WO2017149940A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2017149940A1
WO2017149940A1 PCT/JP2017/000693 JP2017000693W WO2017149940A1 WO 2017149940 A1 WO2017149940 A1 WO 2017149940A1 JP 2017000693 W JP2017000693 W JP 2017000693W WO 2017149940 A1 WO2017149940 A1 WO 2017149940A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent container
reagent
dispensing
container
automatic analyzer
Prior art date
Application number
PCT/JP2017/000693
Other languages
English (en)
French (fr)
Inventor
励 小西
彰久 牧野
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to CN201780013190.2A priority Critical patent/CN108700604A/zh
Priority to US16/081,259 priority patent/US11293935B2/en
Priority to EP17759412.4A priority patent/EP3425407B1/en
Priority to JP2018502554A priority patent/JP6587735B2/ja
Publication of WO2017149940A1 publication Critical patent/WO2017149940A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/523Containers specially adapted for storing or dispensing a reagent with means for closing or opening
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/049Valves integrated in closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0444Rotary sample carriers, i.e. carousels for cuvettes or reaction vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to an automatic analyzer that automatically analyzes components contained in a biological sample such as blood, and more particularly to a technique related to an automatic analyzer that includes an automatic dissolution mechanism of a freeze-dried reagent.
  • the automatic analyzer analyzes the components in the biological sample by mixing and reacting the biological sample and the reagent.
  • the reagent used at this time includes a liquid reagent and a freeze-dried reagent. When an analysis is performed using a freeze-dried reagent, dissolution with a solvent is required.
  • the solvent was dispensed into the lyophilized reagent, and then the inversion mixing operation was mainly performed by the method used.
  • the liquid may leak from the opening of the reagent container.
  • the tip of the adapter that is detachably attached to the container into which the reagent is inserted is formed in a bag shape.
  • a slit part as a cut is provided at the tip, and the slit part opens when the tip is pushed by a pipette that is a liquid dispensing mechanism. The configuration is described.
  • Patent Document 2 discloses that a cylinder having substantially the same outer diameter as the opening of the reagent container and having openings at a part of the top and bottom and the openings at the top and bottom of the cylinder are closed. It describes a configuration provided with a film that is provided and can be peeled off when the reagent container is used.
  • the present invention in view of the above problems, when lyophilized reagent is dispensed with a solvent and mixed by inversion, the lyophilized reagent can be dissolved by automatically performing without spilling the liquid from the reagent container.
  • the present invention relates to performing with high accuracy and realizing user labor saving.
  • a reagent container a reagent disk that holds the reagent container, a dispensing mechanism that dispenses a solution into the reagent container, and an inversion mixing mechanism that inverts and mixes the reagent container
  • the dispensing mechanism and a controller for controlling the inversion mixing mechanism, the inversion mixing mechanism having a rotation mechanism for rotating the reagent container, and an inclination mechanism for inclining the rotation axis of the reagent container, and the reagent
  • the container has a piercing-capable lid, the lid has an opening at the tip, and has a cylindrical mechanism that extends into the reagent container.
  • the position of the opening formed at the tip of the cylindrical mechanism is more than the liquid level of the solution stored in the reagent container.
  • the reagent in the dispensing of the solvent into the lyophilized reagent and the inversion mixing, the reagent can be automatically operated without spilling the reagent from the reagent container, so that the lyophilized reagent is accurately dissolved, Realizes high-precision analysis and contributes to user labor saving.
  • the figure explaining the inversion mixing of the freeze-dried reagent which concerns on this Embodiment (1st Embodiment) The figure which shows the shape of the reagent container which concerns on this Embodiment (1st Embodiment).
  • FIG. 1 shows a basic configuration of an automatic analyzer according to the present embodiment.
  • the automatic analyzer 100 mainly includes a sample disk 102, a reagent disk 104, a sample dispensing mechanism 106, a reagent dispensing mechanism 107, a sample dispensing port 108, an analysis port 109, and a reaction container supply unit 110.
  • the sample disk 102 is a disk-like unit that can rotate clockwise and counterclockwise, and a plurality of sample containers (sample containers) 101 that contain samples such as standard samples and test samples are arranged on the circumference thereof. Can be arranged.
  • the reagent disk 104 is a disk-shaped unit that can be rotated clockwise and counterclockwise, and contains a reagent containing a component that reacts with a component of each inspection item included in the sample.
  • a plurality of reagent containers 103 can be arranged on the circumference thereof.
  • the reagent disk 104 can be configured to be able to cool the reagent in the arranged reagent container 103 by providing a cold insulation mechanism or the like.
  • the reaction vessel transfer mechanism 113 transfers the reaction vessel 105 used for analysis from the reaction vessel supply unit 110 to the sample dispensing port 108 and carries it in.
  • the reaction container 105 after the sample is dispensed is unloaded from the sample dispensing port 108, transferred to the analysis port 109, and loaded.
  • the reaction container 105 in the analysis port 109 is carried out and transferred to the reaction container discarding unit 112.
  • the sample dispensing mechanism 106 sucks the sample in the sample container 101 held on the sample disk 102, and dispenses the sample into the reaction container 105 installed in the sample dispensing port 108.
  • a sample dispensing nozzle and a sample pump or sample syringe (not shown) are connected via a flow path, and water is used as a pressure transmission medium, for example.
  • the suction and discharge of the sample is performed by the operation of the sample syringe or the sample pump, and these operations are controlled based on instructions from the control unit 114.
  • the rotation and vertical movement of the sample dispensing mechanism are controlled based on instructions from the control unit 114.
  • the reagent dispensing mechanism 107 sucks the reagent in the reagent container 103 held on the reagent disk 104 and dispenses it into the reaction container 105 installed in the analysis port 109 and into which the sample is dispensed.
  • a reagent dispensing nozzle and a reagent pump or a reagent syringe (not shown) are connected via a flow path, and water is used as a pressure transmission medium, for example.
  • the suction and discharge of the reagent are performed by the operation of the reagent syringe or the reagent pump, and these operations are controlled based on an instruction from the control unit 114.
  • the horizontal movement and vertical movement of the reagent dispensing mechanism 107 are controlled based on an instruction from the control unit 114.
  • the sample dispensing mechanism 106 and the reagent dispensing mechanism 107 are washed.
  • a plurality of reaction vessels 105 can be installed in the analysis port 109, and a plurality of samples can be analyzed simultaneously.
  • the analysis port 109 includes a light source 115 and a light receiving unit (detector) 116 for each reaction container 105 accommodated therein.
  • Light is irradiated from the light source 115 to the reaction solution 704 in the reaction vessel 105 and is scattered by precipitates generated by the reaction that occurs in the reaction solution. Since the amount of scattered light increases as the number of precipitates increases, the amount of the precipitate can be determined by detecting the scattered light with the light receiving unit (detector) 116.
  • the amount of fibrinogen (Fbg) in the sample can be determined.
  • other blood coagulation test items such as prothrombin time (PT) and activated partial thromboplastin time (APTT) can be analyzed. .
  • PT prothrombin time
  • APTT activated partial thromboplastin time
  • control unit 114 performs the vertical and horizontal operations of the sample disk 102, the reagent disk 104, the sample dispensing mechanism 106, and the reagent dispensing mechanism 107, the operations of the sample syringe pump and the reagent syringe pump (not shown),
  • the automatic analysis apparatus 100 includes an operation of supplying cleaning water (not shown) in the cleaning mechanism 111, operations of the light source 115 and the light receiving unit 116 of the analysis port 109a, and data processing operations such as calculation of blood coagulation time and target component concentration based on the detection result. Controls such as operation and condition setting of various configurations constituting the.
  • the control unit 114 is connected to each component unit and controls the entire automatic analyzer. However, each component unit may be provided with an independent control unit.
  • FIG. 3 shows the shape of the reagent container according to the present embodiment.
  • the liquid level in the reagent container needs to be lower than the opening.
  • the liquid amount is less than V / 2 with respect to the volume V of the reagent container 103. If it exists, the height of a liquid level will be below the opening part 103a regardless of the attitude
  • FIG. 3B shows a state in which the opening 103 a is at the center of gravity of the reagent container 103 in the quadrangular prism reagent container 103.
  • the right figure shows the state which the opening part 103a shifted
  • deviated from the gravity center in the reagent container 103 of a square pillar similarly.
  • the column body whose volume is increased or decreased by a structure such as a squeeze, a dent, a bulge, or a lid b of the reagent container 103 (in this figure, from the original volume V of the reagent container,
  • the reagent container 103 of the configuration in which the volume is reduced by ⁇ V) is in any posture when the liquid volume is less than V / 2 ⁇ V obtained by subtracting the volume change ⁇ V.
  • the height of the liquid level is located below the opening 103a.
  • any posture with the reagent container 103 containing the solution can be used in any posture as long as the liquid level satisfies the condition of being lower than the opening 103a.
  • the shape of the reagent container 103 and the position of the opening 103a are not limited.
  • FIG. 2 is a diagram for explaining inversion mixing of a freeze-dried reagent according to the present embodiment.
  • FIG. 6 is a flowchart for explaining the inversion mixing of the lyophilized reagent according to the present embodiment.
  • step 601 the reagent container 103 containing the freeze-dried reagent 201 is placed on the reagent disk 104 ⁇ S601>. At this time, a small freeze-dried reagent piece 201 a is attached to the upper part of the reagent container 103.
  • the control unit 114 causes the reagent dispensing mechanism 107 to remove the solvent from the solvent container when the solvent 202 of the lyophilized reagent 201 is other than water.
  • the operation is controlled so as to suck ⁇ S602>.
  • water as a pressure transmission medium of the reagent dispensing mechanism 107 can be dispensed into the reagent container 103, so that suction of the solvent is not necessary.
  • the reagent container 103 containing the lyophilized reagent 201 is sealed with a lid 103b.
  • the lid 103b of the reagent container can be punctured by the nozzle of the reagent dispensing mechanism 107, a puncture needle or the like, and dispenses the solvent 202 into the reagent container 103.
  • dispensing can be performed by puncturing the lid 103b.
  • the reagent dispensing nozzle of the reagent dispensing mechanism 107 punctures the lid 103b of the reagent container 103, and dispenses a predetermined amount of the solvent 202 into the reagent container 103 ⁇ S603>.
  • FIG. 2C only by dispensing the solvent 202 into the reagent container 103, the small lyophilized reagent piece 201a adhering to the upper part of the reagent container 103 remains undissolved.
  • the reagent container 103 into which the solvent 202 has been dispensed is moved to an inversion mixing unit 119 described later ⁇ S605>, and mixed by inversion ⁇ S606>. Since the lid 103b of the reagent container is punctured and opened by the nozzle of the reagent dispensing mechanism 107 as described above, the opening 103a is positioned below the liquid surface of the lysing reagent 203 and enters the liquid. However, if the condition of the relationship between the structure of the reagent container 103 and the liquid level of the solution contained therein is satisfied, the reagent container 103 is removed from the reagent container 103.
  • the opening 103a is always positioned above the liquid level regardless of the angle such as rollover or inverted, the liquid does not spill out of the reagent container 103.
  • the reagent container 104 is erected and the reagent container 103 is moved to the reagent disk 104 ⁇ S607>.
  • FIG. 5 (a-1) shows a state in which the reagent container 103 is upright
  • FIG. 5 (a-2) is a schematic diagram thereof
  • FIG. 5B-1 shows a state in which the reagent container 103 rolls over
  • FIG. 5B-2 is a schematic diagram thereof.
  • the overturning mixing unit 119 includes two driving units, a rotation shaft tilting motor 501 and a rotation motor 502.
  • the rotation axis tilting motor 501 is connected to the reagent container holder 505 via a belt 503 and two pulleys 504.
  • the reagent container 103 is accommodated in a reagent container holder 505.
  • the rotation motor 502 is connected to the reagent container holder 505 and can rotate together with the stored reagent container 103.
  • the rotation tilting motor 501 and the rotation motor 502 can be driven independently.
  • the reagent container 103 placed on the inversion mixing unit 119 performs inversion mixing of the lyophilized reagent 201 and the solvent 202 accommodated therein by tilting the rotation axis while rotating.
  • the rotation speed of the rotation is preferably about 40 rotations / minute, for example.
  • the angle of the rotation axis at the time of inversion mixing is, for example, 70 ° to 110 ° for the purpose of dissolving the small lyophilized reagent piece 201a adhering to the upper part of the reagent container 103 in order to dissolve the lyophilized reagent 201. It is desirable to rotate the reagent container 103 while shaking the reagent container 103 by changing the angle within the range of. Thereby, since the solvent 202 reaches the upper part of the reagent container 103, the small freeze-dried reagent piece 201a adhering to the upper part of the reagent container 103 can be dissolved.
  • the rotation axis is changed in the range of 35 ° to 55 ° around 45 °, and the reagent container 103 is rotated while rotating. It is desirable to let them.
  • the precipitated reagent can be mixed by performing autorotation under the present conditions periodically at a predetermined time interval such as every 30 minutes. In this case, it is necessary that a reagent amount that satisfies the condition that the liquid level is lower than the opening is satisfied in the reagent container in any posture.
  • the concentration when the concentration is made uniform by remixing after dissolving the freeze-dried reagent piece 201a, it can rotate while changing the angle under the same conditions.
  • the dissolved reagent 203 does not adhere to the wall surface or upper part of the reagent container 103 due to surface tension by slowly returning the angle of the rotation axis.
  • the dissolved reagent 203 can be held at the bottom of the reagent container 103.
  • inversion mixing can be performed without spilling the liquid in the reagent container 103 to the outside of the reagent container 103, so that even a small lyophilized reagent piece 201a adhering to the wall surface or lid of the reagent container 103 can be dissolved.
  • the fluctuation of the reagent concentration between the containers can be reduced.
  • the reagent can be dissolved without bothering the user.
  • the reagent dispensing mechanism 107 dispenses a predetermined amount of the solvent 202 into the reagent container 103 containing the lyophilized reagent 201 has been described.
  • a method for performing dispensing of the solvent 202 in two or more steps will be described. By dividing the number of times of dispensing into a plurality of times under predetermined conditions, the amount of reagent held in the reagent container can be increased as will be described later.
  • FIG. 7 is a flowchart for explaining the inversion mixing of the lyophilized reagent according to the second embodiment. Steps up to S707 are the same as those in FIG. 6 (first embodiment), and the description thereof is omitted.
  • the first dispensing amount of the solvent 202 is equal to or more than the amount that the lyophilized reagent 201 can be dissolved without being saturated, and the liquid level is higher than the opening of the reagent container 103 regardless of the angle of rotation. It is necessary to satisfy the condition that the amount is equal to or less than the amount located below.
  • FIG. 11 is a diagram showing the relationship between the number of dispensings and the amount of reagent to be retained according to the second embodiment.
  • the amount of reagent retained in the reagent container can be increased by dividing the number of times of dispensing into multiple times, the necessary dissolution is required because the liquid level is located below the opening of the reagent container.
  • the volume of the reagent 203 needs to be different between when the reagent container is upright and when it is upside down. For example, there may be a case where the opening of the reagent container is located near the lid, or a difference between the two depending on the shape of the reagent container.
  • the dispensing amount of the solvent 202 is the liquid level in an inverted state where the volume of the dissolving reagent 203 is the smallest. It is necessary to be positioned below the opening. Therefore, as shown on the left of FIG. 11, the volume of the dispensed amount is “small”.
  • the reagent container 103 is set on the reagent disk 104. Thereafter, in the second dispensing, the remaining solvent 202 is dispensed so that the dissolution reagent 203 becomes a predetermined amount.
  • the second dispensing amount of the solvent 202 the liquid level needs to be positioned below the opening in an upright state where the volume of the dissolving reagent 203 is the largest. Therefore, as shown on the right side of FIG. 11, the volume of the dispensed amount is “large”.
  • the reagent container 103 is again installed in the inversion mixing unit 119 and mixing is performed ⁇ S709>.
  • the angle of the rotation axis of the reagent container 103 is tilted by about 45 °. Only mixing is required ⁇ S710>.
  • the reagent container 103 is erected and the reagent container 103 is moved to the reagent disk 104.
  • the dispensing amount When the solvent 202 is dispensed by a single dispensing operation, the dispensing amount must be set in accordance with the arrangement state of the reagent container having the smallest volume under the above-described preconditions. According to the present embodiment, the amount of the lysing reagent 203 that can be held in the reagent container 103 is larger than that in the first embodiment while implementing the automatic lysing function of the lyophilized reagent. The volume can be used efficiently.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • Solvent 203 Dissolving reagent 501 ... Motor for tilting axis of rotation 502 ... Motor for rotation 503 ... Belt 504 ... Pulley 505 ... Reagent container holder 704 ... Reaction liquid (mixed liquid of sample and reagent)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

生体サンプルと試薬を混合して反応させることで、生体サンプル内の成分を分析する自動分析装置で使用される試薬には、液状試薬と凍結乾燥試薬があり、凍結乾燥試薬は溶媒により溶解が必要となる。凍結乾燥試薬を内包した試薬容器の壁面や蓋周りなどの上部にも小さな凍結乾燥試薬片が付着しており、これを溶解するためには試薬ボトルを横転、倒立させながら回転させる転倒混和が必要だが、この際に試薬容器の開口部から液が漏れるおそれがあった。 試薬容器と、前記試薬容器を保持する試薬ディスクと、前記試薬容器に溶液を分注する分注機構と、前記試薬容器を転倒混和する転倒混和機構と、前記分注機構、前記転倒混和機構を制御する制御部を備え、前記転倒混和機構は、前記試薬容器を自転させる自転機構前記試薬容器の自転軸を傾ける傾斜機構と、を有し、前記試薬容器は、ピアッシング可能な蓋部を有し、前記蓋部は、先端に開口部を形成し、かつ前記試薬容器内部に延在される筒状機構を有し、前記制御部は、前記転倒混和機構により前記試薬容器を正立、倒立、横転のいずれの状態で保持しても、当該筒状機構の先端に形成される開口部の位置が、当該試薬容器に収容される溶液の液面よりも上部となるように、前記分注機構による分注条件を制御することを特徴とする自動分析装置を提供する。

Description

自動分析装置
 本発明は、血液等の生体サンプルに含まれる成分を自動的に分析する自動分析装置に係り、特に、凍結乾燥試薬の自動溶解機構を備えた自動分析装置に関する技術である。
 自動分析装置は生体サンプルと試薬を混合して反応させることで、生体サンプル内の成分を分析する。このとき使用される試薬には液状試薬と凍結乾燥試薬があり、凍結乾燥試薬を用いて分析を行う場合には溶媒による溶解が必要となる。
 凍結乾燥試薬を内包する試薬容器の壁面や蓋周りなどにも小さな凍結乾燥試薬片が付着していることから、凍結乾燥試薬の溶解においては、このような凍結乾燥試薬片についても溶解させる必要がある。もし、このように試薬容器に付着した小さな凍結乾燥試薬片が溶解されないまま残ってしまった場合、溶媒を正確な量分注しても試薬の濃度が薄くなり、分析結果にもズレが生じてしまうおそれがある。
 よって従来では、凍結乾燥試薬を溶媒に溶解するため、凍結乾燥試薬に溶媒を分注したのち、主に用手法によって転倒混和の操作を行っていた。
 しかしながら、このように転倒混和を行う場合、試薬容器の開口部から液が漏れてしまう可能性がある。
 試薬液体と外気との接触を防いで、試薬容器の開口部を密閉するための技術として、特許文献1では、試薬を挿入する容器に対して着脱自在に取り付けられるアダプターの先端を袋形状に形成し、かつ、その先端に切込みとしてのすり割り部を設け、液体分注機構であるピペットによって先端が押されるとすり割り部が開くことにより、密閉状態を保ったまま液体吸引ができる試薬容器の構成について記載されている。
 また、特許文献2には、試薬容器の開口部とほぼ同一の外径を有し、上部と底部の一部に開口部を持つ筒と、該筒の上部と底部の開口部をふさぐように設けられ、該試薬容器の使用時にははがすことのできるフィルムを備える構成について記載されている。
特開2002-19855号公報 特開2011-153936号公報
 上述の通り、凍結乾燥試薬に溶媒を分注し、転倒混和するためには試薬容器を横転、倒立させる必要があるが、この際に試薬容器の開口部から液が漏れてしまうということがある。さらに、転倒混和の操作は用手法で行われており、手間と時間がかかる。
 しかしながら、特許文献1に記載された試薬容器の構成では、ピペットをすり割り部のスリットに差し込んだ状態においても密閉状態が保たれるため、凍結乾燥試薬の溶媒を分注することで試薬容器内の圧力が高まることになる。かつ、このときアダプターの開口部は液中に位置しているため、スリットとピペットとの隙間から液が染み出してしまうおそれがある。
 また、特許文献2にて説明される試薬容器の構成については、凍結乾燥試薬を溶解するための溶媒を分注する際にはフィルムをはがして開口部を露出させる必要があり、この状態で転倒混和することにより、液が試薬容器の外にこぼれてしまうことがある。また、これを防ぐために溶媒分注後に再び密閉状態にするためには、再度フィルムを開口部に設置しなくてはならず、手間がかかる。
 さらに、いずれの文献においても、転倒混和の操作を自動化することに関しては考慮されていない。
 本発明では、上記課題に鑑み、凍結乾燥された試薬に溶媒を分注し、転倒混和する際に、試薬容器から液をこぼすことなく、かつ自動で実行することにより、凍結乾燥試薬の溶解を精度良く実行するとともに、ユーザの省力化を実現することに関する。
 上記課題を解決するための一態様として、試薬容器と、前記試薬容器を保持する試薬ディスクと、前記試薬容器に溶液を分注する分注機構と、前記試薬容器を転倒混和する転倒混和機構と、前記分注機構、前記転倒混和機構を制御する制御部を備え、前記転倒混和機構は、前記試薬容器を自転させる自転機構前記試薬容器の自転軸を傾ける傾斜機構と、を有し、前記試薬容器は、ピアッシング可能な蓋部を有し、前記蓋部は、先端に開口部を形成し、かつ前記試薬容器内部に延在される筒状機構を有し、前記制御部は、前記転倒混和機構により前記試薬容器を正立、倒立、横転のいずれの状態で保持しても、当該筒状機構の先端に形成される開口部の位置が、当該試薬容器に収容される溶液の液面よりも上部となるように、前記分注機構による分注条件を制御することを特徴とする装置、当該装置を用いた方法、及び当該装置に用いられる試薬容器を提供する。
 上記一態様によれば、凍結乾燥試薬への溶媒の分注及び転倒混和において、試薬容器から試薬をこぼすことなく試薬を操作を自動で実行できるため、凍結乾燥試薬の溶解を精度良く実行し、高精度な分析を実現するとともに、ユーザの省力化に寄与する。
本実施の形態に係る自動分析装置の基本構成を示す図。 本実施の形態(第1の実施の形態)に係る凍結乾燥試薬の転倒混和を説明する図 本実施の形態(第1の実施の形態)に係る試薬容器の形状を示す図。 本実施の形態(第1の実施の形態)に係る試薬容器を正立、横転、倒立させた際の試薬容器の開口部と溶解試薬の液面の位置関係を示す図。 本実施の形態(第1の実施の形態)に係る転倒混和ユニットの構成を示す図。 本実施の形態(第1の実施の形態)に係る凍結乾燥試薬の転倒混和を説明するフローチャート 本実施の形態(第2の実施の形態)に係る凍結乾燥試薬の転倒混和を説明するフローチャート 本実施の形態(第2の実施の形態)に係る分注の回数と保持する試薬量の関係を示す図。
 以下、本発明を実施するための形態について図面を用いて詳細に説明する。なお、全体を通して、各図における同一の機能を有する各構成部分については原則として同一の符号を付すようにし、説明を省略することがある。
〈装置の全体構成〉
 図1に、本実施の形態に係る自動分析装置の基本構成を示す。ここでは、自動分析装置の一態様として血液凝固分析を行う装置の例について説明する。本図に示すように、自動分析装置100は、主として、サンプルディスク102、試薬ディスク104、サンプル分注機構106、試薬分注機構107、サンプル分注ポート108、分析ポート109、反応容器供給部110、反応容器移載機構113、および制御部114等から構成される。
 サンプルディスク102は、時計回り、反時計回りに回転自在なディスク状のユニットであって、標準サンプルや被検サンプル等のサンプルを収容するサンプル容器(試料容器)101をその円周上に複数個配置することができる。
 試薬ディスク104は、サンプルディスク102と同様に、時計回り、反時計回りに回転自在なディスク状のユニットであって、サンプルに含まれる各検査項目の成分と反応する成分を含有する試薬を収容する試薬容器103をその円周上に複数個配置できる。また、本図には示していないが、試薬ディスク104では、保冷機構等を備えることにより、配置された試薬容器103内の試薬を保冷可能に構成することもできる。
 反応容器移載機構113は、分析に使用する反応容器105を反応容器供給部110からサンプル分注ポート108に移送し、搬入する。また、サンプルが分注された後の反応容器105を、サンプル分注ポート108から搬出し、分析ポート109に移送、搬入する。分析終了後は、分析ポート109内の反応容器105を搬出し、反応容器廃棄部112へ移送する。
 サンプル分注機構106は、サンプルディスク102に保持されたサンプル容器101内のサンプルを吸引して、サンプル分注ポート108に設置された反応容器105内へのサンプルの分注を行う。サンプル分注機構106は、サンプル分注ノズルと図示しないサンプル用ポンプまたはサンプル用シリンジが流路を介して接続されており、圧力伝達媒体として例えば、水が使用される。サンプルの吸引および吐出は、サンプル用シリンジまたはサンプル用ポンプの動作によって行われ、これらの動作は制御部114の指示に基づいて制御される。サンプル分注機構の回転および上下動作は制御部114の指示に基づいて制御される。
 試薬分注機構107は、試薬ディスク104に保持された試薬容器103内の試薬を吸引して、分析ポート109に設置された、サンプルが分注された反応容器105内に分注を行う。試薬分注機構107は、試薬分注ノズルと図示しない試薬用ポンプまたは試薬用シリンジが流路を介して接続されており、圧力伝達媒体として例えば、水が使用される。試薬の吸引および吐出は、試薬用シリンジまたは試薬用ポンプの動作によって行われ、これらの動作は制御部114の指示に基づいて制御される。試薬分注機構107の水平移動および上下動作は制御部114の指示に基づいて制御される。
 洗浄機構111では、サンプル分注機構106、試薬分注機構107の洗浄を行う。
 分析ポート109には反応容器105を複数設置することができ、複数のサンプルの分析を同時に行うことができる。分析ポート109は、収容される1つの反応容器105に対して、光源115と、受光部(検出器)116とをそれぞれ備えている。反応容器105中の反応液704に対して光源115から光が照射され、反応液中で生じた反応によって産生された析出物により、散乱される。析出物が増加するとこのように散乱される光も増加するため、この散乱光を受光部(検出器)116で検出することによって析出物の量を求めることができる。
 例えば血液凝固検査項目では、サンプルと試薬とが反応すると、時間の経過とともにフィブリンが析出する。そして、このフィブリンの析出に伴って散乱される光量も増加する。この光量を検出することで、サンプル中のフィブリノーゲン量(Fbg)を求めることができる。また、各々の検査項目に対応する試薬を用いて同様に光量を監視することで、プロトロンビン時間(PT)や活性化部分トロンボプラスチン時間(APTT)等の他の血液凝固検査項目を分析することもできる。
 また、全体を通して、制御部114は、サンプルディスク102、試薬ディスク104、サンプル分注機構106、試薬分注機構107の上下および水平動作や、図示しないサンプル用シリンジポンプ、試薬用シリンジポンプの動作、洗浄機構111における図示しない洗浄水の供給動作、分析ポート109aの光源115および受光部116の動作、検出結果に基づく血液凝固時間や目的成分の濃度の演算などのデータ処理動作等、自動分析装置100を構成する種々の構成の動作や条件設定等の制御を実施する。なお、本図において制御部114は各々の構成部に接続され、自動分析装置の全体を制御するものとしたが、構成部ごとに各々独立した制御部を備えるように構成することもできる。
 〈試薬容器の構造と収容される溶液の液面との関係〉
 試薬容器103について図3を用いて説明する。図3は、本実施の形態に係る試薬容器の形状を示す。
 開口部を有する試薬容器103にて、凍結乾燥試薬と溶媒との転倒混和を行う場合には、試薬容器内の液面の高さは開口部よりも下方である必要がある。
 図3(a)のように試薬容器103が柱体もしくは球体であり、開口部103aが試薬容器103の重心にある場合、試薬容器103の容積Vに対して、液量がV/2未満であると、試薬容器103をどのような姿勢にしても液面の高さは開口部103aよりも下方となる。
 図3(b)左図は、四角柱の試薬容器103にて、開口部103aが試薬容器103の重心にある状態を示す。そして、右図は、同じく四角柱の試薬容器103にて開口部103aが重心からずれた状態を示す。特に、本図に示すように四角柱の試薬容器103では、開口部がどの位置に形成されていたとしても、開口部103aから最も近い面までの距離をx、y、zとしたとき、液量は4xyz未満であれば、どのような姿勢にしても液面の高さは開口部103aよりも下方となる。
 図3(c)のように、しぼり、くぼみ、膨らみ、もしくは、試薬容器103の蓋bなどの構造物により、容積が増減した柱体(本図においては、試薬容器の元の体積Vから、ΔV分だけ容積を減少させた構成の場合について示す)の試薬容器103は、液量が容積の変化量ΔVを減じたV/2-ΔV未満であると、試薬容器103をどのような姿勢にしても液面の高さは開口部103aよりも下方に位置することとなる。
 なお、上述した態様以外であっても、試薬容器103が溶液を内包した状態でどのような姿勢にしても、液面の高さが開口部103aよりも下方となる条件を満たしていれば、試薬容器103の形状および開口部103aの位置は問わない。
 <凍結乾燥試薬の自動溶解>
 次に、本実施の形態に係る凍結乾燥試薬201の自動溶解機能について図2および図6のフローチャートを用いて説明する。図2は、本実施の形態に係る凍結乾燥試薬の転倒混和を説明する図である。また、図6は、本実施の形態に係る凍結乾燥試薬の転倒混和を説明するフローチャートである。
 まず、ステップ601では、図2(a)に示すように、凍結乾燥試薬201が内包されている試薬容器103を試薬ディスク104に設置する<S601>。このとき、試薬容器103の上部には、小さな凍結乾燥試薬片201aが付着している。
 次に、制御部114は、試薬分注機構107の圧力伝達媒体が水である構成において、凍結乾燥試薬201の溶媒202が水以外である場合には、試薬分注機構107によって溶媒容器から溶媒を吸引するように動作を制御する<S602>。一方、ここで、溶媒202が水である場合には、試薬分注機構107の圧力伝達媒体である水を試薬容器103内に分注することもできため、溶媒の吸引が不要となる。
 凍結乾燥試薬201が内包されている試薬容器103は、蓋103bによって密閉されている。図2(b)に示すように、試薬容器の蓋103bは、試薬分注機構107のノズル、または、穿刺用の針等によって穿刺が可能であり、溶媒202を試薬容器103内に分注する際には蓋103bを穿刺することで分注ができる。ここで、試薬分注機構107の試薬分注ノズルが試薬容器103の蓋103bを穿刺し、所定量の溶媒202を試薬容器103内に分注する<S603>。このとき、図2(c)のように試薬容器103内に溶媒202を分注しただけでは試薬容器103上部に付着した小さな凍結乾燥試薬片201aは溶解せずに残ったままである。
 続いて、図2(d)(e)のように溶媒202を分注された試薬容器103は後述する
転倒混和ユニット119に移設され<S605>、転倒混和される<S606>。試薬容器の蓋103bは上述の通り試薬分注機構107のノズルによって穿刺され開口しているため、開口部103aが溶解試薬203の液面より下方に位置し、液中に入ると、開口部103aを介して溶解試薬203が試薬容器103外にこぼれてしまうことになるが、上述した試薬容器103の構造と収容される溶液の液面との関係の条件を満たしていれば、試薬容器103を横転、倒立など、どの角度に配置しても開口部103aが液面よりも常に上方に位置することとなるため、液が試薬容器103外にこぼれることがない。転倒混和後、試薬容器104を正立させ、試薬容器103を試薬ディスク104に移設する<S607>。
 <転倒混和ユニットの構成>
 次に、本実施の形態に係る、転倒混和ユニット119の構成について図5を用いて説明する。ここで、図5(a-1)は試薬容器103が正立した状態を示し、図5(a-2)はその模式図である。また、図5(b-1)は試薬容器103が横転した状態を示し、図5(b-2)はその模式図である。本図に示すように、転倒混和ユニット119は、自転軸傾倒用モータ501および、自転用モータ502の2つの駆動部を備えている。
 自転軸傾倒用モータ501はベルト503および2つのプーリ504を介して、試薬容器保持具505に接続される。試薬容器103は試薬容器保持具505に収容される。自転軸傾倒用モータ501が駆動することにより、試薬容器保持具505が傾倒し、収容されている試薬容器103が傾倒する。自転用モータ502は試薬容器保持具505に接続され、収容されている試薬容器103と共に自転をさせることができる。自転用傾倒用モータ501と自転用モータ502はそれぞれ独立して駆動することができる。
 続いて、試薬容器103の転倒混和の方法について説明する。転倒混和ユニット119に載置された試薬容器103は、自転をしながらその回転軸を傾けることで内部に収容される凍結乾燥試薬201と溶媒202との転倒混和を行う。このとき自転の回転速度は例えば40回転/分程度が望ましい。
 また、転倒混和する際の自転軸の角度は、凍結乾燥試薬201を溶解するためには、試薬容器103上部に付着した小さな凍結乾燥試薬片201aを溶解させる目的で、例えば、70°から110°の範囲で角度を変化させ、試薬容器103を揺らしながら自転させるのが望ましい。これにより、溶媒202が試薬容器103の上部まで行きわたるため、試薬容器103上部に付着した小さな凍結乾燥試薬片201aを溶解させることができる。
 一方で、沈殿を生じやすい試薬など、溶解試薬203に濃度勾配が生じる試薬においては、45°を中心に35°から55°の範囲で自転軸の角度を変化させ、試薬容器103を揺らしながら自転させるのが望ましい。この場合、定期的に、例えば30分毎等の所定の時間の間隔にて本条件で自転を行うことで、沈殿した試薬を混和させることができる。また、この場合には、予め上述した液面の高さがどの姿勢であっても開口部よりも下方となる条件を満たす試薬量が試薬容器に収容されていることが必要となる。
 また、凍結乾燥試薬片201a溶解後に、再度混和させて濃度を均一化させる場合にも、同様の条件で角度を変化させながら自転することができる。
 いずれの溶解方法においても、この際液面が波打たない程度の速度で自転軸の角度を変化させることで、試薬が泡立つことを防ぐことができる。
 また、試薬容器103が横転、倒立した状態から、正立に戻す際には、自転軸の角度をゆっくりと戻すことによって、溶解試薬203が表面張力によって試薬容器103の壁面や上部に付着せずに試薬容器103の底に溶解試薬203を保持することが可能となる。
 これにより、試薬容器103内の液を試薬容器103外にこぼすことなく、転倒混和を行うことができるので、試薬容器103の壁面や蓋周りに付着している小さな凍結乾燥試薬片201aも溶解でき、試薬濃度の容器間の変動を小さくすることができる。また、ユーザの手を煩わすことなく、試薬の溶解を可能とする。
 第1の実施の形態では、試薬分注機構107が、凍結乾燥試薬201を内包した試薬容器103内に所定量の溶媒202を分注する方法について説明した。
 本実施の形態では、溶媒202の分注を2回以上に分けて実施する方法について説明する。所定の条件下のもと、分注の回数を複数回に分けることで、後述するように試薬容器内に保持する試薬の量を多くすることができる。
 図7は第2の実施の形態に係る凍結乾燥試薬の転倒混和を説明するフローチャートである。S707までは図6(第1の実施の形態)と同様であるため説明を省略する。ここで、1回目の溶媒202の分注量は、凍結乾燥試薬201が飽和せずに溶解できる量以上であり、かつ、どの角度に回転させても液面が試薬容器103の開口部よりも下方に位置する量以下である、という条件を満たす必要がある。
 ここで、図11は第2の実施の形態に係る分注の回数と保持する試薬量との関係を示す図である。分注の回数を複数回に分けることで、試薬容器内に保持する試薬の量を多くすることができる前提条件としては、液面が試薬容器の開口部の下方に位置するために必要な溶解試薬203の容積が、試薬容器が正立状態である場合と倒立状態である場合とで差があることが必要である。例えば、試薬容器の開口部が蓋部の近くに位置する場合や、試薬容器の形状により両者に差が生じる場合等がある。このような前提において、上述した1回目の溶媒202の分注量の条件を満たそうとすると、溶媒202の分注量は、最も溶解試薬203の容積が小さくなる倒立状態において、その液面が開口部よりも下方に位置する必要がある。よって、図11の左に示すように、分注量の容積は「小」となる。
 1回目の分注にて分注された溶媒202を転倒混和後、試薬容器103を試薬ディスク104に設置する。その後、2回目の分注では、溶解試薬203が所定量となるよう残りの溶媒202を分注する。<S708>。ここで、2回目の溶媒202の分注量の条件としては、最も溶解試薬203の容積が大きくなる正立状態において、その液面が開口部よりも下方に位置する必要がある。よって、図11の右に示すように、分注量の容積は「大」となる。
 2回目の分注後、再度試薬容器103を転倒混和ユニット119に設置し、混和を行う<S709>。このとき、1回目の転倒混和によって試薬容器103の壁面や蓋周りに付着している小さな凍結乾燥試薬片201aは溶解できているため、試薬容器103の自転軸の角度は、45°程度傾けながら混和を行うのみで良い<S710>。混和後、試薬容器103を正立させ、試薬容器103を試薬ディスク104に移設する。<S711>
 1回のみの分注動作にて溶媒202を分注した場合、上述した前提条件のもとでは、最も容積が小さくなる試薬容器の配置状態に合わせた分注量を設定しなければならないが、本実施の形態によれば、凍結乾燥試薬の自動溶解機能を実装しつつ、第1の実施の形態よりも、試薬容器103内に保持できる溶解試薬203の量が多くなるため、試薬容器103の容積を効率的に使用することが可能となる。
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100・・・自動分析装置
101・・・サンプル容器
102・・・サンプルディスク
103・・・試薬容器
103a・・・開口部
103b・・・試薬容器の蓋
104・・・試薬ディスク
105・・・反応容器
106・・・サンプル分注機構
107・・・試薬分注機構
107a・・・試薬分注プローブ
108・・・サンプル分注ポート
109・・・分析ユニット
109a・・・分析ポート
110・・・反応容器供給部
111・・・洗浄機構
112・・・反応容器廃棄部
113・・・反応容器移載機構
114・・・制御部
115・・・光源
116・・・受光部(検出器)
119・・・転倒混和ユニット
201・・・凍結乾燥試薬
201a・・・凍結乾燥試薬片
202・・・溶媒
203・・・溶解試薬
501・・・自転軸傾倒用モータ
502・・・自転用モータ
503・・・ベルト
504・・・プーリ
505・・・試薬容器保持具
704・・・反応液(サンプルと試薬との混合液)

Claims (9)

  1.  試薬容器と、
     前記試薬容器を保持する試薬ディスクと、
     前記試薬容器に溶液を分注する分注機構と、
     前記試薬容器を転倒混和する転倒混和機構と、
     前記分注機構、前記転倒混和機構を制御する制御部を備え、
     前記転倒混和機構は、
     前記試薬容器を自転させる自転機構と、
     前記試薬容器の自転軸を傾ける傾斜機構と、を有し、
     前記試薬容器は、
     ピアッシング可能な蓋部を有し、
     前記蓋部は、先端に開口部を形成し、かつ前記試薬容器内部に延在される筒状機構を有し、
     前記制御部は、
     前記転倒混和機構により前記試薬容器を正立、倒立、横転のいずれの状態で保持しても、
     当該筒状機構の先端に形成される開口部の位置が、当該試薬容器に収容される溶液の液面よりも上部となるように、
     前記分注機構による分注条件を制御することを特徴とする自動分析装置。
  2.  請求項1に記載された自動分析装置であって、
     前記試薬容器は、予め凍結乾燥試薬を収容しており、
     当該分注機構により分注される溶液は、前記凍結乾燥試薬を溶解するための溶媒であって、
     前記制御部は、
     前記凍結乾燥試薬を前記溶媒に溶解する場合には、前記試薬容器の自転軸を水平もしくは倒立させながら、前記試薬容器を自転させるように前記自転機構及び前記傾斜機構を制御することを特徴とする自動分析装置。
  3.  請求項2に記載された自動分析装置であって、
     前記制御部は、
     前記凍結試薬を前記溶媒に溶解させた後の混合液を混合する場合には、前記試薬容器の自転軸を約35°から55°の範囲内で傾斜させながら、前記試薬容器を自転させるように前記自転機構及び前記傾斜機構を制御することを特徴とする自動分析装置。
  4.  請求項3に記載された自動分析装置であって、
     前記制御部は、
     前記試薬容器の自転軸を約45°に傾斜させながら、前記試薬容器を自転させるように前記自転機構及び前記傾斜機構を制御することを特徴とする自動分析装置。
  5.  請求項1に記載された自動分析装置であって、
     当該分注機構により分注される溶液は、濃度勾配を有する試薬溶液であって、
     前記制御部は、
     前記試薬溶液を混合する場合には、前記試薬容器の自転軸を約35°から55°の範囲内で傾斜させながら、前記試薬容器を自転させるように前記自転機構及び前記傾斜機構を制御することを特徴とする自動分析装置。
  6.  請求項5に記載された自動分析装置であって、
     前記制御部は、
     前記試薬容器の自転軸を約45°に傾斜させながら、前記試薬容器を自転させるように前記自転機構及び前記傾斜機構を制御することを特徴とする自動分析装置。
  7.  請求項1に記載された自動分析装置であって、
     前記制御部は、
     前記前記試薬容器内に前記溶液を複数回に分けて分注するように前記分注機構を制御することを特徴とする自動分析装置。
  8.  試薬容器と、
     前記試薬容器を保持する試薬ディスクと、
     前記試薬容器に溶液を分注する分注機構と、
     前記試薬容器を転倒混和する転倒混和機構と、
     前記分注機構、前記転倒混和機構を制御する制御部を備える自動分析装置を用いた分析方法であって、
     前記転倒混和機構は、
     前記試薬容器を自転させる自転機構と、
     前記試薬容器の自転軸を傾ける傾斜機構と、を有し、
     前記試薬容器は、
     ピアッシング可能な蓋部を有し、
     前記蓋部は、先端に開口部を形成し、かつ前記試薬容器内部に延在される筒状機構を有し、
     前記制御部は、
     前記転倒混和機構により前記試薬容器を正立、倒立、横転のいずれの状態で保持しても、
     当該筒状機構の先端に形成される開口部の位置が、当該試薬容器に収容される溶液の液面よりも上部となるように、
     前記分注機構による分注条件を制御することを特徴とする分析方法。
  9.  試薬容器と、
     前記試薬容器を保持する試薬ディスクと、
     前記試薬容器に溶液を分注する分注機構と、
     前記試薬容器を転倒混和する転倒混和機構と、
     前記分注機構、前記転倒混和機構を制御する制御部を備える自動分析装置の前記試薬容器において、
     ピアッシング可能な蓋部を有し、
     前記蓋部は、先端に開口部を形成し、かつ前記試薬容器内部に延在される筒状機構を有し、
     前記制御部は、
     前記転倒混和機構により前記試薬容器を正立、倒立、横転のいずれの状態で保持しても、
     当該筒状機構の先端に形成される開口部の位置が、当該試薬容器に収容される溶液の液面よりも上部となるように、
     前記分注機構による分注条件を制御することを特徴とする自動分析装置の試薬容器。
PCT/JP2017/000693 2016-03-04 2017-01-12 自動分析装置 WO2017149940A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780013190.2A CN108700604A (zh) 2016-03-04 2017-01-12 自动分析装置
US16/081,259 US11293935B2 (en) 2016-03-04 2017-01-12 Automatic analysis device
EP17759412.4A EP3425407B1 (en) 2016-03-04 2017-01-12 Automatic analysis device
JP2018502554A JP6587735B2 (ja) 2016-03-04 2017-01-12 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-041706 2016-03-04
JP2016041706 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017149940A1 true WO2017149940A1 (ja) 2017-09-08

Family

ID=59742921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000693 WO2017149940A1 (ja) 2016-03-04 2017-01-12 自動分析装置

Country Status (5)

Country Link
US (1) US11293935B2 (ja)
EP (1) EP3425407B1 (ja)
JP (1) JP6587735B2 (ja)
CN (1) CN108700604A (ja)
WO (1) WO2017149940A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196077A (zh) * 2018-02-23 2018-06-22 迈克医疗电子有限公司 试剂容器运载装置及运载系统
JP6989028B2 (ja) * 2018-10-23 2022-01-05 株式会社島津製作所 オートサンプラ
CN112892624A (zh) * 2021-01-14 2021-06-04 北京汇文源美生物科技有限公司 液体检测配套装置和检测设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501167A (ja) * 1984-02-01 1986-06-12 ヒユレツト,ウイリアム・チエスタ− 臨床用分析装置および方法
US4764342A (en) * 1985-02-27 1988-08-16 Fisher Scientific Company Reagent handling
JPH0259672A (ja) * 1988-08-26 1990-02-28 Hitachi Ltd 攪拌装置
JPH04208864A (ja) * 1989-12-22 1992-07-30 Anagen Ltd 成分を選択して攪拌する装置およびその方法
JPH0618531A (ja) * 1992-04-09 1994-01-25 F Hoffmann La Roche Ag 試薬キットと自動分析装置
JP2002019855A (ja) 2000-07-04 2002-01-23 Olympus Optical Co Ltd アダプターおよびアダプター付き容器
JP2011153936A (ja) 2010-01-28 2011-08-11 Hitachi High-Technologies Corp 試薬容器
JP2014168769A (ja) * 2012-07-02 2014-09-18 Panasonic Corp 攪拌方法及び攪拌装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136957A (en) * 1979-04-14 1980-10-25 Olympus Optical Co Ltd Automatic analyzer
JPH0394828A (ja) * 1989-09-05 1991-04-19 Mochida Pharmaceut Co Ltd 反応容器着脱装置および固相と液相との反応装置
GB9020352D0 (en) 1990-09-18 1990-10-31 Anagen Ltd Assay or reaction apparatus
CA2093560C (en) * 1992-04-10 2005-06-07 Minoru Honda Fluid container
US5609822A (en) 1995-07-07 1997-03-11 Ciba Corning Diagnostics Corp. Reagent handling system and reagent pack for use therein
US20030137675A1 (en) * 2001-12-28 2003-07-24 Hironori Minagawa Developing recovery container
CN101111870B (zh) * 2004-11-08 2013-01-09 朱莉·R·巴塞洛缪 自动定制化妆品分配器
US20060159587A1 (en) * 2005-01-19 2006-07-20 Beckman Coulter, Inc. Automated clinical analyzer with dual level storage and access
WO2011012657A1 (en) * 2009-07-29 2011-02-03 F. Hoffmann-La Roche Ag Automatic analyzer
US10760042B2 (en) * 2010-05-14 2020-09-01 Biomerieux, Inc. Automated transfer mechanism for microbial detection apparatus
JP6080076B2 (ja) * 2012-08-02 2017-02-15 パナソニックIpマネジメント株式会社 薬剤攪拌装置及び薬剤攪拌方法
WO2014069376A1 (ja) * 2012-10-30 2014-05-08 株式会社日立ハイテクノロジーズ 試薬容器および自動分析装置
JP2015150113A (ja) * 2014-02-13 2015-08-24 株式会社ユニバーサル技研 薬剤バイアル撹拌装置
WO2016125027A1 (en) * 2015-02-06 2016-08-11 Labminds, Ltd. Automated solution dispenser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501167A (ja) * 1984-02-01 1986-06-12 ヒユレツト,ウイリアム・チエスタ− 臨床用分析装置および方法
US4764342A (en) * 1985-02-27 1988-08-16 Fisher Scientific Company Reagent handling
JPH0259672A (ja) * 1988-08-26 1990-02-28 Hitachi Ltd 攪拌装置
JPH04208864A (ja) * 1989-12-22 1992-07-30 Anagen Ltd 成分を選択して攪拌する装置およびその方法
JPH0618531A (ja) * 1992-04-09 1994-01-25 F Hoffmann La Roche Ag 試薬キットと自動分析装置
JP2002019855A (ja) 2000-07-04 2002-01-23 Olympus Optical Co Ltd アダプターおよびアダプター付き容器
JP2011153936A (ja) 2010-01-28 2011-08-11 Hitachi High-Technologies Corp 試薬容器
JP2014168769A (ja) * 2012-07-02 2014-09-18 Panasonic Corp 攪拌方法及び攪拌装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425407A4

Also Published As

Publication number Publication date
JP6587735B2 (ja) 2019-10-09
US20190072577A1 (en) 2019-03-07
EP3425407A4 (en) 2019-11-06
US11293935B2 (en) 2022-04-05
EP3425407A1 (en) 2019-01-09
JPWO2017149940A1 (ja) 2018-11-29
EP3425407B1 (en) 2022-01-12
CN108700604A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
US9746398B2 (en) Apparatus and method for automated analysis
US9423347B2 (en) Automatic analyzing apparatus
JP6587735B2 (ja) 自動分析装置
WO2019033312A1 (zh) 血液分析仪及其控制方法
EP2937700B1 (en) Automated analyzer
JP6462844B2 (ja) 自動分析装置
JP2022092056A (ja) 容器の内容物を混合するためのシステムおよび関連する使用方法
JPH10260118A (ja) 液体試料中の成分物質の自動抽出装置および液体試料中の成分物質の自動濃度測定装置
EP1959258B1 (en) Automatic analyzer and the analyzing method using the same
JP6814171B2 (ja) 自動分析装置
US20020144747A1 (en) Liquid sample dispensing methods for precisely delivering liquids without crossover
US11906406B2 (en) Automatic analyzer and analysis method
JP2015227855A (ja) 攪拌装置、攪拌方法および当該攪拌装置を備えた自動分析装置
JP5273986B2 (ja) 分析容器と分析装置
JP6815801B2 (ja) 自動分析装置
US11090645B2 (en) Solution jetting device and method of controlling jet of solution
WO2022149332A1 (ja) 自動分析装置とその制御方法
WO2024062751A1 (ja) 自動分析装置
JP2023007178A (ja) 自動分析装置
JP5310447B2 (ja) 遠心機
CN116106569A (zh) 自动分析装置
JPH02247567A (ja) 化学分析装置
JP2017198494A (ja) 自動分析装置

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018502554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759412

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759412

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759412

Country of ref document: EP

Kind code of ref document: A1