WO2018235689A1 - 弾性波フィルタ装置、複合フィルタ装置及びマルチプレクサ - Google Patents

弾性波フィルタ装置、複合フィルタ装置及びマルチプレクサ Download PDF

Info

Publication number
WO2018235689A1
WO2018235689A1 PCT/JP2018/022521 JP2018022521W WO2018235689A1 WO 2018235689 A1 WO2018235689 A1 WO 2018235689A1 JP 2018022521 W JP2018022521 W JP 2018022521W WO 2018235689 A1 WO2018235689 A1 WO 2018235689A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave filter
elastic wave
filter device
parallel arm
parallel
Prior art date
Application number
PCT/JP2018/022521
Other languages
English (en)
French (fr)
Inventor
大志 村中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020197035025A priority Critical patent/KR102329364B1/ko
Priority to CN201880040387.XA priority patent/CN110771040B/zh
Publication of WO2018235689A1 publication Critical patent/WO2018235689A1/ja
Priority to US16/703,932 priority patent/US11362642B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6436Coupled resonator filters having one acoustic track only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave filter device having a longitudinally coupled resonator type elastic wave filter and a plurality of parallel arm resonators, and a composite filter device and a multiplexer having the elastic wave filter device.
  • a ladder type filter is connected in series to a longitudinally coupled resonator type elastic wave filter.
  • the ground end of the parallel arm resonator of the ladder type filter and the ground end of the longitudinally coupled resonator type elastic wave filter are electrically separated on the chip.
  • FIG. 11 of Patent Document 2 discloses an elastic wave filter device as a prior art.
  • a ladder type filter is connected in series to the longitudinally coupled resonator type elastic wave filter.
  • the ground end of the parallel arm resonator of the ladder type filter and the input side ground end and the output side ground end of the longitudinally coupled resonator type elastic wave filter are connected in common.
  • An object of the present invention is to provide an elastic wave filter device capable of improving the attenuation characteristics of a specific frequency band in the attenuation band outside the pass band.
  • the elastic wave filter device is an elastic wave filter device having a series arm connecting an input terminal and an output terminal, and a plurality of parallel arms connected between the series arm and the ground potential.
  • a second parallel arm resonator provided on the second parallel arm, wherein the input-side ground end of the longitudinally coupled resonator type elastic wave filter is connected to the first and second parallel terminals.
  • At least one of the arm resonators The output-side ground end of the longitudinally coupled resonator type elastic wave filter is commonly connected to at least the other ground end of the first and second parallel arm resonators.
  • the capacitance of the first parallel arm resonator is different from the capacitance of the second parallel arm resonator.
  • a series arm resonator provided on the series arm is further provided, wherein the series arm resonator and the first and second parallel arm resonances are provided.
  • a ladder type filter is configured by at least one of the children. In this case, the filter characteristics of the elastic wave filter device can be further improved.
  • the input side ground end of the longitudinally coupled resonator type elastic wave filter and the output side ground end are commonly connected.
  • the ground can be strengthened.
  • attenuation characteristics in the vicinity of the pass band can be effectively improved.
  • the piezoelectric substrate is further provided, wherein the longitudinally coupled resonator type elastic wave filter and the first and second parallel arm resonators are configured.
  • first and second lead-out wirings connected to ground potential side end portions of the first and second parallel arm resonators are provided.
  • the inductance of the first lead-out wire between the ground potential side end of the first parallel arm resonator and the ground potential is included.
  • the first inductance is different from the second inductance including the inductance of the second lead-out wire between the ground potential side end of the second parallel arm resonator and the ground potential.
  • resonance characteristics of the first LC resonance by the capacitance and the first inductance of the first parallel arm resonator, the capacitance of the second parallel arm resonator, and the second inductance Attenuation poles can be provided in different frequency ranges by utilizing the resonance characteristics of the second LC resonance according to.
  • the composite filter device according to the present invention comprises a plurality of filter devices whose one end is commonly connected to a common terminal, and at least one of the plurality of filter devices is an elastic wave according to the present invention. It consists of a filter device.
  • a multiplexer is a multiplexer including a plurality of band pass filters having different pass bands, wherein one ends of the plurality of band pass filters are commonly connected, and at least one of the plurality of band pass filters One consists of an acoustic wave filter device constructed according to the invention.
  • the elastic wave filter device of the present invention since a plurality of attenuation poles can be provided outside the pass band, by selecting the capacitances of the first and second parallel arm resonators, the out of the pass band can be obtained.
  • the attenuation characteristics of a specific frequency band can be improved in the attenuation range of Therefore, it is possible to provide a composite filter device and a multiplexer having an elastic wave filter device excellent in out-of-band attenuation characteristics.
  • FIG. 1 is a circuit diagram of an elastic wave filter device according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of an elastic wave filter device of a comparative example.
  • FIG. 3 is a view showing filter characteristics of the elastic wave filter devices of the example and the comparative example.
  • FIG. 4 is a schematic plan view of the elastic wave filter device according to the first embodiment.
  • FIG. 5 is a circuit diagram of an elastic wave filter device according to a second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a duplexer according to a third embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing a composite filter device according to a fourth embodiment of the present invention.
  • FIG. 1 is a circuit diagram of an elastic wave filter device according to a first embodiment of the present invention.
  • the elastic wave filter device 1 is a Band 20 reception filter.
  • the reception band of Band 20, ie, the pass band is 791 MHz to 821 MHz.
  • the elastic wave filter device 1 has an input terminal 2 and an output terminal 3.
  • a longitudinally coupled resonator type elastic wave filter 11 is disposed in a series arm connecting the input terminal 2 and the output terminal 3.
  • a ladder type filter 12 is connected in series to the longitudinally coupled resonator type elastic wave filter 11.
  • the longitudinally coupled resonator type elastic wave filter 11 has first to fifth IDT electrodes 11a to 11e and reflectors 11f and 11g. That is, the longitudinally coupled resonator type elastic wave filter 11 is a 5 IDT longitudinally coupled resonator type elastic wave filter.
  • the longitudinally coupled resonator type elastic wave filter 11 has an input end 13 to which a signal is input and an output end 14 to which a signal is output.
  • the input ends of the first, third and fifth IDTs 11a, 11c and 11e are commonly connected to the input end 13.
  • the output ends of the second and fourth IDT electrodes 11 b and 11 d are commonly connected to the output end 14.
  • An end opposite to the output end side of the second and fourth IDT electrodes 11 b and 11 d and one end of the reflectors 11 f and 11 g are commonly connected to the input-side ground end 15.
  • the other end of the first, third, and fifth IDT electrodes 11a, 11c, and 11e opposite to the input side and the other end of the reflectors 11f and 11g are commonly connected to the output side ground end 16 There is.
  • the ladder type filter 12 includes a plurality of series arm resonators S1 to S3 and P1 and P2 of first and second parallel arm resonators.
  • the plurality of series arm resonators S1 to S3 are connected to one another in series in the series arm.
  • the first parallel arm resonator P1 is provided on a first parallel arm connecting a connection point between the series arm resonators S1 and S2 to the ground potential.
  • the second parallel arm resonator P2 is provided on a second parallel arm connecting a connection point between the series arm resonators S2 and S3 and the ground potential.
  • the portion connecting the ground potential side end portion of the first parallel arm resonator P1 to the ground potential has a first lead-out wiring 17 connected to the first parallel arm resonator P1.
  • a second lead-out wiring 18 connected to the second parallel arm resonator P2 is provided.
  • the input-side ground end 15 and the output-side ground end 16 of the longitudinally coupled resonator type elastic wave filter 11 are connected to the third lead-out line 19 as shown in the drawing and commonly connected to the ground potential.
  • the first lead wiring 17 is connected to the third lead wiring 19.
  • the fourth lead wiring 20 is connected to the third lead wiring 19.
  • the fourth lead wiring 20 is connected to the second lead wiring 18.
  • the capacitance of the first parallel arm resonator P1 and the capacitance of the second parallel arm resonator P2 are different.
  • the characteristic of the elastic wave filter device 1 is that the input side ground end 15 of the longitudinally coupled resonator type elastic wave filter 11 and the ground end of the first parallel arm resonator P1 are connected in common, a longitudinally coupled resonator Side ground end 16 of the second elastic wave filter 11 and the ground end of the second parallel arm resonator P2 are connected in common, and the capacitance of the first parallel arm resonator P1 and the second parallel The capacitance of the parallel arm resonator P2 is different. Thereby, it is possible to obtain a sufficient amount of attenuation in a specific frequency band in the attenuation range. This will be described in comparison with the comparative example of FIG. 2 and with reference to FIG.
  • an elastic wave filter device was manufactured with the following design parameters.
  • the longitudinally coupled resonator type elastic wave filter 11 and the ladder type filter 12 were formed by providing an electrode structure on the same piezoelectric substrate.
  • Design parameters of the longitudinally coupled resonator type elastic wave filter 11 number of electrode fingers in the first to fifth IDT electrodes 11a to 11e and reflectors 11f and 11g, wavelength determined by electrode finger pitch, electrode finger crossing width, duty As shown in Table 1 below.
  • a laminated film of AlCu / Ti / Pt / NiCr was used as an electrode material in the first to fifth IDT electrodes 11a to 11e and the reflectors 11f and 11g.
  • the thickness of each layer was set to 184 nm / 70 nm / 86 nm / 10 nm.
  • Design parameters of the series arm resonators S1 to S3 and the first and second parallel arm resonators P1 and P2 are as shown in Table 2 below.
  • the laminated film of AlCu / Ti / Pt / NiCr was used as an electrode material.
  • the thickness of each layer was set to 184 nm / 70 nm / 86 nm / 10 nm.
  • the electrostatic capacitance of the first parallel arm resonator P1 was 4.94 pF
  • the electrostatic capacitance of the second parallel arm resonator P2 was 2.82 pF.
  • the first and second lead-out wires 17 and 18 connected to the ground potential side end portions of the first and second parallel arm resonators P1 and P2 are part of a path from the piezoelectric substrate to the mounting substrate Are configured.
  • the elastic wave filter device 101 of the comparative example shown in FIG. 2 was prepared as follows.
  • the input-side ground end 15 and the output-side ground end 16 of the longitudinally coupled resonator type elastic wave filter 11 and the first and second parallel arm resonators P1 and P2 have piezoelectric substrates. That the common connection point 102 is connected to the ground potential, and that the capacitances of the first and second parallel arm resonators P1 and P2 are equal. Except for the above, it is the same as the above embodiment.
  • the capacitance of the first and second parallel arm resonators P1 and P2 is 3.88 pF.
  • the lengths of the second routing wires 104 connecting the two are equal.
  • the solid line in FIG. 3 shows the filter characteristic of the elastic wave filter device of the embodiment, and the broken line shows the filter characteristic of the elastic wave filter device of the comparative example.
  • the filter characteristics in the pass band of 791 MHz to 821 MHz are almost the same in both the embodiment and the comparative example.
  • the attenuation band outside the pass band of 3 GHz to 5 GHz according to the example, a sufficient amount of attenuation is secured as compared with the comparative example.
  • 3 GHz to 5 GHz is a frequency band used for WiFi and the like.
  • the Band 20 reception filter it is required that the attenuation at 3 GHz to 5 GHz used for WiFi be sufficiently large. As shown in FIG. 3, according to the embodiment, the amount of attenuation at 3 GHz to 5 GHz can be made sufficiently large. That is, the filter characteristics can be effectively improved.
  • the attenuation at 3 GHz to 5 GHz is sufficiently large because the attenuation pole shown by the arrow A2 appears in addition to the attenuation pole shown by the arrow A1. Conceivable.
  • the attenuation pole shown by arrow A1 and the attenuation pole shown by arrow A2 originate in the resonance characteristic by LC resonance using the 1st, 2nd parallel arm resonators P1 and P2.
  • the capacitance of the first parallel arm resonator P1 is different from the capacitance of the second parallel arm resonator P2. Therefore, the frequency position of the resonance point and antiresonance point of the first LC resonance due to the capacitance of the first parallel arm resonator P1 and the inductance of the first lead-out wire 17, and the second parallel arm resonator P2
  • the frequency positions of the resonance point and the antiresonance point of the second LC resonance are largely different due to the capacitance of the second lead-out wiring 18 and the inductance of the second lead-out wire 18. Therefore, in addition to the attenuation pole of the arrow A1, the attenuation pole of the arrow A2 appears in the 3 GHz to 5 GHz band.
  • the electrostatic capacitances of the first and second parallel arm resonators P1 and P2 are equal, and the lengths of the first and second lead wirings 103 and 104 are equal. Since they are almost the same, two attenuation poles appear in the vicinity of the pass band, and no attenuation pole is located in the 3 GHz to 5 GHz band away from the pass band.
  • the frequency positions of the attenuation poles based on the first and second LC resonances are apart. Therefore, for example, it is possible to improve the attenuation characteristics in the frequency band of 3 GHz to 5 GHz.
  • the specific frequency band is not particularly limited. If the specific frequency band for which the attenuation amount is to be sufficiently large is determined in the attenuation range, the capacitances of the first and second parallel arm resonators P1 and P2 should be different so that the attenuation pole appears in the specific frequency band. You can do it. Further, the lengths of the first and second lead-out lines 17 and 18 may be adjusted so that the attenuation pole appears in a specific frequency band.
  • FIG. 4 is a schematic plan view of the elastic wave filter device of the first embodiment.
  • the electrode structure shown in FIG. 4 is provided on the piezoelectric substrate 21. That is, on the piezoelectric substrate 21, the series arm resonators S 1, S 2, S 3 and the longitudinally coupled resonator type elastic wave filter 11 are connected between the input terminal 2 and the output terminal 3. Ground terminals 22 and 23 connected to the ground potential are provided on the piezoelectric substrate 21.
  • the first lead wiring 17 is connected to the ground potential side end of the first parallel arm resonator P1.
  • the first lead wiring 17 is connected to the ground terminal 22.
  • the second lead wiring 18 is connected to the ground potential side end of the second parallel arm resonator P2.
  • the second lead wiring 18 is connected to the ground terminal 23.
  • FIG. 5 is a circuit diagram of an elastic wave filter device according to a second embodiment of the present invention.
  • the elastic wave filter device 31 of the second embodiment the series arm resonators S1 to S3 shown in FIG. 1 are not provided.
  • the elastic wave filter device 31 is the same as the elastic wave filter device 1 in other points.
  • First and second parallel arm resonators P1 and P2 may be provided on the first and second parallel arms, respectively. Also in this case, if the capacitances of the first parallel arm resonator P1 and the second parallel arm resonator P2 are different from each other, the first parallel arm resonator P1 and the second parallel arm resonator P2 may be provided. The positions of the attenuation pole at the resonance point and the antiresonance point of the first and second LC resonances can be made different. Therefore, also in the elastic wave filter device 31 of the present embodiment, it is possible to sufficiently increase the amount of attenuation in a specific frequency band outside the pass band.
  • a ladder type filter is configured by the series arm resonators S1 to S3 and at least one of the first and second parallel arm resonators P1 and P2.
  • the input side ground end 15 and the output side ground end 16 of the longitudinally coupled resonator type elastic wave filter 11 are commonly connected,
  • the input ground end 15 and the output ground end 16 may be separately connected to the ground potential.
  • the first inductance including the inductance of the first lead wiring 17 be different from the second inductance including the inductance of the second lead wiring 18. Therefore, it is preferable that the lengths of the first lead wiring 17 and the second lead wiring 18 be different. Thereby, the difference between the frequency positions of the resonance point and the antiresonance point of the first LC resonance and the frequency positions of the resonance point and the antiresonance point of the second LC resonance can be increased.
  • FIG. 6 is a circuit diagram showing a duplexer according to a third embodiment of the present invention.
  • the duplexer 61 has a chip body 62.
  • first and second band pass filters 63 and 64 are formed in the chip main body 62.
  • the first band pass filter 63 is a transmission filter
  • the second band pass filter 64 is a reception filter.
  • One ends of the first and second band pass filters 63 and 64 are commonly connected.
  • the first and second band pass filters 63 and 64 may not necessarily be the same Band reception filter and transmission filter. Further, the present invention can be applied to various multiplexers such as triplexers in which three or more band pass filters are commonly connected, as well as the duplexer 61.
  • an elastic wave filter device configured according to the present invention is used for at least one of the first band pass filter 63 and the second band pass filter 64.
  • FIG. 7 is a circuit diagram showing a composite filter device according to a fourth embodiment of the present invention.
  • one end of a plurality of filter devices 74 to 76 is connected in common to a common connection point 72 as a common terminal or the like.
  • at least one of the plurality of filter devices 74 to 76 uses an elastic wave filter device configured according to the present invention.
  • the use of the elastic wave filter device of the present invention makes it possible to increase the amount of attenuation in a specific frequency range outside the pass band.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

通過帯域外の減衰域において、特定の周波数帯の減衰特性を改善することができる、弾性波フィルタ装置を提供する。 入力端子2と出力端子3とを結ぶ直列腕に、縦結合共振子型弾性波フィルタ11が配置されており、直列腕とグラウンド電位とを結ぶ第1,第2の並列腕に第1,第2の並列腕共振子P1,P2がそれぞれ配置されており、縦結合共振子型弾性波フィルタ11の入力側グラウンド端15は、第1,第2の並列腕共振子P1,P2のうち少なくとも一方のグラウンド端と共通接続されており、縦結合共振子型弾性波フィルタ11の出力側グラウンド端16は、第1,第2の並列腕共振子P1,P2のうち少なくとも他方のグラウンド端と共通接続されており、第1の並列腕共振子P1の静電容量と、第2の並列腕共振子P2の静電容量とが異なっている、弾性波フィルタ装置1。

Description

弾性波フィルタ装置、複合フィルタ装置及びマルチプレクサ
 本発明は、縦結合共振子型弾性波フィルタと、複数の並列腕共振子とを有する弾性波フィルタ装置、該弾性波フィルタ装置を有する複合フィルタ装置及びマルチプレクサに関する。
 下記の特許文献1に記載の弾性波フィルタ装置では、縦結合共振子型弾性波フィルタにラダー型フィルタが直列接続されている。ラダー型フィルタの並列腕共振子のグラウンド端と、縦結合共振子型弾性波フィルタのグラウンド端が、チップ上で電気的に分離されている。
 他方、下記の特許文献2の図11には、先行技術としての弾性波フィルタ装置が開示されている。この弾性波フィルタ装置では、縦結合共振子型弾性波フィルタにラダー型フィルタが直列接続されている。ラダー型フィルタの並列腕共振子のグラウンド端と、縦結合共振子型弾性波フィルタの入力側グラウンド端及び出力側グラウンド端とが共通接続されている。
特開2013-81118号公報 国際公開第2011/061904号
 特許文献1に記載の弾性波フィルタ装置では、グラウンドの強化が不十分であった。これに対して、特許文献2の図11に記載の弾性波フィルタ装置では、グラウンドを強化することができる。しかしながら、弾性波フィルタ装置の通過帯域よりも高域側において、高調波に起因する応答が現れ、減衰特性が十分でなかった。
 本発明の目的は、通過帯域外の減衰域において、特定の周波数帯の減衰特性を改善することができる、弾性波フィルタ装置を提供することにある。
 本発明に係る弾性波フィルタ装置は、入力端子と出力端子とを結ぶ直列腕と、前記直列腕とグラウンド電位との間に接続されている複数の並列腕とを有する弾性波フィルタ装置であって、前記直列腕に配置されており、信号が入力される入力端と、信号が出力される出力端と、グラウンド電位に接続される入力側グラウンド端と、グラウンド電位に接続される出力側グラウンド端とを有する、縦結合共振子型弾性波フィルタを備え、前記複数の並列腕が、第1,第2の並列腕を有し、前記第1の並列腕に設けられた第1の並列腕共振子と、前記第2の並列腕に設けられた第2の並列腕共振子とをさらに備え、前記縦結合共振子型弾性波フィルタの前記入力側グラウンド端は、前記第1,第2の並列腕共振子のうち少なくとも一方のグラウンド端と共通接続されており、前記縦結合共振子型弾性波フィルタの前記出力側グラウンド端は、前記第1,第2の並列腕共振子のうち少なくとも他方のグラウンド端と共通接続されており、前記第1の並列腕共振子の静電容量と、前記第2の並列腕共振子の静電容量とが異なっている。
 本発明に係る弾性波フィルタ装置のある特定の局面では、前記直列腕に設けられた直列腕共振子がさらに備えられており、前記直列腕共振子と、前記第1,第2の並列腕共振子の少なくとも一方により、ラダー型フィルタが構成されている。この場合には、弾性波フィルタ装置のフィルタ特性をより一層改善することができる。
 本発明に係る弾性波フィルタ装置の他の特定の局面では、前記縦結合共振子型弾性波フィルタの前記入力側グラウンド端と、前記出力側グラウンド端とが共通接続されている。この場合には、グラウンドを強化することができる。また、通過帯域近傍における減衰特性を効果的に改善することができる。
 本発明に係る弾性波フィルタ装置の別の特定の局面では、前記縦結合共振子型弾性波フィルタ及び前記第1,第2の並列腕共振子が構成されている圧電基板がさらに備えられており、前記圧電基板において、前記第1,第2の並列腕共振子のグラウンド電位側端部に接続されている第1,第2の引き回し配線が設けられている。
 本発明に係る弾性波フィルタ装置のさらに他の特定の局面では、前記第1の並列腕共振子の前記グラウンド電位側端部とグラウンド電位との間の前記第1の引き回し配線のインダクタンスを含む第1のインダクタンスと、前記第2の並列腕共振子の前記グラウンド電位側端部とグラウンド電位との間の前記第2の引き回し配線のインダクタンスを含む第2のインダクタンスとが異なっている。この場合には、第1の並列腕共振子の静電容量と第1のインダクタンスとによる第1のLC共振の共振特性と、第2の並列腕共振子の静電容量と第2のインダクタンスとによる第2のLC共振の共振特性とを利用することにより、異なる周波数域に減衰極を設けることができる。
 本発明に係る複合フィルタ装置は、共通端子に一端が共通接続されている複数のフィルタ装置を備え、前記複数のフィルタ装置のうちの少なくとも1つのフィルタ装置が、本発明に従って構成されている弾性波フィルタ装置からなる。
 本発明に係るマルチプレクサは、通過帯域が異なる複数の帯域通過型フィルタを備え、前記複数の帯域通過型フィルタの一端同士が共通接続されているマルチプレクサであって、前記複数の帯域通過型フィルタの少なくとも1つが、本発明に従って構成されている弾性波フィルタ装置からなる。
 本発明に係る弾性波フィルタ装置によれば、通過帯域外において複数の減衰極を設けることができるため、第1,第2の並列腕共振子の静電容量を選択することにより、通過帯域外の減衰域において、特定の周波数帯の減衰特性を改善することができる。従って、帯域外減衰特性に優れた弾性波フィルタ装置を有する複合フィルタ装置及びマルチプレクサなどを提供することが可能となる。
図1は、本発明の第1の実施形態に係る弾性波フィルタ装置の回路図である。 図2は、比較例の弾性波フィルタ装置の回路図である。 図3は、実施例及び比較例の弾性波フィルタ装置のフィルタ特性を示す図である。 図4は、第1の実施形態に係る弾性波フィルタ装置の略図的平面図である。 図5は、本発明の第2の実施形態に係る弾性波フィルタ装置の回路図である。 図6は、本発明の第3の実施形態としてのデュプレクサを示す回路図である。 図7は、本発明の第4の実施形態としての複合フィルタ装置を示す回路図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波フィルタ装置の回路図である。
 弾性波フィルタ装置1は、Band20の受信フィルタである。なお、Band20の受信帯域、すなわち通過帯域は791MHz~821MHzである。
 弾性波フィルタ装置1は、入力端子2と出力端子3とを有する。入力端子2と出力端子3とを結ぶ直列腕に、縦結合共振子型弾性波フィルタ11が配置されている。縦結合共振子型弾性波フィルタ11に直列にラダー型フィルタ12が接続されている。
 縦結合共振子型弾性波フィルタ11は、第1~第5のIDT電極11a~11eと、反射器11f,11gとを有する。すなわち、縦結合共振子型弾性波フィルタ11は、5IDT型の縦結合共振子型弾性波フィルタである。
 縦結合共振子型弾性波フィルタ11は、信号が入力される入力端13と、信号が出力される出力端14とを有する。入力端13に、第1,第3,第5のIDT11a,11c,11eの入力端が共通接続されている。出力端14に、第2,第4のIDT電極11b,11dの出力端が共通接続されている。第2,第4のIDT電極11b,11dの出力端側とは反対側の端部と、反射器11f,11gの一方端とが、入力側グラウンド端15に共通接続されている。第1,第3,第5のIDT電極11a,11c,11eの入力側端部とは反対側の端部と、反射器11f,11gの他方端とが出力側グラウンド端16に共通接続されている。
 ラダー型フィルタ12は、複数の直列腕共振子S1~S3と、第1,第2の並列腕共振子のP1,P2とを有する。複数の直列腕共振子S1~S3は、直列腕において互いに直列に接続されている。
 第1の並列腕共振子P1は、直列腕共振子S1,S2間の接続点とグラウンド電位とを結ぶ第1の並列腕に設けられている。
 第2の並列腕共振子P2は、直列腕共振子S2,S3間の接続点とグラウンド電位とを結ぶ第2の並列腕に設けられている。
 なお、第1の並列腕共振子P1のグラウンド電位側端部とグラウンド電位とを結ぶ部分は、第1の並列腕共振子P1に接続されている第1の引き回し配線17を有する。第2の並列腕共振子P2のグラウンド電位側端部と、グラウンド電位とを結ぶ部分には、第2の並列腕共振子P2に接続されている第2の引き回し配線18を有する。
 縦結合共振子型弾性波フィルタ11の入力側グラウンド端15及び出力側グラウンド端16は、図示のように第3の引き回し配線19に接続され、グラウンド電位に共通接続されている。第3の引き回し配線19に、第1の引き回し配線17が接続されている。また、第3の引き回し配線19に第4の引き回し配線20が接続されている。第4の引き回し配線20は、第2の引き回し配線18に接続されている。
 第1の並列腕共振子P1の静電容量と第2の並列腕共振子P2の静電容量とは異なっている。
 弾性波フィルタ装置1の特徴は、縦結合共振子型弾性波フィルタ11の入力側グラウンド端15と、第1の並列腕共振子P1のグラウンド端とが共通接続されていること、縦結合共振子型弾性波フィルタ11の出力側グラウンド端16と、第2の並列腕共振子P2のグラウンド端とが共通接続されていること、並びに第1の並列腕共振子P1の静電容量と第2の並列腕共振子P2の静電容量とが異なっていることにある。それによって、減衰域における特定の周波数帯において、十分な減衰量を得ることが可能とされている。これを、図2の比較例との対比により、図3を参照して説明する。
 第1の実施形態の弾性波フィルタ装置1の実施例として、弾性波フィルタ装置を下記の設計パラメータで作製した。
 縦結合共振子型弾性波フィルタ11及びラダー型フィルタ12は、同一圧電基板上に電極構造を設けることにより形成した。
 縦結合共振子型弾性波フィルタ11の設計パラメータ:第1~第5のIDT電極11a~11e及び反射器11f,11gにおける電極指の本数、電極指ピッチで定まる波長、電極指交差幅、デューティは以下の表1に示す通りとした。
Figure JPOXMLDOC01-appb-T000001
 第1~第5のIDT電極11a~11e及び反射器11f,11gにおける電極材料としては、AlCu/Ti/Pt/NiCrの積層膜を用いた。各層の厚みは、184nm/70nm/86nm/10nmとした。
 直列腕共振子S1~S3及び第1,第2の並列腕共振子P1,P2の設計パラメータは下記の表2に示す通りとした。
Figure JPOXMLDOC01-appb-T000002
 なお、電極材料としては、AlCu/Ti/Pt/NiCrの積層膜を用いた。各層の厚みは、184nm/70nm/86nm/10nmとした。
 また、第1の並列腕共振子P1の静電容量は4.94pFとし、第2の並列腕共振子P2の静電容量は2.82pFとした。
 上記第1,第2の並列腕共振子P1,P2のグラウンド電位側端部に接続されている第1,第2の引き回し配線17,18は、上記圧電基板から実装基板に至る経路の一部を構成している。
 図2に示す比較例の弾性波フィルタ装置101を以下のようにして用意した。なお、比較例の弾性波フィルタ装置101では、縦結合共振子型弾性波フィルタ11の入力側グラウンド端15及び出力側グラウンド端16、第1,第2の並列腕共振子P1,P2が圧電基板上の共通接続点102に共通接続されており、この共通接続点102がグラウンド電位に接続されていること、並びに第1,第2の並列腕共振子P1,P2の静電容量が等しいことを除いては、上記実施例と同様とした。
 第1,第2の並列腕共振子P1,P2の静電容量は3.88pFとした。
 第1の並列腕共振子P1のグラウンド電位側端部と共通接続点102とを結ぶ第1の引き回し配線103と、第2の並列腕共振子P2のグラウンド電位側端部と共通接続点102とを結ぶ第2の引き回し配線104の長さを同等とした。図3の実線は実施例の弾性波フィルタ装置のフィルタ特性を示し、破線は比較例の弾性波フィルタ装置のフィルタ特性を示す。
 図3から明らかなように、実施例及び比較例のいずれにおいても、通過帯域である791MHz~821MHzにおけるフィルタ特性はほぼ同等である。他方、3GHz~5GHzの通過帯域外減衰域では、比較例に比べ、実施例によれば、十分減衰量が確保されている。3GHz~5GHzはWiFiなどに用いられる周波数帯である。
 近年、スマートフォンなどでは、複数のバンドの送信フィルタ及び受信フィルタ並びにWiFiもしくはGPSの通信に用いられるフィルタなどの多数のフィルタが、アンテナ端に共通接続されている。従って、例えば、Band20の受信フィルタでは、WiFiに用いられる3GHz~5GHzにおける減衰量が十分大きいことが求められる。図3に示したように、実施例によれば、この3GHz~5GHzにおける減衰量を十分に大きくすることができる。すなわち、フィルタ特性を効果的に改善することができる。
 なお、実施例の弾性波フィルタ装置1において、3GHz~5GHzにおける減衰量が十分大きくされているのは、矢印A1で示す減衰極に加えて、矢印A2で示す減衰極が現れていることによると考えられる。矢印A1で示す減衰極及び矢印A2で示す減衰極は、第1,第2の並列腕共振子P1,P2を利用したLC共振による共振特性に起因している。
 実施例では、第1の並列腕共振子P1の静電容量と第2の並列腕共振子P2の静電容量が異なっている。従って、第1の並列腕共振子P1の静電容量と第1の引き回し配線17のインダクタンス分による第1のLC共振の共振点及び反共振点の周波数位置と、第2の並列腕共振子P2の静電容量と第2の引き回し配線18のインダクタンス分とによる第2のLC共振の共振点及び反共振点の周波数位置とが大きく異なっている。そのため、矢印A1の減衰極に加えて、3GHz~5GHz帯に矢印A2の減衰極が現れている。
 これに対して、比較例の弾性波フィルタ装置101では、第1,第2の並列腕共振子P1,P2の静電容量が等しく、第1,第2の引き回し配線103,104の長さがほぼ同等であるため、通過帯域の近傍において2つの減衰極が現れており、通過帯域から離れた3GHz~5GHz帯には減衰極が位置していない。
 上記の通り、弾性波フィルタ装置1では、第1,第2のLC共振に基づく減衰極の周波数位置が離れている。そのため、例えば、3GHz~5GHzの周波数帯における減衰特性を改善することが可能とされている。
 なお、本発明においては、通過帯域から特定の周波数帯における減衰量を改善するに当たり、この特定の周波数帯は特に限定されない。減衰域において、減衰量を十分大きくしたい特定の周波数帯が決まれば、該特定の周波数帯において減衰極が現れるように、第1,第2の並列腕共振子P1,P2の静電容量を異ならせればよい。また、第1,第2の引き回し配線17,18の長さも、特定の周波数帯に減衰極が現れるように調整すればよい。
 図4は、第1の実施形態の弾性波フィルタ装置の略図的平面図である。圧電基板21上に図4に示す電極構造が設けられている。すなわち、圧電基板21上において、入力端子2と出力端子3との間に、直列腕共振子S1,S2,S3及び縦結合共振子型弾性波フィルタ11が接続されている。グラウンド電位に接続されるグラウンド端子22,23が、圧電基板21上に設けられている。第1の並列腕共振子P1のグラウンド電位側端部に第1の引き回し配線17が接続されている。第1の引き回し配線17は、グラウンド端子22に接続されている。第2の引き回し配線18は、第2の並列腕共振子P2のグラウンド電位側端部に接続されている。第2の引き回し配線18は、グラウンド端子23に接続されている。第1の引き回し配線17と第2の引き回し配線18の長さを異ならせること等により、第1,第2のLC共振の減衰極が現れる周波数を調整することができる。
 図5は、本発明の第2の実施形態に係る弾性波フィルタ装置の回路図である。第2の実施形態の弾性波フィルタ装置31では、図1に示した直列腕共振子S1~S3が設けられていない。その他の点は、弾性波フィルタ装置31は、弾性波フィルタ装置1と同様である。
 第2の実施形態の弾性波フィルタ装置31のように、本発明においては、縦結合共振子型弾性波フィルタ11に、ラダー型フィルタが直列接続されている必要はない。第1,第2の並列腕に、それぞれ第1,第2の並列腕共振子P1,P2が設けられておればよい。この場合においても、第1の並列腕共振子P1と第2の並列腕共振子P2との静電容量が異なっておれば、第1,第2の並列腕共振子P1,P2をそれぞれ有する第1,第2のLC共振の共振点及び反共振点による減衰極の位置を異ならせることができる。従って、本実施形態の弾性波フィルタ装置31においても、通過帯域外の特定の周波数帯における減衰量を十分大きくすることができる。
 もっとも、直列腕共振子S1~S3と、第1,第2の並列腕共振子P1,P2の少なくとも一方とにより、ラダー型フィルタが構成されていることが好ましい。それによって、弾性波フィルタ装置の通過帯域近傍のフィルタ特性の急峻性を効果的に高めることができる。
 また、第1及び第2の実施形態の弾性波フィルタ装置1,31では、縦結合共振子型弾性波フィルタ11の入力側グラウンド端15と出力側グラウンド端16とが共通接続されていたが、入力側グラウンド端15と出力側グラウンド端16とが、個別にグラウンド電位に接続されていてもよい。もっとも、弾性波フィルタ装置1,31のように、入力側グラウンド端15と出力側グラウンド端16が弾性波フィルタチップ内において共通接続されていることが好ましい。それによって、通過帯域近傍における減衰特性の劣化が生じ難い。
 また、上記第1の引き回し配線17のインダクタンスを含む第1のインダクタンスと、第2の引き回し配線18のインダクタンスを含む第2のインダクタンスとが異なっていることが好ましい。従って、第1の引き回し配線17及び第2の引き回し配線18の長さが異なっていることが好ましい。それによって、第1のLC共振の共振点及び反共振点の周波数位置と、第2のLC共振の共振点及び反共振点の周波数位置との差を大きくすることができる。
 図6は、本発明の第3の実施形態としてのデュプレクサを示す回路図である。デュプレクサ61は、チップ本体62を有する。このチップ本体62内に、第1,第2の帯域通過型フィルタ63,64が構成されている。第1の帯域通過型フィルタ63が、送信フィルタであり、第2の帯域通過型フィルタ64が受信フィルタである。第1,第2の帯域通過型フィルタ63,64の一端が共通接続されている。
 なお、第1,第2の帯域通過型フィルタ63,64は、必ずしも同じBandの受信フィルタ及び送信フィルタではなくともよい。また、デュプレクサ61に限らず、3以上の帯域通過型フィルタが共通接続されているトリプレクサなどの様々なマルチプレクサに本発明を適用することができる。
 図6のデュプレクサ61においては、第1の帯域通過型フィルタ63及び第2の帯域通過型フィルタ64の少なくとも一方に、本発明に従って構成されている弾性波フィルタ装置が用いられている。それによって、通過帯域外の特定の周波数域における減衰量を十分大きくすることができる。
 図7は、本発明の第4の実施形態としての複合フィルタ装置を示す回路図である。
 複合フィルタ装置71では、共通端子などとしての共通接続点72に、複数のフィルタ装置74~76の一端が共通接続されている。複合フィルタ装置71では、複数のフィルタ装置74~76の少なくとも1つに、本発明に従って構成されている弾性波フィルタ装置が用いられる。それによって、複合フィルタ装置71においても、本発明の弾性波フィルタ装置を用いることにより、通過帯域外の特定の周波数域における減衰量を大きくすることができる。
1…弾性波フィルタ装置
2…入力端子
3…出力端子
11…縦結合共振子型弾性波フィルタ
11a~11e…第1~第5のIDT電極
11f,11g…反射器
12…ラダー型フィルタ
13…入力端
14…出力端
15…入力側グラウンド端
16…出力側グラウンド端
17…第1の引き回し配線
18…第2の引き回し配線
19…第3の引き回し配線
20…第4の引き回し配線
21…圧電基板
22,23…グラウンド端子
31…弾性波フィルタ装置
61…デュプレクサ
62…チップ本体
63…第1の帯域通過型フィルタ
64…第2の帯域通過型フィルタ
71…複合フィルタ装置
72…共通接続点
74~76…フィルタ装置
P1,P2…第1,第2の並列腕共振子
S1~S3…直列腕共振子

Claims (7)

  1.  入力端子と出力端子とを結ぶ直列腕と、前記直列腕とグラウンド電位との間に接続されている複数の並列腕とを有する弾性波フィルタ装置であって、
     前記直列腕に配置されており、信号が入力される入力端と、信号が出力される出力端と、グラウンド電位に接続される入力側グラウンド端と、グラウンド電位に接続される出力側グラウンド端とを有する、縦結合共振子型弾性波フィルタを備え、
     前記複数の並列腕が、第1,第2の並列腕を有し、
     前記第1の並列腕に設けられた第1の並列腕共振子と、
     前記第2の並列腕に設けられた第2の並列腕共振子とをさらに備え、
     前記縦結合共振子型弾性波フィルタの前記入力側グラウンド端は、前記第1,第2の並列腕共振子のうち少なくとも一方のグラウンド端と共通接続されており、
     前記縦結合共振子型弾性波フィルタの前記出力側グラウンド端は、前記第1,第2の並列腕共振子のうち少なくとも他方のグラウンド端と共通接続されており、
     前記第1の並列腕共振子の静電容量と、前記第2の並列腕共振子の静電容量とが異なっている、弾性波フィルタ装置。
  2.  前記直列腕に設けられた直列腕共振子をさらに備え、前記直列腕共振子と、前記第1,第2の並列腕共振子の少なくとも一方により、ラダー型フィルタが構成されている、請求項1に記載の弾性波フィルタ装置。
  3.  前記縦結合共振子型弾性波フィルタの前記入力側グラウンド端と、前記出力側グラウンド端とが共通接続されている、請求項1または2に記載の弾性波フィルタ装置。
  4.  前記縦結合共振子型弾性波フィルタ及び前記第1,第2の並列腕共振子が構成されている圧電基板をさらに備え、前記圧電基板において、前記第1,第2の並列腕共振子のグラウンド電位側端部に接続されている第1,第2の引き回し配線が設けられている、請求項1~3のいずれか1項に記載の弾性波フィルタ装置。
  5.  前記第1の並列腕共振子の前記グラウンド電位側端部とグラウンド電位との間の前記第1の引き回し配線のインダクタンスを含む第1のインダクタンスと、前記第2の並列腕共振子の前記グラウンド電位側端部とグラウンド電位との間の前記第2の引き回し配線のインダクタンスを含む第2のインダクタンスとが異なっている、請求項4に記載の弾性波フィルタ装置。
  6.  共通端子に一端が共通接続されている複数のフィルタ装置を備え、
     前記複数のフィルタ装置のうちの少なくとも1つのフィルタ装置が、請求項1~5のいずれか1項に記載の弾性波フィルタ装置からなる、複合フィルタ装置。
  7.  通過帯域が異なる複数の帯域通過型フィルタを備え、前記複数の帯域通過型フィルタの一端同士が共通接続されているマルチプレクサであって、
     前記複数の帯域通過型フィルタの少なくとも1つが、請求項1~5のいずれか1項に記載の弾性波フィルタ装置からなる、マルチプレクサ。
PCT/JP2018/022521 2017-06-20 2018-06-13 弾性波フィルタ装置、複合フィルタ装置及びマルチプレクサ WO2018235689A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197035025A KR102329364B1 (ko) 2017-06-20 2018-06-13 탄성파 필터 장치, 복합 필터 장치 및 멀티플렉서
CN201880040387.XA CN110771040B (zh) 2017-06-20 2018-06-13 弹性波滤波器装置、复合滤波器装置以及多工器
US16/703,932 US11362642B2 (en) 2017-06-20 2019-12-05 Acoustic wave filter device, composite filter device, and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017120411 2017-06-20
JP2017-120411 2017-06-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/703,932 Continuation US11362642B2 (en) 2017-06-20 2019-12-05 Acoustic wave filter device, composite filter device, and multiplexer

Publications (1)

Publication Number Publication Date
WO2018235689A1 true WO2018235689A1 (ja) 2018-12-27

Family

ID=64737583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022521 WO2018235689A1 (ja) 2017-06-20 2018-06-13 弾性波フィルタ装置、複合フィルタ装置及びマルチプレクサ

Country Status (4)

Country Link
US (1) US11362642B2 (ja)
KR (1) KR102329364B1 (ja)
CN (1) CN110771040B (ja)
WO (1) WO2018235689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468111A (zh) * 2020-12-07 2021-03-09 诺思(天津)微系统有限责任公司 改善非线性性能的方法和声波滤波器、多工器、通信设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511131B (zh) * 2021-02-05 2021-05-25 成都频岢微电子有限公司 一种具有高隔离度和高通频带低频侧高陡峭度的双工器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131290A (ja) * 1993-10-28 1995-05-19 Japan Radio Co Ltd 複合弾性表面波フィルタおよび複合弾性表面波フィルタを用いた移動体通信機
WO2011061904A1 (ja) * 2009-11-19 2011-05-26 パナソニック株式会社 弾性波フィルタ装置とこれを用いたアンテナ共用器
WO2016013330A1 (ja) * 2014-07-22 2016-01-28 株式会社村田製作所 デュプレクサ
JP2017085262A (ja) * 2015-10-26 2017-05-18 株式会社村田製作所 帯域通過型フィルタ及びデュプレクサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69323163T2 (de) 1992-12-01 1999-06-02 Japan Radio Co Ltd Akustischer Oberflächenwellenfilter und mobiles Kommunikationssystem mit solchem Filter
JP2002314372A (ja) * 2001-02-07 2002-10-25 Murata Mfg Co Ltd 弾性表面波フィルタ装置
DE102005032058B4 (de) * 2005-07-08 2016-12-29 Epcos Ag HF-Filter mit verbesserter Gegenbandunterdrückung
JP5700121B2 (ja) * 2011-06-09 2015-04-15 株式会社村田製作所 弾性波フィルタ装置
JP5846833B2 (ja) 2011-10-05 2016-01-20 太陽誘電株式会社 デュプレクサ
JP6344161B2 (ja) * 2014-09-03 2018-06-20 株式会社村田製作所 ラダー型フィルタ及びデュプレクサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131290A (ja) * 1993-10-28 1995-05-19 Japan Radio Co Ltd 複合弾性表面波フィルタおよび複合弾性表面波フィルタを用いた移動体通信機
WO2011061904A1 (ja) * 2009-11-19 2011-05-26 パナソニック株式会社 弾性波フィルタ装置とこれを用いたアンテナ共用器
WO2016013330A1 (ja) * 2014-07-22 2016-01-28 株式会社村田製作所 デュプレクサ
JP2017085262A (ja) * 2015-10-26 2017-05-18 株式会社村田製作所 帯域通過型フィルタ及びデュプレクサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468111A (zh) * 2020-12-07 2021-03-09 诺思(天津)微系统有限责任公司 改善非线性性能的方法和声波滤波器、多工器、通信设备

Also Published As

Publication number Publication date
CN110771040B (zh) 2023-08-25
US20200112299A1 (en) 2020-04-09
CN110771040A (zh) 2020-02-07
KR102329364B1 (ko) 2021-11-22
KR20190140047A (ko) 2019-12-18
US11362642B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
KR101914890B1 (ko) 래더형 필터, 탄성파 필터 모듈 및 듀플렉서
US9806693B2 (en) Duplexer with a ladder filter portion and a specifically connected capacitor or elastic wave resonator
JP5088412B2 (ja) ラダー型弾性波フィルタ
US9998098B2 (en) Band pass filter and duplexer
JP5423931B2 (ja) 弾性波分波器
US9762209B2 (en) Duplexer with a series trap element and a specifically connected capacitance or elastic wave resonator
KR20160091279A (ko) 래더형 필터
CN103959647A (zh) 梯型弹性波滤波器和利用该梯型弹性波滤波器的天线共用器
JP4835814B2 (ja) 弾性波フィルタ装置
JP2015062277A (ja) 弾性波フィルタ装置及びデュプレクサ
JP2004349893A (ja) 弾性表面波フィルタ及びそれを有する分波器
WO2014167752A1 (ja) デュプレクサ
US7868716B2 (en) Acoustic wave filter apparatus
JP5768951B1 (ja) フィルタ装置
WO2014167755A1 (ja) デュプレクサ
WO2018096799A1 (ja) フィルタ装置およびマルチプレクサ
US11362642B2 (en) Acoustic wave filter device, composite filter device, and multiplexer
JP7251530B2 (ja) 複合フィルタ装置
US10951194B2 (en) Acoustic wave filter, multiplexer, and communication apparatus
WO2017208856A1 (ja) 弾性波フィルタ装置
JP5458738B2 (ja) 弾性表面波装置
CN211830723U (zh) 弹性波滤波器装置以及复合滤波器装置
WO2018123545A1 (ja) マルチプレクサ
WO2018159111A1 (ja) 弾性波装置及びその製造方法
CN116210155A (zh) 多工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197035025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP