WO2017146443A1 - 폴리에틸렌글리콜 디알데히드 유도체의 제조방법 - Google Patents

폴리에틸렌글리콜 디알데히드 유도체의 제조방법 Download PDF

Info

Publication number
WO2017146443A1
WO2017146443A1 PCT/KR2017/001906 KR2017001906W WO2017146443A1 WO 2017146443 A1 WO2017146443 A1 WO 2017146443A1 KR 2017001906 W KR2017001906 W KR 2017001906W WO 2017146443 A1 WO2017146443 A1 WO 2017146443A1
Authority
WO
WIPO (PCT)
Prior art keywords
peg
formula
dialdehyde
compound
reaction
Prior art date
Application number
PCT/KR2017/001906
Other languages
English (en)
French (fr)
Inventor
김유림
박은랑
권보성
조영범
주준호
Original Assignee
한미정밀화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미정밀화학주식회사 filed Critical 한미정밀화학주식회사
Priority to EP17756781.5A priority Critical patent/EP3421521B1/en
Priority to MX2018009847A priority patent/MX2018009847A/es
Priority to BR112018067996A priority patent/BR112018067996A2/pt
Priority to CN201780012402.5A priority patent/CN108699236B/zh
Priority to JP2018545151A priority patent/JP6927990B2/ja
Priority to US16/074,592 priority patent/US10781285B2/en
Priority to AU2017224389A priority patent/AU2017224389A1/en
Priority to CA3013750A priority patent/CA3013750A1/en
Publication of WO2017146443A1 publication Critical patent/WO2017146443A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3312Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/11Aldehydes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3344Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
    • C08G65/3346Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur having sulfur bound to carbon and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones

Definitions

  • the present invention is directed to an improved process for preparing high purity polyethylene glycol dialdehyde derivatives.
  • PEG Polyethylene glycol
  • PEG derivatives in which various functional groups are introduced into the hydroxyl group (OH group) at the PEG chain end are used.
  • PEG derivatives include PEG-aldehyde, PEG-acetaldehyde, PEG-propionaldehyde, and the like.
  • the aldehyde group present at the terminal of the derivative can selectively react with the amino terminal of the protein.
  • U. S. Patent No. 6,465, 694 discloses a process of oxidizing a PEG-terminated hydroxy group to an aldehyde group by reacting PEG with oxygen under a catalyst.
  • a method using the oxidation reaction has a problem that can degrade the PEG chain.
  • an acetal group to the PEG terminal to prepare an aldehyde group through a hydrolysis reaction and an oxidation reaction it is difficult to commercialize because the raw materials used are expensive.
  • US Pat. No. 5,252,714 discloses a process for preparing PEG-propionaldehyde by reacting PEG with 3-chlorodiethylacetalpropion-aldehyde and then hydrolyzing under acidic conditions.
  • U.S. Patent No. 4,002,531 discloses a PEGylation reaction (PEGylation or pegylation) to introduce PEG into the drug, by oxidizing mPEG (methoxy-PEG) to prepare mPEG-acetaldehyde, using the trypsin enzyme PEGylation reaction is used in drug delivery system.
  • PEGylation reaction PEGylation or pegylation
  • mPEG methoxy-PEG
  • trypsin enzyme PEGylation reaction is used in drug delivery system.
  • this oxidation reaction may decompose PEG chains to increase the distribution, and the reaction conversion rate may be lowered to 80% or less.
  • the present inventors have studied the method for preparing polyethylene glycol dialdehyde derivatives more safely and efficiently, and found that PEG-diacetal can be used as an intermediate to prepare polyethylene glycol dialdehyde derivatives of high purity. Was completed.
  • R 1 and R 2 are the same as or different from each other, each independently represent a (C1-C9) alkyl group, and n is an integer from 3 to 2000.
  • the preparation method according to the present invention is suitable for mass production because of no separation process (purification process), such as column chromatography, and the polyethylene glycol dialdehyde derivative suitable as a raw material for pharmaceuticals due to its high purity and terminal activity.
  • purification process such as column chromatography
  • polyethylene glycol dialdehyde derivative suitable as a raw material for pharmaceuticals due to its high purity and terminal activity.
  • 'PEG-dialdehyde' Method for producing a polyethylene glycol dialdehyde derivative (hereinafter referred to as 'PEG-dialdehyde') of the present invention, (1) to activate the compound of the formula (2) in the presence of a metal base in a solvent and PEGylated with a compound of the formula (1) Reacting to prepare a compound of Formula 3; And (2) reacting the compound of Formula 3 with an acid in a solvent to prepare a compound of Formula 4.
  • step (1) by activating the compound of Formula 2 (dialkoxy-1-propanol) and PEGylation with the compound of Formula 1 (PEG-Ms) (PEGylation) To prepare a compound (PEG-diacetal).
  • R 1 and R 2 are the same as or different from each other, each independently represent a (C1-C9) alkyl group, and n is an integer from 3 to 2000.
  • the alkyl group of R 1 and R 2 is a linear or branched alkyl group, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, hexyl, heptyl, octyl, or nonyl, Preferably C1-C4, more preferably methyl, ethyl, propyl, isopropyl or butyl, most preferably ethyl.
  • N is directly related to the molecular weight of the polyethylene glycol (PEG) to be produced finally, it may be an integer of 3 to 2000.
  • step (1) the compound of Formula 2 (dialkoxy-1-propanol) is added to a solvent in an inert gas atmosphere or in an inert atmosphere in which inert gas is continuously introduced, followed by stirring to activate the metal base.
  • the compound of formula 1 (PEG-Ms) by PEGylation reaction may be prepared in the solution of the compound of formula (3) (PEG-diacetal).
  • the reaction of step (1) may be carried out under (i) an inert gas atmosphere in which the gas inside the reactor is replaced with an inert gas, or (ii) the inert gas is continuously introduced to continuously replace the gas in the reactor.
  • an inert gas atmosphere in which the gas inside the reactor is replaced with an inert gas
  • the inert gas is continuously introduced to continuously replace the gas in the reactor.
  • the flow rate of the inert gas may be 0.1 to 6.0 L / min, specifically 0.5 to 4.0 L / min, more specifically 0.5 to 2.0 L / min.
  • the inert gas may be at least one selected from the group consisting of nitrogen, argon and helium, and preferably nitrogen.
  • the solvent used in the reaction of step (1) may be at least one selected from the group consisting of toluene, dichloromethane, chloroform, tetrahydrofuran, acetonitrile and 1,4-dioxane.
  • the metal base may be a metal alkoxide, metal hydride or a mixture thereof.
  • the metal alkoxide may be at least one selected from the group consisting of sodium methoxide, sodium ethoxide, sodium t-butoxide, sodium t-pentoxide, potassium t-butoxide and potassium t-pentoxide.
  • the metal hydride may be sodium hydride.
  • the metal base may be used in an amount of 1 to 10 equivalents, preferably 3 to 7 equivalents, based on 1 equivalent of the compound of Formula 1 (PEG-Ms).
  • dialkoxy-1-propanol examples include dimethoxy-1-propanol, diethoxy-1-propanol, dipropoxy-1-propanol, dibutoxy-1-propanol, and diisopropoxy -1-propanol etc. are mentioned.
  • the compound of Formula 2 may be used in an amount of 2 to 30 equivalents based on 1 equivalent of the compound of Formula 1, preferably in an amount of 5 to 15 equivalents.
  • step (1) The activation treatment of step (1) may be carried out at a temperature condition of 20 °C to 90 °C, preferably may be carried out at 35 °C to 80 °C.
  • the PEGylation reaction (PEGylation) of step (1) may be carried out at a temperature condition of 0 °C to 90 °C, preferably may be carried out at 0 °C to 40 °C.
  • the activation treatment and PEGylation reaction of this step (1) directly affect the terminal activity of PEG-dialdehyde.
  • the term 'terminal activity' means that an aldehyde group, which is a functional group having activity at the terminal of PEG-dialdehyde, is present.
  • the higher the value of the terminal activity means that the content of the dialdehyde present in the PEG terminal, the higher the terminal activity is 100% means that 100% of the CHO is bonded to both ends of the PEG.
  • the aldehyde group may selectively react with the amino terminus of the protein or peptide.
  • the term 'terminal activity' may be interpreted as the degree of PEGylation that can be introduced into PEG-dialdehyde. Therefore, in order to use as a raw material of a drug such as a bio drug (bio drug), it is advantageous that the aldehyde group is present at both ends of the PEG-dialdehyde in a high proportion.
  • step (2) of the present invention described later is relatively quick and easy and can be reacted at a high conversion rate, step (1) is important to secure high terminal activity.
  • the PEG of Chemical Formula 1 reacts with the compound of Chemical Formula 2, and at this time, the reaction parameter is adjusted during activation of the hydroxyl group of the Chemical Formula 2 to increase the reactivity between the Chemical Formula 1 and Chemical Formula 2 Prepare the compound.
  • any one or more of those described above may be used as the metal base, and sodium t-pentoxide is preferably used.
  • the inert gas is introduced at the above-described flow rate, PEG-dialdehyde having improved terminal activity can be obtained.
  • the subsequent treatment process may be considered with regard to terminal activity.
  • the compound of formula 3 (PEG-diacetal) prepared after the PEGylation reaction in step (1) may be isolated for crystallization into a solid phase or concentrated in an oil phase to be used in the next step, or alternatively It can be prepared in solution by the reaction of (1) and then used in-situ for the reaction of the subsequent step (2) without separation. That is, in the case of (ii), the reaction solution obtained in step (1) can be used continuously ( in-situ ) in the reaction of step (2) without separation.
  • the terminal activity is further improved when the compound of Formula 3 is applied to the next step in the continuous use manner.
  • step (2) as shown in Scheme 2, the compound of formula (3) prepared in step (1) (PEG-diacetal) is reacted with an acid in a solvent to the compound of formula (4) (PEG-dialdehyde) Manufacture.
  • step (2) the compound of formula (3) (PEG-diacetal) obtained in solution by the reaction of step (1) was added to an aqueous acid solution in a solvent, followed by reaction
  • the mixture of Chemical Formula 4 (PEG-dialdehyde) may be prepared by treating with a solvent.
  • the solvent used in the reaction of step (2) may be selected from the group consisting of water, methanol, ethanol, propanol, t-butanol and mixtures thereof.
  • the solvent used in the reaction of step (2) may comprise water.
  • the acid may also be selected from the group consisting of hydrochloric acid, acetic acid, formic acid, trifluoroacetic acid, phosphoric acid and mixtures thereof.
  • step (2) may be carried out at a temperature condition of 0 °C to 50 °C, preferably may be carried out at 20 °C to 30 °C.
  • the solution obtained through the reaction of step (2) may be further subjected to extraction, concentration, crystallization, etc. using an organic solvent.
  • the organic solvent may be selected from the group consisting of dichloromethane, chloroform, ethyl acetate and mixtures thereof.
  • the organic solvent used for the extraction may be selected from the group consisting of dichloromethane, chloroform, ethyl acetate and mixtures thereof.
  • the organic solvent used for the crystallization includes (a) at least one solvent selected from the group consisting of dichloromethane, chloroform and ethyl acetate, and (b) hexane, heptane, diethyl ether and methyl t-butyl ether.
  • One or more solvents selected from the group can be used in combination.
  • the formula (2) and R 1 and R 2 are the same of the compound of formula 3, which may be an acetate.
  • the reaction of step (1) may be performed under an inert gas atmosphere or in a state in which inert gas is continuously introduced.
  • the inert gas may be selected from the group consisting of nitrogen, argon, helium and mixtures thereof.
  • the compound of Formula 3 may be prepared in solution by the reaction of step (1) and then used in-situ for the reaction of step (2) without separation.
  • the acid used in step (2) may be hydrochloric acid.
  • the compound of Formula 4 may be obtained by treating the solution obtained by the reaction of step (2) with an organic solvent.
  • the organic solvent may include one or more selected from the group consisting of dichloromethane, chloroform and ethyl acetate.
  • step (1) of the present invention can be prepared by the route shown in Scheme 3.
  • the compound of Formula 1 may be prepared by reacting polyethylene glycol (PEG) and methanesulfonyl chloride (MsCl) in the presence of a base.
  • PEG polyethylene glycol
  • MsCl methanesulfonyl chloride
  • the base used in the preparation of the compound of Formula 1 may be triethylamine, tributylamine, or a mixture thereof.
  • PEG-dialdehyde having high purity can be stably and reproducibly produced by reacting a compound in which methanesulfonyl chloride is introduced into a leaving group into PEG as a starting material as a starting material.
  • the manufacturing method of the present invention preferably does not include performing the column chromatography, and thus is suitable for mass production, and efficiently and reproducibly produces a high quality product. There is an advantage to produce.
  • the purity and terminal activity is high, there is an advantage that can provide a polyethylene glycol dialdehyde derivative suitable as a raw material of pharmaceutical products.
  • the polyethylene glycol dialdehyde derivative prepared according to the present invention exhibits terminal activity of 60% or more, preferably 70% or more, more preferably 80% or more.
  • Mn Number average molecular weight
  • PDI polydispersity index
  • MPF main peak fraction
  • Terminal activity It was analyzed by a RI index (refractive index detector) through an ion exchange column using high performance liquid chromatography (HPLC).
  • Nitrogen gas was continuously introduced into the reaction vessel, and the reaction vessel was flame dried to remove moisture.
  • 100 g of PEG (Mn about 3.4 K) was added to the reaction vessel, and 300 mL of dichloromethane was added thereto to dissolve and cooled to 5 ° C. 23.0 mL of triethylamine was added to the reaction solution, and 12.6 mL of methanesulfonyl chloride was added at 5 ° C.
  • the reaction solution was stirred at 5 ° C. for 2.5 hours, 300 mL of distilled water was added thereto, followed by stirring for 10 minutes to separate an organic layer.
  • 300 mL of dichloromethane was added to the aqueous layer, followed by further extraction. The organic layers were separated and combined.
  • Nitrogen gas was continuously introduced into two 500 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Nitrogen gas was continuously introduced into two 500 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Terminal activity 73.1%.
  • Nitrogen gas was continuously introduced into two 500 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Terminal activity 77.1%.
  • Nitrogen gas was continuously introduced into two 500 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Nitrogen gas was continuously introduced into two 500 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Nitrogen gas was continuously introduced into two 500 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Terminal activity 81.4%.
  • Example 6 The same procedure as in Example 6 was repeated except that 0.98 g of sodium ethoxide was used as the metal base, to obtain 3.67 g (37% yield) of PEG-dialdehyde.
  • Example 6 The same procedure as in Example 6 was repeated except that 1.38 g of sodium t-butoxide was used as the metal base, to obtain 2.98 g (yield: 30%) of PEG-dialdehyde.
  • Example 6 The same procedure as in Example 6 was repeated except that 1.58 g of sodium t-pentoxide was used as the metal base, and 4.68 g (yield: 48%) of PEG-dialdehyde was obtained.
  • Example 6 The same procedure as in Example 6 was repeated except that 0.58 g of 60% sodium hydride was used as the metal base, to obtain 4.36 g (44%) of PEG-dialdehyde.
  • Terminal activity 81.9%.
  • Nitrogen gas was continuously introduced into two 250 mL reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • Terminal activity 82.1%.
  • Terminal activity 81.4%.
  • Terminal activity 83.1%.
  • Example 5 The same procedure as in Example 5 was repeated except that helium gas was used instead of nitrogen gas as an inert gas, to obtain 4.3 g (yield: 44%) of PEG-dialdehyde.
  • Terminal activity 69.5%.
  • Terminal activity 68.0%.
  • Nitrogen gas was continuously introduced into the two reaction vessels, and the reaction vessels were flame dried to remove moisture.
  • the present invention is carried out in an inert atmosphere upon activation, and the following table 1 compares the terminal activity of the PEG-dialdehyde finally obtained for the inactivation of the inert atmosphere.
  • Example 6 Comparative Example 1 Sodium methoxide 81.4 13.0
  • Example 7 Comparative Example 2
  • Example 8 Comparative Example 3
  • Example 9 Comparative Example 4
  • Example 10 Comparative Example 5
  • Example 11 Comparative Example 6
  • Example 12 Comparative Example 7
  • the PEG-dialdehyde can be produced with excellent terminal activity only when performed under nitrogen atmosphere during activation.
  • Table 2 compares the yield and terminal activity according to the type of gas in an inert atmosphere.
  • Table 3 compares the yield and terminal activity according to the flow rate of the inert gas.
  • Example 1 Potassium t-butoxide Extraction-concentration-crystallization 66.8
  • Example 2 Potassium t-butoxide Extraction-concentration 73.1
  • Example 3 Potassium t-butoxide Extraction (used as in-situ ) 77.1
  • Example 4 Sodium t-pentoxide Extraction (used as in-situ ) 82.6
  • Example 5 Sodium t-pentoxide Extraction (used as in-situ ) 85.8
  • the terminal activity of the PEG-dialdehyde finally obtained according to the separation and purification process of PEG-diethylacetal after the PEGylation reaction is lowered when crystallization is performed, and when the separated solution is used in the next step after performing the extraction process by the organic layer ( in-situ ), the PEG-dialdehyde has excellent terminal activity. It can be seen that manufacturing is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

본 발명은 고순도의 폴리에틸렌글리콜 디알데히드 유도체를 제조하는 개선된 방법에 관한 것으로서, 상기 제조방법은 폴리에틸렌글리콜 메탄설포네이트를 디알콕시-1-프로판올과 반응시켜 제조된 PEG-디아세탈을 중간체로 사용함으로써, 순도 및 말단 활성이 높아 의약품의 원료로 적합한 폴리에틸렌글리콜 디알데히드 유도체를 제공할 수 있다는 장점이 있다.

Description

폴리에틸렌글리콜 디알데히드 유도체의 제조방법
본 발명은 고순도의 폴리에틸렌글리콜 디알데히드 유도체를 제조하는 개선된 방법에 관한 것이다.
폴리에틸렌글리콜(polyethylene glycol, PEG)은 친수성이 강하여 물분자와 효과적으로 수소 결합을 하는 고분자 중 하나이다. PEG는 물 이외의 다양한 유기 용매에 대한 용해도가 우수하고 독성이 거의 없어 의약품 개발에 다양하게 응용될 수 있다. 예를 들어 PEG는 단백질, 효소 등과 적절히 결합하여 약물의 독성을 감소시키고, 난용성 약물의 용해도를 증가시키며, 활성 및 반감기 등을 조절하여 원하는 특성을 가지는 PEG-약물 복합체로 제조될 수 있다.
PEG와 약물을 결합하기 위하여, PEG 사슬 말단의 히드록시기(OH group)에 다양한 관능기가 도입된 PEG 유도체가 사용된다. 이러한 PEG 유도체로서 PEG-알데히드, PEG-아세트알데히드, PEG-프로피온알데히드 등을 들 수 있는데, 이 유도체의 말단에 존재하는 알데히드기가 단백질의 아미노 말단에 선택적으로 반응할 수 있다.
이러한 반응성 알데히드기를 PEG 사슬 말단에 도입하기 위한 몇 가지 방법이 알려져 있다. 미국 특허 제6,465,694호는 촉매 하에서 PEG를 산소와 반응시켜 PEG 말단의 히드록시기를 알데히드기로 산화시키는 방법을 개시하고 있다. 그러나, 이와 같은 산화반응을 이용한 방법은 PEG 사슬을 분해시킬 수 있는 문제가 있다. 또한, PEG 말단에 아세탈기를 도입한 후 가수분해반응과 산화반응을 통하여 알데히드기를 제조하는 경우, 사용되는 원료들이 고가이기 때문에 상업화에 어려움이 있다.
미국 특허 제5,252,714호는 PEG를 3-클로로디에틸아세탈프로피온-알데히드와 반응시킨 후 산성 조건에서 가수분해하여 PEG-프로피온알데히드를 제조하는 방법을 개시하고 있다.
또한, 미국 특허 제4,002,531호는 PEG를 약물에 도입하는 페길화 반응(PEGylation 또는 pegylation)을 개시하고 있는데, mPEG(methoxy-PEG)를 산화시켜 mPEG-아세트알데히드를 제조한 후, 이를 이용하여 트립신 효소를 페길화 반응시켜 약물전달시스템에 사용하고 있다. 그러나 이러한 산화 반응은 PEG 사슬을 분해시켜 분포도가 증가될 수 있고, 반응전환율이 80% 이하로 저하될 수 있다.
이에 본 발명자들은 폴리에틸렌글리콜 디알데히드 유도체를 보다 안전하고 효율적으로 제조하는 방법에 대해 연구한 결과, PEG-디아세탈을 중간체로 사용하여 고순도의 폴리에틸렌글리콜 디알데히드 유도체를 제조할 수 있음을 발견하고 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
미국 특허 제6,465,694호 (2002.10.15), Method for preparation of polyethylene glycol aldehyde derivatives
미국 특허 제5,252,714호 (1993.10.12), Preparation and use of polyethylene glycol propionaldehyde
미국 특허 제4,002,531호 (1977.01.11), Modifying enzymes with polyethylene glycol and product produced thereby
따라서, 본 발명의 목적은 높은 말단 활성을 가지며, 고순도의 폴리에틸렌글리콜 디알데히드 유도체를 안전하고 효율적으로 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은
(1) 하기 화학식 2의 화합물을 금속 염기로 활성화 처리 후 화학식 1의 화합물과 페길화 반응시켜 화학식 3의 화합물을 제조하는 단계; 및
(2) 상기 화학식 3의 화합물을 산 처리하는 단계;를 포함하여 하기 화학식 4로 표시되는 폴리에틸렌글리콜 디알데히드 유도체를 제조하는 방법을 제공한다:
[화학식 1]
Figure PCTKR2017001906-appb-I000001
[화학식 2]
Figure PCTKR2017001906-appb-I000002
[화학식 3]
Figure PCTKR2017001906-appb-I000003
[화학식 4]
Figure PCTKR2017001906-appb-I000004
(상기 식에서, Ms는 메탄설포닐이고, R1 및 R2는 서로 같거나 다르며 각각 독립적으로 (C1-C9)알킬기이고, n은 3 내지 2000의 정수이다.)
본 발명에 따른 제조방법은 컬럼크로마토그래피와 같은 분리 공정(정제 공정)이 불필요하여 대량 생산에 적합하고 효율적이며, 순도 및 말단 활성(terminal activity)이 높아 의약품의 원료로 적합한 폴리에틸렌글리콜 디알데히드 유도체를 제공할 수 있다는 장점이 있다.
본 발명의 폴리에틸렌글리콜 디알데히드 유도체(이하 'PEG-디알데히드'라 한다)의 제조방법은, (1) 하기 화학식 2의 화합물을 용매 중에서 금속 염기의 존재하에 활성화시키고 하기 화학식 1의 화합물과 페길화 반응시켜 하기 화학식 3의 화합물을 제조하는 단계; 및 (2) 상기 화학식 3의 화합물을 용매 중에서 산과 반응시켜 하기 화학식 4의 화합물을 제조하는 단계를 포함한다.
본 발명의 제조방법을 단계별로 보다 구체적으로 설명하면 다음과 같다.
상기 단계 (1)에서는, 하기 반응식 1과 같이, 상기 화학식 2의 화합물(디알콕시-1-프로판올)을 활성화시키고 상기 화학식 1의 화합물(PEG-Ms)과 페길화 반응(PEGylation)시켜 상기 화학식 3의 화합물(PEG-디아세탈)을 제조한다.
[반응식 1]
Figure PCTKR2017001906-appb-I000005
(상기 식에서, Ms는 메탄설포닐이고, R1 및 R2는 서로 같거나 다르며 각각 독립적으로 (C1-C9)알킬기이고, n은 3 내지 2000의 정수이다.)
상기 R1 및 R2의 알킬기는 선형(linear) 또는 가지형(branched)의 알킬기이며, 그 예로는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, 헥실, 헵틸, 옥틸, 또는 노닐이고, 바람직하기로 C1-C4, 더욱 바람직하기로 메틸, 에틸, 프로필, 이소프로필 또는 부틸일 수 있으며, 가장 바람직하기로는 에틸이다.
상기 n은 최종 제조하고자 하는 폴리에틸렌글리콜(PEG)의 분자량과 직접적으로 관련된 것으로, 3 내지 2000의 정수일 수 있다.
구체적인 예로서, 단계 (1)에서는 비활성 기체 대기 하에서 또는 비활성 기체가 지속적으로 유입되는 비활성 분위기에서 상기 화학식 2의 화합물(디알콕시-1-프로판올)을 용매에 가하고 금속 염기를 첨가한 후 교반하여 활성화(activation)시킨 후, 상기 화학식 1의 화합물(PEG-Ms)과 페길화 반응시켜 상기 화학식 3의 화합물(PEG-디아세탈)을 용액 상태로 제조할 수 있다.
상기 단계 (1)의 반응은, (i) 반응기 내부의 기체가 비활성 기체로 치환된 비활성 기체 대기 하에서, 또는 (ii) 비활성 기체가 지속적으로 유입되어 반응기 내부의 기체를 지속적으로 치환하는 상태에서 진행될 수 있다. 상기 (ii)의 경우에는, 예를 들어 비활성 기체의 유량이 0.1 내지 6.0 L/min일 수 있고, 구체적으로 0.5 내지 4.0 L/min, 보다 구체적으로 0.5 내지 2.0 L/min일 수 있다.
여기서, 상기 비활성 기체는 질소, 아르곤 및 헬륨으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하기로 질소를 사용한다.
상기 단계 (1)의 반응에 사용되는 용매는 톨루엔, 디클로로메탄, 클로로포름, 테트라히드로퓨란, 아세토니트릴 및 1,4-디옥산으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또한, 상기 금속 염기는 금속 알콕사이드, 금속 하이드라이드 또는 이들의 혼합물일 수 있다. 상기 금속 알콕사이드는 소듐 메톡사이드, 소듐 에톡사이드, 소듐 t-부톡사이드, 소듐 t-펜톡사이드, 포타슘 t-부톡사이드 및 포타슘 t-펜톡사이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 금속 하이드라이드는 소듐 하이드라이드일 수 있다.
상기 금속 염기는 상기 화학식 1의 화합물(PEG-Ms) 1 당량에 대하여 1 내지 10 당량의 양으로 사용할 수 있으며, 바람직하게는 3 내지 7 당량의 양으로 사용할 수 있다.
상기 화학식 2의 화합물(디알콕시-1-프로판올)의 구체적인 예로는 디메톡시-1-프로판올, 디에톡시-1-프로판올, 디프로폭시-1-프로판올, 디부톡시-1-프로판올, 디이소프로폭시-1-프로판올 등을 들 수 있다.
상기 화학식 2의 화합물은 상기 화학식 1의 화합물 1 당량에 대하여 2 내지 30 당량의 양으로 사용될 수 있으며, 바람직하게는 5 내지 15 당량의 양으로 사용될 수 있다.
상기 단계 (1)의 활성화 처리는 20℃ 내지 90℃의 온도 조건에서 수행될 수 있으며, 바람직하게는 35℃ 내지 80℃에서 수행될 수 있다. 또한, 상기 단계 (1)의 페길화 반응(PEGylation)은 0℃ 내지 90℃의 온도 조건에서 수행될 수 있으며, 바람직하게는 0℃ 내지 40℃ 에서 수행될 수 있다.
특히, 본 단계 (1)의 활성화 처리 및 페길화 반응은 PEG-디알데히드의 말단 활성에 직접적으로 영향을 준다. 상기 '말단 활성'이란 PEG-디알데히드의 말단에 활성을 갖는 관능기인 알데히드기가 존재하는 것을 의미한다. 이때 상기 말단 활성의 수치가 높을수록 PEG 말단에 존재하는 디알데히드의 함량이 높음을 의미하며, 말단 활성이 100%라 함은 PEG의 양쪽 말단에 CHO가 100%가 결합되어 있음을 의미한다. 이때, 상기 알데히드기는 단백질 또는 펩타이드의 아미노 말단에 선택적으로 반응할 수 있다. 이 내용을 고려할 때 '말단 활성'이라 함은 PEG-디알데히드에 도입될 수 있는 페길화 정도로 해석될 수도 있다. 이에 바이오 드러그(bio drug)와 같은 의약품의 원료로 사용하기 위해서, PEG-디알데히드의 양 말단에 알데히드기가 높은 비율로 존재하는 것이 유리하다.
후속에서 설명하는 본 발명의 단계 (2)는 단계 (1)보다 반응이 비교적 빠르며 쉽고 높은 전환율로 반응이 이뤄질 수 있으므로, 높은 말단 활성을 확보하기 위해선 단계 (1)의 조절이 중요하다.
본 단계 (1)에서는 화학식 1의 PEG와 화학식 2의 화합물이 반응하며, 이때 화학식2의 화합물의 히드록시기를 활성화 처리 시 반응 파라미터를 조절하여 상기 화학식 1과 화학식 2의 화합물 간의 반응성을 높여 화학식 3의 화합물을 제조한다.
상기 활성화 처리시 파라미터로는 반응 온도, 시간, 몰비 등 다양한 파라미터 중에서 직접적으로 순도 및 수율과도 관련된 금속 염기 및 분위기를 선정하고, 이의 조절이 필요하다.
그 결과, 금속 염기는 전술한 바의 것 중 어느 하나 이상이 사용될 수 있으며, 바람직하기로는 소듐 t-펜톡사이드를 사용한다. 또한, 비활성 기체 분위기 하에서 또는 지속적으로 유입되는 상태에서 수행하는 것이 바람직하며, 공기 또는 산소 분위기 하에서 수행할 경우 최종 얻어지는 PEG-디알데히드의 말단 활성이 크게 저하된다. 더불어, 상기 비활성 기체는 상기 제시한 유량으로 유입시킬 경우 말단 활성이 향상된 PEG-디알데히드를 얻을 수 있다.
한편, 말단 활성과 관련된 내용으로 후속 처리 공정을 고려할 수 있다.
상기 단계 (1)에서 페길화 반응 이후 제조된 화학식 3의 화합물(PEG-디아세탈)은 고상으로 결정화하는 등으로 분리(isolation)되거나 오일상으로 농축되어 다음 단계에 사용될 수 있으며, 또는 이와는 다르게 단계 (1)의 반응에 의해 용액 상태로 제조된 후 분리 없이 후속하는 단계 (2)의 반응에 연속적으로(in-situ) 사용될 수 있다. 즉, 상기 (ii)의 경우에는, 단계 (1)에서 얻은 반응액을 분리 없이 단계 (2)의 반응에 연속적으로(in-situ) 사용할 수 있다. 바람직하기로는 상기 연속적인 사용 방식으로 화학식 3의 화합물을 다음 단계에 적용할 경우 말단 활성이 더욱 향상되는 결과를 나타내었다.
상기 단계 (2)에서는, 하기 반응식 2와 같이, 앞서의 단계 (1)에서 제조된 화학식 3의 화합물(PEG-디아세탈)을 용매 중에서 산과 반응시켜 상기 화학식 4의 화합물(PEG-디알데히드)을 제조한다.
[반응식 2]
Figure PCTKR2017001906-appb-I000006
(상기 식에서, R1, R2 및 n은 상기에서 언급한 바와 같다.)
구체적인 예로서, 단계 (2)에서는 앞서의 단계 (1)의 반응에 의해 용액 상태로 얻은 상기 화학식 3의 화합물(PEG-디아세탈)을 용매 중에서 산 수용액에 가하여 반응시킨 뒤, 수득한 용액을 유기용매로 처리하여 상기 화학식 4의 합물(PEG-디알데히드)을 제조할 수 있다.
상기 단계 (2)의 반응에 사용되는 용매는 물, 메탄올, 에탄올, 프로판올, t-부탄올 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 바람직하게는 상기 단계 (2)의 반응에 사용되는 용매는 물을 포함할 수 있다.
또한, 상기 산은 염산, 아세트산, 포름산, 트리플루오로아세트산, 인산 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 단계 (2)의 반응은 0℃ 내지 50℃의 온도 조건에서 수행될 수 있으며, 바람직하게는 20℃ 내지 30℃에서 수행될 수 있다.
상기 단계 (2)의 반응을 거쳐 수득한 용액은 유기용매를 이용하여 추출, 농축, 결정화 등을 더 거칠 수 있다. 상기 유기용매는 디클로로메탄, 클로로포름, 에틸아세테이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
구체적으로, 상기 추출에 사용되는 유기용매는 디클로로메탄, 클로로포름, 에틸아세테이트 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 또한, 상기 결정화에 사용되는 유기용매로는 (a) 디클로로메탄, 클로로포름 및 에틸아세테이트로 이루어진 군으로부터 선택된 1종 이상의 용매와, (b) 헥산, 헵탄, 디에틸에테르 및 메틸 t-부틸에테르로 이루어진 군으로부터 선택된 1종 이상의 용매를 혼합하여 사용할 수 있다.
본 발명의 제조방법의 바람직한 구현예에 따르면, 상기 화학식 2 및 화학식 3의 화합물의 R1 및 R2가 같고, 이들은 에틸일 수 있다. 이때, 상기 단계 (1)의 반응은 비활성 기체 대기 하에서 또는 비활성 기체가 지속적으로 유입되는 상태에서 수행될 수 있다. 상기 비활성 기체는 질소, 아르곤, 헬륨 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 또한, 상기 화학식 3의 화합물은 상기 단계 (1)의 반응에 의해 용액 상태로 제조된 후 분리 없이 상기 단계 (2)의 반응에 연속적으로(in-situ) 사용될 수 있다. 또한, 상기 단계 (2)에 사용되는 산은 염산일 수 있다. 또한, 상기 화학식 4의 화합물은 상기 단계 (2)의 반응으로 얻은 용액을 유기용매로 처리하여 수득될 수 있다. 상기 유기용매는 디클로로메탄, 클로로포름 및 에틸아세테이트로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
한편, 본 발명의 단계 (1)에서 출발물질로서 사용하는 화학식 1의 화합물(PEG-Ms)은, 예를 들어 하기 반응식 3에 나타낸 경로로 제조될 수 있다.
[반응식 3]
Figure PCTKR2017001906-appb-I000007
(상기 식에서, Ms 및 n은 상기에서 언급한 바와 같다.)
즉, 상기 화학식 1의 화합물은 염기 존재하에서 폴리에틸렌글리콜(PEG)과 메탄설포닐클로라이드(MsCl)를 반응시켜 제조될 수 있다. 여기서, 상기 화학식 1의 화합물의 제조시에 사용되는 염기는 트리에틸아민, 트리부틸아민, 또는 이들의 혼합물일 수 있다.
이와 같이 본 발명의 제조방법은, 안정한 구조인 PEG에 메탄설포닐클로라이드를 이탈기로 도입한 화합물을 출발물질로서 반응을 진행함으로써, 안정적이고 재현성있게 고순도의 PEG-디알데히드를 제조할 수 있다. 또한, 본 발명의 제조방법은 컬럼크로마토그래피와 같은 분리 공정이 불필요하므로, 바람직하게는 컬럼크로마토그래피를 수행하는 단계를 포함하지 않으며, 이에 따라 대량 생산에 적합하고 효율적이며 고품질의 제품을 재현성있게 대량생산할 수 있는 장점이 있다.
또한, 본 발명의 제조방법에 따르면, 순도 및 말단 활성(terminal activity)이 높아 의약품의 원료로 적합한 폴리에틸렌글리콜 디알데히드 유도체를 제공할 수 있다는 장점이 있다. 구체적으로, 본 발명에 따라 제조된 폴리에틸렌글리콜 디알데히드 유도체는 말단 활성이 60% 이상을 나타내며, 바람직하게는 70% 이상, 보다 바람직하게는 80% 이상일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하여 설명한다. 다만 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어 자명하다.
[평가]
이하 실시예 및 비교예에서 제조하는 각 물질 분석은 하기에 의거하여 평가하였다.
(1) 구조 확인: 1H-NMR 장치를 이용하여 측정하였다.
(2) 수평균 분자량(Mn), PDI(polydispersity index), MPF(main peak fraction): GPC(gel permeation chromatography)에 의해 결착 수지의 수평균분자량, PDI 및 MPF 값을 측정하였다. 상기 GPC는 고성능 액상 크로마토그래피(HPLC)를 이용하여 크기배제 크로마토그래피 컬럼(size-exclusion chromatography column)을 통해 RI 검출기(refractive index detector)로 수행하였다.
(3) 말단 활성: 고성능 액상 크로마토그래피(HPLC)를 사용한 이온교환컬럼(ion exchange column)을 통하여 RI 검출기(refractive index detector)로 분석하였다.
제조예 1: PEG-Ms의 제조
반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 상기 반응 용기를 화염 건조시켜 수분을 제거하였다. 상기 반응 용기에 PEG (Mn 약 3.4K) 100g를 투입하고 디클로로메탄 300 mL를 가하여 용해시킨 후 5℃로 냉각하였다. 반응액에 트리에틸아민 23.0 mL를 가하고 5℃를 유지하며 메탄설포닐클로라이드 12.6 mL를 가하였다. 반응액을 5℃에서 2.5시간 교반하고 증류수 300 mL를 가한 후 10분 동안 교반하여 유기층을 분리하였다. 수층에 디클로로메탄 300 mL를 가하여 추가 추출한 후 유기층을 분리하여 합하였다. 유기층을 증류수 300 mL로 세척한 후, 무수 황산마그네슘으로 건조하고 여과하여 여액을 감압 농축하였다. 농축액에 디클로로메탄 100 mL를 가하여 용해한 후 메틸 t-부틸에테르 1500 mL에 30분 동안 적가하고 실온에서 1시간 교반하였다. 생성된 고체를 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-Ms 97g (수율: 92.6%)을 수득하였다. 이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
1H-NMR(CDCl3, 400 MHz) δ 4.36-4.34 (m, 4H), 3.72-3.44 (m, 304H), 3.05 (s, 6H)
GPC로 측정한 수평균분자량(Mn): 3505
분산도(PDI): 1.04
MPF(main peak fraction) 순도: 99.42%.
실시예 1: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 500 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 3,3-디에톡시-1-프로판올 1.8 mL와 톨루엔 40 mL을 투입하였다. 이후 포타슘 t-부톡사이드 1.4 g을 투입하고 50℃까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 10g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 포화 염화암모늄 수용액 50 mL을 첨가하고 5분 동안 교반한 후 디클로로메탄 100 mL를 첨가하여 유기층을 추출하였다. 수층에 디클로로메탄 100 mL를 첨가하여 유기층을 추가 추출하고 유기층을 취합하여 감압 농축하였다. 농축액을 디클로로메탄 10 mL에 용해시킨 후 메틸 t-부틸에테르 150 mL를 적가하고 실온에서 2시간 교반하였다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-디에틸아세탈 9.3 g (수율: 90.0 %)을 얻었다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
또 다른 반응 용기에 앞서 수득한 PEG-디에틸아세탈 9 g을 넣고 증류수 45 mL로 용해한 뒤, 0.1N 염산 90 mL를 적가하였다. 반응액을 실온에서 2시간 동안 교반한 후 5% 탄산수소나트륨 용액을 사용하여 pH 6으로 조절하였다. 반응액에 디클로로메탄 90 mL를 첨가하여 유기층을 추출하고, 수층에 디클로로메탄 90 mL를 첨가하여 유기층을 추가 추출하였다. 유기층을 취합하여 황산나트륨으로 건조 후 여과하여 여액을 감압 농축하였다. 농축액을 디클로로메탄 9 mL에 용해한 후 메틸 t-부틸에테르 180 mL를 적가하고 실온에서 2시간 동안 교반하였다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-디알데히드 8 g (수율: 92.0%)을 얻었다.
말단 활성(terminal activity): 66.8 %
1H-NMR(CDCl3, 400 MHz) δ 9.49 (t, 2H, J= 2 Hz), 3.59-3.83 (m, 304H), 2.66-2.70 (m, 4H), 1.89 (m, 4H).
실시예 2: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 500 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 3,3-디에톡시-1-프로판올 1.8 mL와 톨루엔 40 mL를 투입하였다. 이후 포타슘 t-부톡사이드 1.4 g을 투입하고 50℃까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 10 g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 포화 염화암모늄 수용액 50 mL를 첨가하고 5분 동안 교반한 후 디클로로메탄 100 mL를 첨가하여 유기층을 추출하였다. 수층에 디클로로메탄 100 mL를 첨가하여 유기층을 추가 추출하고, 유기층을 취합하여 감압 농축하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
또 다른 반응 용기에 앞서 수득한 농축액을 넣고 증류수 50 mL로 용해한 뒤, 0.1N 염산 100 mL를 적가하였다. 반응액을 실온에서 2시간 동안 교반한 후 5% 탄산수소나트륨 용액을 사용하여 pH 6으로 조절하였다. 반응액에 디클로로메탄 100 mL를 첨가하여 유기층을 추출하고, 수층에 디클로로메탄 100 mL를 첨가하여 유기층을 추가 추출하였다. 유기층을 취합하여 무수 황산나트륨으로 건조 후 여과하여 여액을 감압 농축하였다. 농축액을 디클로로메탄 8 mL에 용해한 후 메틸 t-부틸에테르 200 mL를 적가하고 실온에서 2시간 동안 교반하였다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-디알데히드 8.5 g (수율: 86.0%)을 얻었다.
말단 활성: 73.1 %.
실시예 3: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 500 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 3,3-디에톡시-1-프로판올 2.2 mL와 톨루엔 40 mL를 투입하였다. 이후 포타슘 t-부톡사이드 1.4 g을 투입하고 50까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 10 g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 포화 염화암모늄 수용액 30 mL를 첨가하고 5분 동안 교반한 후 디클로로메탄 30 mL를 첨가하여 유기층을 추출하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
또 다른 반응 용기에 0.05N 염산 200 mL를 투입하고 앞서 추출된 유기층을 30분 동안 적가하였다. 반응액을 실온에서 1시간 동안 교반한 후 5% 탄산수소나트륨 용액을 사용하여 pH 6으로 조절하였다. 반응액에 디클로로메탄 100 mL를 첨가하고, 유기층을 무수 황산나트륨으로 건조 후 여과하여 여액을 감압 농축하였다. 농축액을 디클로로메탄 8 mL에 용해한 후 메틸 t-부틸에테르 200 mL를 적가하고 실온에서 1시간 동안 교반하였다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-디알데히드 7.2 g (수율: 73%)을 얻었다.
말단 활성: 77.1%.
실시예 4: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 500 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 3,3-디에톡시-1-프로판올 2.2 mL와 톨루엔 40 mL를 투입하였다. 이후 소듐 t-펜톡사이드 1.4 g을 투입하고 50℃까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 10 g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 증류수 30 mL를 첨가하고 10분 동안 교반하여 수층을 추출하였다. 수층에 디클로로메탄 30 mL와 톨루엔 80 mL를 첨가하고 10분 동안 교반하고 유기층을 추출하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
앞서의 단계 (1)에서 추출된 유기층을 이용해서, 상기 실시예 3의 단계 (2)와 동일한 절차를 반복하여, 목적화합물인 PEG-디알데히드 4.7 g (수율: 48%)을 얻었다.
말단 활성: 82.6%.
실시예 5: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 500 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 3,3-디에톡시-1-프로판올 4.5 mL와 톨루엔 40 mL를 투입하였다. 이후 소듐 t-펜톡사이드 1.6 g을 투입하고 50까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 10 g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 증류수 30 mL를 첨가하고 10분 동안 교반하여 수층을 추출하였다. 수층에 디클로로메탄 30 mL와 톨루엔 80 mL를 첨가하고 10분 동안 교반하여 유기층을 추출하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
앞서의 단계 (1)에서 추출된 유기층을 이용해서, 상기 실시예 3의 단계 (2)와 동일한 절차를 반복하여, 목적화합물인 PEG-디알데히드 4.7 g (수율: 48%)을 얻었다.
말단 활성: 85.8%
1H-NMR(CDCl3, 400 MHz) δ 9.49 (t, 2H, J= 2 Hz), 3.59-3.83 (m, 304H), 2.66-2.70 (m, 4H), 1.89 (m, 4H).
GPC로 측정한 수평균분자량(Mn): 3321
분산도(PDI): 1.04
MPF(main peak fraction) 순도: 99.51%.
실시예 6: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 500 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 톨루엔 40 mL와 3,3-디에톡시-1-프로판올 4.48 mL를 투입하였다. 이후 금속 염기로서 소듐 메톡사이드 0.78g을 투입하고 50℃까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 10g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 물 30 mL를 첨가하여 층을 분리하고, 수층에 디클로로메탄 30 mL와 톨루엔 80 mL를 첨가하여 유기층을 추출하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 1.1 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
또 다른 반응 용기에 0.05N 염산 용액 200 mL를 투입하고 앞서 추출된 유기층을 30분 동안 적가하였다. 반응액을 실온에서 30분 동안 교반한 후 5% 탄산수소나트륨 용액을 사용하여 pH 6으로 조절하였다. 디클로로메탄 100 mL를 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 30분 동안 교반하였다. 반응액을 여과하고 여액을 감압 농축시켰다. 농축액을 디클로로메탄 8 mL에 용해시킨 후 메틸 t-부틸에테르 200 mL를 20분 동안 적가하였다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-디알데히드 2.98g (수율: 30%)을 얻었다.
말단 활성: 81.4%.
실시예 7: PEG- 디알데히드의 제조
금속 염기로서 소듐 에톡사이드 0.98g을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 3.67g (수율: 37%)을 얻었다.
말단 활성: 77.8%.
실시예 8: PEG- 디알데히드의 제조
금속 염기로서 소듐 t-부톡사이드 1.38g을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 2.98g (수율: 30%)을 얻었다.
말단 활성: 81.7%.
실시예 9: PEG- 디알데히드의 제조
금속 염기로서 포타슘 t-부톡사이드 1.60g을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 3.37g (수율: 34%)을 얻었다.
말단 활성: 81.7%.
실시예 10: PEG- 디알데히드의 제조
금속 염기로서 소듐 t-펜톡사이드 1.58g을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 4.68g (수율: 48%)을 얻었다.
말단 활성: 85.8%.
실시예 11: PEG- 디알데히드의 제조
금속 염기로서 포타슘 t-펜톡사이드 (1.7M 톨루엔 용액) 8.4 mL를 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 3.47g (수율: 35%)을 얻었다.
말단 활성: 82.3%.
실시예 12: PEG- 디알데히드의 제조
금속 염기로서 60% 소듐 하이드라이드 0.58g을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 4.36g (수율: 44%)을 얻었다.
말단 활성: 81.9%.
실시예 13: PEG- 디알데히드의 제조
단계 (1): PEG-디에틸아세탈의 제조
두 개의 250 mL 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 톨루엔 20 mL와 3,3-디에톡시-1-프로판올 2.24 mL를 투입하였다. 이후 소듐 t-펜톡사이드 0.79g을 투입하고 50℃까지 승온 후 1시간 교반하여 활성화시켰다.
다른 하나의 반응 용기에 상기 제조예 1에서 얻은 PEG-Ms 5g과 톨루엔 20 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다. 반응액에 물 15 mL를 첨가하여 층을 분리하고, 수층에 디클로로메탄 15 mL와 톨루엔 40 mL를 첨가하여 유기층을 추출하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 0.56 L/min로 지속적으로 유입되는 상태 하에서 수행되었다.
단계 (2): PEG-디알데히드의 제조
또 다른 반응 용기에 0.05N 염산 용액 100 mL를 투입하고 앞서 추출된 유기층을 30분 동안 적가하였다. 반응액을 실온에서 30분 동안 교반한 후 5% 탄산수소나트륨 용액을 사용하여 pH 6으로 조절하였다. 디클로로메탄 50 mL를 첨가하여 추출한 후 유기층에 황산나트륨을 투입하고 30분 동안 교반하였다. 반응액을 여과하고 여액을 감압 농축시켰다. 농축액을 디클로로메탄 4 mL에 용해시킨 후 메틸 t-부틸에테르 100 mL를 20분 동안 적가하였다. 생성된 결정을 여과하고 메틸 t-부틸에테르로 세척한 후 실온에서 질소 건조하여 목적화합물인 PEG-디알데히드 1.80g (수율: 36%)을 얻었다.
말단 활성: 83.7%.
실시예 14: PEG- 디알데히드의 제조
질소 기체의 유량을 1.1 L/min로 조절하고, 활성화된 용액에 추가로 톨루엔 5 mL를 첨가하여 사용하는 것을 제외하고는, 상기 실시예 13과 동일한 절차를 반복하여, PEG-디알데히드 1.93g (수율: 39%)을 얻었다.
말단 활성: 86.4%.
실시예 15: PEG- 디알데히드의 제조
질소 기체의 유량을 2.8 L/min로 조절하고, 활성화된 용액에 추가로 톨루엔 13 mL를 첨가하여 사용하는 것을 제외하고는, 상기 실시예 13과 동일한 절차를 반복하여, PEG-디알데히드 1.88g (수율: 38%)을 얻었다.
말단 활성: 82.1%.
실시예 16: PEG- 디알데히드의 제조
질소 기체의 유량을 3.7 L/min로 조절하고, 활성화된 용액에 추가로 톨루엔 18 mL를 첨가하여 사용하는 것을 제외하고는, 상기 실시예 13과 동일한 절차를 반복하여, PEG-디알데히드 2.03g (수율: 41%)을 얻었다.
말단 활성: 81.4%.
실시예 17: PEG- 디알데히드의 제조
비활성 기체로서 질소 기체 대신 아르곤 기체를 사용하는 것을 제외하고는, 상기 실시예 5와 동일한 절차를 반복하여, PEG-디알데히드 4.6 g (수율: 47%)을 얻었다.
말단 활성: 83.1%.
실시예 18: PEG- 디알데히드의 제조
비활성 기체로서 질소 기체 대신 헬륨 기체를 사용하는 것을 제외하고는, 상기 실시예 5와 동일한 절차를 반복하여 PEG-디알데히드 4.3 g(수율: 44%)을 얻었다.
말단 활성: 82.4%.
비교예 1: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 6과 동일한 절차를 반복하여, PEG-디알데히드 2.38g (수율: 24%)을 얻었다.
말단 활성: 13.0%.
비교예 2: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 7과 동일한 절차를 반복하여, PEG-디알데히드 2.68g (수율: 27%)을 얻었다.
말단 활성: 33.6%.
비교예 3: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 8과 동일한 절차를 반복하여, PEG-디알데히드 2.38g (수율: 24%)을 얻었다.
말단 활성: 33.9%.
비교예 4: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 9와 동일한 절차를 반복하여, PEG-디알데히드 3.17g (수율: 32%)을 얻었다.
말단 활성: 69.5%.
비교예 5: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 10과 동일한 절차를 반복하여, PEG-디알데히드 2.88g (수율: 29%)을 얻었다.
말단 활성: 49.1%.
비교예 6: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 11과 동일한 절차를 반복하여, PEG-디알데히드 3.37g (수율: 34%)을 얻었다.
말단 활성: 69.8%.
비교예 7: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 12와 동일한 절차를 반복하여, PEG-디알데히드 3.18g (수율: 32%)을 얻었다.
말단 활성: 68.0%.
비교예 8: PEG- 디알데히드의 제조
Figure PCTKR2017001906-appb-I000008
단계 (1): 디에톡시프로필 메탄설포네이트의 제조
반응 용기에 3,3-디에톡시-1-프로판올 1.69g과 디클로로메탄 17 mL를 투입하였다. 반응 온도를 10℃ 이하로 유지하면서 트리에틸아민 1.9 mL와 메탄설포닐클로라이드 1.06 mL를 투입하고, 5℃에서 1시간 동안 교반하였다. 반응액에 톨루엔 20 mL와 3,3-디에톡시-1-프로판올 2.24 mL를 투입하고, 반응이 완결되면 물 50 mL를 투입한 후 5분 동안 교반하였다. 유기층을 추출한 후 수층에 다시 디클로로메탄 50 mL를 투입하여 유기층을 추가 추출하였다. 유기층을 취합하여 증류수 50 mL로 세척 후 황산마그네슘으로 건조시키고 여과하여 남은 여액을 감압 농축시켜, 디에톡시프로필 메탄설포네이트를 제조하였다.
1H-NMR(CDCl3, 400 MHz) δ 4.65(t, 1H, J= 5.6 Hz), 4.32(t, 2H, J= 5.6 Hz), 3.71-3.64(m, 2H), 3.56-3.48(m, 2H), 3.01(s, 3H), 2.07-2.03(m, 2H), 1.21(t, 6H, J= 7.2 Hz)
단계 (2): PEG- 디에틸아세탈의 제조
두 개의 반응 용기에 질소 기체가 지속적으로 유입되도록 준비하고, 이들 반응 용기를 화염 건조시켜 수분을 제거하였다.
이 중 하나의 반응 용기에 톨루엔 40 mL와 폴리에틸렌글리콜 10g을 투입하였다. 이후 소듐 t-펜톡사이드 0.70g을 투입하고 50℃까지 승온 후 1시간 교반하여 활성화시키고 실온으로 냉각하였다.
다른 하나의 반응 용기에 상기 단계 (1)에서 제조한 디에톡시프로필 메탄설포네이트 2.7g과 톨루엔 40 mL를 투입하고, 앞서 활성화시킨 용액을 1시간 동안 적가한 뒤 실온에서 2시간 동안 교반하였다.
이상의 반응 과정들은 모두 반응 용기에 질소 기체가 지속적으로 유입되는 상태 하에서 수행되었다.
TLC 결과 디에톡시프로필 메탄설포네이트는 사라졌으나 반응이 30% 정도만 진행된 것으로 확인되었다. 이와 같이 반응이 완결되지 않은 이유는, 중간체인 디에톡시프로필 메탄설포네이트가 불안정하여 분해되었기 때문인 것으로 보인다.
비교예 9: PEG- 디알데히드의 제조
반응 용기에 질소 기체가 유입되지 않는 상태에서, 상기 실시예 13과 동일한 절차를 반복하여, PEG-디알데히드 1.49g (수율: 30%)을 얻었다.
말단 활성: 50.1%.
실험예 1: 처리 조건에 따른 수율 및 말단 활성 분석
상기 실시예 및 비교예에서 제조된 PEG-디알데히드 제조 조건에 따른 수율 및 말단 활성 경향을 하기와 같이 분석하였다.
(1) 활성화시 비활성 분위기에 따른 말단 활성 변화 분석
본 발명은 활성화시 비활성 분위기에서 수행하는 것으로, 하기 표 1에 비활성 분위기의 가부에 대해 최종 얻어지는 PEG-디알데히드의 말단 활성을 비교 분석하였다.
구분 금속 염기 말단 활성 (%)
질소 사용 (실시예) 질소 미사용 (비교예)
실시예 6 / 비교예 1 소듐 메톡사이드 81.4 13.0
실시예 7 / 비교예 2 소듐 에톡사이드 77.8 33.6
실시예 8 / 비교예 3 소듐 t-부톡사이드 81.7 33.9
실시예 9 / 비교예 4 포타슘 t-부톡사이드 81.7 69.5
실시예 10 / 비교예 5 소듐 t-펜톡사이드 85.8 49.1
실시예 11 / 비교예 6 포타슘 t-펜톡사이드 82.3 69.8
실시예 12 / 비교예 7 소듐 하이드라이드 81.9 68.0
상기 표 1을 보면, 활성화시 질소 분위기 하에서 수행하여야만 말단 활성이 우수한 PEG-디알데히드의 제조가 가능함을 알 수 있다.
(2) 활성화시 비활성 기체의 종류에 따른 수율 및 말단 활성 변화 분석
하기 표 2에서는 비활성 분위기의 가스 종류에 따른 수율 및 말단 활성을 비교하였다.
구분 비활성 기체 수율(%) 말단 활성(%)
실시예 5 질소 48 85.8
실시예 17 아르곤 47 83.1
실시예 18 헬륨 44 82.4
비교예 5 X 29 49.1
상기 표 2를 보면, 활성화시 비활성 기체를 사용할 경우 말단 활성이 거의 2배 가량 증가함을 알 수 있었으며, 비활성 기체의 종류에 따라 큰 차이는 없었으나 질소를 사용할 경우 수율 및 말단 활성 면에서 좀더 유리함을 알 수 있다.
(3) 활성화시 비활성 기체의 유량에 따른 수율 및 말단 활성 변화 분석
하기 표 3에서는 비활성 기체의 유량에 따른 수율 및 말단 활성을 비교하였다.
구분 N2 유량(L/min) 활성화 후 남은용액량 ( mL) 수율(%) 말단 활성(%)
비교예 9 0 23 30 50.1
실시예 13 0.56 23 36 83.7
실시예 14 1.1 15 39 86.4
실시예 15 2.8 7 38 82.1
실시예 16 3.7 2 41 81.4
상기 표 3을 보면, 활성화시 비활성 분위기에서 수행할 경우 말단 활성이 높은 PEG-디알데히드를 얻을 수 있음을 알 수 있다. 이때 비활성 가스의 유량에 따른 결과를 보면, 1.1 L/min에서 높은 말단 활성을 갖는 PEG-디알데히드의 제조할 수 있음을 알 수 있다.
(4) 페길화 반응 후 정제 처리
단계 (1)의 페길화 반응 이후 제조된 PEG-디에틸아세탈의 분리 정제 방식에 따라 수율 및 말단 활성에 차이가 있었으며, 그 결과를 하기 표 4에 나타내었다.
구분 금속 염기 분리 정제 방식 말단 활성(%)
실시예 1 포타듐 t-부톡사이드 추출-농축-결정화 66.8
실시예 2 포타듐 t-부톡사이드 추출-농축 73.1
실시예 3 포타듐 t-부톡사이드 추출 (in-situ로 사용) 77.1
실시예 4 소듐 t-펜톡사이드 추출 (in-situ로 사용) 82.6
실시예 5 소듐 t-펜톡사이드 추출 (in-situ로 사용) 85.8
상기 표 4를 보면, 페길화 반응 이후 PEG-디에틸아세탈의 분리 정제 공정에 따라 최종 얻어지는 PEG-디알데히드의 말단 활성이 달라짐을 알 수 있다. 실시예 1 및 2을 보면, 결정화까지 수행할 경우 말단 활성이 떨어지며 유기층에 의한 추출 공정을 수행한 후 분리된 용액을 그대로 다음 단계에 사용할 경우(in-situ) 말단 활성이 우수한 PEG-디알데히드의 제조가 가능함을 알 수 있다.
이러한 경향은 금속 염기를 다른 종류로 사용한 실시예 4 및 5와 비교하여도 동일하게 나타남을 알 수 있었다.

Claims (15)

  1. (1) 하기 화학식 2의 화합물을 금속 염기로 활성화 처리 후 화학식 1의 화합물과 페길화 반응시켜 화학식 3의 화합물을 제조하는 단계; 및
    (2) 상기 화학식 3의 화합물을 산 처리하는 단계;를 포함하여 하기 화학식 4로 표시되는 폴리에틸렌글리콜 디알데히드 유도체를 제조하는 방법:
    [화학식 1]
    Figure PCTKR2017001906-appb-I000009
    [화학식 2]
    Figure PCTKR2017001906-appb-I000010
    [화학식 3]
    Figure PCTKR2017001906-appb-I000011
    [화학식 4]
    Figure PCTKR2017001906-appb-I000012
    (상기 식에서, Ms는 메탄설포닐이고, R1 및 R2는 서로 같거나 다르며 각각 독립적으로 (C1-C9)알킬기이고, n은 3 내지 2000의 정수이다.)
  2. 제1항에 있어서,
    상기 금속 염기는 금속 알콕사이드 및 금속 하이드라이드로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 금속 알콕사이드는 소듐 메톡사이드, 소듐 에톡사이드, 소듐 t-부톡사이드, 소듐 t-펜톡사이드, 포타슘 t-부톡사이드 및 포타슘 t-펜톡사이드로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 방법.
  4. 제2항에 있어서,
    상기 금속 하이드라이드는 소듐 하이드라이드인 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 활성화 처리는 20℃ 내지 90℃에서 수행하는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    상기 페길화 반응은 0℃ 내지 90℃에서 수행하는 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    상기 단계 (1)은 비활성 기체 대기 하에서 또는 비활성 기체가 지속적으로 유입되는 비활성 분위기에서 수행되는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 비활성 분위기는 질소, 아르곤 및 헬륨으로 이루어진 군으로부터 선택된 1종 이상의 비활성 기체를 유입시켜 형성하는 것을 특징으로 하는 방법.
  9. 제1항에 있어서,
    상기 단계 (1)은 톨루엔, 디클로로메탄, 클로로포름, 테트라히드로퓨란, 아세토니트릴 및 1,4-디옥산으로 이루어진 군으로부터 선택된 1종 이상의 용매 하에 수행하는 것을 특징으로 하는 방법.
  10. 제1항에 있어서,
    상기 단계 (1)에서 제조된 화학식 3의 화합물은 그대로 단계 (2)에 연속적으로(in-situ) 적용하는 것을 특징으로 하는 방법.
  11. 제1항에 있어서,
    상기 단계 (2)의 산 처리는 염산, 아세트산, 포름산, 트리플루오로아세트산 및 인산으로 이루어진 군으로부터 선택된 1종 이상의 산을 이용하여 수행하는 것을 특징으로 하는 방법.
  12. 제1항에 있어서,
    상기 단계 (2)의 산 처리는 0℃ 내지 50℃에서 수행하는 것을 특징으로 하는 방법.
  13. 제1항에 있어서,
    상기 단계 (2)는 물, 메탄올, 에탄올, 프로판올 및 t-부탄올로 이루어진 군으로부터 선택된 1종 이상의 용매 하에 수행하는 것을 특징으로 하는 방법.
  14. 제1항에 있어서,
    상기 화학식 1의 화합물은 염기 존재 하에서 폴리에틸렌글리콜(PEG)과 메탄설포닐할라이드(할라이드=Cl, Br, 또는 F)를 반응시켜 제조된 것을 특징으로 하는 방법.
  15. 제14항에 있어서,
    상기 염기는 트리에틸아민 및 트리부틸아민으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 방법.
PCT/KR2017/001906 2016-02-26 2017-02-21 폴리에틸렌글리콜 디알데히드 유도체의 제조방법 WO2017146443A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17756781.5A EP3421521B1 (en) 2016-02-26 2017-02-21 Method for preparing polyethylene glycol dialdehyde derivative
MX2018009847A MX2018009847A (es) 2016-02-26 2017-02-21 Metodo para preparar derivado de polietilenglicol-dialdehido.
BR112018067996A BR112018067996A2 (pt) 2016-02-26 2017-02-21 método para preparar um derivado de polietileno glicol dialdeído
CN201780012402.5A CN108699236B (zh) 2016-02-26 2017-02-21 聚乙二醇二醛衍生物的制备方法
JP2018545151A JP6927990B2 (ja) 2016-02-26 2017-02-21 ポリエチレングリコールジアルデヒド誘導体の製造方法
US16/074,592 US10781285B2 (en) 2016-02-26 2017-02-21 Method for preparing polyethylene glycol dialdehyde derivative
AU2017224389A AU2017224389A1 (en) 2016-02-26 2017-02-21 Method for preparing polyethylene glycol dialdehyde derivative
CA3013750A CA3013750A1 (en) 2016-02-26 2017-02-21 Method for preparing polyethylene glycol dialdehyde derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160023217A KR102247701B1 (ko) 2016-02-26 2016-02-26 폴리에틸렌글리콜 디알데히드 유도체의 제조방법
KR10-2016-0023217 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017146443A1 true WO2017146443A1 (ko) 2017-08-31

Family

ID=59686442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001906 WO2017146443A1 (ko) 2016-02-26 2017-02-21 폴리에틸렌글리콜 디알데히드 유도체의 제조방법

Country Status (10)

Country Link
US (1) US10781285B2 (ko)
EP (1) EP3421521B1 (ko)
JP (1) JP6927990B2 (ko)
KR (1) KR102247701B1 (ko)
CN (1) CN108699236B (ko)
AU (1) AU2017224389A1 (ko)
BR (1) BR112018067996A2 (ko)
CA (1) CA3013750A1 (ko)
MX (1) MX2018009847A (ko)
WO (1) WO2017146443A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010532A1 (ko) * 2019-07-18 2021-01-21 한미약품 주식회사 신규 중간체 제조를 통한 지속형 약물 결합체의 제조 방법
WO2021010531A1 (ko) * 2019-07-18 2021-01-21 한미약품 주식회사 단백질 결합체의 신규 제조 방법
WO2024041225A1 (zh) * 2022-08-26 2024-02-29 厦门赛诺邦格生物科技股份有限公司 一种聚乙二醇醛衍生物的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220036720A (ko) * 2020-09-16 2022-03-23 한미정밀화학주식회사 폴리에틸렌글리콜 유도체, 이를 포함하는 조성물 및 이를 이용한 생리활성 폴리펩타이드 결합체의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252714A (en) * 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US6465694B1 (en) * 1998-10-26 2002-10-15 University Of Utah Research Foundation Method for preparation of polyethylene glycol aldehyde derivatives
US20070167606A1 (en) * 2002-07-24 2007-07-19 Chee-Youb Won Polyethylene glycol aldehydes
KR100967833B1 (ko) * 2008-05-20 2010-07-05 아이디비켐(주) 고순도의 폴리에틸렌글리콜 알데하이드 유도체의 제조방법
US20120077988A1 (en) * 2010-06-25 2012-03-29 Nof Corporation Branched hetero polyethylene glycol and intermediate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002531A (en) 1976-01-22 1977-01-11 Pierce Chemical Company Modifying enzymes with polyethylene glycol and product produced thereby
WO2001026692A1 (en) 1999-10-08 2001-04-19 Shearwater Corporation Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation
US8828373B2 (en) * 2002-11-20 2014-09-09 Nof Corporation Polyalkylene glycol derivative and modified bio-related substance
JP5515224B2 (ja) * 2007-02-28 2014-06-11 日油株式会社 多分岐鎖ポリオキシアルキレン誘導体
JP5825507B2 (ja) 2010-06-25 2015-12-02 日油株式会社 分岐型ヘテロポリエチレングリコール
JP6051998B2 (ja) 2012-03-30 2016-12-27 日油株式会社 マルチアーム型ポリエチレングリコール誘導体、その中間体及び製造方法
JP5798100B2 (ja) * 2012-10-16 2015-10-21 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
CN103834002B (zh) * 2014-02-18 2016-02-17 苏州大学 基于聚乙二醇的酸敏感性阿霉素前药及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252714A (en) * 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US6465694B1 (en) * 1998-10-26 2002-10-15 University Of Utah Research Foundation Method for preparation of polyethylene glycol aldehyde derivatives
US20070167606A1 (en) * 2002-07-24 2007-07-19 Chee-Youb Won Polyethylene glycol aldehydes
KR100967833B1 (ko) * 2008-05-20 2010-07-05 아이디비켐(주) 고순도의 폴리에틸렌글리콜 알데하이드 유도체의 제조방법
US20120077988A1 (en) * 2010-06-25 2012-03-29 Nof Corporation Branched hetero polyethylene glycol and intermediate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3421521A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021010532A1 (ko) * 2019-07-18 2021-01-21 한미약품 주식회사 신규 중간체 제조를 통한 지속형 약물 결합체의 제조 방법
WO2021010531A1 (ko) * 2019-07-18 2021-01-21 한미약품 주식회사 단백질 결합체의 신규 제조 방법
US11717577B2 (en) 2019-07-18 2023-08-08 Hanmi Pharm. Co., Ltd. Method for preparing long-acting drug conjugate through preparation of intermediate
WO2024041225A1 (zh) * 2022-08-26 2024-02-29 厦门赛诺邦格生物科技股份有限公司 一种聚乙二醇醛衍生物的制备方法

Also Published As

Publication number Publication date
JP6927990B2 (ja) 2021-09-01
KR102247701B1 (ko) 2021-05-03
US20190040196A1 (en) 2019-02-07
CN108699236B (zh) 2021-01-22
EP3421521A4 (en) 2019-03-06
KR20170100842A (ko) 2017-09-05
CA3013750A1 (en) 2017-08-31
US10781285B2 (en) 2020-09-22
EP3421521A1 (en) 2019-01-02
MX2018009847A (es) 2018-11-09
BR112018067996A2 (pt) 2019-01-15
AU2017224389A1 (en) 2018-10-04
JP2019507819A (ja) 2019-03-22
CN108699236A (zh) 2018-10-23
EP3421521B1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2017146443A1 (ko) 폴리에틸렌글리콜 디알데히드 유도체의 제조방법
WO2020145513A1 (ko) L-글루포시네이트 중간체 및 l-글루포시네이트 제조 방법
EP2588474A2 (en) Process for the preparation of hmg-coa reductase inhibitors and intermediates thereof
AU2020412716A1 (en) Methods of preparing N6-((2-azidoethoxy)carbonyl)lysine
WO2018066872A1 (ko) 3-페닐-2,3,4,8,9,10-헥사히드로피라노[2,3-f]크로멘 유도체 및 이의 광학 이성질체 합성 방법
WO2022265240A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2023121379A1 (ko) 에틸렌-비닐알코올 공중합체의 제조 방법
WO2017191914A2 (ko) 아미노실란계 화합물의 신규 제조방법
WO2012153991A2 (ko) 스트레커 반응용 촉매를 사용하는 키랄성 α-아미노나이트릴의 제조방법
WO2021194244A1 (ko) 신규한 이노토디올의 제조방법
WO2020036382A1 (ko) Sglt 저해제의 합성에 유용한 중간체의 제조
WO2022146093A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2022119070A1 (ko) 카보네이트 유도체 제조용 셀레늄계 촉매 시스템 및 그를 이용한 카보네이트 유도체의 제조방법
WO2019088800A2 (ko) 폴리에틸렌글리콜 유도체 및 이의 제조방법
WO2021225233A1 (ko) 혈관 누출 차단제 화합물의 신규 결정형
WO2022250347A1 (ko) 유기 황 화합물의 제조방법
WO2021101003A1 (ko) 연속반응 공정에서의 메탄술포닐화 중간체를 이용한 글리플로진 합성 방법
WO2016108319A1 (ko) 신규 레바미피드 전구체의 염 및 이의 용도
WO2022025575A1 (ko) 퍼플루오로디알킬에테르의 제조 방법 및 퍼플루오로디알킬에테르의 제조 장치
WO2019022461A1 (ko) 화합물 및 이의 제조방법
WO2022220613A1 (ko) 스핑고신-1-인산 수용체 효능제의 신규한 제조방법
WO2023128525A1 (en) Method for preparation of benzimidazole derivatives
WO2023224240A1 (ko) 사슬 말단에 설포닐 아자이드기 또는 설포닐 플루오라이드기를 포함하는 고분자 화합물 및 이의 제조 방법
WO2016200210A1 (ko) 선별적 용해도를 갖는 트리페닐메탄 유도체 및 그의 용도
WO2013180415A1 (ko) 신규한 포타슘 오가노-1h-1,2,3-트리아졸-4-일트리플루오로보레이트 유도체 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3013750

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009847

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2018545151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756781

Country of ref document: EP

Effective date: 20180926

ENP Entry into the national phase

Ref document number: 2017224389

Country of ref document: AU

Date of ref document: 20170221

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018067996

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018067996

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180906