WO2017148127A1 - 一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板 - Google Patents

一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板 Download PDF

Info

Publication number
WO2017148127A1
WO2017148127A1 PCT/CN2016/098449 CN2016098449W WO2017148127A1 WO 2017148127 A1 WO2017148127 A1 WO 2017148127A1 CN 2016098449 W CN2016098449 W CN 2016098449W WO 2017148127 A1 WO2017148127 A1 WO 2017148127A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
halogen
parts
epoxy resin
phosphorus
Prior art date
Application number
PCT/CN2016/098449
Other languages
English (en)
French (fr)
Inventor
游江
黄天辉
许永静
杨中强
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to KR1020167033644A priority Critical patent/KR101898365B1/ko
Priority to EP16867380.4A priority patent/EP3241868A4/en
Priority to US15/529,335 priority patent/US20180126701A1/en
Publication of WO2017148127A1 publication Critical patent/WO2017148127A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4071Curing agents not provided for by the groups C08G59/42 - C08G59/66 phosphorus containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/303Average diameter greater than 1µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition

Definitions

  • the present invention relates to a halogen-free thermosetting resin composition, and more particularly to a prepreg made of the halogen-free thermosetting resin composition and a laminate for a printed circuit.
  • the application frequency is constantly increasing.
  • the dielectric constant and dielectric loss values are required to be lower and lower, thus reducing Dk/Df. Has become a hot spot for the substrate industry.
  • the composition of CN1723243A and Japanese Patent No. 2001/302,879 discloses reactive phosphonates, but both are used as flame retardants, and only the hydroxyl groups of the phosphonates can react with the epoxy resin.
  • the high curing efficiency is low, and the composition needs to additionally add a curing agent such as benzoxazine, phenolic, etc., and the addition of these curing agents deteriorates the dielectric properties of the cured product, and it is difficult to meet the dielectric properties of the thermosetting high-speed laminate.
  • the content of benzoxazine is high, and it is difficult to achieve lower dielectric properties.
  • the phosphonate disclosed in the specification of CN1723243A requires a phosphorus content of greater than about 12%.
  • the phosphorus content of the phosphonate is too high and the distribution is dense, and the cured product is easy to absorb water, and is used in the printed circuit laminate to easily absorb moisture and blast.
  • CN1723243A does not define the molecular weight of the phosphonate.
  • An object of the present invention is to provide a novel halogen-free thermosetting resin composition, and a prepreg and a laminate for printed circuit board using the same.
  • the printed circuit board laminate produced by using the resin composition has high glass transition temperature, excellent dielectric properties, low water absorption, high heat resistance, and good processability, and can realize halogen-free flame retardant. , reached UL94V-0.
  • the inventors conducted intensive studies to achieve the above object, and found that by using a halogen-free epoxy resin, a compound having a dihydrobenzoxazine ring, a phosphorus-containing bisphenol, silica, and optionally other substances, The above objects can be attained by appropriately mixing the resulting novel composition.
  • thermosetting resin composition containing the following four substances as essential components, and the organic solid matter is 100 parts by weight, which comprises:
  • a phosphorus-containing bisphenol having a specific structure can be used as a curing agent for an epoxy resin, and the reactive group includes a hydroxyl group and a phosphorus unit at both ends, and the reaction does not generate a secondary hydroxyl group, and the cured product is vitrified. High transition temperature, excellent dielectric properties and heat resistance.
  • the phosphorus-containing bisphenol has a high phosphorus content and is used as a curing agent together with a halogen-free flame retardant effect, and no additional flame retardant is added.
  • the invention adopts a phosphorus-containing bisphenol having a phosphorus content of 8 wt% to 10 wt%, which has high molecular structure symmetry and uniform phosphorus distribution, and can be used as a curing agent for an epoxy resin; Epoxy tree
  • the phosphorus unit can also react with the secondary hydroxyl group to eliminate the secondary hydroxyl group at >175 ° C, so that the cured product has a high crosslinking density and a low secondary hydroxyl group, thereby having a high Tg and excellent Dielectric properties.
  • the present invention employs a phosphorus-containing bisphenol having a specific molecular weight which has a low melt viscosity in a specific molecular weight range, thereby allowing the composition to maintain a suitable melt viscosity and good processability. It can add more silica filler, improve the modulus and dimensional stability of the cured product, and further reduce the water absorption of the cured product.
  • the reaction process of the phosphorus-containing bisphenol and the epoxy resin used in the present invention is as follows.
  • the halogen-free thermosetting resin composition of the present invention employs a halogen-free epoxy resin having a specific molecular structure, which has high functionality and good dielectric properties, and has a cured product having a high Tg and a low water absorption.
  • the halogen-free thermosetting resin composition of the present invention also employs a compound having a dihydrobenzoxazine ring which has high Tg, good dielectric properties and heat resistance, and low water absorption.
  • a compound having a dihydrobenzoxazine ring is added to the above halogen-free epoxy resin, and the cured product not only has high Tg, high heat resistance and low water absorption, but also excellent dielectric properties and high modulus. Higher modulus can improve the expansion and contraction of the laminate during processing; in addition, the compound with dihydrobenzoxazine ring contains nitrogen, and the phosphorus in nitrogen and phosphorus-containing bisphenol is synergistically flame retardant. The effect of reducing the flame retardancy of the cured product to the UL required for UL 94V-0 The content further reduces the water absorption rate.
  • the compound having a dihydrobenzoxazine ring is added in an amount of 1.5 to 4.8 parts by weight, more than 5 parts by weight or less than 1.5 parts by weight.
  • the amount of addition is more synergistic with the phosphorus-containing bisphenol to cure the flame retardant effect, and can further reduce the water absorption rate.
  • the halogen-free thermosetting resin composition of the invention further comprises 30%-70% of silica, which not only solves the problem of large melt viscosity of the phosphorus-containing bisphenol, but also reduces the thermal expansion coefficient of the cured product and increases the modulus. And dimensional stability further improve flame retardancy and reduce dielectric loss.
  • the present invention also provides a prepreg obtained by impregnating a base material using the above halogen-free thermosetting resin composition and then heat-drying, the base material being a non-woven fabric or other fabric.
  • the present invention also provides a laminate for a printed circuit board obtained by heat-pressing one or more prepregs, bonding a prepreg, and a metal foil bonded to one or both sides of the laminate. .
  • the present invention has at least the following beneficial effects:
  • the halogen-free thermosetting resin composition of the present invention uses a halogen-free epoxy resin having a specific molecular structure, which has high functionality and good dielectric properties, and has a high Tg of a cured product and a low water absorption rate;
  • the halogen-free thermosetting resin composition of the present invention employs a compound having a dihydrobenzoxazine ring, which has a high Tg and a low water absorption rate, and greatly improves the water absorption of the cured product;
  • the dihydrobenzoxazine ring compound contains nitrogen, and the nitrogen element and the phosphorus element in the phosphorus-containing bisphenol have synergistic flame retardant effect, which can reduce the flame retardancy of the cured product to the phosphorus content required for UL 94V-0, further Decreasing the water absorption rate, especially when the amount thereof is controlled to be 1.5-4.8 parts by weight, compared with the addition amount of more than 5 parts by weight or less than 1.5 parts by weight, the synergistic curing flame retardant effect is more synergistic with the phosphorus-containing bisphenol. And can further reduce the water absorption rate;
  • the halogen-free thermosetting resin composition of the present invention uses phosphorus-containing bisphenol as a curing agent and a flame retardant, and the phosphorus-containing bisphenol has high structural symmetry, and the hydroxyl groups at both ends can react with the epoxy group of the epoxy resin, and Phosphate structure It can react with the secondary hydroxyl group of epoxy resin, and the cured product Tg has high dielectric property.
  • the phosphorus-containing bisphenol has high phosphorus content and can not sacrifice the cured product Tg, dielectric properties, heat resistance and moisture resistance.
  • the halogen-free flame retardant is realized under the premise, and the flame retardancy of the cured product reaches UL94V-0 level: in addition, the phosphorus-containing double component has a small molecular weight, a low melt viscosity, excellent wettability to the filler, and a high proportion of the filler. Lower melt viscosity, good processability;
  • the halogen-free thermosetting resin composition of the present invention further contains 30% to 70% of silica, which not only solves the problem of large melt viscosity of the phosphorus-containing bisphenol, but also reduces the thermal expansion coefficient of the cured product. Improve modulus and dimensional stability, further improve flame retardancy and reduce dielectric loss;
  • thermosetting resin composition containing the following four substances as essential components, and the organic solid content is 100 parts by weight, which comprises:
  • the component (A) in the present invention is a halogen-free epoxy resin, and is used in an amount of 16 to 42 parts by weight, for example, 16 parts by weight, 18 parts by weight, 19 parts by weight, 20 parts by weight, 22 parts by weight, 23 Parts by weight, 24 Parts by weight, 25 parts by weight, 26 parts by weight, 27 parts by weight, 28 parts by weight, 29 parts by weight, 30 parts by weight, 32 parts by weight, 34 parts by weight, 36 parts by weight, 38 parts by weight, 40 parts by weight or 42 parts by weight .
  • the halogen-free epoxy resin may be selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, o-cresol novolac epoxy resin, bisphenol A type novolac epoxy resin, and trisphenol type. Any one or a mixture of at least two of a novolac epoxy resin, a dicyclopentadiene novolac epoxy resin, a biphenyl type novolac epoxy resin, an alkylbenzene type novolac epoxy resin or a naphthol type novolac epoxy resin.
  • the above epoxy resins are all halogen-free epoxy resins.
  • the halogen-free epoxy resin is preferably selected from the group consisting of epoxy resins having the following structure:
  • X 1 , X 2 , X 3 are each independently selected from R 1 is selected from a hydrogen atom, a substituted or unsubstituted C1-C5 (e.g., C2, C3 or C4) linear alkyl group or a substituted or unsubstituted C1-C5 (e.g., C2, C3 or C4) branched alkyl group. Any one.
  • R 1 is selected from a hydrogen atom, a substituted or unsubstituted C1-C5 (e.g., C2, C3 or C4) linear alkyl group or a substituted or unsubstituted C1-C5 (e.g., C2, C3 or C4) branched alkyl group. Any one.
  • Y 1 and Y 2 are each independently selected from a single bond, -CH 2 -, Any one wherein R 2 is selected from a hydrogen atom, a substituted or unsubstituted C1-C5 (eg C2, C3 or C4) linear alkyl group or a substituted or unsubstituted C1-C5 (eg C2, C3 or C4) One of the branched alkyl groups.
  • n is any integer from 1 to 10, such as 2, 3, 4, 5, 6, 7, 8, or 9.
  • the halogen-free thermosetting resin composition of the present invention uses the above-mentioned specific molecular structure of a halogen-free epoxy resin, It has high functionality and good dielectric properties, and its cured product has high Tg and low water absorption.
  • the component (B) described in the present invention is a compound having a dihydrobenzoxazine ring, and is used in an amount of 1.5 to 4.8 parts by weight, for example, 1.5 parts by weight, 1.8 parts by weight, 2.1 parts by weight, and 2.4 parts by weight. 2.7 parts by weight, 3.0 parts by weight, 3.3 parts by weight, 3.6 parts by weight, 3.9 parts by weight, 4.2 parts by weight, 4.5 parts by weight or 4.8 parts by weight. If the amount is less than 1.5 parts by weight, the water absorption of the cured product and the synergistic flame retarding effect with phosphorus are not significant. If the amount is more than 4.8 parts by weight, the cured product has poor dielectric properties and is brittle and has poor processability.
  • the compound having a dihydrobenzoxazine ring may be selected from the group consisting of bisphenol A type benzoxazine represented by formula (I) and bisphenol A type benzoxazine represented by formula (II). Any of bisphenol F benzoxazine, MDA (4,4-diaminodiphenylmethane) benzoxazine, phenolphthalein benzoxazine or dicyclopentadiene benzoxazine Or a mixture of at least two.
  • R 3 is independently selected from Any of them, R 4 is
  • the component (C) described in the present invention is a phosphorus-containing bisphenol which is simultaneously used as a curing agent and a flame retardant, and is used in an amount of 10 to 28 parts by weight, for example, 10 parts by weight, 12 parts by weight, and 14 parts by weight. Parts, 16 parts by weight, 18 parts by weight, 20 parts by weight, 22 parts by weight, 24 parts by weight, 26 parts by weight or 28 parts by weight. If the addition is too small, the dielectric properties and flame retardancy of the cured product are poor; if too much is added, the water absorption of the cured product is too high.
  • the phosphorus content of the phosphorus-containing bisphenol curing agent is from 8 wt% to 10 wt%, such as 8 wt%, 8.2 wt%, 8.3 wt%, 8.5 wt%, 8.8 wt%, 9 wt% of the phosphorus-containing bisphenol curing agent. %, 9.2 wt%, 9.5 wt%, 9.8 wt%, and 10 wt%.
  • the invention adopts a phosphorus-containing bisphenol curing agent having a phosphorus content of 8 wt% to 10 wt%, has high molecular structure symmetry and uniform and non-dense phosphorus distribution, and can be used as a curing agent for an epoxy resin;
  • the phosphorus unit can also react with the secondary hydroxyl group to eliminate the secondary hydroxyl group at >175 ° C, so that the cured product has a high crosslinking density and a low secondary hydroxyl group, thereby having a high Tg and Excellent dielectric properties.
  • the phosphorus-containing bisphenol has the following structure:
  • n is any integer from 2 to 20, such as 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 17, 18 or 20, preferably n is any integer from 3 to 10.
  • the phosphorus-containing bisphenol has a weight average molecular weight of 1000-6500, such as 1000, 1200, 1500, 1800, 2000, 2200, 2500, 2800, 3000, 3500, 4000, 4500, 4800, 5100, 5800. 6,000 or 6500, preferably 1000-4500, further preferably 1000-3000.
  • 1000-6500 such as 1000, 1200, 1500, 1800, 2000, 2200, 2500, 2800, 3000, 3500, 4000, 4500, 4800, 5100, 5800. 6,000 or 6500, preferably 1000-4500, further preferably 1000-3000.
  • the weight average molecular weight is less than 1000, the cured product has a low Tg and poor heat resistance; when the weight average molecular weight is more than 6,500, the solubility of the phosphorus-containing bisphenol in an organic solvent is poor, and a good and uniform glue cannot be obtained. Therefore, it is difficult to meet the process requirements of the copper clad laminate.
  • the component (D) described in the present invention is silica, and its use amount is 30-70 parts by weight, for example, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight, 65 parts by weight or 70 parts by weight. If the addition is too small, the resin composition has a low melt viscosity during processing, the flow adhesive is not easy to control, and the modulus and dimensional stability of the cured product are not significantly helpful; if too much is added, the melt viscosity is too high. Poor sex, not conducive to production.
  • the silica is preferably a molten silica.
  • the shape and particle diameter of the silica are not particularly limited, and it is preferable that the silica has a median diameter of 0.01 to 50 ⁇ m, for example, 1 ⁇ m, 6 ⁇ m, 11 ⁇ m, 16 ⁇ m, 21 ⁇ m, 26 ⁇ m, 31 ⁇ m. 36 ⁇ m, 41 ⁇ m or 46 ⁇ m, preferably 0.01-20 ⁇ m, further preferably 0.1-10 ⁇ m, the filler of such a particle size range is more easily dispersed in the glue.
  • the halogen-free thermosetting resin composition of the present invention may further include a component (E) curing accelerator, and the curing accelerator is not particularly limited as long as it can catalyze an epoxy functional group reaction and lower the curing system.
  • the reaction temperature is preferably a mixture of one or a mixture of at least two of an imidazole compound and a derivative thereof, a piperidine compound, a Lewis acid or a triphenylphosphine.
  • the imidazole compound may be exemplified by any one of 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole or a mixture of at least two
  • the piperidine compound may be exemplified by 2,3-diaminopiperidine, 2,5-diaminopiperidine, 2,6-diaminopiperidine, 2-amino-3-methylpiperidine, 2 -Amino-4-methylpiperidine, 2-amino-3-nitropiperidine, 2-amino-5-nitropiperidine or 2-amino-4,4-dimethylpiperidine Or a mixture of at least two.
  • the component (E) curing accelerator is added in an amount of 100 parts by weight based on the total weight of the component (A), the component (B), the component (C), and the component (D).
  • 0.01-1 parts by weight for example, 0.05 parts by weight, 0.1 parts by weight, 0.15 parts by weight, 0.2 parts by weight, 0.25 parts by weight, 0.3 parts by weight, 0.35 parts by weight, 0.4 parts by weight, 0.45 parts by weight, 0.5 parts by weight, 0.55 parts by weight 0.6 parts by weight, 0.65 parts by weight, 0.7 parts by weight, 0.75 parts by weight, 0.8 parts by weight, 0.85 parts by weight, 0.9 parts by weight or 0.95 weight
  • the amount is preferably 0.05 to 0.8 part by weight, more preferably 0.05 to 0.6 part by weight.
  • the halogen-free thermosetting resin composition may further contain various additives, and specific examples thereof include phosphorus-containing flame retardants, antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, pigments, and colorants. Or a lubricant, etc. These various additives may be used singly or in combination of two or more kinds.
  • the halogen-free thermosetting resin composition of the present invention is conventionally prepared by first placing a solid substance, then adding a liquid solvent, stirring until the solid substance is completely dissolved, and then adding a liquid resin and a promoter, and continuing to stir uniformly.
  • the solvent in the present invention is not particularly limited, and specific examples thereof include alcohols such as methanol, ethanol, and butanol, ethyl cellosolve, butyl cellosolve, ethylene glycol methyl ether, carbitol, and butyl.
  • Ethers such as carbitol, ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone, cyclohexanone; aromatic hydrocarbons such as toluene and xylene; esters such as ethyl acetate and ethoxyethyl acetate a nitrogen-containing solvent such as N,N-dimethylformamide or N,N-dimethylacetamide.
  • the above solvents may be used singly or in combination of two or more. Preference is given to ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone and cyclohexanone.
  • the amount of the solvent to be added is selected by those skilled in the art based on his own experience, so that the resin glue can reach a viscosity suitable for use.
  • the prepreg of the present invention comprises a reinforcing material and a halogen-free thermosetting resin composition as described above which is impregnated and adhered to the reinforcing material after drying, and the reinforcing material to be used is not particularly limited and may be an organic fiber, an inorganic fiber woven fabric or Non-woven fabric.
  • the organic fiber may be selected from aramid nonwoven fabric, and the inorganic fiber woven fabric may be E-glass fabric, D-glass fabric, S-glass fabric, T-glass fabric, NE-glass fabric. Or quartz cloth.
  • the thickness of the reinforcing material is not particularly limited, and the laminate has good dimensional stability.
  • the woven fabric and the nonwoven fabric preferably have a thickness of 0.01 to 0.2 mm, and are preferably subjected to a fiber treatment and a surface treatment of a silane coupling agent, and the silane coupling is provided in order to provide good water resistance and heat resistance.
  • the agent is preferably any one or a mixture of at least two of an epoxy silane coupling agent, an aminosilane coupling agent or a vinyl silane coupling agent.
  • the prepreg is obtained by impregnating the above halogen-free thermosetting resin composition by baking at 100-250 ° C for 1-15 minutes.
  • the laminate for printed circuit of the present invention comprises a laminate prepared by bonding together one or two or more prepregs by heat and pressure, and a metal foil bonded to one or both sides of the laminate. .
  • the laminate is obtained by curing in a hot press at a curing temperature of from 150 ° C to 250 ° C and a curing pressure of from 10 to 60 kg/cm 2 .
  • the metal foil is copper foil, nickel foil, aluminum foil, SUS foil, etc., and the material thereof is not limited.
  • the glass transition temperature, dielectric constant, dielectric loss factor, water absorption rate, heat resistance were tested for the printed circuit board laminate (8 prepregs, reinforcing material type 106, thickness 0.05 mm). Properties such as properties, flame retardancy, etc. are further described and described in detail in the following examples.
  • Tables 1-3 are the formulation compositions of the Examples 1-7 and Comparative Examples 1-11 and their physical property data.
  • the measurement was carried out according to the DSC method specified in IPC-TM-650 2.4.25 according to differential scanning calorimetry (DSC).
  • the dielectric loss and dielectric loss factor at 1 GHz were measured in accordance with IPC-TM-650 2.5.5.5.
  • the stratified foaming time was observed according to IPC-TM-650 2.4.13.1.
  • the copper clad laminate has a low Tg, high dielectric constant and dielectric loss, and it is difficult to meet the thermosetting high-speed field laminate dielectric
  • Polyphosphonate with hydroxy group and phosphorus content higher than 10% and bicyclopentadiene type benzoxazine solidified biphenyl type epoxy tree The prepared copper clad laminate has poor dielectric properties and heat resistance, and has high water absorption rate; in Comparative Example 7, 20 parts by weight of bisphenol A type benzoxazine and phosphorus-containing bisphenol-cured dicyclopentadiene type are used. Epoxy resin, the copper clad laminate produced is not ideal in dielectric properties, heat resistance and flame retardancy; in Comparative Example 8, bisphenol A benzoxazine was used to cure dicyclopentadiene epoxy resin alone.
  • the copper-clad laminate has poor dielectric properties, insufficient heat resistance and flame retardancy; in Comparative Example 9, the phosphorus-containing bisphenol is used to cure the dicyclopentadiene-type epoxy resin alone, and the copper-clad laminate has a high Tg and dielectric properties.
  • Comparative Example 10 phosphorus-containing bisphenol with a weight average molecular weight of ⁇ 1000 and a small amount of bisphenol A-type benzoxazine solidified dicyclopentadiene type ring Oxygen resin, the obtained copper clad laminate Tg is too low and heat resistance is poor; Comparative Example 11 uses a small amount of polyphenylene phenyl phosphate and bisphenol A type benzoxazine (addition ratio of 2.5/10) to cure dicyclopentadiene
  • the olefinic epoxy resin has a general dielectric property and is inferior in heat resistance and flame retardancy.
  • Example 1-6 curing a specific structure of a halogen-free epoxy resin with a phosphorus-containing bisphenol and an appropriate amount of benzoxazine and matching a higher proportion of the filler, the obtained laminate has high glass transition temperature and excellent dielectric properties. Low water absorption, high heat resistance and halogen-free flame retardant, and flame retardant can reach UL94V-0.
  • Example 7 The use of poly-extended benzyl phosphate and a small amount of bisphenol A-type benzoxazine to cure dicyclopentadiene epoxy resin, the obtained copper clad laminate has higher Tg and better dielectric properties, but due to poly-stretching
  • the phosphatidyl ester does not contain a bisphenol A structure, and the phosphorus reaction unit is densely distributed, resulting in a reaction that is too fast and easily forms steric hindrance, and is likely to have residual reactive groups after curing, which is slightly lower than the Tg of the cured product of Example 2, and dielectric properties. It is slightly inferior to heat resistance.
  • the laminate for printed circuit of the present invention has a higher glass transition temperature, more excellent dielectric properties, moisture resistance, and heat resistance than a general laminate, and is suitable for use in the field of thermosetting.
  • the halogen content can meet the V-0 standard in the flame retardancy test UL94 within the requirements of the JPCA halogen-free standard, and it has environmental protection effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板,所述无卤热固性树脂组合物,有机固形物按100重量份计,其包含:(A)无卤环氧树脂16-42重量份;(B)具有二氢苯并噁嗪环的化合物1.5-4.8重量份;(C)含磷双酚固化剂10-28重量份,所述含磷双酚的重均分子量为1000-6500;(D)二氧化硅30-70重量份。所述无卤热固性树脂组合物制成的半固化片及印制电路用层压板,具有高玻璃化转变温度、优异的介电性能、低吸水率、高耐热性和良好的工艺加工性,并能实现无卤阻燃,达到UL94 V-0。

Description

一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板 技术领域
本发明涉及一种无卤热固性树脂组合物,尤其涉及该无卤热固性树脂组合物制成的半固化片及印制电路用层压板。
背景技术
传统的印制电路用层压板通常采用溴系阻燃剂来实现阻燃,特别是采用四溴双酚A型环氧树脂,这种溴化环氧树脂具有良好的阻燃性,但它在燃烧时会产生溴化氢气体。此外,近年来在含溴、氯等卤素的电子电气设备废弃物的燃烧产物中已检测出二噁英、二苯并呋喃等致癌物质,因此溴化环氧树脂的应用受到限制。2006年7月1日,欧盟的两份环保指令《关于报废电气电子设备指令》和《关于在电气电子设备中限制使用某些有害物质指令》正式实施,无卤阻燃覆铜箔层压板的开发成为业界的热点,各覆铜箔层压板厂家都纷纷推出自己的无卤阻燃覆铜箔层压板。
同时随着消费电子产品信息处理的高速化和多功能化,应用频率不断提高,除了环保的要求越来越高外,要求介电常数和介电损耗值越来越低,因此降低Dk/Df已成为基板业者的追逐热点。
CN1723243A和日本专利NO.2001/302,879中的组合物披露了反应型的膦酸酯,但均用作阻燃剂,只有膦酸酯的羟基能与环氧树脂反应,这种膦酸酯羟基当量高固化效率低,组合物需要另外添加固化剂如苯并噁嗪、酚醛等,而这些固化剂的添加都会恶化固化物的介电性能,难以满足热固性高速领域层压板对介电性能的要求,且苯并噁嗪含量较多,难以实现较低的介电性能。
此外,CN1723243A说明书中披露的膦酸酯要求磷含量大于约12%,这种 膦酸酯磷含量过高且分布密集,固化物易吸水,用在印制线路层压板中易吸潮爆板。而且,CN1723243A并未对膦酸酯的分子量进行限定。
发明内容
本发明的目的在于提供一种新型的无卤热固性树脂组合物,以及使用它的预浸料、印制电路用层压板。使用该树脂组合物制作的印制电路用层压板具有较高的玻璃化转变温度、优异的介电性能、低吸水率、高耐热性和良好的工艺加工性,并能实现无卤阻燃,达到UL94V-0。
本发明人为实现上述目的进行了反复深入的研究,结果发现:通过将无卤环氧树脂、具有二氢苯并噁嗪环的化合物、含磷双酚、二氧化硅以及任选地其他物质进行适当混合制成的新型组合物,可达到上述目的。
即,本发明采用如下技术方案:一种无卤热固性树脂组合物,含有以下四种物质作为必要组分,有机固形物按100重量份计,其包含:
(A)无卤环氧树脂16-42重量份;
(B)具有二氢苯并噁嗪环的化合物1.5-4.8重量份;
(C)含磷双酚固化剂10-28重量份,所述含磷双酚的重均分子量为1000-6500;
(D)二氧化硅30-70重量份。
经发明人研究发现,一种有着特定结构的含磷双酚可用作环氧树脂的固化剂,其反应基团包括两端羟基和磷单元,且反应不产生二次羟基,固化物玻璃化转变温度高、介电性能和耐热性优异。此外,该含磷双酚的磷含量高,在用作固化剂的同时还有无卤阻燃的功效,无需额外添加阻燃剂。
本发明是采用一种磷含量在8wt%-10wt%的含磷双酚,其分子结构对称性高且磷分布均匀不密集,可用作环氧树脂的固化剂;其除了两端羟基可与环氧树 脂环氧基反应外,在>175℃的条件下磷单元还可与二次羟基发生反应消除二次羟基,使得固化物交联密度高且二次羟基含量低,从而拥有高Tg和优异的介电性能。
本发明采用的是有着特定分子量的含磷双酚,该含磷双酚在特定分子量范围内有着较低的熔融粘度,从而使得组合物在保持合适的熔融粘度和良好的可加工性的前提下能添加较多的二氧化硅填料,提高固化物的模量和尺寸稳定性,同时也进一步降低了固化物的吸水率。
本发明所采用的含磷双酚与环氧树脂的反应过程如下所示。
Figure PCTCN2016098449-appb-000001
本发明的无卤热固性树脂组合物采用了特定分子结构的无卤环氧树脂,其具有较高的官能度和良好的介电性能,其固化物Tg较高、吸水率低。
本发明的无卤热固性树脂组合物还采用了具有二氢苯并噁嗪环的化合物,该类化合物Tg高、介电性能和耐热性好、吸水率低。在上述无卤环氧树脂中加入具有二氢苯并噁嗪环的化合物,固化物不仅有着高Tg、高耐热性和低吸水率,还有着优异的介电性能及较高的模量,较高的模量能改善层压板在加工中胀缩的问题;此外,该类具有二氢苯并噁嗪环的化合物含有氮元素,氮元素和含磷双酚中的磷元素有协同阻燃的效果,能减少固化物阻燃性达到UL 94V-0所需磷 含量,进一步降低吸水率。
经发明人研究发现,本发明的无卤热固性树脂组合物中,具有二氢苯并噁嗪环的化合物在添加1.5-4.8重量份时,相比高于5重量份或低于1.5重量份的添加量,其更能与含磷双酚发挥协同固化阻燃的效果,并能进一步降低吸水率。
本发明的无卤热固性树脂组合物还包含有30%-70%的二氧化硅,不仅能解决含磷双酚熔融粘度低流胶大的问题,还可以降低固化物的热膨胀系数,提高模量和尺寸稳定性,进一步改善阻燃并降低介电损耗。
本发明还提供了通过使用上述的无卤热固性树脂组合物浸渍基料并随后加热干燥而制得的预浸料,所述的基料为无纺织物或其他织物。
本发明还提供了通过对一片或多片预浸料加热加压、使预浸料粘合而成的层压板和粘合在层压板的一面或两面以上的金属箔的印制电路用层压板。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明的无卤热固性树脂组合物采用特定分子结构的无卤环氧树脂,其具有较高的官能度和良好的介电性能,其固化物Tg较高、吸水率低;
(2)本发明的无卤热固性树脂组合物采用了具有二氢苯并噁嗪环的化合物,该类化合物Tg较高、吸水率低,大大改善了固化物的吸水性;此外,该类具有二氢苯并噁嗪环的化合物含有氮元素,氮元素和含磷双酚中的磷元素有协效阻燃的效果,能减少固化物阻燃性达到UL 94V-0所需磷含量,进一步降低吸水率,尤其当其添加量控制在1.5-4.8重量份时,相比高于5重量份或低于1.5重量份的添加量,其更能与含磷双酚发挥协同固化阻燃的效果,并能进一步降低吸水率;
(3)本发明的无卤热固性树脂组合物以含磷双酚为固化剂和阻燃剂,该含磷双酚结构对称性高,两端羟基能与环氧树脂的环氧基反应,且磷酸酯结构 能与环氧树脂的二次羟基反应,固化物Tg较高介电性能优异;同时,该含磷双酚磷含量高,能在不牺牲固化物Tg、介电性能、耐热性、耐湿性的前提下实现无卤阻燃,固化物阻燃性达到UL94V-0级:此外,该含磷双份分子量较小,熔融粘度低,对填料的浸润性优异,且填料比例较高时仍有着较低的熔融粘度,加工性好;
(4)本发明的无卤热固性树脂组合物还包含有30%-70%的二氧化硅,不仅能解决含磷双酚熔融粘度低流胶大的问题,还可以降低固化物的热膨胀系数,提高模量和尺寸稳定性,进一步改善阻燃并降低介电损耗;
(5)使用该树脂组合物制成的预浸料、印制电路用层压板具有高玻璃化转变温度,其玻璃化转变温度可达到185℃,优异的介电性能,其介电常数在3.53-3.60之间,低吸水率,其吸水性在0.07-0.08%范围内,具有大于120s的耐浸焊性能和良好的工艺加工性,并能实现无卤阻燃,达到UL94V-0级。
具体实施实例
本发明采用如下技术方案:一种无卤热固性树脂组合物,含有以下四种物质作为必要组分,有机固形物按100重量份计,其包含:
(A)无卤环氧树脂16-42重量份;
(B)具有二氢苯并噁嗪环的化合物1.5-4.8重量份;
(C)含磷双酚固化剂10-28重量份,所述含磷双酚的重均分子量为1000-6500;
(D)二氧化硅30-70重量份。
下面对各组分进行详细说明。
本发明中的组分(A),即为无卤环氧树脂,使用量为16-42重量份,例如为16重量份、18重量份、19重量份、20重量份、22重量份、23重量份、24 重量份、25重量份、26重量份、27重量份、28重量份、29重量份、30重量份、32重量份、34重量份、36重量份、38重量份、40重量份或42重量份。
根据本发明,所述无卤环氧树脂可以选自双酚A型环氧树脂、双酚F型环氧树脂、邻甲酚酚醛环氧树脂、双酚A型酚醛环氧树脂、三酚型酚醛环氧树脂、双环戊二烯酚醛环氧树脂、联苯型酚醛环氧树脂、烷基苯型酚醛环氧树脂或萘酚型酚醛环氧树脂中的任意一种或至少两种的混合物。上述环氧树脂均为无卤的环氧树脂。
根据本发明,所述无卤环氧树脂优选自具有如下结构的环氧树脂:
Figure PCTCN2016098449-appb-000002
式中,X1、X2、X3各自独立地选自
Figure PCTCN2016098449-appb-000003
R1选自氢原子、取代或未取代的C1-C5(例如C2、C3或C4)直链烷基或者取代或未取代的C1-C5(例如C2、C3或C4)支链烷基中的任意一种。
Y1、Y2各自独立地选自单键、-CH2-、
Figure PCTCN2016098449-appb-000004
Figure PCTCN2016098449-appb-000005
中的任意一种,其中R2选自氢原子、取代或未取代的C1-C5(例如C2、C3或C4)直链烷基或者取代或未取代的C1-C5(例如C2、C3或C4)支链烷基中的一种。
m为1-10的任意整数,例如2、3、4、5、6、7、8或9。
本发明无卤热固性树脂组合物采用上述特定分子结构的无卤环氧树脂,其 具有较高的官能度和良好的介电性能,其固化物Tg较高,吸水率低。
本发明中所述的组分(B),即为具有二氢苯并噁嗪环的化合物,使用量为1.5-4.8重量份,例如1.5重量份、1.8重量份、2.1重量份、2.4重量份、2.7重量份、3.0重量份、3.3重量份、3.6重量份、3.9重量份、4.2重量份、4.5重量份或4.8重量份。若添加量小于1.5重量份,其降低固化物吸水率和与磷的协效阻燃效果不明显,若添加量大于4.8重量份,固化物介电性能差且脆性较大,加工性差。
根据本发明,所述具有二氢苯并噁嗪环的化合物可以选自式(I)所示的双酚A型苯并噁嗪、式(II)所示的双酚A型苯并噁嗪、双酚F型苯并噁嗪、MDA(4,4-二胺基二苯甲烷)型苯并噁嗪、酚酞型苯并噁嗪或双环戊二烯型苯并噁嗪中的任意一种或至少两种的混合物。
Figure PCTCN2016098449-appb-000006
式中,R3独立地选自
Figure PCTCN2016098449-appb-000007
中的任意一种,R4
Figure PCTCN2016098449-appb-000008
本发明中所述的组分(C),即为含磷双酚,其同时用作固化剂和阻燃剂,使用量为10-28重量份,例如10重量份、12重量份、14重量份、16重量份、 18重量份、20重量份、22重量份、24重量份、26重量份或28重量份。若添加过少,固化物介电性能和阻燃性差;若添加过多,固化物吸水率过高。
根据本发明,所述含磷双酚固化剂中磷含量占含磷双酚固化剂的8wt%-10wt%,例如8wt%、8.2wt%、8.3wt%、8.5wt%、8.8wt%、9wt%、9.2wt%、9.5wt%、9.8wt%和10wt%。
本发明通过采用磷含量在8wt%-10wt%的含磷双酚固化剂,其分子结构对称性高且磷分布均匀不密集,可用作环氧树脂的固化剂;其除了两端羟基可与环氧树脂环氧基反应外,在>175℃的条件下磷单元还可与二次羟基发生反应消除二次羟基,使得固化物交联密度高且二次羟基含量低,从而拥有高Tg和优异的介电性能。
根据本发明,所述含磷双酚具有如下结构:
Figure PCTCN2016098449-appb-000009
式中,n为2-20的任意整数,例如3、4、5、6、7、8、10、12、13、15、17、18或20,优选n为3-10的任意整数。
根据本发明,所述含磷双酚的重均分子量为1000-6500,例如1000、1200、1500、、1800、2000、2200、2500、2800、3000、3500、4000、4500、4800、5100、5800、6000或6500,优选为1000-4500,进一步优选为1000-3000。当重均分子量小于1000时,固化物Tg低、耐热性差;当重均分子量大于6500时,所述含磷双酚在有机溶剂中的溶解性较差,无法得到良好、均一的胶液,从而难以满足覆铜板的工艺要求。
本发明中所述的组分(D),即为二氧化硅,其使用量为30-70重量份,例 如30重量份、35重量份、40重量份、45重量份、50重量份、55重量份、60重量份、65重量份或70重量份。若添加过少,树脂组合物在加工过程中熔融粘度较低,流胶不易控制,且对固化物的模量和尺寸稳定性助益不明显;若添加过多,会导致熔融粘度过高工艺性差,不利于生产。
根据本发明,所述二氧化硅优选为熔融型二氧化硅。
根据本发明,所述二氧化硅的形状和粒径并无特别的限定,优选所述二氧化硅的中位粒径为0.01-50μm,例如1μm、6μm、11μm、16μm、21μm、26μm、31μm、36μm、41μm或46μm,优选为0.01-20μm,进一步优选为0.1-10μm,这种粒径范围的填料在胶液中更容易分散。
如有需要,本发明的无卤热固性树脂组合物还可包括组分(E)固化促进剂,本发明对所述固化促进剂没有特别的限定,只要能催化环氧官能团反应、降低固化体系的反应温度即可,优选咪唑类化合物及其衍生物、哌啶类化合物、路易斯酸或三苯基膦中的一种或至少两种的混合物。所述的咪唑类化合物可以列举有2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-十一烷基咪唑中的任意一种或至少两种的混合物,所述的哌啶类化合物可以列举有2,3-二氨基哌啶、2,5-二氨基哌啶、2,6-二氨基哌啶、2-氨基-3-甲基哌啶、2-氨基-4-甲基哌啶、2-氨基-3-硝基哌啶、2-氨基-5-硝基哌啶或2-氨基-4,4-二甲基哌啶中的任意一种或至少两种的混合物。
优选地,以组分(A)、组分(B)、组分(C)、组分(D)的总重为100重量份计,所述组分(E)固化促进剂的添加量为0.01-1重量份,例如0.05重量份、0.1重量份、0.15重量份、0.2重量份、0.25重量份、0.3重量份、0.35重量份、0.4重量份、0.45重量份、0.5重量份、0.55重量份、0.6重量份、0.65重量份、0.7重量份、0.75重量份、0.8重量份、0.85重量份、0.9重量份或0.95重 量份,优选为0.05-0.8重量份,进一步优选为0.05-0.6重量份。
本发明所述的“包括”,意指其除所述组份外,还可以包括其他组份,这些其他组份赋予所述无卤热固性树脂组合物不同的特性。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由......组成”。
例如,所述无卤热固性树脂组合物还可以含有各种添加剂,作为具体例,可以举出含磷阻燃剂、抗氧剂、热稳定剂、抗静电剂、紫外线吸收剂、颜料、着色剂或润滑剂等。这些各种添加剂可以单独使用,也可以两种或者两种以上混合使用。
本发明的无卤热固性树脂组合物常规制备方法为:先将固形物放入,然后加入液态溶剂,搅拌至固形物完全溶解后,再加入液态树脂和促进剂,继续搅拌均匀即可。
作为本发明中的溶剂,没有特别的限定,作为具体例,可以列举出甲醇、乙醇、丁醇等醇类,乙基溶纤剂、丁基溶纤剂、乙二醇甲醚、卡必醇、丁基卡必醇等醚类,丙酮、丁酮、甲基乙基甲酮、环己酮等酮类;甲苯、二甲苯等芳香烃类;醋酸乙酯、乙氧基乙基乙酸酯等酯类;N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等含氮类溶剂。以上溶剂可单独使用,也可两种或两种以上混合使用。优选丙酮、丁酮、甲基乙基甲酮、环己酮等酮类。所述溶剂的添加量由本领域技术人员根据自己经验来选择,使得树脂胶液达到适合使用的粘度即可。
本发明的预浸料包括增强材料及含浸干燥后附着在增强材料上的如上所述的无卤热固性树脂组合物,所使用的增强材料无特别的限定,可以为有机纤维、无机纤维编织布或无纺布。所述的有机纤维可以选择芳纶无纺布,所述的无机纤维编织布可以为E-玻纤布、D-玻纤布、S-玻纤布、T玻纤布、NE-玻纤布或石英布。所述增强材料的厚度无特别限定,处于层压板有良好的尺寸稳定性的考 虑,所述编织布及无纺布厚度优选0.01-0.2mm,且最好是经过开纤处理及硅烷偶联剂表面处理的,为了提供良好的耐水性和耐热性,所述硅烷偶联剂优选为环氧硅烷偶联剂、氨基硅烷偶联剂或乙烯基硅烷偶联剂中的任意一种或至少两种的混合物。将增强材料通过含浸上述的无卤热固性树脂组合物,在100-250℃条件下,烘烤1-15分钟得到所述预浸料。
本发明的印制电路用层压板包括通过加热和加压、使一片或两片以上的预浸料粘合在一起而制成的层压板,以及粘合在层压板一面或两面以上的金属箔。所述的层压板是在热压机中固化制得,固化温度为150℃-250℃,固化压力为10-60Kg/cm2。所述的金属箔为铜箔、镍箔、铝箔及SUS箔等,其材质不限。
为了更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
针对上述制成的印制电路用层压板(8片预浸料,增强材料型号为106,厚度为0.05mm)测试其玻璃化转变温度、介电常数、介电损耗因素、吸水率、耐热性、阻燃性等性能,如下实施例进一步详细说明与描述。
请参阅实施例1-7和比较例1-11。下文中无特别说明,其“份”代表“重量份”,其“%”代表“重量%”。
(A)无卤环氧树脂:
(A-1)双环戊二烯型环氧树脂HP-7200H(日本DIC商品名,EEW:275g/eq)
(A-2)联苯型酚醛环氧树脂NC-3000H(日本化药商品名,EEW:288g/eq)
(B)苯并噁嗪树脂:
(B-1)双酚A型苯并噁嗪HUN 8290N62(HUNTSMAN商品名)
(B-2)双环戊二烯型苯并噁嗪HUN 8260N70(HUNTSMAN商品名)
(C)固化剂:
(C-1)含磷双酚FRX OL3001(美国FRX Polymers商品名,磷含量10%,重均分子量2400~3000)
(C-2)磷酸酯PX-200(日本大八化学商品名,磷含量9%),结构式如下:
Figure PCTCN2016098449-appb-000010
(C-3)聚膦酸酯OL5000(美国FRX Polymers商品名,磷含量10.8%),结构式如下:
Figure PCTCN2016098449-appb-000011
(C-4)双酚A双(磷酸二苯酯)FYROLFLEX BDP(美国Akzo Nobel商标,重均分子量<1000),结构式如下:
Figure PCTCN2016098449-appb-000012
(C-5)聚伸苯甲基磷酸酯Fyrol PMP(以色列ICL商品名),结构式如下:
Figure PCTCN2016098449-appb-000013
(D)填料:
(D1)熔融二氧化硅(平均粒径为1-10μm,纯度99%以上)
(D2)氢氧化铝(平均粒径为1-10μm,纯度99%以上)
(E)促进剂:2-苯基咪唑(日本四国化成)
表1-3是实施例1-7和比较例1-11的配方组成及其物性数据。
表1
Figure PCTCN2016098449-appb-000014
Figure PCTCN2016098449-appb-000015
表2
Figure PCTCN2016098449-appb-000016
Figure PCTCN2016098449-appb-000017
表3
Figure PCTCN2016098449-appb-000018
Figure PCTCN2016098449-appb-000019
以上特性的测试方法如下:
(a)玻璃化转变温度(Tg)
根据差示扫描量热法(DSC),按照IPC-TM-650 2.4.25所规定的DSC方法进行测定。
(b)介电常数、介电损耗因素
根据使用条状线的共振法,按照IPC-TM-650 2.5.5.5测定1GHz下的介电损耗、介电损耗因素。
(c)吸水性
按照IPC-TM-650 2.6.2.1方法进行测定。
(d)耐浸焊性
按照IPC-TM-650 2.4.13.1观察分层起泡时间。
(e)难燃烧性
依据UL 94垂直燃烧法测定。
从表1-表3的物性数据可知,比较例1中使用含磷双酚和5份双酚A型苯并噁嗪固化双环戊二烯型环氧树脂,所制成的覆铜板介电性能较差,且耐热性一般;比较例2中使用含磷双酚和双酚A型苯并噁嗪固化双环戊二烯型环氧树脂,以氢氧化铝为填料,所制成的覆铜板介电性能和耐热性较差;比较例3中采用不含羟基的磷酸酯与双酚A型苯并噁嗪固化双环戊二烯型环氧树脂,比较例4中采用不含羟基的磷酸酯与双环戊二烯型苯并噁嗪固化联苯型环氧树脂,所制成的覆铜板Tg较低、介电常数和介电损耗均较高,难以满足热固性高速领域层压板对介电性能的要求;比较例5中采用含有单羟基并且磷含量高于10%的聚膦酸酯与双酚A型苯并噁嗪固化双环戊二烯型环氧树脂,比较例6中采用含有单羟基并且磷含量高于10%的聚膦酸酯与双环戊二烯型苯并噁嗪固化联苯型环氧树脂,所制成的覆铜板介电性能和耐热性较差,且吸水率较高;比较例7中采用20重量份双酚A型苯并噁嗪与含磷双酚固化双环戊二烯型环氧树脂,所制成的覆铜板介电性能、耐热性和阻燃均不理想;比较例8中采用双酚A型苯并噁嗪单独固化双环戊二烯型环氧树脂,所制成的覆铜板介电性能较差,耐热性和阻燃不足;比较例9中采用含磷双酚单独固化双环戊二烯型环氧树脂,所制成的覆铜板Tg高、介电性能优异,但吸水率太高,容易导致加工过程中吸潮爆板;比较例10中采用重均分子量<1000的含磷双酚与少量双酚A型苯并噁嗪固化双环戊二烯型环氧树脂,所制得的覆铜板Tg太低且耐热性差;比较例11采用少量聚伸苯甲基磷酸酯与双酚A型苯并噁嗪(添加比例为2.5/10)固化双环戊二烯型环氧树脂,所制得的覆铜板介电性能一般,耐热性和阻燃较差。实施例1-6以含磷双酚与适量苯并噁嗪复合固化特定结构的无卤环氧树脂并搭配较高比例的填料,得到的层压板具有高玻璃化转变温度、优异的介电性能、低吸水率、高耐热性并实现了无卤阻燃,且阻燃能达到UL94V-0级。实施例7 采用聚伸苯甲基磷酸酯与少量双酚A型苯并噁嗪固化双环戊二烯型环氧树脂,所制得的覆铜板Tg较高、介电性能较好,但由于聚伸苯甲基磷酸酯不含双酚A结构,磷反应单元分布密集,导致反应过快且容易形成空间位阻,固化后容易有反应基团残留,相比实施例2固化物Tg略低、介电性能和耐热性稍差。
如上所述,与一般的层压板相比,本发明的印制电路用层压板在具有更高的玻璃化转变温度、更优异的介电性能、耐湿性、耐热性,适用于热固性领域。另外卤素含量在JPCA无卤标准要求范围内能达到难燃性试验UL94中的V-0标准,有环保的功效。
以上所述,仅为本发明的较佳实施例,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思做出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的范围。

Claims (11)

  1. 一种无卤热固性树脂组合物,有机固形物按100重量份计,其包含:
    (A)无卤环氧树脂16-42重量份;
    (B)具有二氢苯并噁嗪环的化合物1.5-4.8重量份;
    (C)含磷双酚固化剂10-28重量份,所述含磷双酚固化剂的重均分子量为1000-6500;
    (D)二氧化硅30-70重量份。
  2. 如权利要求1所述的无卤热固性树脂组合物,其特征在于,所述无卤环氧树脂为双酚A型环氧树脂、双酚F型环氧树脂、邻甲酚酚醛环氧树脂、双酚A型酚醛环氧树脂、三酚型酚醛环氧树脂、双环戊二烯酚醛环氧树脂、联苯型酚醛环氧树脂、烷基苯型酚醛环氧树脂或萘酚型酚醛环氧树脂中的任意一种或至少两种的混合物。
  3. 如权利要求1所述的无卤热固性树脂组合物,其特征在于,所述无卤环氧树脂选自具有如下结构的环氧树脂:
    Figure PCTCN2016098449-appb-100001
    式中,X1、X2和X3各自独立地选自
    Figure PCTCN2016098449-appb-100002
    其中R1选自氢原子、取代或未取代的C1-C5直链烷基或者取代或未取代的C1-C5支链烷基中的任意一种;
    Y1和Y2各自独立地选自单键、-CH2-、
    Figure PCTCN2016098449-appb-100003
    Figure PCTCN2016098449-appb-100004
    中的任意一种,其中R2选自氢原子、取代或未取代的C1-C5直链烷基或者取代或未取代的C1-C5支链烷基中的任意一种;
    m为1-10的任意整数。
  4. 如权利要求1-3之一所述的无卤热固性树脂组合物,其特征在于,所述具有二氢苯并噁嗪环的化合物选自式(I)所示的双酚A型苯并噁嗪、式(II)所示的双酚A型苯并噁嗪、双酚F型苯并噁嗪、MDA型苯并噁嗪、酚酞型苯并噁嗪或双环戊二烯型苯并噁嗪中的任意一种或至少两种的混合物;
    Figure PCTCN2016098449-appb-100005
    式中,R3选自
    Figure PCTCN2016098449-appb-100006
    中的任意一种,R4
    Figure PCTCN2016098449-appb-100007
  5. 如权利要求14之一所述的无卤热固性树脂组合物,其特征在于,所述含磷双酚固化剂中磷含量占含磷双酚固化剂的8wt%-10wt%。
  6. 如权利要求1-5之一所述的无卤热固性树脂组合物,其特征在于,所述含磷双酚固化剂具有如下结构:
    Figure PCTCN2016098449-appb-100008
    式中,n为2-20的任意整数,优选n为3-10的任意整数;
    优选地,所述含磷双酚固化剂的重均分子量为1000-4500,优选为1000-3000。
  7. 如权利要求1-6之一所述的无卤热固性树脂组合物,其特征在于,所述二氧化硅为熔融型二氧化硅;
    优选地,所述二氧化硅的中位粒径为0.01-50μm,优选为0.01-20μm,进一步优选为0.1-10μm。
  8. 如权利要求1-7之一所述的无卤热固性树脂组合物,其特征在于,还包括组分(E)固化促进剂;
    优选地,所述固化促进剂选自咪唑类化合物、咪唑类化合物的衍生物、哌啶类化合物、路易斯酸或三苯基膦中的任意一种或至少两种的混合物,优选为2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑或三苯基膦中的任意一种或至少两种的混合物;
    优选地,所述咪唑类化合物为2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑或2-十一烷基咪唑中的任意一种或至少两种的混合物;
    优选地,所述哌啶类化合物为2,3-二氨基哌啶、2,5-二氨基哌啶、2,6-二氨基哌啶、2-氨基-3-甲基哌啶、2-氨基-4-甲基哌啶、2-氨基-3-硝基哌啶、2-氨基-5-硝基哌啶或2-氨基-4,4-二甲基哌啶中的任意-种或至少两种的混合物;
    优选地,以组分(A)、组分(B)、组分(C)、组分(D)的添加量之和为100重量份计,所述组分(E)固化促进剂的添加量为0.01-1重量份,优选 为0.05-0.8重量份,进一步优选为0.05-0.6重量份。
  9. 一种预浸料,其包括增强材料及通过浸渍干燥后附着在其上的如权利要求1-8之一所述的无卤热固性树脂组合物。
  10. 一种层压板,所述层压板含有至少一张如权利要求9所述的预浸料。
  11. 一种无卤高频电路基板,所述基板含有至少一张如权利要求9所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
PCT/CN2016/098449 2016-03-04 2016-09-08 一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板 WO2017148127A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167033644A KR101898365B1 (ko) 2016-03-04 2016-09-08 무할로겐 열경화성 수지 조성물 및 이를 사용한 프리프레그, 인쇄회로용 적층판
EP16867380.4A EP3241868A4 (en) 2016-03-04 2016-09-08 Halogen-free thermosetting resin composition, and prepreg and laminate for printed circuits using same
US15/529,335 US20180126701A1 (en) 2016-03-04 2016-09-08 Halogen-free thermosetting resin composition, prepreg and laminate for printed circuit boards using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610124988.1A CN107151308B (zh) 2016-03-04 2016-03-04 一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板
CN201610124988.1 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017148127A1 true WO2017148127A1 (zh) 2017-09-08

Family

ID=59742437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098449 WO2017148127A1 (zh) 2016-03-04 2016-09-08 一种无卤热固性树脂组合物及使用它的预浸料、印制电路用层压板

Country Status (6)

Country Link
US (1) US20180126701A1 (zh)
EP (1) EP3241868A4 (zh)
KR (1) KR101898365B1 (zh)
CN (1) CN107151308B (zh)
TW (1) TWI596155B (zh)
WO (1) WO2017148127A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702388A4 (en) * 2017-10-27 2021-08-18 JXTG Nippon Oil & Energy Corporation COMPOSITION FOR HARDENED RESIN, HARDENED PRODUCT OF THE COMPOSITION, MANUFACTURING METHOD FOR THE COMPOSITION AND THE HARDENED PRODUCT AND SEMICONDUCTORIAL COMPONENT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111688302A (zh) * 2020-05-22 2020-09-22 吉安市宏瑞兴科技有限公司 一种无卤阻燃性环氧玻璃布基覆铜箔板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302879A (ja) 2000-04-25 2001-10-31 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物、ならびにそれを用いたプリプレグおよびプリント配線板
CN1639174A (zh) * 2001-10-04 2005-07-13 阿克佐诺贝尔股份有限公司 羟基封端的低聚膦酸酯
CN1723243A (zh) 2002-11-08 2006-01-18 阿克苏诺贝尔公司 含反应性阻燃剂膦酸酯低聚物和填料的环氧树脂组合物
CN101880294A (zh) * 2009-05-08 2010-11-10 萧介夫 新颖磷系双酚及其衍生物的制造方法
CN104024338A (zh) * 2011-06-03 2014-09-03 Frx聚合物股份有限公司 阻燃性树脂组合物、使用所述树脂组合物的挠性印刷线路板用金属箔基层压板、覆盖层、挠性印刷线路板用粘合片、以及挠性印刷线路板
CN104804377A (zh) * 2015-01-28 2015-07-29 广东生益科技股份有限公司 一种无卤树脂组合物及用其制作的预浸料和层压板
CN105331053A (zh) * 2014-07-22 2016-02-17 广东生益科技股份有限公司 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126825A1 (ja) * 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. 樹脂組成物、プリプレグ、積層板、多層プリント配線板および半導体装置
CN102432836B (zh) * 2011-08-16 2013-06-19 苏州生益科技有限公司 无卤热固性树脂组合物及使用其制作的预浸料及层压板
US9005761B2 (en) * 2011-12-22 2015-04-14 Elite Material Co., Ltd. Halogen-free resin composition and its application for copper clad laminate and printed circuit board
CN103421273B (zh) * 2012-05-22 2016-02-10 中山台光电子材料有限公司 无卤素树脂组成物
CN103554437B (zh) * 2013-09-04 2016-08-17 东莞联茂电子科技有限公司 一种ic封装用无卤环氧树脂组合物
JP6629221B2 (ja) * 2014-03-04 2020-01-15 エフアールエックス ポリマーズ、インク. エポキシ組成物
CN105131597B (zh) * 2014-06-05 2017-11-21 广东生益科技股份有限公司 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
CN103992622B (zh) * 2014-06-10 2017-03-01 广东生益科技股份有限公司 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302879A (ja) 2000-04-25 2001-10-31 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物、ならびにそれを用いたプリプレグおよびプリント配線板
CN1639174A (zh) * 2001-10-04 2005-07-13 阿克佐诺贝尔股份有限公司 羟基封端的低聚膦酸酯
CN1723243A (zh) 2002-11-08 2006-01-18 阿克苏诺贝尔公司 含反应性阻燃剂膦酸酯低聚物和填料的环氧树脂组合物
CN101880294A (zh) * 2009-05-08 2010-11-10 萧介夫 新颖磷系双酚及其衍生物的制造方法
CN104024338A (zh) * 2011-06-03 2014-09-03 Frx聚合物股份有限公司 阻燃性树脂组合物、使用所述树脂组合物的挠性印刷线路板用金属箔基层压板、覆盖层、挠性印刷线路板用粘合片、以及挠性印刷线路板
CN105331053A (zh) * 2014-07-22 2016-02-17 广东生益科技股份有限公司 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
CN104804377A (zh) * 2015-01-28 2015-07-29 广东生益科技股份有限公司 一种无卤树脂组合物及用其制作的预浸料和层压板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3702388A4 (en) * 2017-10-27 2021-08-18 JXTG Nippon Oil & Energy Corporation COMPOSITION FOR HARDENED RESIN, HARDENED PRODUCT OF THE COMPOSITION, MANUFACTURING METHOD FOR THE COMPOSITION AND THE HARDENED PRODUCT AND SEMICONDUCTORIAL COMPONENT
US11578166B2 (en) 2017-10-27 2023-02-14 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device

Also Published As

Publication number Publication date
TW201809124A (zh) 2018-03-16
EP3241868A4 (en) 2018-09-05
TWI596155B (zh) 2017-08-21
KR101898365B1 (ko) 2018-09-12
CN107151308B (zh) 2019-06-14
US20180126701A1 (en) 2018-05-10
CN107151308A (zh) 2017-09-12
EP3241868A1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
US9493651B2 (en) Halogen-free resin composition, and prepreg and laminate for printed circuits using the same
TWI532784B (zh) A halogen-free resin composition and use thereof
WO2015101232A1 (zh) 一种无卤环氧树脂组合物及其用途
TWI548667B (zh) A halogen-free thermosetting resin composition, and a prepreg for use and a laminate for printed circuit
WO2015101233A1 (zh) 一种无卤环氧树脂组合物及其用途
CN108148178B (zh) 一种热固性树脂组合物
TWI586697B (zh) A halogen-free thermosetting resin composition, and a laminate for prepreg and printed circuit board using the same
WO2015184652A1 (zh) 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
TWI596155B (zh) Halogen-free thermosetting resin composition and prepreg and printed circuit laminate using the same
WO2015188310A1 (zh) 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
TWI548666B (zh) A halogen-free thermosetting resin composition and a prepreg using the same, and a laminate for printed circuit
JP2001310989A (ja) エポキシ樹脂組成物及び電気積層板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15529335

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016867380

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE