERA continuous electrochemical reduction analysis
  • QC-100 manufactured by ECI Technology was used as a measuring device. The procedure was as follows. First, for analysis, a roughened copper foil 8.0 mm 2 region was isolated with an O-ring gasket, and a borate buffer solution was injected and saturated with nitrogen. A current density I d of 30 ⁇ A / cm 2 is applied to the region, and a Cu 2 O reduction reaction appearing at ⁇ 0.40 V to ⁇ 0.60 V and a CuO reduction reaction appearing at ⁇ 0.60 V to ⁇ 0.85 V are applied.
  • the time was measured and set as t 1 and t 2 (seconds), respectively.
  • K for CuO is 6.53 ⁇ 10 ⁇ 5 (cm 3 / A ⁇ sec)
  • the value of the constant K for Cu 2 O is 2.45 ⁇ 10 ⁇ 4 (cm 3 / A ⁇ sec).
  • M (molecular weight) 79.545 (g / mol)
  • z (number of charges) 2 (CuO + H 2 O + 2e ⁇ ⁇ Cu + 2OH ⁇ )
  • K M / (z ⁇ F ⁇ ⁇ ): Calculated.
  • M (molecular weight) 143.09 (g / mol)
  • z (number of charges) 1 (Cu 2 O + H 2 O + 2e ⁇ ⁇ 2Cu + 2OH ⁇ )
  • thermoplastic resin As a thermoplastic resin base material, a PTFE base material (RO3003 Bondply, manufactured by ROGERS Corporation, thickness 125 ⁇ m) was prepared. On this PTFE base material, the roughened copper foil (thickness 18 ⁇ m) immediately after the above SERA measurement was laminated so that the roughened surface was in contact with the base material, and a vacuum press was used. A copper-clad laminate was produced by pressing under conditions of a pressing pressure of 2.4 MPa, a temperature of 370 ° C., and a pressing time of 30 minutes. Next, a test substrate provided with a 0.4 mm-wide linear circuit for measuring peel strength was produced by etching the copper-clad laminate.
  • a PTFE base material RO3003 Bondply, manufactured by ROGERS Corporation, thickness 125 ⁇ m
  • the linear circuit thus formed was peeled off from the PTFE substrate in accordance with JIS C 5016-1994 Method A (90 ° peeling), and the normal peel strength (kgf / cm) was measured. This measurement was performed using a desktop material testing machine (STA-1150, manufactured by Orientec Co., Ltd.). The results were as shown in Table 1.
  • thermoplastic resin PTFE> Normal peel strength against PTFE as described above, except that a test substrate equipped with a 0.4 mm width peel strength measurement linear circuit was placed in an oven, heated at 150 ° C. for 4 hours and floated in a solder bath at 288 ° C. for 10 seconds.
  • the heat-resistant peel strength (kgf / cm) with respect to PTFE was measured by the same procedure as above. The results were as shown in Table 1.
  • the technical meaning of measuring the heat-resistant peel strength is as follows. Printed wiring boards using thermoplastic resins may be exposed to harsh environments such as high temperatures. Even after exposure to such harsh environments, high adhesion reliability between copper foil and resin Is desired.
  • thermoplastic resin liquid crystal polymer
  • An LCP (liquid crystal polymer) film (CT-Z, manufactured by Kuraray Co., Ltd.) having a thickness of 50 ⁇ m was prepared as a thermoplastic resin substrate.
  • the roughened copper foil was laminated so that the roughened surface was in contact with the film, and using a vacuum press machine, the press pressure was 4 MPa, the temperature was 320 ° C., and the press time was 10 minutes.
  • a copper clad laminate was produced by pressing.
  • a test substrate provided with a 0.4 mm-wide linear circuit for measuring peel strength was produced by etching the copper-clad laminate.
  • the linear circuit thus formed was peeled off from the insulating resin substrate in accordance with JIS C 5016-1994 Method A (90 ° peeling), and the normal peel strength (kgf / cm) was measured. The results were as shown in Table 1.
  • thermosetting resin R1551>
  • a prepreg manufactured by Panasonic Corporation, R-1551, thickness 200 ⁇ m
  • the roughened copper foil was laminated so that its roughened surface was in contact with the prepreg, and using a vacuum press machine, the press pressure was 2.9 MPa, the temperature was 190 ° C., and the press time was 90 minutes.
  • a copper clad laminate was produced by pressing.
  • a test substrate provided with a 0.4 mm-wide linear circuit for measuring peel strength was produced by etching the copper-clad laminate. The linear circuit thus formed was peeled off from the insulating resin substrate in accordance with JIS C6481-1996, and the normal state peel strength (kgf / cm) was measured. The results were as shown in Table 1.
  • the roughened surface has a CuO thickness determined by SERA of 1 to 20 nm and a Cu 2 O thickness determined by SERA of 15 to 70 nm.
  • a high normal peel strength of 0.70 kgf / cm or more can be realized with respect to the thermoplastic resin.
  • thermosetting resins there was no improvement in normal peel strength as seen with thermoplastic resins with CuO thickness and Cu 2 O thickness within and outside the above ranges. Therefore, it can be said that the above effect realized in the thermoplastic resin is a remarkable effect that cannot be expected from the thermosetting resin.
  • the roughened surface has fine irregularities due to the presence of CuO and Cu 2 O, but OH groups tend to exist on these surfaces, resulting in hydrophilicity, and as a result, adhesion to the thermoplastic resin. Decreases.
  • the hydrophilicity of the roughened surface is desirably reduced, and the adhesion with the thermoplastic resin is improved. It is thought that it can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

低誘電率の熱可塑性樹脂を用いながらも、銅箔と樹脂とが高い密着力で接合された銅張積層板の製造方法が提供される。この方法は、酸化銅及び亜酸化銅を含む針状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔を用意する工程と、粗化処理銅箔の粗化処理面に、シート状の熱可塑性樹脂を貼り付けて銅張積層板を得る工程とを含む。粗化処理面は、熱可塑性樹脂を貼り付ける時点において、連続電気化学還元分析(SERA)により決定される酸化銅厚さが1~20nmであり、かつ、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが15~70nmであることを特徴とする。

Description

銅張積層板の製造方法
 本発明は、銅張積層板の製造方法に関するものである。
 ファインピッチ回路の形成に適したプリント配線板銅箔として、酸化処理及び還元処理(以下、酸化還元処理と総称することがある)を経て形成された微細凹凸を粗化処理面として備えた粗化処理銅箔が提案されている。
 例えば、特許文献1(国際公開第2014/126193号)には、最大長さが500nm以下の銅複合化合物からなる針状の微細凹凸で形成した粗化処理層を表面に備えた表面処理銅箔が開示されている。また、特許文献2(国際公開第2015/040998号)には、銅複合化合物からなる最大長さが500nm以下のサイズの針状の凸状部より形成された微細凹凸を有する粗化処理層と、当該粗化処理層の表面にシランカップリング剤処理層とを少なくとも一面に備えた銅箔が開示されている。これらの文献の粗化処理銅箔によれば、粗化処理層の微細凹凸によるアンカー効果により絶縁樹脂基材との良好な密着性を得ることができると共に、良好なエッチングファクターを備えたファインピッチ回路の形成が可能になるとされている。特許文献1及び2に開示される微細凹凸を有する粗化処理層はいずれも、アルカリ脱脂等の予備処理を行った後、酸化還元処理を経て形成されている。こうして形成される微細凹凸は銅複合化合物の針状結晶で構成される特有の形状を有するものであり、かかる微細凹凸を備えた粗化処理面は、微細銅粒の付着により形成された粗化処理面や、エッチングにより凹凸が付与された粗化処理面よりも概して微細である。
国際公開第2014/126193号 国際公開第2015/040998号
 ところで、近年の携帯用電子機器等の高機能化に伴い、大量の情報の高速処理をすべく信号の高周波化が進んでおり、高周波用途に適したプリント配線板が求められている。このような高周波用プリント配線板には、高周波信号を品質低下させずに伝送可能とするために、伝送損失の低減が望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とから主としてなる。したがって、絶縁樹脂基材に起因する誘電体損失を低減すべく、低誘電率の熱可塑性樹脂を用いることができれば好都合である。しかしながら、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や液晶ポリマー(LCP)樹脂に代表されるような低誘電率の熱可塑性樹脂は、熱硬化性樹脂とは異なり、化学的な活性が低く、それ故銅箔との密着力が低い。このため、熱可塑性樹脂と銅箔を用いて銅張積層板を製造するためには、熱可塑性樹脂と接合される銅箔の表面に、ある程度大きな表面粗さをもたらす粗化処理を施して樹脂との密着性を向上させている。しかしながら、導体損失を低減する観点からは、表面が平滑な銅箔が望まれるため、低粗度の銅箔を用いながら、銅箔と熱可塑性樹脂との密着性の向上を実現する手法が望まれる。
 本発明者らは、今般、針状結晶で構成される微細凹凸を備えた粗化処理面を有する粗化処理銅箔において、連続電気化学還元分析(SERA)によって厚さ換算で決定される酸化銅及び亜酸化銅の各量をそれぞれ所定の範囲内に制御することで、低誘電率の熱可塑性樹脂に対して高い密着性を実現できるとの知見を得た。その結果、低誘電率の熱可塑性樹脂を用いながらも、銅箔と樹脂とが高い密着力で接合された銅張積層板を製造できるとの知見を得た。
 したがって、本発明の目的は、低誘電率の熱可塑性樹脂を用いながらも、銅箔と樹脂とが高い密着力で接合された銅張積層板を製造することにある。
 本発明の一態様によれば、銅張積層板の製造方法であって、
 酸化銅及び亜酸化銅を含む針状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔を用意する工程と、
 前記粗化処理銅箔の前記粗化処理面に、シート状の熱可塑性樹脂を貼り付けて銅張積層板を得る工程と、
を含み、前記粗化処理面は、前記熱可塑性樹脂を貼り付ける時点において、連続電気化学還元分析(SERA)により決定される酸化銅厚さが1~20nmであり、かつ、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが15~70nmであることを特徴とする、銅張積層板の製造方法が提供される。
 銅張積層板の製造方法
 本発明は、銅張積層板の製造方法に関する。本発明の方法は、(1)粗化処理銅箔を用意する工程と、(2)粗化処理銅箔の粗化処理面にシート状の熱可塑性樹脂を貼り付ける工程とを含む。粗化処理銅箔は、酸化銅(CuO)及び亜酸化銅(CuO)を含む針状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する銅箔である。そして、この粗化処理面は、熱可塑性樹脂を貼り付ける時点において、連続電気化学還元分析(SERA)により決定される酸化銅厚さが1~20nmであり、かつ、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが15~70nmであることを特徴とするものである。このように、針状結晶で構成される微細凹凸を備えた粗化処理面を有する粗化処理銅箔において、連続電気化学還元分析(SERA)によって厚さ換算で決定される酸化銅及び亜酸化銅の各量をそれぞれ上記所定の範囲内に制御することで、低誘電率の熱可塑性樹脂に対して高い密着性を実現することができる。すなわち、前述のとおり、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や液晶ポリマー(LCP)樹脂に代表されるような低誘電率の熱可塑性樹脂は、熱硬化性樹脂とは異なり、化学的な活性が低く、それ故本来的には銅箔との密着力が低いものである。これは、酸化銅及び亜酸化銅を含む針状結晶で構成される微細凹凸の表面はOH基が存在しやすいため親水性を呈するところ、熱可塑性樹脂は疎水性であるため、両者の親和性が乏しくなることによるものと考えられる。この点、本発明の方法によれば、SERAによって厚さ換算で決定される酸化銅及び亜酸化銅の各量をそれぞれ上記所定の範囲内に制御して特有の酸化状態にしておき、その酸化状態の粗化処理面に熱可塑性樹脂を貼り付ける。こうすることで、粗化処理銅箔の粗化処理面と熱可塑性樹脂との親和性を高められる結果、高い密着性、すなわち高い剥離強度を実現できるものと考えられる。その結果、低誘電率の熱可塑性樹脂を用いながらも、銅箔と樹脂とが高い密着力で接合された銅張積層板を製造することができる。
(1)粗化処理銅箔の用意
 本発明の方法に用いる銅箔は粗化処理銅箔である。この粗化処理銅箔は少なくとも一方の側に粗化処理面を有する。粗化処理面は、酸化銅及び亜酸化銅を含む針状結晶で構成される微細凹凸を備える。そして、この粗化処理面は、熱可塑性樹脂を貼り付ける時点において、連続電気化学還元分析(SERA)により決定される酸化銅厚さが1~20nmであり、好ましくは1~18nm、より好ましくは2~15nmであり、かつ、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが15~70nmであり、好ましくは20~65nm、より好ましくは25~40nmである。このSERA分析には、市販のSERA分析装置(例えばECIテクノロジー社製のQC-100)を用いて、例えば以下の手順で行うことができる。まず、分析のために粗化処理銅箔8.0mmの領域をO-リングガスケットで隔離し、ホウ酸緩衝液を注入し、窒素で飽和させる。上記領域に30μA/cmの電流密度Iを印加し、-0.40V~-0.60Vに現れるCuO還元反応、及び-0.60V~-0.85Vに現れるCuO還元反応にかかる時間を計測し、それぞれt及びt(秒)とする。CuO及びCuOの各々の厚さT(nm)はファラデーの法則から求まる定数Kを用い、T=K・I・tの式に基づき算出する。なお、CuOに関する定数Kの値は6.53×10-5(cm/A・sec)であり、CuOについてのKの値は2.45×10-4(cm/A・sec)である。
 微細凹凸は、酸化還元処理を経て形成されうるものであり、典型的には、針状結晶が銅箔面に対して略垂直及び/又は斜め方向に生い茂った形状(例えば芝生状)に観察されるものである。針状結晶の高さ(すなわち針状結晶の根元から垂直方向に測定される高さ)は、50~400nmであるのが好ましく、より好ましくは100~400nm、さらに好ましくは120~350nmである。上記のような範囲内の針状結晶高さであると、ファインピッチ回路形成や高周波用途により適したものとなる。特に、このように低粗度であると高周波信号伝送において問題となる銅箔の表皮効果を低減して、銅箔に起因する導体損失を低減し、それにより高周波信号の伝送損失を有意に低減することができる。
 本発明の粗化処理銅箔の厚さは特に限定されないが、0.1~70μmが好ましく、より好ましくは0.5~18μmである。なお、本発明の粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。
 本発明の好ましい態様によれば、粗化処理銅箔は、粗化処理面に有機防錆層を有する。有機防錆層は特に限定されないが、トリアゾール化合物及びシランカップリング剤の少なくともいずれか一方を含むのが好ましい。トリアゾール化合物の例としては、ベンゾトリアゾール、カルボキシベンゾトリアゾール、メチルベンゾトリアゾール、アミノトリアゾール、ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、ナフトトリアゾールが挙げられる。シランカップリング剤の例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤、又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のビニル官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シランカップリング剤、又は3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。有機防錆層はトリアゾール化合物を含むのがより好ましく、トリアゾール化合物の好ましい例としてはベンゾトリアゾール(BTA)及びカルボキシベンゾトリアゾール(CBTA)が挙げられる。BTA、CBTA等のトリアゾール化合物を含む有機防錆層は、熱可塑性樹脂がフッ素系樹脂である場合に特に好ましい。トリアゾール化合物がより好ましい理由としては次のことが挙げられる。トリアゾール化合物は粗化処理表面の亜酸化銅と銅錯体を形成することにより、通常の銅箔に形成した場合と比べ、表面により緻密に成分が付着するため、優れた防錆機能を発揮できると考えられる。そのため、粗化処理銅箔の長期保管時における酸化銅厚さ及び亜酸化銅厚さを上述した所定の範囲内に維持しやすくすることができる。また、高温等の過酷な環境下に曝された場合、トリアゾール化合物を含む有機防錆層により表面の微細凹凸が維持されるため、高い信頼性を維持することができると考えられる。
(2)熱可塑性樹脂の貼り付け
 粗化処理銅箔の粗化処理面に、シート状の熱可塑性樹脂を貼り付けて銅張積層板を得る。この熱可塑性樹脂の粗化処理銅箔への貼り付けは公知の銅張積層板の製造手順に従って行えばよく、特に限定されない。また、内層基板に熱可塑性樹脂を介して銅箔を貼り付ける手法も採用可能であり、この場合はいわゆるビルドアップ法等の公知の手法に従い行えばよい。いずれにしても、本発明の方法によれば、SERAによって厚さ換算で決定される酸化銅及び亜酸化銅の各量をそれぞれ上記所定の範囲内に制御して特有の酸化状態にしておき、その酸化状態の粗化処理面に熱可塑性樹脂を貼り付ける。こうすることで、粗化処理銅箔の粗化処理面と熱可塑性樹脂との親和性を高められる結果、高い密着性、すなわち高い剥離強度を実現できるものと考えられる。その結果、低誘電率の熱可塑性樹脂を用いながらも、銅箔と樹脂とが高い密着力で接合された銅張積層板を製造することができる。熱可塑性樹脂の粗化処理銅箔への貼り付けは、加熱しながらプレスすることにより行うのが好ましく、こうすることで熱可塑性樹脂を軟化させて粗化処理面の微細凹凸に入り込ませることができる。その結果、微細凹凸(特に針状結晶)の樹脂への食い込みによるアンカー効果により銅箔と樹脂との密着性を確保することができる。プレス時の温度は使用する熱可塑性樹脂の特性に応じて適宜決定すればよく特に限定されないが、好ましくは150~500℃であり、より好ましくは180~400℃である。プレス圧力も特に限定されないが、好ましくは1~10MPaであり、より好ましくは2~5MPaである。
 シート状の熱可塑性樹脂は、カットされたシート片であってもよいし、ロールから引き出された長尺シートであってもよく、その形態は特に限定されない。熱可塑性樹脂の好ましい例としては、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、フッ素樹脂、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、変性ポリフェニレンエーテル(m-PPE)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、シクロオレフィン(COP)、及びこれらの任意の組合せが挙げられる。望ましい誘電正接及び優れた耐熱性の観点から、熱可塑性樹脂のより好ましい例としては、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、フッ素樹脂、及びそれらの任意の組合せが挙げられる。低誘電率の観点から、特に好ましい熱可塑性樹脂はフッ素樹脂である。フッ素樹脂の好ましい例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、及びそれらの任意の組合せが挙げられる。
 粗化処理銅箔はシート状の熱可塑性樹脂の片面に設けられてもよいし、両面に設けられてもよい。シート状の熱可塑性樹脂は、熱可塑性樹脂を含んでいればよく、他の材料をさらに含んでいてもよい。したがって、シート状の熱可塑性樹脂はプリプレグであってもよい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。また、熱可塑性樹脂は絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等をさらに含んでいてもよい。シート状の熱可塑性樹脂の厚さは特に限定されないが、1~1000μmが好ましく、より好ましくは2~400μmであり、さらに好ましくは3~200μmである。樹脂層は複数の層で構成されていてよい。
 製造方法
 本発明による粗化処理銅箔は、あらゆる方法によって製造されたものであってよいが、酸化還元処理を経て製造されるのが好ましい。以下、本発明による粗化処理銅箔の好ましい製造方法の一例を説明する。この好ましい製造方法は、銅箔を用意する工程と、上記表面に対して予備処理、酸化処理及び還元処理を順次行う粗化工程(酸化還元処理)とを含んでなる。
(1)銅箔の準備
 粗化処理銅箔の製造に使用する銅箔としては電解銅箔及び圧延銅箔の双方の使用が可能であり、より好ましくは電解銅箔である。また、銅箔は、無粗化の銅箔であってもよいし、予備的粗化を施したものであってもよい。銅箔の厚さは特に限定されないが、0.1~70μmが好ましく、より好ましくは0.5~18μmである。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってもよい。
 粗化処理が行われることになる銅箔の表面は、ISO25178に準拠して測定される最大高さSzが1.5μm以下であるのが好ましく、より好ましくは1.2μm以下、さらに好ましくは1.0μm以下である。上記範囲内であると、本発明の粗化処理銅箔に要求される表面プロファイル、特に1.5μm以下の最大高さSzを粗化処理面に実現しやすくなる。Szの下限値は特に限定されないが、Szは0.1μm以上が好ましく、より好ましくは0.2μm以上、さらに好ましくは0.3μm以上である。
(2)粗化処理(酸化還元処理)
 こうして上記低いSzが付与された銅箔の表面に対して、予備処理、酸化処理及び還元処理を順次行う湿式による粗化工程を施すのが好ましい。特に、溶液を用いた湿式法で銅箔の表面に酸化処理を施すことで、銅箔表面に酸化銅(酸化第二銅)を含有する銅化合物を形成する。その後、当該銅化合物を還元処理して酸化銅の一部を亜酸化銅(酸化第一銅)に転換させることにより、酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状結晶で構成される微細凹凸を銅箔の表面に形成することができる。ここで、微細凹凸は、銅箔の表面を湿式法で酸化処理した段階で、酸化銅を主成分とする銅化合物により形成される。そして、当該銅化合物を還元処理したときに、この銅化合物により形成された微細凹凸の形状を概ね維持したまま、酸化銅の一部が亜酸化銅に転換されて、酸化銅及び亜酸化銅を含有する銅複合化合物からなる微細凹凸となる。このように銅箔の表面に湿式法で適正な酸化処理を施した後に、還元処理を施すことで、nmオーダーの微細凹凸の形成が可能となる。
(2a)予備処理
 酸化処理に先立ち、電解銅箔に対して脱脂等の予備処理を施すのが好ましい。この予備処理は、電解銅箔を水酸化ナトリウム水溶液に浸漬してアルカリ脱脂処理を行った後、水洗するのが好ましい。また、アルカリ脱脂処理が施された電解銅箔を硫酸系水溶液に浸漬した後、水洗するのが好ましい。硫酸系水溶液の硫酸濃度は特に限定されないが好ましくは1~20質量%である。また、電解銅箔の硫酸系水溶液への浸漬時間は特に限定されないが好ましくは2秒~2分である。
(2b)酸化処理
 上記予備処理が施された銅箔に対して水酸化ナトリウム溶液等のアルカリ溶液を用いて酸化処理を行う。アルカリ溶液で銅箔の表面を酸化することにより、酸化銅を主成分とする銅複合化合物からなる針状結晶で構成される微細凹凸を銅箔の表面に形成することができる。このとき、アルカリ溶液の温度は60~85℃が好ましく、アルカリ溶液のpHは10~14が好ましい。また、アルカリ溶液は酸化の観点から塩素酸塩、亜塩素酸塩、次亜塩素酸塩、過塩素酸塩を含むのが好ましく、その濃度は100~500g/Lが好ましい。酸化処理は電解銅箔をアルカリ溶液に浸漬することにより行うのが好ましく、その浸漬時間(すなわち酸化時間)は10秒~20分が好ましく、より好ましくは30秒~10分である。
 酸化処理に用いるアルカリ溶液は酸化抑制剤をさらに含むのが好ましい。すなわち、アルカリ溶液により銅箔の表面に対して酸化処理を施した場合、当該凸状部が過度に成長し、所望の長さを超える場合があり、所望の微細凹凸を形成することが困難になる。そこで、上記微細凹凸を形成するために、銅箔表面における酸化を抑制可能な酸化抑制剤を含むアルカリ溶液を用いることが好ましい。好ましい酸化抑制剤の例としては、アミノ系シランカップリング剤が挙げられる。アミノ系シランカップリング剤を含むアルカリ溶液を用いて銅箔表面に酸化処理を施すことで、当該アルカリ溶液中のアミノ系シランカップリング剤が銅箔の表面に吸着し、アルカリ溶液による銅箔表面の酸化を抑制することができる。その結果、酸化銅の針状結晶の成長を抑制することができ、極めて微細な凹凸を備えた望ましい粗化処理面を形成することができる。アミノ系シランカップリング剤の具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられ、特に好ましくはN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランである。これらはいずれもアルカリ性溶液に溶解し、アルカリ性溶液中に安定に保持されると共に、上述した銅箔表面の酸化を抑制する効果を発揮する。アルカリ溶液におけるアミノ系シランカップリング剤(例えばN-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)の好ましい濃度は0.01~20g/Lであり、より好ましくは0.02~20g/Lである。
(2c)還元処理
 上記酸化処理が施された銅箔(以下、酸化処理銅箔という)に対して還元処理液を用いて還元処理を行う。還元処理により酸化銅の一部を亜酸化銅(酸化第一銅)に転換させることで、酸化銅及び亜酸化銅を含有する銅複合化合物からなる針状結晶で構成される微細凹凸を銅箔の表面に形成することができる。この還元処理は、酸化処理銅箔に還元処理液を接触させることにより行えばよく、還元処理液中に酸化処理銅箔を浸漬させる手法や、酸化処理銅箔に還元処理液をシャワーで掛ける手法により行うのが好ましく、その処理時間は2~60秒が好ましく、より好ましくは5~30秒である。なお、好ましい還元処理液はジメチルアミンボラン水溶液であり、この水溶液はジメチルアミンボランを10~40g/Lの濃度で含有するのが好ましい。また、ジメチルアミンボラン水溶液は炭酸ナトリウムと水酸化ナトリウムを用いてpH12~14に調整されるのが好ましい。このときの水溶液の温度は特に限定されず、室温であってよい。こうして還元処理を行った銅箔は水洗し、乾燥するのが好ましい。
(3)防錆処理
 所望により、銅箔に有機防錆剤で防錆処理を施し、有機防錆層を形成してもよい。これにより、粗化処理銅箔の粗化処理面において、SERAによって厚さ換算で決定される酸化銅及び亜酸化銅の各量がそれぞれ所定の範囲内に制御された特有の酸化状態をできるだけ長期間にわたって維持することができ、その維持された酸化状態で粗化処理面に熱可塑性樹脂を貼り付けることが容易となる。また、耐湿性、耐薬品性及び接着剤等との密着性等を向上することもできる。有機防錆層は特に限定されないが、トリアゾール化合物及びシランカップリング剤の少なくともいずれか一方を含むのが好ましい。トリアゾール化合物の例としては、ベンゾトリアゾール、カルボキシベンゾトリアゾール、メチルベンゾトリアゾール、アミノトリアゾール、ニトロベンゾトリアゾール、ヒドロキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、及びナフトトリアゾールが挙げられ、特に好ましくはベンゾトリアゾールである。シランカップリング剤の例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤、又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のビニル官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シランカップリング剤、又は3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。有機防錆層は、トリアゾール化合物やシランカップリング剤等の有機防錆剤を適宜希釈して塗布し、乾燥させることにより形成することができる。
 プリント配線板
 本発明の銅張積層板はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記銅張積層板を用いて得られたプリント配線板が提供される。プリント配線板に関する具体例としては、本発明の銅張積層板に回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。多層プリント配線板は、内層基板に熱可塑性樹脂層を介して銅箔を貼り付けた多層銅張積層板に回路形成したものであってもよく、さらにビルドアップ層を形成したものであってもよい。また、回路形成方法は、サブトラクティブ法であってもよいし、モディファイド・セミアディティブ(MSAP法)であってもよい。本発明の銅張積層板を用いて作製されるプリント配線板は、信号周波数10GHz以上の高周波帯域で用いられる自動車用アンテナ、携帯電話基地局アンテナ、高性能サーバー、衝突防止用レーダー等の用途で用いられる高周波基板として好適に用いられる。
 本発明を以下の例によってさらに具体的に説明する。
 例1~8
(1)粗化処理銅箔の作製
(1a)電解銅箔の作製
 銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極にチタン製の回転電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔を得た。この電解銅箔の析出面及び電極面の最大高さSzをISO25178に準拠してレーザー顕微鏡(株式会社キーエンス製、VK-X100)を用いて測定したところ、析出面のSzが0.8μm、電極面のSzが1.2μmであった。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:260g/L
‐ ビス(3-スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
(1b)粗化処理(酸化還元処理)
 上記得られた電解銅箔の析出面側に対して、以下に示される3段階のプロセスで粗化処理(酸化還元処理)を行った。すなわち、以下に示される予備処理、酸化処理及び還元処理をこの順に行った。
<予備処理>
 上記(1)で得られた電解銅箔を40g/Lの水酸化ナトリウム水溶液に40℃で30秒間浸漬して、アルカリ脱脂処理を行った後、水洗した。このアルカリ脱脂処理が施された電解銅箔を硫酸濃度が10体積%の硫酸水溶液に40℃で30秒間浸漬した後、水洗した。
<酸化処理>
 上記予備処理が施された電解銅箔に対して酸化処理を行った。この酸化処理は、当該電解銅箔を液温75℃、pH=12、亜塩素酸濃度が100~500g/L、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン濃度が10g/Lの水酸化ナトリウム溶液に、3分間(例1~6及び8)又は7分間(例7)浸漬させることにより行った。こうして、電解銅箔の両面に、銅複合化合物からなる針状結晶で構成される微細凹凸を形成した。
<還元処理>
 上記酸化処理が施された試料に対して還元処理を行った。この還元処理は、上記酸化処理により微細凹凸が形成された試料を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=13に調整したジメチルアミンボラン濃度が10~40g/Lの水溶液に1分間浸漬することにより行った。このときの水溶液の温度は室温とした。こうして還元処理を行った試料を水洗し、乾燥した。これらの工程により、電解銅箔の両面の酸化銅の一部を還元して亜酸化銅とし、酸化銅及び亜酸化銅を含む銅複合化合物からなる微細凹凸を有する粗化処理面とした。こうして針状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔を得た。
(1c)有機防錆層の形成
 上記粗化処理銅箔に対して有機防錆層の形成を行った。この有機防錆の形成は、粗化処理銅箔を有機防錆剤としてベンゾトリアゾール(例1、6及び7)、3-アミノプロピルトリメトキシシラン(例2~5)又はカルボキシベンゾトリアゾール(例8)を6g/Lの濃度で含む水溶液に液温25℃で30秒間浸漬した後、表1に示される条件で乾燥させることにより行った。
Figure JPOXMLDOC01-appb-T000001
(2)粗化処理銅箔の評価
 例1~5において作製された粗化処理銅箔について、以下に示される各種評価を行った。
<SERA測定>
 粗化処理銅箔の粗化処理面を連続電気化学還元分析(SERA)により酸化銅(CuO)厚さと亜酸化銅(CuO)厚さを測定した。このSERA分析には、測定装置としてECIテクノロジー社製のQC-100を用いた。手順は以下のとおりとした。まず、分析のために粗化処理銅箔8.0mmの領域をO-リングガスケットで隔離し、ホウ酸緩衝液を注入し、窒素で飽和させた。上記領域に30μA/cmの電流密度Iを印加し、-0.40V~-0.60Vに現れるCuO還元反応、及び-0.60V~-0.85Vに現れるCuO還元反応にかかる時間を計測し、それぞれt及びt(秒)とした。CuO及びCuOの各々の厚さT(nm)はファラデーの法則から求まる定数Kを用い、T=K・I・tの式に基づき算出した。なお、CuOに関するKの値は6.53×10-5(cm/A・sec)であり、CuOについての定数Kの値は2.45×10-4(cm/A・sec)である。上記定数KはK=M/(z・F・ρ)(式中、Mは分子量であり、zは電荷数であり、Fはファラデー定数であり、ρは密度である)の式に基づき算出した。
 すなわち、CuOに関する定数K(=6.53×10-5(cm/A・sec))は、K=M/(z・F・ρ)の式に、次の値を入力して算出した。
 M(分子量)=79.545(g/mol)
 z(電荷数)=2(CuO+H2O+2e→Cu+2OH
 F(ファラデー定数)=96494(C/mol)=96500(A・sec/mol)
 ρ(密度)=6.31(g/cm
 また、CuOに関する定数K(=2.45×10-4(cm/A・sec))は、K=M/(z・F・ρ)の式に、次の値を入力して算出した。
 M(分子量)=143.09(g/mol)
 z(電荷数)=1(CuO+HO+2e→2Cu+2OH
 F(ファラデー定数)=96494(C/mol)=96500(A・sec/mol)
 ρ(密度)=6.04(g/cm
<粗化処理面(微細凹凸)の観察>
 粗化処理銅箔の粗化処理面を構成する微細凹凸(析出面側)を断面SEMにより観察したところ、例1~5のいずれにおいても、粗化処理面は無数の針状結晶で構成される微細凹凸からなることが確認された。また、微細凹凸(特に針状結晶)の断面を透過型電子顕微鏡(TEM)(日本電子株式会社製、JEM-ARM200F)で観察し、取得されたSTEM-HAADF像から針状結晶の高さ(箔に対して垂直方向の長さ)を測定した。このとき、1μm×1μmの領域において10箇所測定した値の平均値を各サンプルにおける針状結晶高さとした。結果は表1に示されるとおりであった。
<熱可塑性樹脂(PTFE)に対する常態剥離強度>
 熱可塑性樹脂基材として、PTFE基材(RO3003 Bondply、ROGERS Corporation製、厚さ125μm)を用意した。このPTFE基材に、上記SERA測定が行われた直後の粗化処理銅箔(厚さ18μm)をその粗化処理面が当該基材と当接するように積層し、真空プレス機を使用して、プレス圧2.4MPa、温度370℃、プレス時間30分の条件でプレスして銅張積層板を作製した。次に、この銅張積層板にエッチング法により、0.4mm幅の剥離強度測定用直線回路を備えた試験基板を作製した。こうして形成した直線回路を、JIS C 5016-1994のA法(90°剥離)に準拠してPTFE基材から引き剥がして、常態剥離強度(kgf/cm)を測定した。この測定は、卓上材料試験機(STA-1150、株式会社オリエンテック製)を用いて行った。結果は表1に示されるとおりであった。
<熱可塑性樹脂(PTFE)に対する耐熱剥離強度>
 0.4mm幅の剥離強度測定用直線回路を備えた試験基板をオーブンに入れて150℃で4時間加熱し、288℃の半田浴に10秒間浮かべたこと以外は、上述したPTFEに対する常態剥離強度と同様の手順により、PTFEに対する耐熱剥離強度(kgf/cm)を測定した。結果は表1に示されるとおりであった。なお、耐熱剥離強度を測定する技術的な意味合いは次のとおりである。熱可塑性樹脂を用いたプリント配線板は高温等の過酷な環境下に曝されることがあり、このような過酷な環境下に曝された後においても、銅箔と樹脂との高い密着信頼性が望まれる。実際、PTFEを使用したプリント配線板は航空、宇宙用等で用いられることがあり、かかる観点からも耐熱剥離強度のより一層の改善が望まれる。もっとも、高温等の過酷な環境下に曝されない用途の場合には、常態剥離強度さえ高ければ十分であり、耐熱剥離強度は必ずしも高くなくてもよい。
<熱可塑性樹脂(液晶ポリマー)に対する常態剥離強度>
 熱可塑性樹脂基材として、厚さ50μmのLCP(液晶ポリマー)フィルム(CT-Z、 株式会社クラレ製)を用意した。このLCPフィルムに、粗化処理銅箔をその粗化処理面が当該フィルムと当接するように積層し、真空プレス機を使用して、プレス圧4MPa、温度320℃、プレス時間10分の条件でプレスして銅張積層板を作製した。次に、この銅張積層板にエッチング法により、0.4mm幅の剥離強度測定用直線回路を備えた試験基板を作製した。こうして形成した直線回路を、JIS C 5016-1994のA法(90°剥離)に準拠して絶縁樹脂基材から引き剥がして、常態剥離強度(kgf/cm)を測定した。結果は表1に示されるとおりであった。
<熱硬化性樹脂(R1551)に対する剥離強度>
 絶縁樹脂基材として、プリプレグ(パナソニック株式会社製、R-1551、厚さ200μm)を用意した。このプリプレグに、粗化処理銅箔をその粗化処理面がプリプレグと当接するように積層し、真空プレス機を使用して、プレス圧2.9MPa、温度190℃、プレス時間90分の条件でプレスして銅張積層板を作製した。次に、この銅張積層板にエッチング法により、0.4mm幅の剥離強度測定用直線回路を備えた試験基板を作製した。こうして形成した直線回路を、JIS C6481-1996に準拠して絶縁樹脂基材から引き剥がして、常態剥離強度(kgf/cm)を測定した。結果は表1に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000002
 表2に示される結果から分かるように、SERAにより決定されるCuO厚さが1~20nmであり、かつ、SERAにより決定されるCuO厚さが15~70nmである粗化処理面を有する粗化処理銅箔を用いることで、熱可塑性樹脂に対して0.70kgf/cm以上という高い常態剥離強度を実現することができる。これと対照的に、熱硬化性樹脂の場合にはCuO厚さ及びCuO厚さが上記範囲内と外で熱可塑性樹脂に見られるような常態剥離強度の改善は全く見られなかったことから、熱可塑性樹脂において実現される上記効果は熱硬化性樹脂からは予想し得ない顕著な効果であるといえる。通常、粗化処理面はCuO及びCuOがあることで微細凹凸を有しているが、これらの表面にはOH基が存在しやすく、親水性を帯びる結果、熱可塑性樹脂との密着性が低下する。この点、本発明の粗化処理銅箔によればCuO厚さ及びCuO厚さを制御することで、粗化処理面の親水性を望ましく低減させて、熱可塑性樹脂との密着性を向上することができるものと考えられる。

Claims (8)

  1.  銅張積層板の製造方法であって、
     酸化銅及び亜酸化銅を含む針状結晶で構成される微細凹凸を備えた粗化処理面を少なくとも一方の側に有する粗化処理銅箔を用意する工程と、
     前記粗化処理銅箔の前記粗化処理面に、シート状の熱可塑性樹脂を貼り付けて銅張積層板を得る工程と、
    を含み、前記粗化処理面は、前記熱可塑性樹脂を貼り付ける時点において、連続電気化学還元分析(SERA)により決定される酸化銅厚さが1~20nmであり、かつ、連続電気化学還元分析(SERA)により決定される亜酸化銅厚さが15~70nmであることを特徴とする、銅張積層板の製造方法。
  2.  前記針状結晶の高さが50~400nmである、請求項1に記載の方法。
  3.  前記熱可塑性樹脂が、ポリサルフォン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミド、フッ素樹脂、ポリアミド、ナイロン、ポリアセタール、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、グラスファイバー強化ポリエチレンテレフタレート、シクロオレフィンからなる群から選択される少なくとも1種である、請求項1又は2に記載の方法。
  4.  前記熱可塑性樹脂が、ポリサルフォン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミド、及びフッ素樹脂からなる群から選択される少なくとも1種である、請求項1又は2に記載の方法。
  5.  前記熱可塑性樹脂がフッ素樹脂であり、該フッ素樹脂が、ポリテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、及びテトラフルオロエチレン-エチレン共重合体からなる群から選択される少なくとも1種である、請求項1又は2に記載の方法。
  6.  前記粗化処理銅箔は、前記粗化処理面に有機防錆層を有する、請求項1~5のいずれか一項に記載の方法。
  7.  前記有機防錆層がトリアゾール化合物及びシランカップリング剤の少なくともいずれか一方を含む、請求項6に記載の方法。
  8.  前記有機防錆層がトリアゾール化合物を含む、請求項6に記載の方法。

     
PCT/JP2017/003344 2016-03-03 2017-01-31 銅張積層板の製造方法 WO2017150043A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/570,846 US10244635B2 (en) 2016-03-03 2017-01-31 Production method for copper-clad laminate plate
KR1020177031868A KR101846141B1 (ko) 2016-03-03 2017-01-31 동장 적층판의 제조 방법
SG11201708903SA SG11201708903SA (en) 2016-03-03 2017-01-31 Production method for copper-clad laminate plate
CN201780001695.7A CN107614753B (zh) 2016-03-03 2017-01-31 覆铜层叠板的制造方法
JP2017513163A JP6178035B1 (ja) 2016-03-03 2017-01-31 銅張積層板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016040795 2016-03-03
JP2016-040795 2016-03-03
JP2016082658 2016-11-02
JPPCT/JP2016/082658 2016-11-02

Publications (1)

Publication Number Publication Date
WO2017150043A1 true WO2017150043A1 (ja) 2017-09-08

Family

ID=59742754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003344 WO2017150043A1 (ja) 2016-03-03 2017-01-31 銅張積層板の製造方法

Country Status (5)

Country Link
US (1) US10244635B2 (ja)
KR (1) KR101846141B1 (ja)
CN (1) CN107614753B (ja)
SG (1) SG11201708903SA (ja)
WO (1) WO2017150043A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093077A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 粗面化処理された銅表面を有する物体
WO2019131093A1 (ja) * 2017-12-26 2019-07-04 Jx金属株式会社 放熱用銅箔及び放熱部材
JP2019218602A (ja) * 2018-06-20 2019-12-26 ナミックス株式会社 粗化処理銅箔、銅張積層板及びプリント配線板
JP2020152855A (ja) * 2019-03-22 2020-09-24 横浜ゴム株式会社 熱硬化性樹脂組成物及び熱硬化性樹脂
KR20230038643A (ko) 2020-07-16 2023-03-21 미쓰이금속광업주식회사 동장 적층판 및 프린트 배선판
KR20230040944A (ko) 2020-07-16 2023-03-23 미쓰이금속광업주식회사 동장 적층판 및 프린트 배선판의 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018200758A1 (de) * 2018-01-18 2019-07-18 Robert Bosch Gmbh Antennenelement und Antennenarray
WO2019208276A1 (ja) * 2018-04-26 2019-10-31 Agc株式会社 積層体の製造方法、及び積層体
WO2020095988A1 (ja) * 2018-11-08 2020-05-14 株式会社クラレ 熱可塑性液晶ポリマーフィルムおよびそれを用いた回路基板
CN111029590B (zh) * 2019-12-25 2020-10-09 苏州清陶新能源科技有限公司 一种电池极片基体、其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104543A (ja) * 1992-09-22 1994-04-15 Nippon Steel Corp 放熱性の優れたプリント配線板用銅張積層板およびその製造方法
JP2005310621A (ja) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2011162860A (ja) * 2010-02-12 2011-08-25 Furukawa Electric Co Ltd:The 表面粗化銅箔とその製造方法及び銅張積層板
WO2014156638A1 (ja) * 2013-03-26 2014-10-02 古河電気工業株式会社 全固体二次電池
JP2015040324A (ja) * 2013-08-21 2015-03-02 住友金属鉱山株式会社 樹脂フィルムの表面処理方法及びこれを含んだ銅張積層板の製造方法
WO2015040998A1 (ja) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 銅箔、キャリア箔付銅箔及び銅張積層板
WO2015111756A1 (ja) * 2014-01-27 2015-07-30 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2955974A (en) * 1957-06-10 1960-10-11 Int Resistance Co Metal to plastic laminated article and the method of making the same
JPS61176192A (ja) * 1985-01-31 1986-08-07 株式会社日立製作所 銅と樹脂との接着方法
TW374802B (en) * 1996-07-29 1999-11-21 Ebara Densan Ltd Etching composition, method for roughening copper surface and method for producing printed wiring board
US20080150064A1 (en) * 2006-12-12 2008-06-26 Zimmerman Michael A Plastic electronic component package
JP5067426B2 (ja) * 2007-10-22 2012-11-07 日立化成工業株式会社 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
US8518281B2 (en) * 2008-06-03 2013-08-27 Kesheng Feng Acid-resistance promoting composition
CN107881505A (zh) 2013-02-14 2018-04-06 三井金属矿业株式会社 表面处理铜箔及用表面处理铜箔得到的覆铜层压板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104543A (ja) * 1992-09-22 1994-04-15 Nippon Steel Corp 放熱性の優れたプリント配線板用銅張積層板およびその製造方法
JP2005310621A (ja) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2011162860A (ja) * 2010-02-12 2011-08-25 Furukawa Electric Co Ltd:The 表面粗化銅箔とその製造方法及び銅張積層板
WO2014156638A1 (ja) * 2013-03-26 2014-10-02 古河電気工業株式会社 全固体二次電池
JP2015040324A (ja) * 2013-08-21 2015-03-02 住友金属鉱山株式会社 樹脂フィルムの表面処理方法及びこれを含んだ銅張積層板の製造方法
WO2015040998A1 (ja) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 銅箔、キャリア箔付銅箔及び銅張積層板
WO2015111756A1 (ja) * 2014-01-27 2015-07-30 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013003B2 (ja) 2017-11-10 2022-01-31 ナミックス株式会社 粗面化処理された銅表面を有する物体
KR20200085737A (ko) * 2017-11-10 2020-07-15 나믹스 가부시끼가이샤 조면화 처리된 구리 표면을 갖는 물체
CN111108817B (zh) * 2017-11-10 2024-03-01 纳美仕有限公司 具有经过粗化处理的铜表面的物体
KR102542984B1 (ko) * 2017-11-10 2023-06-14 나믹스 가부시끼가이샤 조면화 처리된 구리 표면을 갖는 물체
CN111108817A (zh) * 2017-11-10 2020-05-05 纳美仕有限公司 具有经过粗化处理的铜表面的物体
JP2019091742A (ja) * 2017-11-10 2019-06-13 ナミックス株式会社 粗面化処理された銅表面を有する物体
WO2019093077A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 粗面化処理された銅表面を有する物体
WO2019131093A1 (ja) * 2017-12-26 2019-07-04 Jx金属株式会社 放熱用銅箔及び放熱部材
KR20210020899A (ko) 2018-06-20 2021-02-24 나믹스 가부시끼가이샤 조화 처리 동박, 동박 적층판 및 프린트 배선판
WO2019244541A1 (ja) * 2018-06-20 2019-12-26 ナミックス株式会社 粗化処理銅箔、銅張積層板及びプリント配線板
TWI808183B (zh) * 2018-06-20 2023-07-11 日商納美仕有限公司 粗化處理銅箔、貼銅層合板及印刷佈線板
JP2019218602A (ja) * 2018-06-20 2019-12-26 ナミックス株式会社 粗化処理銅箔、銅張積層板及びプリント配線板
JP2020152855A (ja) * 2019-03-22 2020-09-24 横浜ゴム株式会社 熱硬化性樹脂組成物及び熱硬化性樹脂
KR20230038643A (ko) 2020-07-16 2023-03-21 미쓰이금속광업주식회사 동장 적층판 및 프린트 배선판
KR20230040944A (ko) 2020-07-16 2023-03-23 미쓰이금속광업주식회사 동장 적층판 및 프린트 배선판의 제조 방법

Also Published As

Publication number Publication date
CN107614753B (zh) 2018-09-28
US20180139848A1 (en) 2018-05-17
CN107614753A (zh) 2018-01-19
KR101846141B1 (ko) 2018-04-05
US10244635B2 (en) 2019-03-26
SG11201708903SA (en) 2017-11-29
KR20170127039A (ko) 2017-11-20

Similar Documents

Publication Publication Date Title
KR101846141B1 (ko) 동장 적층판의 제조 방법
TWI808183B (zh) 粗化處理銅箔、貼銅層合板及印刷佈線板
CN107923047B (zh) 粗糙化处理铜箔、覆铜层叠板及印刷电路板
US10280501B2 (en) Roughened copper foil, copper clad laminate, and printed circuit board
WO2021193246A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
TWI616336B (zh) Method for manufacturing copper-clad laminate
JP6178035B1 (ja) 銅張積層板の製造方法
WO2019188837A1 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板の製造方法
CN111757607B (zh) 表面处理铜箔、覆铜层叠板及印制布线板
JP6087028B1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
WO2022209989A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
WO2022014648A1 (ja) 銅張積層板及びプリント配線板
WO2022209990A1 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
WO2023182175A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022202541A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2021166513A1 (ja) 表面処理金属箔及び金属張積層板
WO2022014647A1 (ja) 銅張積層板及びプリント配線板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017513163

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15570846

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201708903S

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20177031868

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759514

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759514

Country of ref document: EP

Kind code of ref document: A1