WO2017149878A1 - 帯域阻止フィルタおよび複合フィルタ - Google Patents

帯域阻止フィルタおよび複合フィルタ Download PDF

Info

Publication number
WO2017149878A1
WO2017149878A1 PCT/JP2016/085989 JP2016085989W WO2017149878A1 WO 2017149878 A1 WO2017149878 A1 WO 2017149878A1 JP 2016085989 W JP2016085989 W JP 2016085989W WO 2017149878 A1 WO2017149878 A1 WO 2017149878A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
parallel resonator
electrode fingers
parallel
electrode
Prior art date
Application number
PCT/JP2016/085989
Other languages
English (en)
French (fr)
Inventor
山田 貴之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201680082602.3A priority Critical patent/CN108713290B/zh
Priority to JP2018502533A priority patent/JP6614329B2/ja
Publication of WO2017149878A1 publication Critical patent/WO2017149878A1/ja
Priority to US16/114,522 priority patent/US10848128B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14576Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14576Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
    • H03H9/14582Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger the last fingers having a different pitch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6426Combinations of the characteristics of different transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6406Filters characterised by a particular frequency characteristic
    • H03H9/6409SAW notch filters

Definitions

  • the present invention relates to a band rejection filter that blocks passage of a signal in a predetermined frequency band, and a composite filter including the band rejection filter.
  • Patent Document 1 discloses a band-pass filter in which a plurality of surface acoustic wave resonators composed of a pair of comb electrodes are connected in series and in parallel, respectively.
  • the present invention uses a band rejection filter and a band rejection filter that can increase the out-of-band attenuation, that is, widen the rejection bandwidth, by shifting the resonance frequency of a plurality of resonators connected in parallel.
  • An object of the present invention is to provide a composite filter.
  • a band rejection filter is a band rejection filter having a plurality of parallel resonators, each of the plurality of parallel resonators including a piezoelectric substrate and the piezoelectric resonator.
  • the pitch of the electrode fingers at the center of the IDT electrode different from the pitch of the electrode fingers at the end
  • the wavelength of the center of the IDT electrode and the wavelength of the end can be made different.
  • a plurality of resonance points having different resonance frequencies in the frequency characteristics of the parallel resonator are obtained.
  • the stop band width can be widened in the band stop filter constituted by a plurality of parallel resonators.
  • the pitch of the plurality of electrode fingers at the end portion may be made smaller than the pitch of the plurality of electrode fingers at the center portion.
  • the wavelength of the end portion can be made shorter than the wavelength of the central portion of the IDT electrode by making the pitch of the electrode fingers at the end portion smaller than the pitch of the electrode fingers at the central portion of the IDT electrode.
  • a plurality of resonance frequencies having different resonance frequencies that is, a resonance point on the low frequency side based on the pitch of the electrode fingers in the central portion and a resonance point on the high frequency side based on the pitch of the electrode fingers on the end portions.
  • the resonance point is obtained.
  • the band rejection filter composed of a plurality of parallel resonators the rejection bandwidth from the resonance point on the low frequency side to the resonance point on the high frequency side can be widened.
  • the plurality of parallel resonators include a first parallel resonator and a second parallel resonator having a higher resonance frequency than the first parallel resonator, and the first parallel resonator includes:
  • the pitch of the plurality of electrode fingers in the central portion is C1
  • the pitch of the plurality of electrode fingers in the end portion is E1
  • the pitch of the plurality of electrode fingers in the central portion of the second parallel resonator is C2.
  • the band sandwiched between the plurality of resonance points of the first parallel resonator and the band sandwiched between the plurality of resonance points of the second parallel resonator can be partially overlapped. Accordingly, the peaks and valleys in the frequency characteristics of the first parallel resonator and the second parallel resonator are partially canceled out, the difference in the height of the impedance of the attenuation pole is reduced, and the band stop filter having a wide stop bandwidth Can be obtained.
  • the plurality of parallel resonators are arranged in the order of having a lower resonance frequency, the kth parallel resonator, the (k + 1) th parallel resonator,...,
  • the nth parallel resonator (k and n are natural numbers, However, 2 ⁇ k ⁇ n)
  • the pitch of the plurality of electrode fingers at the central portion of the kth parallel resonator is Ck
  • the pitch of the plurality of electrode fingers at the end portion is Ek
  • the pitch of the plurality of electrode fingers in the central portion of the parallel resonator may be C (k + 1), and Ek ⁇ C (k + 1) ⁇ Ck.
  • the band rejection filter constituted by three or more parallel resonators, it is possible to appropriately cancel the peaks and valleys of the frequency characteristics of the band sandwiched between the plurality of resonance points. As a result, it is possible to partially cancel the peaks and valleys in the frequency characteristics of the three parallel resonators, reduce the difference in impedance between the attenuation poles, and obtain a band rejection filter having a wide rejection bandwidth.
  • the pitch of the plurality of electrode fingers at the end portion may be larger than the pitch of the plurality of electrode fingers at the central portion.
  • the wavelength of the end portion can be made longer than the wavelength of the center portion of the IDT electrode.
  • a plurality of resonance frequencies having different resonance frequencies that is, a resonance point on the high frequency side based on the pitch of the electrode fingers in the central portion and a resonance point on the low frequency side based on the pitch of the electrode fingers on the end portion.
  • a resonance point is obtained.
  • the plurality of parallel resonators include a first parallel resonator and a second parallel resonator having a lower resonance frequency than the first parallel resonator, and the first parallel resonator includes:
  • the pitch of the plurality of electrode fingers in the central portion is C1
  • the pitch of the plurality of electrode fingers in the end portion is E1
  • the pitch of the plurality of electrode fingers in the central portion of the second parallel resonator is C2.
  • E1> C2> C1 may be satisfied.
  • the band sandwiched between the plurality of resonance points of the first parallel resonator and the band sandwiched between the plurality of resonance points of the second parallel resonator can be partially overlapped. Accordingly, the peaks and valleys in the frequency characteristics of the first parallel resonator and the second parallel resonator are partially canceled out, the difference in the height of the impedance of the attenuation pole is reduced, and the band stop filter having a wide stop bandwidth Can be obtained.
  • the plurality of parallel resonators are arranged in the order of having a higher resonance frequency, the kth parallel resonator, the (k + 1) th parallel resonator, ... the nth parallel resonator (k and n are natural numbers, However, 2 ⁇ k ⁇ n), the pitch of the plurality of electrode fingers at the central portion of the k-th parallel resonator is Ck, the pitch of the plurality of electrode fingers at the end portion is Ek, When the pitch of the plurality of electrode fingers in the central portion of the parallel resonator of (k + 1) is C (k + 1), Ek> C (k + 1)> Ck may be satisfied.
  • the band rejection filter constituted by three or more parallel resonators, it is possible to appropriately cancel the peaks and valleys of the frequency characteristics of the band sandwiched between the plurality of resonance points. As a result, it is possible to partially cancel the peaks and valleys in the frequency characteristics of the three parallel resonators, reduce the difference in impedance between the attenuation poles, and obtain a band rejection filter having a wide rejection bandwidth.
  • a composite filter according to another aspect of the present invention includes a band pass filter and the band rejection filter connected to the band pass filter.
  • the band rejection filter and the composite filter according to the present invention can widen the rejection bandwidth.
  • FIG. 1 is a schematic diagram of a composite filter in a comparative example and a band rejection filter used for the composite filter.
  • FIG. 2A is a diagram showing the frequency characteristics of the parallel resonator constituting the band rejection filter in the comparative example
  • FIG. 2B is a diagram showing the frequency characteristics of the band rejection filter in the comparative example.
  • FIG. 3 is a schematic diagram of the composite filter according to Embodiment 1 and a band rejection filter used for the composite filter.
  • FIG. 4A is a plan view schematically showing a parallel resonator constituting the band rejection filter according to the first embodiment
  • FIG. 4B is a cross-sectional view taken along line AA.
  • FIG. 5A is a diagram illustrating the frequency characteristics of the parallel resonator according to the first embodiment
  • FIG. 5B is a diagram illustrating the frequency characteristics of the band rejection filter according to the first embodiment
  • FIG. 6 is an image diagram for explaining the frequency characteristics of the band rejection filter.
  • FIG. 7 is a diagram illustrating frequency characteristics of the composite filter in the first embodiment and the comparative example.
  • FIG. 8A is a plan view schematically showing a parallel resonator constituting the band rejection filter according to the second embodiment
  • FIG. 8B is a cross-sectional view taken along line AA.
  • the band rejection filter according to the present embodiment is used, for example, in a circuit module of a wireless communication device or the like to prevent passage of a signal in a predetermined frequency band.
  • FIG. 1 is a schematic diagram of a composite filter 100 and a band rejection filter 103 used in the composite filter 100 in a comparative example.
  • the composite filter 100 in the comparative example includes a band-pass filter 102 that allows a signal having a predetermined frequency to pass therethrough, and a band rejection filter 103 that blocks the passage of a signal having a predetermined band.
  • An input terminal 104 and an output terminal 105 are provided at both ends of the band pass filter 102, respectively.
  • the band rejection filter 103 includes four parallel resonators 111, 112, 113, and 114.
  • Each of the parallel resonators 111 to 114 includes a surface acoustic wave resonator and includes a piezoelectric substrate and an IDT electrode formed on the surface of the piezoelectric substrate.
  • One end of the band rejection filter 103 is connected between the band pass filter 102 and the output terminal 105, and the other end is grounded (not shown).
  • FIG. 2A is a diagram illustrating the frequency characteristics of the parallel resonator 111 in the comparative example
  • FIG. 2B is a diagram illustrating the frequency characteristics of the band rejection filter 103 in the comparative example.
  • the parallel resonator 111 has one resonance point 11a that is a resonance frequency.
  • the plurality of parallel resonators 111 to 114 having different resonance frequencies as the band stop filter 103.
  • the resonance point 11a of the parallel resonator 111 is obtained.
  • a resonance point 12a of the parallel resonator 112 a rebound portion (a portion protruding in a high impedance direction) is formed. Therefore, the composite filter 100 in the comparative example cannot ensure a sufficient stop bandwidth.
  • FIG. 3 is a schematic diagram of the composite filter 1 according to the first embodiment and the band rejection filter 3 used in the composite filter 1.
  • the composite filter 1 has a band pass filter 2 that passes a signal of a predetermined frequency and a band rejection filter 3 that blocks the passage of a signal of a predetermined band. At both ends of the band pass filter 2, an input terminal 4 and an output terminal 5 are provided, respectively.
  • the input terminal 4 is connected to an antenna element or an antenna switch, and the output terminal 5 is connected to an LNA (Low Noise Amplifier).
  • LNA Low Noise Amplifier
  • the band pass filter 2 is, for example, a ladder type surface acoustic wave filter in which a plurality of resonators are connected in series and in parallel.
  • the band pass filter 2 is not limited to a surface acoustic wave filter, and may be an LC filter.
  • the band rejection filter 3 includes four parallel resonators 11, 12, 13, and 14. Note that the number of parallel resonators of the band rejection filter 3 is not limited to four, and may be, for example, two or more and ten or less.
  • Each of the parallel resonators 11 to 14 is a surface acoustic wave resonator and includes an IDT electrode (Inter Digital Transducer) 101 formed on the surface of the piezoelectric substrate. Reflectors 120 a and 120 b are respectively arranged outside the both ends of the IDT electrode 101.
  • the IDT electrode 101 is formed of a pair of comb electrodes facing each other.
  • the IDT electrode 101 has a central portion c and an end portion e when viewed in a plan view, and the central portion c and the end portion e have different structures. The difference between these structures will be described later.
  • the band rejection filter 3 guides the signal component of the predetermined band that has passed through the band pass filter 2 to the ground side, thereby preventing the signal component of the predetermined band from being output at the output terminal 5.
  • FIG. 4A is a plan view schematically showing the parallel resonator 11, and FIG. 4B is a cross-sectional view taken along the line AA.
  • the parallel resonator 11 includes the piezoelectric substrate 53 and the IDT electrode 101 formed on the surface of the piezoelectric substrate 53.
  • the IDT electrode 101 is formed of a pair of comb electrodes 110a and 110b facing each other.
  • the comb electrode 110a includes a plurality of electrode fingers 111a that are parallel to each other and a bus bar electrode 112a that connects the plurality of electrode fingers 111a.
  • the comb electrode 110b is composed of a plurality of electrode fingers 111b parallel to each other and a bus bar electrode 112b connecting the plurality of electrode fingers 111b.
  • the plurality of electrode fingers 111a and 111b are formed along a direction orthogonal to the propagation direction (X-axis direction) of the surface acoustic wave.
  • the electrode fingers 111a and 111b are collectively referred to as an electrode finger f.
  • the duty of the electrode finger f of the IDT electrode 101 is, for example, 60%.
  • the cross width L of the IDT electrode 101 is a distance that overlaps when the electrode finger 111a and the electrode finger 111b are viewed from the X-axis direction.
  • the cross width L 20 ⁇ m.
  • the number of pairs of electrode fingers f is, for example, 51 at the center c of the IDT electrode 101, five at one end e, and five at the other end e.
  • the number of the electrode fingers f is not limited to this, and the number of the central portion c may occupy 70 to 90% of the total number of electrode fingers f.
  • the IDT electrode 101 has a laminated structure of an adhesion layer 54a and a main electrode layer 54b, as shown in FIG.
  • the adhesion layer 54a is a layer for improving the adhesion between the piezoelectric substrate 53 and the main electrode layer 54b, and, for example, Ti is used as a material.
  • the main electrode layer 54b is made of, for example, Al containing 1% Cu.
  • the film thickness of the main electrode layer 54b is, for example, 115 nm.
  • the protective layer 55 is formed so as to cover the IDT electrode 101.
  • the protective layer 55 is a layer for the purpose of protecting the main electrode layer 54b from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance, for example, a film containing silicon dioxide as a main component. .
  • the piezoelectric substrate 53 is made of, for example, 45 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or piezoelectric ceramic.
  • the pitch of the plurality of electrode fingers f is different between the end portion e and the central portion c of the IDT electrode 101 in the surface acoustic wave propagation direction (X-axis direction).
  • the end portion e is a portion constituted by a plurality of electrode fingers 111a and 111b including the outermost end of the IDT electrode 101 in the propagation direction of the surface acoustic wave.
  • the central portion c is a portion different from the end portion e of the IDT electrode 101.
  • the parallel resonator 11 Since the wavelength of the surface acoustic wave resonator is defined by the repetitive pitch of the plurality of electrode fingers f constituting the IDT electrode 101, the parallel resonator 11 has a wavelength ⁇ 1 reflecting the pitch of the central portion c and the end e. It has two wavelengths ⁇ 2 reflecting the pitch.
  • the pitch E1 of the plurality of electrode fingers f at the end portion e is smaller than the pitch C1 of the plurality of electrode fingers f at the center portion c. That is, the wavelength ⁇ 2 at the end portion e is shorter than the wavelength ⁇ 1 at the central portion c.
  • two valleys and one mountain appear in the resonance frequency band of the parallel resonator 11.
  • Two valleys at the resonance frequency correspond to the resonance points 11 a and 11 b of the parallel resonator 11.
  • the resonance point 11a based on the pitch of the electrode finger f at the center c is located on the lower frequency side than the resonance point 11b based on the pitch of the electrode finger f at the end e.
  • the peak portion in the resonance frequency band is a rebound portion 11c between the resonance points 11a and 11b.
  • a plurality of parallel resonators 11 and 12 each having a narrow-pitch electrode finger portion and having two resonance points are manufactured by appropriately shifting the resonance frequency.
  • the band rejection filter 3 having a low rebound portion 11c and a wide rejection bandwidth.
  • the plurality of parallel resonators 11 to 14 are arranged in the order having the lower resonance frequency, the first parallel resonator 11, the second parallel resonator 12, the third parallel resonator 13, and the fourth parallel resonance. Let it be child 14. Further, the pitches of the electrode fingers f at the central part c of the parallel resonators 11 to 14 and the pitches of the electrode fingers f at the end part e are as follows: (1) The pitch of the center part c of the electrode finger of the first parallel resonator 11 is C1, and the pitch of the end part e is E1. (2) The pitch of the center part c of the electrode fingers of the second parallel resonator 12 is C2, and the pitch of the end part e is E2.
  • the pitch of the electrode fingers f is a value shown in Table 1.
  • FIG. 6 is an image diagram for explaining the frequency characteristics of the band rejection filter 3.
  • the resonance frequency band of the first parallel resonator 11 includes two resonance points 11a and 11b and a rebound portion 11c located between the resonance points 11a and 11b.
  • the resonance point 11a is a resonance frequency based on the pitch of the electrode fingers f at the center c
  • the resonance point 11b is a resonance frequency based on the pitch of the electrode fingers f at the end e.
  • the rebound portion 11c is a portion protruding in the direction of high impedance between the two resonance points 11a and 11b.
  • the second parallel resonator 12 has a resonance frequency higher than that of the first parallel resonator 11 as shown in FIG.
  • the resonance frequency band of the second parallel resonator 12 there are two resonance points 12a and 12b and a rebound portion 12c located between the resonance points 12a and 12b.
  • the resonance point 12a is a resonance frequency based on the pitch of the electrode fingers f at the center c
  • the resonance point 12b is a resonance frequency based on the pitch of the electrode fingers f at the end e.
  • the rebound portion 12c is a portion protruding in the direction of high impedance between the two resonance points 12a and 12b.
  • the second parallel resonator 12 has a resonance point 12a substantially coincident with the bounce portion 11c of the first parallel resonator 11, and the bounce portion 12c substantially coincides with the resonance point 11b of the first parallel resonator 11. Designed to match. Therefore, when the first parallel resonator 11 and the second parallel resonator 12 are connected in parallel, the band between the two resonance points 11a and 11b of the first parallel resonator 11 and the second parallel resonator Thus, the band between the two resonance points 12a and 12b partially overlaps.
  • FIG. 6 is merely an image diagram for helping understanding of the present embodiment, and when the peaks and valleys are slightly shifted and overlapped, the stop bandwidth may be flatter.
  • FIG. 7 is a diagram illustrating frequency characteristics of the composite filter 1 according to Embodiment 1 and the composite filter 100 in the comparative example.
  • the band rejection filter 3 of the composite filter 1 is connected between the band pass filter 2 and the output terminal 5.
  • the band rejection filter 103 of the composite filter 100 is connected between the band pass filter 102 and the output terminal 105.
  • the present embodiment when compared with the high frequency side of the pass band of the band pass filters 2 and 102, the present embodiment has an increased number of bands with a large attenuation compared to the comparative example. That is, in the composite filter 1 according to the present embodiment, the stop bandwidth can be widened.
  • the band rejection filter 3 is a band rejection filter 3 having a plurality of parallel resonators 11 to 14.
  • Each of the plurality of parallel resonators 11 to 14 includes a piezoelectric substrate 53 and a piezoelectric substrate 53.
  • the IDT electrode 101 is formed by a pair of comb-tooth electrodes 110a and 110b facing each other, and the IDT electrode 101 has a plurality of electrode fingers f (111a and 111b).
  • the pitch of the electrode fingers f (111a, 111b) is different between the end e of the IDT electrode 101 in the elastic wave propagation direction and the central part c different from the end e.
  • the wavelength ⁇ 1 of the center c of the IDT electrode 101 and the end e can be made different.
  • a plurality of resonance points 11a and 11b having different resonance frequencies in the frequency characteristics of the parallel resonator 11 are obtained.
  • the IDT electrode 101 is configured with the pitch of two types of electrode fingers f, ie, the central portion c and the end portion e, but the types of the electrode fingers f of the IDT electrode 101 are not limited to two types. .
  • the electrode finger f may be composed of three or more different pitches.
  • the band rejection filter 3 may make the pitch of the plurality of electrode fingers f at the end e smaller than the pitch of the plurality of electrode fingers f at the central portion c.
  • the wavelength ⁇ 2 of the end portion e can be made smaller than the wavelength ⁇ 1 of the center portion c.
  • the resonance point 11a on the low frequency side based on the pitch of the electrode finger f in the center c and the resonance on the high frequency side based on the pitch of the electrode finger f on the end e.
  • a plurality of resonance points 11a and 11b having different resonance frequencies, ie, point 11b, are obtained.
  • the band rejection filter 3 composed of the plurality of parallel resonators 11 to 14 it is possible to widen the rejection bandwidth from the resonance point 11a on the low frequency side to the resonance point 11b on the high frequency side.
  • the four parallel resonators 11 to 14 are described as an example, but the number of parallel resonators is not limited to four. If the band rejection filter 3 according to the present embodiment is expressed in a universal manner without being limited to the number of parallel resonators, the following is obtained.
  • the band rejection filter 3 includes a plurality of parallel resonators in order of the lower resonance frequency, the kth parallel resonator, the (k + 1) th parallel resonator,.
  • Resonators (k and n are natural numbers, where 1 ⁇ k ⁇ n)
  • the pitch of the plurality of electrode fingers f at the center c of the kth parallel resonator is Ck
  • the pitch of the plurality of electrode fingers f at the central portion c of the (k + 1) th parallel resonator is C (k + 1), Ek ⁇ C (k + 1) ⁇ Ck.
  • the pitch of the plurality of electrode fingers f at the end portion e is larger than the pitch of the plurality of electrode fingers f at the center portion c.
  • FIG. 8A is a plan view schematically showing the parallel resonator 11 in the second embodiment
  • FIG. 8B is a cross-sectional view taken along the line AA.
  • the pitch E1 of the plurality of electrode fingers f at the end portion e is larger than the pitch C1 of the plurality of electrode fingers f at the center portion c. That is, the wavelength ⁇ 2 at the end portion e is longer than the wavelength ⁇ 1 at the central portion c.
  • two valleys and one mountain appear at the resonance frequency of the parallel resonator 11.
  • Two valleys in the resonance frequency correspond to two resonance points of the parallel resonator 11.
  • the resonance point based on the pitch of the electrode finger f at the center c is located on the high and low frequency side from the resonance point based on the pitch of the electrode finger f at the end e.
  • the band rejection filter 3 having a low rebound portion and a wide rejection bandwidth can be obtained.
  • the plurality of parallel resonators 11 to 14 are arranged in the order having the lower resonance frequency, the first parallel resonator 11, the second parallel resonator 12, the third parallel resonator 13, and the fourth parallel resonance. Let it be child 14. Further, the pitches of the electrode fingers f at the central part c of the parallel resonators 11 to 14 and the pitches of the electrode fingers f at the end part e are as follows: (1) The pitch of the center part c of the electrode finger of the first parallel resonator 11 is C1, and the pitch of the end part e is E1. (2) The pitch of the center part c of the electrode fingers of the second parallel resonator 12 is C2, and the pitch of the end part e is E2.
  • the stop band width is widened, and the difference in impedance within the stop band is reduced.
  • the two parallel resonators 11 and 12 have been described, but the same can be said when three or more parallel resonators are used.
  • the pitch of the plurality of electrode fingers f at the end e is larger than the pitch of the plurality of electrode fingers f at the central portion c.
  • the end e is longer than the wavelength ⁇ 1 of the center c of the IDT electrode 101.
  • the resonance point on the high frequency side based on the pitch of the electrode finger f at the center c and the resonance point on the low frequency side based on the pitch of the electrode finger f at the end e.
  • a plurality of resonance points having different resonance frequencies are obtained.
  • the band rejection filter 3 having a wide rejection bandwidth from the low frequency side to the high frequency can be obtained.
  • the four parallel resonators 11 to 14 are described as an example, but the number of parallel resonators is not limited to four. If the band rejection filter 3 according to the present embodiment is expressed in a universal manner without being limited to the number of parallel resonators, the following is obtained.
  • the band rejection filter 3 includes a plurality of parallel resonators in order of the lower resonance frequency, the kth parallel resonator, the (k + 1) th parallel resonator,.
  • Resonators (k and n are natural numbers, where 1 ⁇ k ⁇ n)
  • the pitch of the plurality of electrode fingers f at the center c of the kth parallel resonator is Ck
  • the pitch of the plurality of electrode fingers f at the central portion c of the (k + 1) th parallel resonator is C (k + 1), Ek> C (k + 1)> Ck.
  • the bands sandwiched between the plurality of resonance points of each of the plurality of parallel resonators can be overlapped.
  • the pair of comb electrodes 110a and 110b are left-right symmetric in plan view, but are not limited to left-right symmetry and may be left-right asymmetric.
  • the electrode finger f at the one end on the one side of the comb electrode 110b may be asymmetrical with the electrode finger f at the end on the one side of the comb electrode 110a being outside.
  • the structure of the band rejection filter 3 in the above embodiment is not limited to the structure described in FIG.
  • the IDT electrode 101 may not be a stacked structure of metal films but may be a single layer of metal films.
  • the piezoelectric substrate 53 may have a laminated structure in which a high sound velocity support substrate, a low sound velocity film, and a piezoelectric film are laminated in this order.
  • a 45 ° Y-cut X-propagation LiTaO 3 single crystal is exemplified as the piezoelectric substrate 53, but the single crystal material is not limited to LiTaO 3, and the cut angle of the single crystal material is not limited to this.
  • an inductance element or a capacitance element may be further connected between the input terminal 4 and the output terminal 5.
  • the present invention can be widely used in communication devices such as mobile phones as a band rejection filter for blocking the passage of a signal in a predetermined frequency band or a composite filter including a band rejection filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

複数の並列共振子(11~14)を有する帯域阻止フィルタ(3)であって、複数の並列共振子(11~14)のそれぞれは、圧電基板(53)と、圧電基板(53)の表面に形成されたIDT電極(101)とを有し、IDT電極(101)は、互いに対向する一対の櫛歯電極(110a、110b)で形成され、IDT電極(101)は複数の電極指(111a、111b)を有し、弾性波伝搬方向(X方向)におけるIDT電極(101)の端部(e)と、端部(e)とは異なる中央部(c)とで、電極指(111a、111b)のピッチが異なる。

Description

帯域阻止フィルタおよび複合フィルタ
 本発明は、所定周波数帯域の信号の通過を阻止する帯域阻止フィルタ、および、帯域阻止フィルタを含む複合フィルタに関する。
 従来、複数の共振子を有し、それぞれの共振子を直列および並列に接続した複合フィルタが知られている。
 この複合フィルタの一種として、特許文献1には、一対の櫛歯電極からなる複数の弾性表面波共振子を、それぞれ直列および並列に接続した帯域通過フィルタが開示されている。
特開2010-109694号公報
 特許文献1に記載された帯域通過フィルタでは、共振子を並列接続してトラップを構成し減衰量を確保しているが、単に共振子を並列接続するだけでは減衰域の帯域幅を広くできないという問題がある。
 そこで、本発明は、並列接続した複数の共振子の共振周波数をずらすことによって、帯域外減衰量を大きく、すなわち、阻止帯域幅を広くすることのできる帯域阻止フィルタ、および、帯域阻止フィルタを用いた複合フィルタを提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る帯域阻止フィルタは、複数の並列共振子を有する帯域阻止フィルタであって、前記複数の並列共振子のそれぞれは、圧電基板と、当該圧電基板の表面に形成されたIDT電極とを有し、前記IDT電極は、互いに対向する一対の櫛歯電極で形成され、前記IDT電極は複数の電極指を有し、弾性波伝搬方向における前記IDT電極の端部と、前記端部とは異なる中央部とで、前記電極指のピッチが異なる。
 このように、IDT電極の中央部における電極指のピッチと、端部における電極指のピッチとを異ならせることで、IDT電極の中央部の波長と端部の波長とを異ならせることができる。これにより、並列共振子の周波数特性において共振周波数が異なる複数の共振点が得られる。その結果、複数の並列共振子で構成される帯域阻止フィルタにおいて、阻止帯域幅を広くすることができる。
 また、前記中央部における前記複数の電極指のピッチよりも、前記端部における前記複数の電極指のピッチを小さくしてもよい。
 このように、IDT電極の中央部における電極指のピッチよりも、端部における電極指のピッチを小さくすることで、IDT電極の中央部の波長よりも端部の波長を短くすることができる。これにより、並列共振子の周波数特性において、中央部の電極指のピッチにもとづく低周波側の共振点、および、端部の電極指のピッチにもとづく高周波側の共振点という、共振周波数が異なる複数の共振点が得られる。その結果、複数の並列共振子で構成される帯域阻止フィルタにおいて、低周波側の共振点から高周波側の共振点にかけての阻止帯域幅を広くすることができる。
 また、前記複数の並列共振子は、第1の並列共振子と、前記第1の並列共振子よりも高い共振周波数を有する第2の並列共振子とを備え、前記第1の並列共振子の前記中央部における前記複数の電極指のピッチをC1、前記端部における前記複数の電極指のピッチをE1とし、前記第2の並列共振子の前記中央部における前記複数の電極指のピッチをC2とした場合、E1<C2<C1であってもよい。
 これによれば、第1の並列共振子の複数の共振点に挟まれる帯域と、第2の並列共振子の複数の共振点に挟まれる帯域とを一部重なり合わせることができる。これにより、第1の並列共振子および第2の並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、さらに、前記第2の並列共振子の前記端部における前記複数の電極指のピッチをE2とした場合、E2<E1であってもよい。
 これによれば、第1の並列共振子の複数の共振点に挟まれる帯域と、第2の並列共振子の複数の共振点に挟まれる帯域とによる周波数特性の山と谷との相殺を適切に行うことができる。これにより、第1の並列共振子および第2の並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、前記複数の並列共振子を、より低い共振周波数を有する順に、第kの並列共振子、第(k+1)の並列共振子、・・・第nの並列共振子(k、nは自然数、ただし2≦k<n)とし、前記第kの並列共振子の前記中央部における前記複数の電極指のピッチをCk、前記端部における前記複数の電極指のピッチをEkとし、前記第(k+1)の並列共振子の前記中央部における前記複数の電極指のピッチをC(k+1)とした場合、Ek<C(k+1)<Ckであってもよい。
 これによれば、3つ以上の並列共振子それぞれの複数の共振点に挟まれる帯域を一部重なり合わせることができる。これにより、3つ以上の並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、さらに、前記第(k+1)の並列共振子の前記端部における前記複数の電極指のピッチをE(k+1)とした場合、E(k+1)<Ekであってもよい。
 これによれば、3つ以上の並列共振子により構成される帯域阻止フィルタにおいて、複数の共振点に挟まれる帯域の周波数特性の山と谷との相殺を適切に行うことができる。これにより、3つの並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、前記中央部における前記複数の電極指のピッチよりも、前記端部における前記複数の電極指のピッチを大きくしてもよい。
 このように、IDT電極の中央部における電極指のピッチよりも、端部における電極指のピッチを大きくすることで、IDT電極の中央部の波長よりも端部の波長を長くすることができる。これにより、並列共振子の周波数特性において、中央部の電極指のピッチにもとづく高周波側の共振点、および、端部の電極指のピッチにもとづく低周波側の共振点という共振周波数が異なる複数の共振点が得られる。その結果、複数の並列共振子で構成される帯域阻止フィルタにおいて、低周波側の共振点から高周波側の共振点にかけての阻止帯域幅を広くすることができる。
 また、前記複数の並列共振子は、第1の並列共振子と、前記第1の並列共振子よりも低い共振周波数を有する第2の並列共振子とを備え、前記第1の並列共振子の前記中央部における前記複数の電極指のピッチをC1、前記端部における前記複数の電極指のピッチをE1とし、前記第2の並列共振子の前記中央部における前記複数の電極指のピッチをC2とした場合、E1>C2>C1であってもよい。
 これによれば、第1の並列共振子の複数の共振点に挟まれる帯域と、第2の並列共振子の複数の共振点に挟まれる帯域とを一部重なり合わせることができる。これにより、第1の並列共振子および第2の並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、さらに、前記第2の並列共振子の前記端部における前記複数の電極指のピッチをE2とした場合、E2>E1であってもよい。
 これによれば、第1の並列共振子の複数の共振点に挟まれる帯域と、第2の並列共振子の複数の共振点に挟まれる帯域との周波数特性の山と谷との相殺を適切に行うことができる。これにより、第1の並列共振子および第2の並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、前記複数の並列共振子を、より高い共振周波数を有する順に、第kの並列共振子、第(k+1)の並列共振子、・・・第nの並列共振子(k、nは自然数、ただし、2≦k<n)とし、前記第kの並列共振子の前記中央部における前記複数の電極指のピッチをCk、前記端部における前記複数の電極指のピッチをEkとし、前記第(k+1)の並列共振子の前記中央部における前記複数の電極指のピッチをC(k+1)とした場合、Ek>C(k+1)>Ckであってもよい。
 これによれば、3つ以上の並列共振子の複数の共振点に挟まれる帯域を一部重なり合わせることができる。これにより、3つ以上の並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 また、さらに、前記第(k+1)の並列共振子の前記端部における前記複数の電極指のピッチをE(k+1)とした場合、E(k+1)>Ekであってもよい。
 これによれば、3つ以上の並列共振子により構成される帯域阻止フィルタにおいて、複数の共振点に挟まれる帯域の周波数特性の山と谷との相殺を適切に行うことができる。これにより、3つの並列共振子の周波数特性における山と谷とを一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタを得ることができる。
 上記目的を達成するために、本発明の他の一態様に係る複合フィルタは、帯域通過フィルタと、前記帯域通過フィルタに接続された前記帯域阻止フィルタとを備える。
 これによれば、阻止帯域幅を広くできる複合フィルタを得ることができる。
 本発明に係る帯域阻止フィルタおよび複合フィルタは、阻止帯域幅を広くすることができる。
図1は、比較例における複合フィルタ、および、複合フィルタに用いられる帯域阻止フィルタの概要図である。 図2の(a)は比較例における帯域阻止フィルタを構成する並列共振子の周波数特性を示す図であり、(b)は比較例における帯域阻止フィルタの周波数特性を示す図である。 図3は、実施の形態1に係る複合フィルタ、および、複合フィルタに用いられる帯域阻止フィルタの概要図である。 図4の(a)は実施の形態1に係る帯域阻止フィルタを構成する並列共振子を模式的に表す平面図であり、(b)は、A-A断面図である。 図5の(a)は実施の形態1に係る並列共振子の周波数特性を示す図であり、(b)は実施の形態1における帯域阻止フィルタの周波数特性を示す図である。 図6は、帯域阻止フィルタの周波数特性を説明するためのイメージ図である。 図7は、実施の形態1および比較例における複合フィルタの周波数特性を示す図である。 図8の(a)は実施の形態2に係る帯域阻止フィルタを構成する並列共振子を模式的に表す平面図であり、(b)はA-A断面図である。
 以下、本発明の実施の形態について、実施例および図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 (実施の形態1)
 本実施の形態に係る帯域阻止フィルタは、例えば、無線通信機の回路モジュールなどにおいて、所定周波数帯域の信号の通過を阻止するために用いられる。
 [帯域阻止フィルタの課題の説明]
 本実施の形態に係る帯域阻止フィルタを説明する前に、従来の帯域阻止フィルタの課題について説明する。図1は、比較例における複合フィルタ100、および、複合フィルタ100に用いられる帯域阻止フィルタ103の概要図である。
 比較例における複合フィルタ100は、所定周波数の信号を通過させる帯域通過フィルタ102と、所定帯域の信号の通過を阻止する帯域阻止フィルタ103とを有している。帯域通過フィルタ102の両端には、それぞれ入力端子104、出力端子105が設けられている。帯域阻止フィルタ103は、4つの並列共振子111、112、113、114により構成されている。並列共振子111~114のそれぞれは、弾性表面波共振子により構成され、圧電基板と、当該圧電基板の表面に形成されたIDT電極とを備えている。帯域阻止フィルタ103の一端は、帯域通過フィルタ102と出力端子105との間に接続され、他端は接地されている(図示省略)。
 図2の(a)は、比較例における並列共振子111の周波数特性を示す図であり、(b)は比較例における帯域阻止フィルタ103の周波数特性を示す図である。
 図2の(a)に示されるように、並列共振子111は、共振周波数である共振点11aを1つ有している。複合フィルタ100の阻止帯域幅を広げる場合は、帯域阻止フィルタ103として共振周波数の異なる複数の並列共振子111~114を用いることが考えられる。しかし、複数の並列共振子111~114を、それぞれの共振周波数の値が等間隔となるように設計すると、図2の(b)に示されるように、例えば、並列共振子111の共振点11aと並列共振子112の共振点12aとの間に、跳ね返り部(インピーダンスの高い方向に突き出した部分)が形成されてしまう。したがって、比較例における複合フィルタ100では、十分な阻止帯域幅を確保することができない。
 本実施の形態では、阻止帯域幅を広くすることができる帯域阻止フィルタ、および、複合フィルタについて説明する。
 [複合フィルタおよび帯域阻止フィルタの構成]
 図3は、実施の形態1に係る複合フィルタ1、および、複合フィルタ1に用いられる帯域阻止フィルタ3の概要図である。
 複合フィルタ1は、所定周波数の信号を通過させる帯域通過フィルタ2と、所定帯域の信号の通過を阻止する帯域阻止フィルタ3とを有している。帯域通過フィルタ2の両端には、それぞれ入力端子4、出力端子5が設けられている。複合フィルタ1が無線通信機の回路モジュールに用いられる場合、例えば、入力端子4はアンテナ素子またはアンテナスイッチに接続され、出力端子5はLNA(Low Noise Amplifier)に接続される。
 帯域通過フィルタ2は、例えば、複数の共振子のそれぞれが直列および並列に接続されたラダー型の弾性表面波フィルタである。なお、帯域通過フィルタ2は、弾性表面波フィルタに限られず、LCフィルタであってもよい。
 帯域阻止フィルタ3は、図3に示されるように、4つの並列共振子11、12、13、14により構成されている。なお、帯域阻止フィルタ3の並列共振子の数は、4つに限られず、例えば、2個以上10個以下であればよい。
 並列共振子11~14のそれぞれは、弾性表面波共振子であり、圧電基板の表面に形成されたIDT電極(Inter Digital Transducer)101を備えている。IDT電極101の両端の外側には、反射器120a、120bがそれぞれ配置されている。IDT電極101は、互いに対向する一対の櫛歯電極で形成されている。IDT電極101は、平面視した場合に中央部cと端部eとを有し、中央部cと端部eとで構造が異なっている。これらの構造の違いについては後述する。
 帯域阻止フィルタ3の一端は、帯域通過フィルタ2と出力端子5との間に接続され、他端は接地されている(図示省略)。帯域阻止フィルタ3は、帯域通過フィルタ2を通過した所定帯域の信号成分を接地側に導くことで、出力端子5において所定帯域の信号成分が出力されることを阻止している。
 [並列共振子の構成]
 次に、帯域阻止フィルタ3を構成する並列共振子11~14について説明する。ここでは4つの並列共振子11~14のうち、並列共振子11を代表例に挙げ、並列共振子11~14の典型的な構造を説明する。
 図4の(a)は並列共振子11を模式的に表す平面図であり、(b)はA-A断面図である。
 並列共振子11は、前述したように、圧電基板53と、当該圧電基板53の表面に形成されたIDT電極101とで構成されている。IDT電極101は、互いに対向する一対の櫛歯電極110a、110bで形成されている。
 図4の(a)に示されるように、櫛歯電極110aは、互いに平行な複数の電極指111aと、複数の電極指111aを接続するバスバー電極112aとで構成されている。また、櫛歯電極110bは、互いに平行な複数の電極指111bと、複数の電極指111bを接続するバスバー電極112bとで構成されている。複数の電極指111aおよび111bは、弾性表面波の伝搬方向(X軸方向)と直交する方向に沿って形成されている。以下、電極指111aおよび111bを総称して呼ぶ場合は、電極指fと呼ぶ。
 本実施の形態におけるIDT電極101の電極指fのデューティーは、例えば、60%である。IDT電極101の交叉幅Lは、電極指111aおよび電極指111bをX軸方向から見た場合に重複する距離であり、例えば、交叉幅L=20μmである。電極指fの対数は、例えば、IDT電極101の中央部cが51本、一方の端部eが5本、他方の端部eが5本である。ただし、電極指fの本数は、これに限られず、電極指fの全本数のうち、中央部cの本数が70~90%を占めればよい。
 また、IDT電極101は、図4の(b)に示されるように、密着層54aと主電極層54bとの積層構造となっている。密着層54aは、圧電基板53と主電極層54bの密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。主電極層54bは、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層54bの膜厚は、例えば、115nmである。保護層55は、IDT電極101を覆うように形成されている。保護層55は、主電極層54bを外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。圧電基板53は、例えば、45°YカットX伝搬LiTaO圧電単結晶、または、圧電セラミックスからなる。
 ここで、IDT電極101の中央部cにおける複数の電極指fのピッチと、端部eにおける複数の電極指fのピッチとの関係について、図4および図5を参照しつつ説明する。
 図4に示されるように、複数の電極指fのピッチは、弾性表面波の伝搬方向(X軸方向)におけるIDT電極101の端部eと中央部cとで異なっている。端部eとは、弾性表面波の伝搬方向におけるIDT電極101の最外端を含む複数の電極指111a、111bで構成される部分である。また、中央部cとは、IDT電極101の端部eとは異なる部分である。弾性表面波共振子の波長は、IDT電極101を構成する複数の電極指fの繰り返しピッチで規定されるので、並列共振子11は、中央部cのピッチを反映した波長λ1、端部eのピッチを反映した波長λ2という2つの波長を有することになる。
 具体的には、IDT電極101では、中央部cにおける複数の電極指fのピッチC1よりも、端部eにおける複数の電極指fのピッチE1のほうが小さい。すなわち、中央部cの波長λ1よりも端部eの波長λ2のほうが短くなっている。
 そのため、図5の(a)に示されるように、並列共振子11の共振周波数帯域において2つの谷と1つの山が表れる。共振周波数における2つの谷は、並列共振子11の共振点11a、11bに相当する。2つの共振点11a、11bうちの、中央部cの電極指fのピッチにもとづく共振点11aは、端部eの電極指fのピッチにもとづく共振点11bよりも低周波側に位置している。共振周波数帯域における山の部分は、共振点11a、11bの間の跳ね返り部11cである。
 例えば、狭ピッチの電極指部分を備え、2つの共振点をそれぞれ有する複数の並列共振子11、12を、共振周波数を適宜ずらして作製することで、図5の(b)に示されるように、跳ね返り部11cの高さが低く、阻止帯域幅が広い帯域阻止フィルタ3を得ることができる。
 以下、2つの共振点をそれぞれ有する複数の並列共振子11~14の構成について説明する。
 ここで、複数の並列共振子11~14を、より低い共振周波数を有する順に、第1の並列共振子11、第2の並列共振子12、第3の並列共振子13、第4の並列共振子14とする。また、並列共振子11~14の中央部cにおける電極指fのピッチ、および、端部eにおける電極指fのピッチを下記(1)~(4)
(1)第1の並列共振子11の電極指の中央部cのピッチをC1、端部eのピッチをE1
(2)第2の並列共振子12の電極指の中央部cのピッチをC2、端部eのピッチをE2
(3)第3の並列共振子13の電極指の中央部cのピッチをC3、端部eのピッチをE3
(4)第4の並列共振子14の電極指の中央部cのピッチをC4、端部eのピッチをE4
に示すとおりとした場合、本実施の形態は、下記(a)~(c)
(a) E1<C2<C1
(b) E2<C3<C2
(c) E3<C4<C3
に示す関係を有している。
 なお、端部eにおける電極指fのピッチについては、下記(d)
(d) E4<E3<E2<E1
に示す関係を有している。
 具体的には、電極指fのピッチは、表1に示す値となっている。
Figure JPOXMLDOC01-appb-T000001
 上記(a)~(c)に示す関係は、例えば、第1の並列共振子11の電極指fの端部eの波長λ2が、第2の並列共振子12の電極指fの中央部cの波長λ1よりも短いことを示している。これは、第1の並列共振子11の2つの共振点11a、11bに挟まれる帯域と、第2の並列共振子12の2つの共振点12a、12bに挟まれる帯域とが一部重なり合っていることを示している。
 この関係を、図6を参照しつつさらに説明する。図6は、帯域阻止フィルタ3の周波数特性を説明するためのイメージ図である。
 第1の並列共振子11の共振周波数帯域には、図6の(a)に示されるように、2つの共振点11a、11bと、共振点11aおよび11bの間に位置する跳ね返り部11cとが存在する。共振点11aは、中央部cの電極指fのピッチにもとづく共振周波数であり、共振点11bは、端部eの電極指fのピッチにもとづく共振周波数である。跳ね返り部11cは、2つの共振点11a、11bの間において、インピーダンスの高い方向に突き出した部分である。
 第2の並列共振子12は、図6の(b)に示されるように、第1の並列共振子11よりも高い共振周波数を有する。第2の並列共振子12の共振周波数帯域には、2つの共振点12a、12bと、共振点12aおよび12bの間に位置する跳ね返り部12cとが存在する。共振点12aは、中央部cの電極指fのピッチにもとづく共振周波数であり、共振点12bは、端部eの電極指fのピッチにもとづく共振周波数である。跳ね返り部12cは、2つの共振点12a、12bの間において、インピーダンスの高い方向に突き出した部分である。
 第2の並列共振子12は、共振点12aが第1の並列共振子11の跳ね返り部11cとほぼ一致するように、また、跳ね返り部12cが第1の並列共振子11の共振点11bとほぼ一致するように設計される。そのため、第1の並列共振子11と第2の並列共振子12とを並列接続すると、第1の並列共振子11の2つの共振点11a、11bに挟まれる帯域と、第2の並列共振子12の2つの共振点12a、12bに挟まれる帯域とが一部重なり合うことになる。
 そのため、第1の並列共振子11と第2の並列共振子12とを並列接続した場合には、図6の(c)に示されるように、それぞれの周波数特性の山と谷が一部相殺され、跳ね返り部11c、12cの高さが低くなる。これにより、第1の並列共振子11と第2の並列共振子12とを並列接続した帯域阻止フィルタ3において、阻止帯域幅を広くすることができる。
 上記では、2つの並列共振子11、12について説明したが、並列共振子を3つ以上にした場合にも同様のことがいえる。
 なお、図6は、あくまでも本実施の形態の理解を助けるためのイメージ図であり、山と谷を少しずらして重ね合わせた場合のほうが、阻止帯域幅がより平坦になることもある。
 図7は、実施の形態1に係る複合フィルタ1、および、比較例における複合フィルタ100の周波数特性を示す図である。
 前述したように、複合フィルタ1の帯域阻止フィルタ3は、帯域通過フィルタ2と出力端子5との間に接続されている。また、複合フィルタ100の帯域阻止フィルタ103は、帯域通過フィルタ102と出力端子105との間に接続されている。
 図7に示されるように、帯域通過フィルタ2、102の通過帯域よりも高周波側で比べると、本実施の形態は、比較例に比べて減衰量の大きい帯域が増えている。すなわち、本実施の形態に係る複合フィルタ1では、阻止帯域幅を広くすることができる。
 [効果等]
 本実施の形態に係る帯域阻止フィルタ3は、複数の並列共振子11~14を有する帯域阻止フィルタ3であって、複数の並列共振子11~14のそれぞれは、圧電基板53と、圧電基板53の表面に形成されたIDT電極101とを有し、IDT電極101は、互いに対向する一対の櫛歯電極110a、110bで形成され、IDT電極101は複数の電極指f(111a、111b)を有し、弾性波伝搬方向におけるIDT電極101の端部eと、端部eとは異なる中央部cとで、電極指f(111a、111b)のピッチが異なる。
 このように、IDT電極101の中央部cにおける電極指fのピッチと、端部eにおける電極指fのピッチとを異ならせることで、IDT電極101の中央部cの波長λ1と端部eの波長λ2とを異ならせることができる。これにより、例えば、並列共振子11の周波数特性において共振周波数が異なる複数の共振点11a、11bが得られる。その結果、複数の並列共振子11~14で構成される帯域阻止フィルタ3において、阻止帯域幅を広げることができる。
 なお、本実施の形態では、IDT電極101を、中央部cおよび端部eという2種類の電極指fのピッチで構成したが、IDT電極101の電極指fの種類は2種類に限られない。電極指fは、3種類以上の異なるピッチにより構成されていてもよい。
 また、帯域阻止フィルタ3は、中央部cにおける複数の電極指fのピッチよりも、端部eにおける複数の電極指fのピッチを小さくしてもよい。
 このように、IDT電極101の中央部cにおける電極指fのピッチよりも、端部eにおける電極指fのピッチを小さくすることで、中央部cの波長λ1よりも端部eの波長λ2を短くすることができる。これにより、例えば、並列共振子11の周波数特性において、中央部cの電極指fのピッチにもとづく低周波側の共振点11a、および、端部eの電極指fのピッチにもとづく高周波側の共振点11bという、共振周波数が異なる複数の共振点11a、11bが得られる。その結果、複数の並列共振子11~14で構成される帯域阻止フィルタ3において、低周波側の共振点11aから高周波側の共振点11bにかけての阻止帯域幅を広げることができる。
 なお、本実施の形態では、4つの並列共振子11~14を例に挙げて説明したが、並列共振子の数は4つに限られない。本実施の形態に係る帯域阻止フィルタ3を、並列共振子の数に限られず普遍化して表現すれば以下に示すようになる。
 本実施の形態に係る帯域阻止フィルタ3は、複数の並列共振子を、より低い共振周波数を有する順に、第kの並列共振子、第(k+1)の並列共振子、・・・第nの並列共振子(k、nは自然数、ただし1≦k<n)とし、第kの並列共振子の中央部cにおける複数の電極指fのピッチをCk、端部eにおける複数の電極指fのピッチをEkとし、第(k+1)の並列共振子の中央部cにおける複数の電極指fのピッチをC(k+1)とした場合、Ek<C(k+1)<Ckである。
 また、さらに、第(k+1)の並列共振子の端部eにおける複数の電極指fのピッチをE(k+1)とした場合、E(k+1)<Ekである。
 これによれば、複数の並列共振子それぞれの、複数の共振点に挟まれる帯域を一部重なり合わせることができる。これにより、複数の並列共振子の周波数特性の山と谷を一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタ3を得ることができる。
 (実施の形態2)
 実施の形態2に係る帯域阻止フィルタ3は、中央部cにおける複数の電極指fのピッチよりも、端部eにおける複数の電極指fのピッチのほうが大きい。
 図8の(a)は、実施の形態2における並列共振子11を模式的に表す平面図であり、(b)はA-A断面図である。
 図8を参照しながら、実施の形態2におけるIDT電極101の中央部cにおける複数の電極指111a、111bのピッチと、端部eにおける複数の電極指111a、111bのピッチとの関係について説明する。
 図8の(a)に示されるように、IDT電極101では、中央部cにおける複数の電極指fのピッチC1よりも、端部eにおける複数の電極指fのピッチE1のほうが大きい。すなわち、中央部cの波長λ1よりも端部eの波長λ2のほうが長くなっている。
 そのため、並列共振子11の共振周波数において2つの谷と1つの山が表れる。共振周波数における2つの谷は、並列共振子11の2つの共振点に相当する。2つの共振点のうちの、中央部cの電極指fのピッチにもとづく共振点は、端部eの電極指fのピッチにもとづく共振点より高低周波側に位置する。
 例えば、2つの共振点を有する複数の並列共振子11、12を、共振周波数を適宜ずらして作製することで、跳ね返り部が低く、阻止帯域幅が広い帯域阻止フィルタ3を得ることができる。
 以下、2つの共振点を有する複数の並列共振子11~14の構成について説明する。
 ここで、複数の並列共振子11~14を、より低い共振周波数を有する順に、第1の並列共振子11、第2の並列共振子12、第3の並列共振子13、第4の並列共振子14とする。また、並列共振子11~14の中央部cにおける電極指fのピッチ、および、端部eにおける電極指fのピッチを下記(1)~(4)
(1)第1の並列共振子11の電極指の中央部cのピッチをC1、端部eのピッチをE1
(2)第2の並列共振子12の電極指の中央部cのピッチをC2、端部eのピッチをE2
(3)第3の並列共振子13の電極指の中央部cのピッチをC3、端部eのピッチをE3
(4)第4の並列共振子14の電極指の中央部cのピッチをC4、端部eのピッチをE4
に示すとおりとした場合、本実施の形態は、下記(a)~(c)
(a) E1>C2>C1
(b) E2>C3>C2
(c) E3>C4>C3
に示す関係を有している。
 なお、端部eにおける電極指fのピッチについては、下記(d)
(d) E4>E3>E2>E1
に示す関係を有している。
 上記(a)~(c)に示す関係は、例えば、第1の並列共振子11の電極指fの端部eの波長λ2が、第2の並列共振子12の電極指fの中央部cの波長λ1よりも長いことを示している。これは、第1の並列共振子11の2つの共振点に挟まれる帯域と、第2の並列共振子12の2つの共振点に挟まれる帯域とが一部重なり合っていることを示している。
 これにより、第1の並列共振子11と第2の並列共振子12とを並列接続した帯域阻止フィルタ3において、阻止帯域幅を広くし、また、阻止帯域内におけるインピーダンスの高低差を低減することができる。上記では、2つの並列共振子11、12について説明したが、並列共振子を3つ以上にした場合も同様のことがいえる。
 [効果等]
 本実施の形態に係る帯域阻止フィルタ3は、中央部cにおける複数の電極指fのピッチよりも、端部eにおける複数の電極指fのピッチを大きくしている。
 このように、IDT電極101の中央部cにおける電極指fのピッチよりも、端部eにおける電極指fのピッチを大きくすることで、IDT電極101の中央部cの波長λ1よりも端部eの波長λ2を長くすることができる。これにより、例えば、並列共振子11の周波数特性において、中央部cの電極指fのピッチにもとづく高周波側の共振点、および、端部eの電極指fのピッチにもとづく低周波側の共振点という、共振周波数が異なる複数の共振点が得られる。その結果、複数の並列共振子11~14を並列接続することで、低周波側から高周波にかけて阻止帯域幅が広い帯域阻止フィルタ3を得ることができる。
 なお、本実施の形態では、4つの並列共振子11~14を例に挙げて説明したが、並列共振子の数は4つに限られない。本実施の形態に係る帯域阻止フィルタ3を、並列共振子の数に限られず普遍化して表現すれば以下に示すようになる。
 本実施の形態に係る帯域阻止フィルタ3は、複数の並列共振子を、より低い共振周波数を有する順に、第kの並列共振子、第(k+1)の並列共振子、・・・第nの並列共振子(k、nは自然数、ただし1≦k<n)とし、第kの並列共振子の中央部cにおける複数の電極指fのピッチをCk、端部eにおける複数の電極指fのピッチをEkとし、第(k+1)の並列共振子の中央部cにおける複数の電極指fのピッチをC(k+1)とした場合、Ek>C(k+1)>Ckである。
 また、さらに、第(k+1)の並列共振子の端部eにおける複数の電極指fのピッチをE(k+1)とした場合、E(k+1)>Ekである。
 これによれば、複数の並列共振子それぞれの、複数の共振点に挟まれる帯域を重なり合わせることができる。これにより、複数の並列共振子の周波数特性の山と谷を一部相殺し、減衰極のインピーダンスの高低差を低減するとともに、阻止帯域幅が広い帯域阻止フィルタ3を得ることができる。
 (その他)
 以上、本発明の実施の形態に係る帯域阻止フィルタ3および複合フィルタ1について説明したが、本発明は、上記実施の形態およびその変形例には限定されない。例えば、上記実施の形態およびその変形例に次のような変形を施した態様も、本発明に含まれ得る。
 例えば、上記実施の形態では、一対の櫛歯電極110a、110bは、平面視して左右対称となっているが、左右対称に限られず、左右非対称であってもよい。例えば、櫛歯電極110bの片側最端部の電極指fを、櫛歯電極110aの片側最端部の電極指fよりも外側にして、非対称としてもよい。
 また、上記実施の形態における帯域阻止フィルタ3の構造は、図4に記載された構造に限定されない。例えば、IDT電極101は、金属膜の積層構造でなく、金属膜の単層であってもよい。また、圧電基板53は、高音速支持基板と、低音速膜と、圧電膜とがこの順で積層された積層構造であってもよい。上記実施の形態では、圧電基板53として45°YカットX伝搬LiTaO単結晶を例示したが、単結晶材料はLiTaOに限定されないし、単結晶材料のカット角もこれに限定されない。
 また、上記実施の形態に係る複合フィルタ1は、入力端子4と出力端子5との間に、さらに、インダクタンス素子やキャパシタンス素子が接続されていてもよい。
 本発明は、所定周波数帯域の信号の通過を阻止する帯域阻止フィルタ、または、帯域阻止フィルタを含む複合フィルタとして、携帯電話などの通信機器に広く利用できる。
 1   複合フィルタ
 2   帯域通過フィルタ
 3   帯域阻止フィルタ
 4   入力端子
 5   出力端子
 11、12、13、14 並列共振子
 53  圧電基板
 54a 密着層
 54b 主電極層
 55  保護層
 101 IDT電極
 110a、110b 櫛歯電極
 111a、111b 電極指
 112a、112b バスバー電極
 120a、120b 反射器
 c   IDT電極の中央部
 C1、C2、C3、C4 中央部における電極指のピッチ
 e   IDT電極の端部
 f   電極指
 E1、E2、E3、E4 端部における電極指のピッチ
 λ1、λ2 波長

Claims (12)

  1.  複数の並列共振子を有する帯域阻止フィルタであって、
     前記複数の並列共振子のそれぞれは、圧電基板と、当該圧電基板の表面に形成されたIDT電極とを有し、
     前記IDT電極は、互いに対向する一対の櫛歯電極で形成され、
     前記IDT電極は複数の電極指を有し、弾性波伝搬方向における前記IDT電極の端部と、前記端部とは異なる中央部とで、前記電極指のピッチが異なる
     帯域阻止フィルタ。
  2.  前記中央部における前記複数の電極指のピッチよりも、前記端部における前記複数の電極指のピッチのほうが小さい
     請求項1に記載の帯域阻止フィルタ。
  3.  前記複数の並列共振子は、第1の並列共振子と、前記第1の並列共振子よりも高い共振周波数を有する第2の並列共振子とを備え、
     前記第1の並列共振子の前記中央部における前記複数の電極指のピッチをC1、前記端部における前記複数の電極指のピッチをE1とし、
     前記第2の並列共振子の前記中央部における前記複数の電極指のピッチをC2とした場合、
     E1<C2<C1
     である
     請求項1または2に記載の帯域阻止フィルタ。
  4.  さらに、
     前記第2の並列共振子の前記端部における前記複数の電極指のピッチをE2とした場合、
     E2<E1
     である
     請求項3に記載の帯域阻止フィルタ。
  5.  前記複数の並列共振子を、より低い共振周波数を有する順に、第kの並列共振子、第(k+1)の並列共振子、・・・第nの並列共振子(k、nは自然数、ただし2≦k<n)とし、
     前記第kの並列共振子の前記中央部における前記複数の電極指のピッチをCk、前記端部における前記複数の電極指のピッチをEkとし、
     前記第(k+1)の並列共振子の前記中央部における前記複数の電極指のピッチをC(k+1)とした場合、
     Ek<C(k+1)<Ck
     である
     請求項1~4のいずれか1項に記載の帯域阻止フィルタ。
  6.  さらに、
     前記第(k+1)の並列共振子の前記端部における前記複数の電極指のピッチをE(k+1)とした場合、
     E(k+1)<Ek
     である
     請求項5に記載の帯域阻止フィルタ。
  7.  前記中央部における前記複数の電極指のピッチよりも、前記端部における前記複数の電極指のピッチのほうが大きい
     請求項1に記載の帯域阻止フィルタ。
  8.  前記複数の並列共振子は、第1の並列共振子と、前記第1の並列共振子よりも低い共振周波数を有する第2の並列共振子とを備え、
     前記第1の並列共振子の前記中央部における前記複数の電極指のピッチをC1、前記端部における前記複数の電極指のピッチをE1とし、
     前記第2の並列共振子の前記中央部における前記複数の電極指のピッチをC2とした場合、
     E1>C2>C1
     である
     請求項1または7に記載の帯域阻止フィルタ。
  9.  さらに、
     前記第2の並列共振子の前記端部における前記複数の電極指のピッチをE2とした場合、
     E2>E1
     である
     請求項8に記載の帯域阻止フィルタ。
  10.  前記複数の並列共振子を、より高い共振周波数を有する順に、第kの並列共振子、第(k+1)の並列共振子、・・・第nの並列共振子(k、nは自然数、ただし2≦k<n)とし、
     前記第kの並列共振子の前記中央部における前記複数の電極指のピッチをCk、前記端部における前記複数の電極指のピッチをEkとし、
     前記第(k+1)の並列共振子の前記中央部における前記複数の電極指のピッチをC(k+1)とした場合、
     Ek>C(k+1)>Ck
     である
     請求項1または7~9のいずれか1項に記載の帯域阻止フィルタ。
  11.  さらに、
     前記第(k+1)の並列共振子の前記端部における前記複数の電極指のピッチをE(k+1)とした場合、
     E(k+1)>Ek
     である
     請求項10に記載の帯域阻止フィルタ。
  12.  帯域通過フィルタと、
     前記帯域通過フィルタに接続された請求項1~11のいずれか1項に記載の帯域阻止フィルタと
     を備える複合フィルタ。
PCT/JP2016/085989 2016-02-29 2016-12-02 帯域阻止フィルタおよび複合フィルタ WO2017149878A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680082602.3A CN108713290B (zh) 2016-02-29 2016-12-02 带阻滤波器以及复合滤波器
JP2018502533A JP6614329B2 (ja) 2016-02-29 2016-12-02 帯域阻止フィルタおよび複合フィルタ
US16/114,522 US10848128B2 (en) 2016-02-29 2018-08-28 Band elimination filter and composite filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038458 2016-02-29
JP2016038458 2016-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/114,522 Continuation US10848128B2 (en) 2016-02-29 2018-08-28 Band elimination filter and composite filter

Publications (1)

Publication Number Publication Date
WO2017149878A1 true WO2017149878A1 (ja) 2017-09-08

Family

ID=59742791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085989 WO2017149878A1 (ja) 2016-02-29 2016-12-02 帯域阻止フィルタおよび複合フィルタ

Country Status (4)

Country Link
US (1) US10848128B2 (ja)
JP (1) JP6614329B2 (ja)
CN (1) CN108713290B (ja)
WO (1) WO2017149878A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117133A1 (ja) * 2017-12-12 2019-06-20 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
WO2019154655A1 (en) * 2018-02-08 2019-08-15 RF360 Europe GmbH Filter circuit with a notch filter
JP2020123853A (ja) * 2019-01-30 2020-08-13 太陽誘電株式会社 フィルタおよびマルチプレクサ
CN111869113A (zh) * 2018-03-20 2020-10-30 华为技术有限公司 可调滤波器
JPWO2019198594A1 (ja) * 2018-04-11 2021-04-15 京セラ株式会社 弾性波素子、弾性波フィルタ、分波器および通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107069A1 (ja) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. 弾性表面波共振子及びこれを用いた弾性表面波フィルタ
JP2012156741A (ja) * 2011-01-26 2012-08-16 Panasonic Corp アンテナ共用器
WO2013069225A1 (ja) * 2011-11-10 2013-05-16 パナソニック株式会社 弾性波装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849782B4 (de) * 1998-10-28 2004-09-30 Epcos Ag Oberflächenwellenanordnung mit zumindest zwei Oberflächenwellen-Strukturen
JP4240611B2 (ja) * 1998-12-01 2009-03-18 沖電気工業株式会社 分波器
US6710677B2 (en) * 2002-02-12 2004-03-23 Nortel Networks Limited Band reject filters
JP3896907B2 (ja) * 2002-06-19 2007-03-22 株式会社村田製作所 弾性表面波フィルタ、分波器、通信機
JP2004129238A (ja) * 2002-09-10 2004-04-22 Matsushita Electric Ind Co Ltd 帯域阻止型フィルタ、フィルタ装置、アンテナ共用器、通信機器
JP4059152B2 (ja) * 2002-10-16 2008-03-12 セイコーエプソン株式会社 弾性表面波共振子
WO2005067141A1 (ja) * 2004-01-09 2005-07-21 Matsushita Electric Industrial Co., Ltd. 弾性表面波共振子及びこれを用いた弾性表面波フィルタ
DE102005051852B4 (de) * 2005-10-28 2021-05-20 Snaptrack, Inc. SAW Filter mit breitbandiger Bandsperre
DE102007008110A1 (de) * 2007-02-19 2008-08-21 Epcos Ag Mit akustischen Wellen arbeitendes Filter
JP5072642B2 (ja) * 2007-03-28 2012-11-14 京セラ株式会社 弾性表面波装置及びこれを用いた分波器並びに通信装置
DE102008045346B4 (de) * 2008-09-01 2018-06-07 Snaptrack Inc. Duplexer und Verfahren zum Erhöhen der Isolation zwischen zwei Filtern
JP4816710B2 (ja) 2008-10-30 2011-11-16 株式会社村田製作所 分波器
JP4835814B2 (ja) * 2010-03-01 2011-12-14 株式会社村田製作所 弾性波フィルタ装置
JP2012175438A (ja) * 2011-02-22 2012-09-10 Nippon Dempa Kogyo Co Ltd ノッチフィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107069A1 (ja) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. 弾性表面波共振子及びこれを用いた弾性表面波フィルタ
JP2012156741A (ja) * 2011-01-26 2012-08-16 Panasonic Corp アンテナ共用器
WO2013069225A1 (ja) * 2011-11-10 2013-05-16 パナソニック株式会社 弾性波装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448759A (zh) * 2017-12-12 2020-07-24 株式会社村田制作所 多工器、高频前端电路及通信装置
JPWO2019117133A1 (ja) * 2017-12-12 2020-07-27 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
US10958247B2 (en) 2017-12-12 2021-03-23 Murata Manufacturing Co., Ltd. Multiplexer, high-frequency front-end circuit, and communication device
WO2019117133A1 (ja) * 2017-12-12 2019-06-20 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路および通信装置
CN111448759B (zh) * 2017-12-12 2023-10-03 株式会社村田制作所 多工器、高频前端电路及通信装置
CN111684716B (zh) * 2018-02-08 2023-12-05 Rf360新加坡私人有限公司 具有陷波滤波器的滤波器电路
WO2019154655A1 (en) * 2018-02-08 2019-08-15 RF360 Europe GmbH Filter circuit with a notch filter
CN111684716A (zh) * 2018-02-08 2020-09-18 Rf360欧洲有限责任公司 具有陷波滤波器的滤波器电路
US11563422B2 (en) 2018-02-08 2023-01-24 RF360 Europe GmbH Filter circuit with a notch filter
US11923830B2 (en) 2018-03-20 2024-03-05 Huawei Technologies Co., Ltd. Tunable filter
CN111869113A (zh) * 2018-03-20 2020-10-30 华为技术有限公司 可调滤波器
CN111869113B (zh) * 2018-03-20 2021-12-14 华为技术有限公司 可调滤波器
JPWO2019198594A1 (ja) * 2018-04-11 2021-04-15 京セラ株式会社 弾性波素子、弾性波フィルタ、分波器および通信装置
JP7433216B2 (ja) 2018-04-11 2024-02-19 京セラ株式会社 弾性波素子、弾性波フィルタ、分波器および通信装置
JP2020123853A (ja) * 2019-01-30 2020-08-13 太陽誘電株式会社 フィルタおよびマルチプレクサ
JP7484045B2 (ja) 2019-01-30 2024-05-16 太陽誘電株式会社 フィルタおよびマルチプレクサ

Also Published As

Publication number Publication date
JP6614329B2 (ja) 2019-12-04
CN108713290A (zh) 2018-10-26
JPWO2017149878A1 (ja) 2018-09-13
CN108713290B (zh) 2022-04-15
US10848128B2 (en) 2020-11-24
US20180367121A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
KR102166218B1 (ko) 필터
JP6614329B2 (ja) 帯域阻止フィルタおよび複合フィルタ
US20180123565A1 (en) Elastic wave filter, multiplexer, duplexer, high-frequency front end circuit, and communication device
WO2018003297A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
US8362852B2 (en) Branching filter
US10084431B2 (en) Ladder filter
WO2016111262A1 (ja) 複合フィルタ装置
KR101949020B1 (ko) 멀티플렉서 및 고주파 프론트엔드 모듈
KR102205186B1 (ko) 탄성파 필터
KR102278128B1 (ko) 엑스트랙터
JPWO2019031201A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
US10284170B2 (en) Surface acoustic wave filter, duplexer, and multiplexer
WO2018096799A1 (ja) フィルタ装置およびマルチプレクサ
CN107483027B (zh) 多工器以及高频前端模块
US10298205B2 (en) Elastic wave resonator, elastic wave filter, and duplexer
CN109565267B (zh) 声表面波滤波器、高频模块以及多工器
WO2018235689A1 (ja) 弾性波フィルタ装置、複合フィルタ装置及びマルチプレクサ
CN211830723U (zh) 弹性波滤波器装置以及复合滤波器装置
WO2019117106A1 (ja) フィルタ装置およびマルチプレクサ
WO2018123545A1 (ja) マルチプレクサ
WO2018079284A1 (ja) ラダー型フィルタ、デュプレクサ及び弾性波フィルタ装置
WO2021045031A1 (ja) 弾性波フィルタ
JP2018098691A (ja) マルチプレクサ
CN116210155A (zh) 多工器
JP2004235675A (ja) 1次−3次縦結合二重モードsawフィルタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018502533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892713

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892713

Country of ref document: EP

Kind code of ref document: A1