WO2017145758A1 - ガス吹き込みノズル - Google Patents

ガス吹き込みノズル Download PDF

Info

Publication number
WO2017145758A1
WO2017145758A1 PCT/JP2017/004535 JP2017004535W WO2017145758A1 WO 2017145758 A1 WO2017145758 A1 WO 2017145758A1 JP 2017004535 W JP2017004535 W JP 2017004535W WO 2017145758 A1 WO2017145758 A1 WO 2017145758A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas blowing
recess
gas
mushroom
Prior art date
Application number
PCT/JP2017/004535
Other languages
English (en)
French (fr)
Inventor
強 山▲崎▼
昭英 開澤
拓也 内山
義朗 堀田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201780003663.0A priority Critical patent/CN108138247B/zh
Priority to JP2018501555A priority patent/JP6540879B2/ja
Priority to KR1020187011071A priority patent/KR102119462B1/ko
Publication of WO2017145758A1 publication Critical patent/WO2017145758A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the present invention relates to a gas blowing nozzle used when a gas is blown into a molten metal stored inside a melting furnace, a refining furnace such as a converter, or a refining pan.
  • a gas blowing nozzle used when a gas is blown into a molten metal stored inside a melting furnace, a refining furnace such as a converter, or a refining pan.
  • FIG. 8 is a schematic diagram showing a state in which a conventional double-pipe structure nozzle 5 is arranged in a converter 1 having a bottom wall 3 and a side wall 2 made of refractory.
  • the arrow of FIG. 8 represents the direction of the gas blown in into the converter 1 from the nozzle 5.
  • the nozzle 5 is disposed on the bottom wall 3 of the converter 1 such that the tip is exposed in the converter 1, and in the molten iron bath 6 stored in the converter 1. Insufflate oxygen.
  • the material of the nozzle 5 is, for example, stainless steel (SUS) containing a large amount of Cr or Ni.
  • the gas is blown into the converter 1 under a high temperature condition, the bottom wall 3 is melted and worn out from the inner surface as the converter 1 is operated, and is exposed to the converter 1.
  • the tip of the nozzle 5 is also melted and worn out. Therefore, in order to suppress such wear of the nozzle 5, oxygen is blown into the converter 1 while the nozzle 5 is cooled.
  • the nozzle 5 having a double pipe structure blows oxygen into the converter 1 from the inner nozzle and simultaneously blows cooling gas from the outer nozzle.
  • molten iron adheres to the tip of the nozzle 5.
  • the solidified iron 7 (hereinafter also referred to as “mushroom”) obtained by solidifying the molten iron is formed at the tip of the nozzle 5.
  • the mushroom 7 serves as a protective layer that reduces the thermal load on the nozzle 5 and suppresses the wear of the nozzle 5.
  • Patent Documents 1 to 3 propose methods for suppressing the tuyere wear.
  • Patent Document 1 proposes a technique for increasing the cooling effect by direct heat transfer between the tubular portion and the thin tube by disposing the thin tube on the outer surface of the outermost tubular portion.
  • Patent Document 2 proposes a technique for increasing a cooling effect by increasing a contact area between an outer tube and a gas by providing a protrusion inside the outer tube of the double tube.
  • patent document 3 aiming at the thermal load reduction at the time of mushroom non-formation, installing a gas-permeable porous body at the nozzle tip, preventing tuyere damage at the beginning of furnace operation (mushroom non-formation period), Technologies have been proposed that extend the tuyere life.
  • the mushroom 7 has a role as a protective layer that reduces the thermal load of the nozzle 5 as described above, the inventors pay attention to a phenomenon in which the mushroom 7 peels from the nozzle 5 as the converter 1 is operated. did. Specifically, as shown in FIG. 8, in the conventional nozzle 5, molten iron adheres mainly to the outer surface 5a to form the mushroom 7, but the outer surface 5a is a smooth curved surface. Therefore, for example, the peel strength of the mushroom 7 with respect to the nozzle 5 in the gas blowing direction (the arrow direction in FIG. 8) depends on the welding force between the inner surface of the mushroom 7 and the outer surface 5 a of the nozzle 5.
  • the temperature of the molten iron bath is generally low, and the melting temperature of the nozzle is high relative to the temperature of the molten iron bath.
  • welding between nozzles hardly occurs. Therefore, under such conditions, the welding force between the mushroom and the nozzle is weak, and the mushroom is liable to peel off.
  • the cooling effect is increased by the provision of a thin tube and the generation of mushrooms is promoted.
  • the formation of mushrooms is promoted as in Patent Document 1, but it is difficult to suppress the mushroom peeling for the same reason as described in FIG.
  • the technique disclosed in Patent Document 3 is intended to reduce the thermal load when the mushroom is not formed, and does not suppress the separation of the mushroom after the mushroom is formed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas blowing nozzle capable of suppressing nozzle wear when blowing gas into molten metal.
  • a gas blowing nozzle includes a nozzle body that blows gas into a molten metal, and extends in a direction that intersects the longitudinal direction of the nozzle body when viewed from the side. At least one of the concave portion or the convex portion is provided on the outer peripheral surface of the nozzle body.
  • the configuration may be as follows: at least the concave portion is provided on the outer peripheral surface of the nozzle body; It extends in a direction perpendicular to the longitudinal direction of the main body.
  • a filler having a melting point lower than the melting point of the nozzle body may be further provided in the recess.
  • a second concave portion that extends along the longitudinal direction of the nozzle body may be further provided on the outer peripheral surface of the nozzle body.
  • a filler having a melting point lower than the melting point of the nozzle body may be further provided in the recess and the second recess.
  • the configuration may be as follows: at least the convex portion is provided on the outer peripheral surface of the nozzle body; The nozzle body extends in a direction orthogonal to the longitudinal direction.
  • FIGS. 1A to 1C are views showing a gas blowing nozzle 10 according to the present embodiment.
  • 1A is a side view
  • FIG. 1B is a plan view seen from the line AA in FIG. 1A
  • FIG. 1C is a longitudinal sectional view when seen in a cross section including the central axis CL of the gas blowing nozzle 10. It is.
  • the gas blowing nozzle 10 includes a nozzle body 11 composed of a cylindrical inner nozzle 13 and a cylindrical outer nozzle 14 arranged coaxially around the inner nozzle 13. I have.
  • the gas blowing nozzle 10 is used, for example, when a gas is blown into a molten metal stored in a melting furnace, a refining furnace such as a converter, or a refining pan.
  • the nozzle body 11 is long in one direction and has a double tube structure including an inner nozzle 13 and an outer nozzle 14.
  • the inner nozzle 13 and the outer nozzle 14 are arranged concentrically, and the central axis of the inner nozzle 13 and the central axis of the outer nozzle 14 are coincident with each other.
  • the symbol CL represents the central axis of the nozzle body 11 (the central axes of the inner nozzle 13 and the outer nozzle 14), and the direction of the central axis CL and the longitudinal direction of the nozzle body 11 Are consistent.
  • the material of the nozzle body 11 is, for example, stainless steel (SUS).
  • SUS stainless steel
  • the material of the nozzle main body 11 is not restricted to said stainless steel, it is preferable that it is steel containing at least one of Cr or Ni from a heat resistant and oxidation resistant viewpoint.
  • the inner nozzle 13 blows oxygen for removing impurities of the molten iron into the molten iron bath in the converter through the space S1 surrounded by the inner peripheral surface 13a.
  • the outer nozzle 14 has an inner diameter larger than the outer diameter of the inner nozzle 13, and passes through the space S ⁇ b> 2 surrounded by the inner peripheral surface 14 a of the outer nozzle 14 and the outer peripheral surface 13 b of the inner nozzle 13.
  • the cooling gas for cooling 11 is blown.
  • the gas blowing direction of the nozzle body 11 coincides with the central axis CL direction (longitudinal direction).
  • the cooling gas for example, an inert gas such as nitrogen gas and Ar gas, or may be used a hydrocarbon gas, such as CO 2 gas and propane gas.
  • the outer peripheral surface 14 b of the outer nozzle 14 (the outer peripheral surface of the nozzle main body 11) is provided with an annular recess 16 that extends along the circumferential direction of the outer nozzle 14.
  • a plurality of recesses 16 are provided at predetermined intervals in the direction of the central axis CL.
  • the “circumferential direction” means a direction orthogonal to the central axis CL direction (longitudinal direction) of the nozzle body 11 when the gas blowing nozzle 10 is viewed from the side.
  • the recess 16 can be formed on the outer peripheral surface of the outer nozzle 14 by, for example, cutting.
  • the recess 16 has a bottom surface 16a facing the radially outer side of the outer nozzle 14, and a pair of locking surfaces 16b and 16c that are orthogonal to the central axis CL direction and face each other.
  • the width w of the recess 16 (the distance between the pair of locking surfaces 16b and 16c) is, for example, 2 mm or more and 5 mm or less.
  • the depth d of the recess 16 (the distance between the outer peripheral surface 14b of the outer nozzle 14 and the bottom surface 16a of the recess 16) is, for example, not less than 0.5 mm and not more than 1.5 mm.
  • the depth d of the recess 16 is preferably 15% or more and 50% or less (0.15 t ⁇ d ⁇ 0.50 t) of the wall thickness t of the outer nozzle 14.
  • FIG. 2 is a longitudinal sectional view showing a state in which the gas blowing nozzle 10 is arranged in the converter 1, and is a view showing a state before the converter 1 is operated (that is, an initial state of the converter 1).
  • the gas blowing nozzle 10 when used in the converter 1, the gas blowing nozzle 10 is configured so that the concave portion 16 located on the most distal side among the plurality of concave portions 16 is exposed in the converter 1. It is arranged on the bottom wall 3 of the converter 1.
  • the gas blowing nozzle 10 may be disposed on the side wall 2 of the converter 1.
  • the gas blowing nozzle 10 blows oxygen for removing impurities from the inner nozzle 13 into the molten iron bath stored in the converter 1 and cools the nozzle body 11 as described above.
  • the cooling gas is blown from the outer nozzle 14.
  • arrow F1 represents the direction of blowing oxygen
  • arrow F2 represents the direction of blowing cooling gas
  • the directions of F1 and F2 are the same.
  • the molten iron stored in the converter 1 adheres around the tip of the gas blowing nozzle 10 exposed in the converter 1. Since the gas blowing nozzle 10 is cooled by the cooling gas, the mushroom is formed at the tip of the gas blowing nozzle 10 by solidification of the molten iron attached around the tip of the gas blowing nozzle 10.
  • FIGS. 3A and 3B are views showing the gas blowing nozzle 10 after the converter 1 has been operated for a predetermined time from the state shown in FIG. 2, in which the mushroom 90 is formed in the gas blowing nozzle 10.
  • FIG. 3A is a side view
  • FIG. 3B is a vertical cross-sectional view when viewed in a cross section including the central axis CL.
  • the mushroom 90 includes a portion of the outer peripheral surface 14b of the outer nozzle 14 exposed in the converter 1 and tip surfaces of the outer nozzle 14 and the inner nozzle 13 (in the central axis CL direction).
  • the mushroom 90 is formed so as to fill the inside of the recess 16, so that the mushroom 90 comes into contact with the pair of locking surfaces 16 b and 16 c of the recess 16 and is locked to the pair of locking surfaces 16 b and 16 c. Therefore, for example, when an external force acts on the mushroom 90 along the gas blowing direction (directions of arrows F1 and F2: see FIG. 2), the mushroom 90 is locked to the locking surface 16b of the recess 16, This external force can be countered. In addition, when an external force is applied to the mushroom 90 along the direction opposite to the gas blowing direction (the direction opposite to the arrows F1 and F2), the mushroom 90 is engaged with the locking surface 16c of the recess 16. Because it is stopped, it can also counter this external force. Therefore, peeling of the mushroom 90 from the gas blowing nozzle 10 can be suppressed.
  • the gas blowing nozzle 10 has a plurality of recesses 16 formed along the direction of the central axis CL, so that the mushroom 90 can also be formed in the recesses 16 exposed after operation. Therefore, since the gas blowing nozzle 10 can be used for a long period of time, the replacement frequency of the gas blowing nozzle 10 can be reduced.
  • the molten iron temperature at the end of the processing is about 1300 to 1450 ° C.
  • the gas when using stainless steel (SUS304), which is used for general purposes, is used.
  • the nozzle melting point of the blowing nozzle 10 is about 1400 to 1450 ° C. Therefore, under such conditions, the nozzle melting point of the gas blowing nozzle 10 may be higher than the molten iron temperature.
  • the mushroom 90 is formed at the tip of the gas blowing nozzle 10, but welding hardly occurs between the gas blowing nozzle 10 and the mushroom 90.
  • the welding force between the gas blowing nozzle 10 and the mushroom 90 becomes low.
  • the gas blowing nozzle 10 locks the mushroom 90 by the recess 16, it is possible to suppress peeling of the mushroom 90.
  • the gas blowing nozzle 10 since the recess 16 is provided on the outer peripheral surface 14b of the outer nozzle 14 (the outer peripheral surface of the nozzle body 11), the gas blowing nozzle 10 is used as a converter or the like. In this case, the mushroom 90 can be locked to the recess 16. Therefore, mushroom peeling can be suppressed, and as a result, wear of the gas blowing nozzle 10 can be suppressed.
  • the mushroom 90 was not formed in the inner peripheral surface 13a and the outer peripheral surface 13b of the inner nozzle 13, and the inner peripheral surface 14a of the outer nozzle 14 was shown (refer FIG. 3A and FIG. 3B).
  • the mushroom may be formed on the inner peripheral surface 13a and the outer peripheral surface 13b of the inner nozzle 13 and the inner peripheral surface 14a of the outer nozzle 14 depending on the operating conditions of the converter.
  • FIGS. 4A and 4B are views showing a gas blowing nozzle 20 which is a first modification of the gas blowing nozzle 10 according to the present embodiment.
  • 4A is a side view showing the gas blowing nozzle 20
  • FIG. 4B is a longitudinal sectional view showing a state in which a mushroom 95 is formed in the gas blowing nozzle 20.
  • FIG. In the gas blowing nozzle 10 according to the present embodiment, the case where the concave portion 16 is provided on the outer peripheral surface 14b of the outer nozzle 14 is shown.
  • an annular convex portion 26 extending along the circumferential direction of the outer nozzle 14 may be provided on the outer peripheral surface 14 b of the outer nozzle 14.
  • the mushroom 95 is formed so as to cover the convex portion 26. Therefore, since the mushroom 95 is locked to the pair of locking surfaces 26a and 26b of the convex portion 26, peeling of the mushroom 95 can be suppressed as in the present embodiment.
  • FIG. 5 is a side view showing a gas blowing nozzle 30 which is a second modification of the gas blowing nozzle 10 according to the present embodiment.
  • the gas blowing nozzle 10 according to the present embodiment the case where the concave portion 16 is provided on the outer peripheral surface 14b of the outer nozzle 14 is shown.
  • a second recess 36 that extends along the central axis CL direction (longitudinal direction) may be provided on the outer peripheral surface 14 b of the outer nozzle 14.
  • a mushroom is also formed in the second recess 36, and this mushroom is also locked to the pair of locking surfaces 36 a of the second recess 36.
  • the mushroom can be prevented from peeling off.
  • the 2nd recessed part 36 is provided with two or more and these 2nd recessed parts 36 are arrange
  • the width of the second recess 36 is, for example, not less than 2 mm and not more than 5 mm.
  • the depth of the 2nd recessed part 36 is 0.5 mm or more and 1.5 mm or less, for example.
  • the depth of the second recess 36 is preferably in the range of 15% to 50% of the wall thickness of the outer nozzle 14.
  • FIG. 6 is a side view showing a gas blowing nozzle 40 which is a third modification of the gas blowing nozzle 10 according to the present embodiment.
  • the gas blowing nozzle 40 is different from the gas blowing nozzle 10 in that it includes a filler 46 provided in the recess 16.
  • the filler 46 is made of an organic material having a melting point lower than the molten iron bath temperature and the melting point of the nozzle body 11. Examples of the organic material include plastic resins such as polyethylene and polystyrene.
  • the filler 46 is not limited to the above, and may be composed of a low melting point metal having a melting point lower than the molten iron bath temperature and the melting point of the nozzle body 11, for example.
  • the recess 16 is filled with a repair material or the like when the gas blowing nozzle 10 is installed in a converter or the like.
  • the gas blowing nozzle 40 includes the filler 46, it can be avoided that the repair material or the like fills the recess 16.
  • the melting point of the filler 46 is lower than the temperature of the molten iron bath and the melting point of the nozzle body 11, when the converter or the like is operated, the filler 46 is removed (an organic substance having a low melting point). In the case of a low melting point metal, it is melted or alloyed with a molten iron bath). Therefore, after the operation of the converter or the like, since the recess 16 is exposed in the converter, the recess 16 can exhibit the function of locking the mushroom described above.
  • FIG. 7 is a side view showing a gas blowing nozzle 50 which is a fourth modification of the gas blowing nozzle 10 according to the present embodiment.
  • the gas blowing nozzle 50 is different from the gas blowing nozzle 30 shown in FIG. 5 in that it includes a filler 46 provided in the concave portion 16 and the second concave portion 36. According to this configuration, similarly to the gas blowing nozzle 40 shown in FIG. 6, it can be avoided that the repair material or the like fills the recess 16 and the second recess 36.
  • the gas blowing nozzle 10 according to the above embodiment was arranged on the bottom wall of the iron bath melting furnace, and the wear rate of the gas blowing nozzle 10 was evaluated.
  • the gas blowing nozzle 30 which concerns on the 3rd modification of the said embodiment was arrange
  • raw materials containing scrap and iron oxide were charged into a hot metal bath for melting.
  • the material of the gas blowing nozzles 10 and 30 was stainless steel (SUS304) (that is, both the inner nozzle 13 and the outer nozzle 14 were made of stainless steel (SUS304)).
  • the wear rate of the nozzles decreased compared to Comparative Examples 1 and 2. That is, it was confirmed that by providing the recess 16 on the outer peripheral surface 14b of the outer nozzle 14, it is possible to suppress the wear of the nozzle. Further, in Examples 3 to 4, the nozzle wear rate further decreased. That is, it was confirmed that the wear of the nozzle can be further suppressed by providing the recess 16 and the second recess 36.
  • the nozzle body 11 has a double tube structure (that is, the nozzle body 11 is composed of the inner nozzle 13 and the outer nozzle 14), and the recess 16 is formed on the outer peripheral surface 14 b of the outer nozzle 14.
  • the nozzle body may be constituted by only the outer nozzle 14, that is, the nozzle body constituted by one nozzle, and the recess 16 may be provided on the outer peripheral surface thereof.
  • a nozzle body composed of three nozzles arranged concentrically that is, a nozzle body having a triple pipe structure, and a concave portion 16 is provided on the outer peripheral surface of the outermost nozzle among the three nozzles.
  • the recess 16 may be provided on the outer peripheral surface of the outermost nozzle among these nozzles.
  • the outer peripheral surface 14b of the outer nozzle 14 is provided with the concave portion 16 extending in the circumferential direction, that is, the outer peripheral surface 14b of the outer nozzle 14 is in the central axis CL direction (longitudinal direction).
  • the case where the recessed part 16 extended in the direction orthogonal to the direction was provided was shown.
  • the present invention is not limited to the direction orthogonal to the central axis CL direction, and a recess extending in a direction intersecting with the central axis CL direction at a predetermined angle (for example, 60 ° or more and less than 90 °) may be provided. Good.
  • the case where the recessed part 16 and the 2nd recessed part 36 were provided in the outer peripheral surface 14b of the outer side nozzle 14 was shown (refer FIG. 5).
  • the second recess 36 may be provided without providing the recess 16.
  • the recessed part 16 extended along the circumferential direction is provided in the outer peripheral surface 14b of the outer side nozzle 14 like the gas blowing nozzle 10 which concerns on the said embodiment, the latching surface orthogonal to the center axis line CL direction The area can be increased.
  • the gas blowing nozzle 10 it is possible to effectively suppress peeling of the mushroom against an external force acting on the mushroom in the gas blowing direction. Therefore, from such a viewpoint, it is preferable to form the recess 16 extending along the circumferential direction on the outer peripheral surface 14 b of the outer nozzle 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

このガス吹き込みノズルは、溶融金属に対してガスを吹き込むノズル本体を備え、側面視した場合に前記ノズル本体の長手方向に対して交差する方向に延在する凹部または凸部の少なくとも一方が、前記ノズル本体の外周面に設けられている。

Description

ガス吹き込みノズル
 本発明は、溶解炉、転炉などの精錬炉、または精錬鍋において、その内部に貯留された溶融金属に対してガスを吹き込む際に用いられるガス吹き込みノズルに関する。
 本願は、2016年2月25日に日本に出願された特願2016-034257号に基づき優先権を主張し、その内容をここに援用する。
 溶解炉、転炉などの精錬炉、または精錬鍋においては、その底部または側部から、その内部に貯留された溶融鉄浴に対してガスが吹き込まれ、溶融鉄浴が攪拌される。図8は、耐火物で構成された底壁3及び側壁2を有する転炉1に、従来の、2重管構造のノズル5を配置した状態を示す概略模式図である。なお、図8の矢印は、ノズル5から転炉1内に吹き込まれるガスの方向を表している。
 図8に示すように、ノズル5は、転炉1の底壁3に、先端部が転炉1内に露出するように配置されると共に、転炉1内に貯留された溶融鉄浴6に対して酸素を吹き込む。そして、ノズル5から吹き込まれた酸素と、転炉1内の溶融鉄浴6の不純物(P、Sなど)とが反応することにより、溶融鉄浴6から不純物が除去される。ここで、ノズル5には耐熱性及び耐酸化性が求められることから、ノズル5の材質は、例えば、CrまたはNiなどを多く含むステンレス鋼(SUS)である。
 転炉1内へのガスの吹込みは高温の条件下で行われるため、転炉1の稼動に伴って、底壁3がその内面から溶解して損耗するとともに、転炉1内に露出したノズル5の先端部も溶解して損耗する。そこで、このようなノズル5の損耗を抑制するために、ノズル5を冷却しながら、転炉1内への酸素の吹き込みが行われる。具体的には、2重管構造のノズル5は、内側のノズルから転炉1内に酸素を吹き込むと同時に、外側のノズルから冷却ガスを吹き込む。
 一方、転炉1を稼動させると、ノズル5の先端部に溶鉄が付着する。そして、上記のようにノズル5は冷却ガスによって冷却されるため、この溶鉄が凝固した凝固鉄7(以下、マッシュルーム(accretation)とも称する)がノズル5の先端部に形成される。そして、このマッシュルーム7は、ノズル5への熱負荷を軽減する保護層としての役割を有し、ノズル5の損耗を抑制する。
 ここで、特許文献1~3には、羽口の損耗を抑制する方法が提案されている。具体的には、特許文献1では、最外部の管状部外面に細管を配置することによって、管状部と細管の直接熱伝熱により、冷却効果を増大させる技術が提案されている。また、特許文献2では、2重管の外管内部に突起部を設けることにより、外管とガスの接触面積を増大させ、冷却効果を高める技術が提案されている。また、特許文献3では、マッシュルーム未形成時の熱負荷低減を狙って、ノズル先端部にガス通気性多孔質体を設置し、炉稼働初期(マッシュルーム未形成時期)における羽口損傷を防止し、羽口寿命を長くする技術が提案されている。
日本国特開2006-283052号公報 日本国特開2007-224399号公報 日本国特開平04-304307号公報
 マッシュルーム7は、上述のようにノズル5の熱負荷を軽減する保護層としての役割を有するが、本発明者らは、転炉1の稼動に伴ってノズル5からマッシュルーム7が剥離する現象に着目した。
 具体的には、図8に示すように、従来のノズル5では、主にその外面5aに溶鉄が付着してマッシュルーム7が形成されるが、外面5aは平滑な曲面である。そのため、例えば、ガス吹き込み方向(図8の矢印方向)における、ノズル5に対するマッシュルーム7の剥離強度は、マッシュルーム7の内面とノズル5の外面5aとの間の溶着力に依存する。一方で、ノズル5は、転炉1内に酸素及び冷却ガスを吹き込むため、高い内圧がかかる。よって、転炉1内に吹き込まれるガスにより、上記溶着力を超える外力がマッシュルーム7に作用した場合には、マッシュルーム7がノズル5から剥離することとなる。また、転炉1内に吹き込まれるガス以外にも、スクラップ装入時の機械的衝撃、または炉内温度変化に伴う熱衝撃等により、マッシュルーム7には種々の方向から外力が加わる。
 特に溶融鉄浴中のC濃度が高い条件においては、一般的に溶融鉄浴の温度が低く、溶融鉄浴の温度に対してノズルの溶融温度が高くなるため、マッシュルームは形成され易いものの、マッシュルーム及びノズル間の溶着が起こりにくい。そのため、このような条件下では、マッシュルーム及びノズル間の溶着力が弱く、マッシュルームの剥離が生じやすい。
 マッシュルームの剥離が生じると、マッシュルームの剥離が生じてから新たなマッシュルームが形成されるまでの間、マッシュルームによる熱負荷軽減効果を得ることができないため、ノズルへの熱負荷が高くなり、ノズルの損耗速度が増大する。すなわち、ノズルの損耗を抑制するためには、マッシュルームの剥離を抑制することが重要である。
 ここで、特許文献1に開示された技術では、細管付与によって冷却効果が増大し、マッシュルームの生成が促進されるが、図8で説明した理由と同様の理由によりマッシュルームの剥離を抑制することは難しい。また、特許文献2に開示された技術では、特許文献1と同様にマッシュルームの形成が促進されるものの、図8で説明した理由と同様の理由によりマッシュルームの剥離を抑制することは難しい。また、特許文献3に開示された技術は、マッシュルーム未形成時の熱負荷軽減を図ったものであり、マッシュルームが形成された後のマッシュルームの剥離を抑制するものではない。
 本発明は、上記事情に鑑みてなされたものであり、溶融金属に対してガスを吹き込む際に、ノズルの損耗を抑制することが可能なガス吹込みノズルの提供を目的とする。
 上記課題を解決するために、本発明は以下を採用する。
 (1)本発明の一態様に係るガス吹込みノズルは、溶融金属に対してガスを吹き込むノズル本体を備え、側面視した場合に前記ノズル本体の長手方向に対して交差する方向に延在する凹部または凸部の少なくとも一方が、前記ノズル本体の外周面に設けられている。
 (2)上記(1)に記載の態様において、以下のように構成してもよい:少なくとも前記凹部が前記ノズル本体の前記外周面に設けられ;側面視した場合に、前記凹部が、前記ノズル本体の前記長手方向に対して直交する方向に延在している。
 (3)上記(2)に記載の態様において、前記凹部内に設けられた、前記ノズル本体の融点よりも低い融点の充填材をさらに備えていてもよい。
 (4)上記(2)に記載の態様において、前記ノズル本体の前記外周面に、前記ノズル本体の前記長手方向に沿って延在する第2凹部がさらに設けられていてもよい。
 (5)上記(4)に記載の態様において、前記凹部および前記第2凹部内に設けられた、前記ノズル本体の融点よりも低い融点の充填材をさらに備えていてもよい。
 (6)上記(1)に記載の態様において、以下のように構成してもよい:少なくとも前記凸部が前記ノズル本体の前記外周面に設けられ;側面視した場合に、前記凸部が、前記ノズル本体の前記長手方向に対して直交する方向に延在している。
 本発明の上記各態様によれば、溶融金属に対してガスを吹き込む際に、ノズルの損耗を抑制することができる。
本発明の一実施形態に係るガス吹き込みノズルを示す側面図である。 上記ガス吹き込みノズルを示す図であって、図1AのA-A線より見た平面図である。 上記ガス吹き込みノズルを、その中心軸線を含む断面で見た場合の縦断面図である。 上記ガス吹き込みノズルを転炉に配置した状態を示す縦断面図である。 上記ガス吹き込みノズルにマッシュルームが形成された状態を示す側面図である。 上記ガス吹き込みノズルにマッシュルームが形成された状態を示す図であって、上記ガス吹き込みノズルを、その中心軸線を含む断面で見た場合の縦断面図である。 上記ガス吹き込みノズルの第1変形例を示す側面図である。 同変形例を示す縦断面図であって、マッシュルームが形成された状態を示す図である。 上記ガス吹き込みノズルの第2変形例を示す側面図である。 上記ガス吹き込みノズルの第3変形例を示す側面図である。 上記ガス吹き込みノズルの第4変形例を示す側面図である。 転炉を示す断面模式図であって、転炉に従来のノズルを配置した状態を示す図である。
 以下、図面を参照しながら、本発明の一実施形態及び変形例について詳細に説明する。なお、各変形例の説明において、実質的に同一の機能構成を有する構成要素については同一符号を付すことにより、それらの重複説明を省略する。
 図1A~図1Cは、本実施形態に係るガス吹き込みノズル10を示す図である。なお、図1Aは側面図であり、図1Bは図1AのA-A線より見た平面図であり、図1Cはガス吹き込みノズル10の中心軸線CLを含む断面で見た場合の縦断面図である。
 図1A~図1Cに示すように、ガス吹き込みノズル10は、円筒状の内側ノズル13、及びこの内側ノズル13の周囲に同軸に配置された円筒状の外側ノズル14から構成されたノズル本体11を備えている。そして、ガス吹き込みノズル10は、例えば、溶解炉、転炉などの精錬炉、または精錬鍋において、その内部に貯留された溶融金属に対してガスを吹き込む際に用いられる。
 ノズル本体11は、一方向に長くかつ、内側ノズル13と外側ノズル14とからなる2重管構造となっている。換言すれば、ノズル本体11では、内側ノズル13と外側ノズル14とが同心円状に配置されており、内側ノズル13の中心軸線及び外側ノズル14の中心軸線が互いに一致している。なお、図1A~図1Cにおいて、符号CLは、ノズル本体11の中心軸線(内側ノズル13及び外側ノズル14の中心軸線)を表しており、中心軸線CLの方向と、ノズル本体11の長手方向とは一致している。
 ノズル本体11の材質は、例えば、ステンレス鋼(SUS)である。なお、ノズル本体11の材質は、上記のステンレス鋼に限られないが、耐熱性及び耐酸化性の観点から、CrまたはNiの少なくとも一方を含有する鋼であることが好ましい。
 ガス吹き込みノズル10を例えば転炉に用いる場合、内側ノズル13は、その内周面13aで囲まれた空間S1を通じて、溶鉄の不純物を除去するための酸素を転炉内の溶融鉄浴に吹き込む。一方、外側ノズル14は、その内径が内側ノズル13の外径よりも大きくなっており、外側ノズル14の内周面14aと内側ノズル13の外周面13bとで囲まれた空間S2を通じて、ノズル本体11を冷却するための冷却ガスを吹き込む。なお、ノズル本体11のガス吹き込み方向(酸素及び冷却ガスを転炉内に吹き込む方向)は、中心軸線CL方向(長手方向)と一致している。
 上記の冷却ガスとしては、例えば、窒素ガスおよびArガスなどの不活性ガス、または、COガスおよびプロパンガスなどの炭化水素ガスを使用することができる。
 図1A及び図1Cに示すように、外側ノズル14の外周面14b(ノズル本体11の外周面)には、外側ノズル14の周方向に沿って延在する環状の凹部16が設けられている。そして、凹部16は、中心軸線CLの方向に所定の間隔をあけて複数設けられている。なお、上記の「周方向」とは、ガス吹き込みノズル10を側面視した場合に、ノズル本体11の中心軸線CL方向(長手方向)に対して直交する方向を意味している。
 凹部16は、例えば、切削加工により外側ノズル14の外周面に形成することができる。 
 凹部16は、外側ノズル14の径方向外側を向く底面16aと、中心軸線CL方向に対して直交してかつ、互いに対向する一対の係止面16b及び16cとを有している。
 凹部16の幅w(一対の係止面16b及び16c間の距離)は、例えば2mm以上5mm以下である。また、凹部16の深さd(外側ノズル14の外周面14bと凹部16の底面16aとの間の距離)は、例えば0.5mm以上1.5mm以下である。なお、凹部16の深さdは、外側ノズル14の肉厚tの15%以上50%以下(0.15t≦d≦0.50t)とすることが好ましい。
 図2は、ガス吹き込みノズル10を転炉1に配置した状態を示す縦断面図であって、転炉1を稼動させる前の状態(すなわち、転炉1の初期状態)を示す図である。図2に示すように、ガス吹き込みノズル10を転炉1に用いる場合、ガス吹き込みノズル10は、複数の凹部16のうち、最も先端側に位置する凹部16が転炉1内に露出するように、転炉1の底壁3に配置される。なお、ガス吹き込みノズル10は、転炉1の側壁2に配置してもよい。
 ここで、ガス吹き込みノズル10を転炉1に配置する際は、外側ノズル14と転炉1の底壁3との間の隙間を埋めるために、例えばセメントペーストをこの隙間に流し込む。そのため、図2に示す状態では、外側ノズル14と転炉1の底壁3との間に、セメントペーストが凝固したコンクリート8が形成されている。
 そして、ガス吹き込みノズル10は、上述のように、転炉1内に貯留された溶融鉄浴に対して、不純物を除去するための酸素を内側ノズル13から吹き込むとともに、ノズル本体11を冷却するための冷却ガスを外側ノズル14から吹き込む。なお、図2において、矢印F1は酸素の吹き込み方向を表し、矢印F2は冷却ガスの吹き込み方向を表しており、これらF1及びF2の方向は互いに一致している。
 図2に示す転炉1の初期状態から転炉1を稼動させると、転炉1内に貯留された溶鉄が、転炉1内に露出したガス吹き込みノズル10の先端部の周囲に付着する。そして、ガス吹き込みノズル10は冷却ガスによって冷却されているため、ガス吹き込みノズル10の先端部の周囲に付着した溶鉄が凝固することにより、ガス吹き込みノズル10の先端部にマッシュルームが形成される。
 図3A及び図3Bは、図2に示す状態から、所定時間、転炉1を稼動させた後のガス吹き込みノズル10を示す図であって、ガス吹き込みノズル10にマッシュルーム90が形成された状態を示す図である。なお、図3Aは、側面図であり、図3Bは、中心軸線CLを含む断面で見た場合の縦断面図である。
 図3A及び図3Bに示すように、マッシュルーム90は、外側ノズル14の外周面14bのうちの転炉1内に露出した部分と、外側ノズル14及び内側ノズル13の先端面(中心軸線CL方向における両端面のうち、転炉1内に露出した一端面)とを覆うとともに凹部16内を埋めるように、ノズル本体11の先端部に形成される。なお、ガス吹き込みノズル10は、酸素及び冷却ガスを転炉1内に吹き込むため、マッシュルーム90の上面には複数の孔90aが形成される。
 このようにマッシュルーム90は、凹部16内を埋めるように形成されるので、凹部16の一対の係止面16b及び16cに当接して、これら一対の係止面16b及び16cに係止される。そのため、例えば、ガス吹き込み方向(矢印F1及びF2の方向:図2参照)に沿ってマッシュルーム90に外力が作用した場合、マッシュルーム90は、凹部16の係止面16bに係止されているので、この外力に対抗することができる。また、上記のガス吹き込み方向に対して逆向きの方向(矢印F1及びF2の逆向きの方向)に沿ってマッシュルーム90に外力が作用した場合、マッシュルーム90は、凹部16の係止面16cに係止されているので、この外力にも対抗することができる。したがって、ガス吹き込みノズル10からのマッシュルーム90の剥離を抑制することができる。
 ここで、転炉1の稼動を続けると、ガス吹き込みノズル10のみならず、転炉1の底壁3及びコンクリート8(図2参照)もこれらの内面から溶解して損耗する。そのため、転炉1の稼動初期には転炉1内に露出していなかった、ガス吹き込みノズル10の一部が、転炉1の稼動に伴って、転炉1内に露出することとなる。このような場合でも、ガス吹き込みノズル10は、複数の凹部16が中心軸線CL方向に沿って複数形成されているので、稼動後に露出した凹部16内にもマッシュルーム90を形成することができる。したがって、ガス吹き込みノズル10を長期間にわたって使用できるので、ガス吹き込みノズル10の交換頻度を低減することができる。
 なお、処理温度の低い精錬炉または鉄浴式溶解炉などでは、処理末期の溶鉄温度は1300~1450℃程度であり、汎用的に使用されるステンレス鋼(SUS304)を材質に用いた場合のガス吹き込みノズル10のノズル融点は1400~1450℃程度となる。そのため、このような条件下では、ガス吹き込みノズル10のノズル融点は、溶鉄温度より高くなることがある。
 ガス吹き込みノズル10のノズル融点が溶鉄温度より高い場合、ガス吹き込みノズル10の先端部にマッシュルーム90が形成されるものの、ガス吹き込みノズル10とマッシュルーム90との間で溶着が起こりにくい。そのため、かかる場合にはガス吹き込みノズル10およびマッシュルーム90間の溶着力が低くなる。しかしながら、このような場合でも、ガス吹き込みノズル10は、凹部16によりマッシュルーム90を係止するので、マッシュルーム90の剥離を抑制することができる。
 以上に説明した、本実施形態に係るガス吹き込みノズル10によれば、外側ノズル14の外周面14b(ノズル本体11の外周面)に凹部16を設けているので、ガス吹き込みノズル10を転炉等に用いた場合において、マッシュルーム90を凹部16に係止させることができる。したがって、マッシュルームの剥離を抑制することができ、その結果、ガス吹き込みノズル10の損耗を抑制することができる。
 なお、本実施形態では、マッシュルーム90が、内側ノズル13の内周面13a及び外周面13b、及び、外側ノズル14の内周面14aに形成されない場合を示した(図3A及び図3B参照)。ただし、転炉の稼動条件等によっては、マッシュルームが、内側ノズル13の内周面13a及び外周面13b、及び、外側ノズル14の内周面14aにも形成される場合がある。かかる場合には、外側ノズル14の外周面14bだけでなく、内側ノズル13の内周面13a及び外周面13b、及び、外側ノズル14の内周面14aにも凹部16を設けることが好ましい。
[本実施形態の変形例]
 図4A及び図4Bは、本実施形態に係るガス吹き込みノズル10の第1変形例であるガス吹き込みノズル20を示す図である。なお、図4Aは、ガス吹き込みノズル20を示す側面図であり、図4Bは、ガス吹き込みノズル20にマッシュルーム95が形成された状態を示す縦断面図である。
 本実施形態に係るガス吹き込みノズル10では、外側ノズル14の外周面14bに凹部16を設けた場合を示した。しかしながら、図4A及び図4Bに示すように、外側ノズル14の外周面14bに、外側ノズル14の周方向に沿って延在する環状の凸部26を設けてもよい。この構成によれば、転炉等にガス吹き込みノズル20を用いた場合に、マッシュルーム95が凸部26を覆うように形成される。そのため、マッシュルーム95が凸部26の一対の係止面26a及び26bに係止されるので、本実施形態と同様に、マッシュルーム95の剥離を抑制することができる。
 図5は、本実施形態に係るガス吹き込みノズル10の第2変形例であるガス吹き込みノズル30を示す側面図である。本実施形態に係るガス吹き込みノズル10では、外側ノズル14の外周面14bに凹部16を設けた場合を示した。しかしながら、図5に示すように、凹部16に加えて、中心軸線CL方向(長手方向)に沿って延びる第2凹部36を外側ノズル14の外周面14bに設けてもよい。この構成によれば、第2凹部36内にもマッシュルームが形成され、このマッシュルームが第2凹部36の一対の係止面36aにも係止される。そのため、ガス吹き込み方向のみならず、例えば、ガス吹き込みノズル30の周方向に沿って、マッシュルームに外力が作用した場合であっても、マッシュルームの剥離を抑制することができる。なお、図5に示すように、第2凹部36は複数設けられ、これら第2凹部36が千鳥状に配置されていることが好ましい。
 ここで、第2凹部36の幅は、例えば2mm以上5mm以下である。また、第2凹部36の深さは、例えば0.5mm以上1.5mm以下である。なお、第2凹部36の深さは、外側ノズル14の肉厚の15%以上50%以下の範囲内とすることが好ましい。
 図6は、本実施形態に係るガス吹き込みノズル10の第3変形例であるガス吹き込みノズル40を示す側面図である。図6に示すように、ガス吹き込みノズル40は、凹部16内に設けられた充填材46を備える点で、ガス吹き込みノズル10と異なっている。充填材46は、溶融鉄浴温度及びノズル本体11の融点よりも低い融点の有機系の材料から構成されている。上記有機系の材料としては、ポリエチレンまたはポリスチレンなどのプラスチック系樹脂を例示することができる。
 なお、充填材46は、上記に限られず、例えば、溶融鉄浴温度及びノズル本体11の融点よりも低い融点の低融点金属から構成されていてもよい。
 ここで、ガス吹き込みノズル10の場合、凹部16が外側ノズル14の外部に露出しているので、ガス吹き込みノズル10を転炉等に設置する際に、補修材等により凹部16が埋まられてしまう虞がある。しかしながら、ガス吹き込みノズル40は、充填材46を備えているので、補修材等が凹部16を埋めてしまうことを回避することができる。そして、上述のように、充填材46の融点は、溶融鉄浴の温度及びノズル本体11の融点よりも低いので、転炉等を稼動させると、充填材46は除去される(融点の低い有機物の場合は溶融除去され、低融点金属の場合は溶融除去または溶融鉄浴と合金化される)。そのため、転炉等の稼動後は、凹部16が転炉内に露出するため、凹部16は上述したマッシュルームを係止する機能を発揮することができる。
 図7は、本実施形態に係るガス吹き込みノズル10の第4変形例であるガス吹き込みノズル50を示す側面図である。ガス吹き込みノズル50は、凹部16及び第2凹部36に設けられた充填材46を備える点で、図5に示すガス吹き込みノズル30と異なっている。この構成によれば、図6に示すガス吹き込みノズル40と同様に、補修材等が凹部16及び第2凹部36を埋めてしまうことを回避することができる。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
 上記実施形態に係るガス吹き込みノズル10を鉄浴式溶解炉の底壁に配置して、ガス吹き込みノズル10の損耗速度を評価した。また、上記実施形態の第3変形例に係るガス吹き込みノズル30を鉄浴式溶解炉の底壁に配置して、ガス吹き込みノズル30の損耗速度を評価した。さらに、比較のため、凹部16および第2凹部36を設けないガス吹き込みノズル(すなわち、外側ノズルの外周面が平滑な曲面であるガス吹き込みノズル)についても同様にノズル損耗速度を評価した。
 なお、鉄浴式溶解炉では、スクラップおよび酸化鉄が含有される原料を溶銑浴に投入し、溶解を行った。
 ガス吹き込みノズル10及び30の材質は、ステンレス鋼(SUS304)とした(すなわち、内側ノズル13および外側ノズル14の材質をともにステンレス鋼(SUS304)とした)。
 内側ノズル13からは、窒素ガスをキャリアガスとして用いて微粉の石炭を流し、外側ノズル14からは冷却ガスとして窒素ガスを流した。なお、溶鉄の温度は、処理後1400~1450℃に達した。そして、ノズル損耗速度を、ノズルの長さを定期的に測定することで評価した。具体的には、溶解終了後、ガスの吹き込みを止め、ノズル底部に設置した測定用の孔(溶解時はネジで閉めておき、測定時にネジを外して使用)から検測用の冶具(棒状のメジャー)を差し込み、ノズルの長さを測定した。
 評価結果を以下の表1に示す。なお、表1に示す比較例及び実施例について、表1に示す条件以外の条件は、全て同じである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4では、比較例1~2と比較して、ノズルの損耗速度が低下した。すなわち、外側ノズル14の外周面14bに凹部16を設けることにより、ノズルの損耗を抑制できることを確認できた。
 さらに、実施例3~4では、ノズルの損耗速度がさらに低下した。すなわち、凹部16と第2凹部36とを設けることにより、ノズルの損耗をさらに抑制できることを確認できた。
 以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、本発明の範囲がこれらの実施形態のみに限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、上記実施形態では、周方向に延在する凹部16が外側ノズル14の中心軸線CL方向に沿って複数形成される場合を示した。しかしながら、凹部16を一つ形成してもよい。
 また、例えば、上記実施形態では、ノズル本体11が2重管構造を有し(すなわち、ノズル本体11が内側ノズル13と外側ノズル14とから構成され)、外側ノズル14の外周面14bに凹部16が設けられる場合を示した。しかしながら、外側ノズル14のみから構成されたノズル本体、すなわち、一つのノズルから構成されたノズル本体とし、その外周面に凹部16を設けてもよい。また、同心円状に配置された3つのノズルから構成されたノズル本体、すなわち、3重管構造のノズル本体とし、上記3つのノズルのうち最も外側に位置するノズルの外周面に凹部16を設けてもよい。
 すなわち、ノズル本体が同心円状に配置された複数のノズルから構成される場合には、これら複数のノズルのうち、最も外側に位置するノズルの外周面に凹部16を設ければよい。
 また、例えば、上記実施形態では、外側ノズル14の外周面14bに、周方向に延在する凹部16を設ける場合、すなわち、外側ノズル14の外周面14bに、中心軸線CL方向(長手方向)に対して直交する方向に延在する凹部16を設ける場合を示した。しかしながら、中心軸線CL方向に対して直交する方向のみに限られず、中心軸線CL方向に対して所定の角度(例えば、60°以上90°未満)で交差する方向に延在する凹部を設けてもよい。また、外側ノズル14の外周面14bに、中心軸線CL方向に沿って螺旋状の凹部を設けてもよい。
 また、例えば、上記実施形態の変形例では、外側ノズル14の外周面14bに凹部16及び第2凹部36を設ける場合を示した(図5参照)。しかしながら、凹部16を設けずに、第2凹部36のみを設けてもよい。
 ただし、上記実施形態に係るガス吹き込みノズル10のように、外側ノズル14の外周面14bに、周方向に沿って延在する凹部16を設ける場合、中心軸線CL方向に対して直交する係止面の面積を大きくすることができる。そのため、ガス吹き込みノズル10では、マッシュルームに作用する、ガス吹き込み方向における外力に対して、マッシュルームの剥離を効果的に抑制することができる。よって、このような観点からは、外側ノズル14の外周面14bに、周方向に沿って延在する凹部16を形成することが好ましい。
 本発明によれば、溶融金属に対してガスを吹き込む際に、ノズルの損耗を抑制することが可能なガス吹込みノズルを提供することができる。
10: ガス吹き込みノズル
11: ノズル本体
13: 内側ノズル
14: 外側ノズル
16: 凹部

Claims (6)

  1.  溶融金属に対してガスを吹き込むノズル本体を備え、
     側面視した場合に前記ノズル本体の長手方向に対して交差する方向に延在する凹部または凸部の少なくとも一方が、前記ノズル本体の外周面に設けられている
    ことを特徴とするガス吹き込みノズル。
  2.  少なくとも前記凹部が前記ノズル本体の前記外周面に設けられ;
     側面視した場合に、前記凹部が、前記ノズル本体の前記長手方向に対して直交する方向に延在している;
    ことを特徴とする請求項1に記載のガス吹き込みノズル。
  3.  前記凹部内に設けられた、前記ノズル本体の融点よりも低い融点の充填材をさらに備える
    ことを特徴とする請求項2に記載のガス吹き込みノズル。
  4.  前記ノズル本体の前記外周面に、前記ノズル本体の前記長手方向に沿って延在する第2凹部がさらに設けられている
    ことを特徴とする請求項2に記載のガス吹き込みノズル。
  5.  前記凹部および前記第2凹部内に設けられた、前記ノズル本体の融点よりも低い融点の充填材をさらに備える
    ことを特徴とする請求項4に記載のガス吹き込みノズル。
  6.  少なくとも前記凸部が前記ノズル本体の前記外周面に設けられ;
     側面視した場合に、前記凸部が、前記ノズル本体の前記長手方向に対して直交する方向に延在している;
    ことを特徴とする請求項1に記載のガス吹き込みノズル。
PCT/JP2017/004535 2016-02-25 2017-02-08 ガス吹き込みノズル WO2017145758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003663.0A CN108138247B (zh) 2016-02-25 2017-02-08 气体吹入喷嘴
JP2018501555A JP6540879B2 (ja) 2016-02-25 2017-02-08 ガス吹き込みノズル
KR1020187011071A KR102119462B1 (ko) 2016-02-25 2017-02-08 가스 취입 노즐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-034257 2016-02-25
JP2016034257 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145758A1 true WO2017145758A1 (ja) 2017-08-31

Family

ID=59685031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004535 WO2017145758A1 (ja) 2016-02-25 2017-02-08 ガス吹き込みノズル

Country Status (4)

Country Link
JP (1) JP6540879B2 (ja)
KR (1) KR102119462B1 (ja)
CN (1) CN108138247B (ja)
WO (1) WO2017145758A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059801A1 (ja) * 2018-09-21 2020-03-26 Jfeスチール株式会社 ガス吹込みノズル用耐火物およびガス吹込みノズル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834146A (ja) * 1981-08-24 1983-02-28 Nippon Steel Corp ガス吹込用多段結合プラグ
JPS6068143A (ja) * 1983-09-22 1985-04-18 Harima Refract Co Ltd ポ−ラス耐火物のガスシ−ル方法
JPH0448249U (ja) * 1990-08-24 1992-04-23
JPH04110738U (ja) * 1991-03-08 1992-09-25 黒崎窯業株式会社 バブリングノズル用れんが
JP2002012913A (ja) * 2000-06-28 2002-01-15 Toshiba Ceramics Co Ltd ポーラスプラグ
JP2009127087A (ja) * 2007-11-22 2009-06-11 Nippon Steel Corp 転炉の底吹き羽口開口部の閉止用部材とその除去方法
JP2015521110A (ja) * 2012-05-18 2015-07-27 ベスビウス クルーシブル カンパニー パージプラグ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304307A (ja) 1991-04-01 1992-10-27 Sumitomo Metal Ind Ltd 精錬炉羽口の保護部材および保護方法
JP2006283052A (ja) 2005-03-31 2006-10-19 Jfe Steel Kk ガス吹き込み羽口
DE102005060432A1 (de) * 2005-12-15 2007-06-21 Pa-Ha-Ge Feuerfeste Erzeugnisse Gmbh & Co. Kg Spülkegel
JP2007224399A (ja) 2006-02-27 2007-09-06 Jfe Steel Kk 精錬用容器で用いる底吹き羽口
AU2013218143B2 (en) * 2012-02-07 2016-12-22 Vesuvius Usa Corporation Gas purging plug comprising wear indicators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834146A (ja) * 1981-08-24 1983-02-28 Nippon Steel Corp ガス吹込用多段結合プラグ
JPS6068143A (ja) * 1983-09-22 1985-04-18 Harima Refract Co Ltd ポ−ラス耐火物のガスシ−ル方法
JPH0448249U (ja) * 1990-08-24 1992-04-23
JPH04110738U (ja) * 1991-03-08 1992-09-25 黒崎窯業株式会社 バブリングノズル用れんが
JP2002012913A (ja) * 2000-06-28 2002-01-15 Toshiba Ceramics Co Ltd ポーラスプラグ
JP2009127087A (ja) * 2007-11-22 2009-06-11 Nippon Steel Corp 転炉の底吹き羽口開口部の閉止用部材とその除去方法
JP2015521110A (ja) * 2012-05-18 2015-07-27 ベスビウス クルーシブル カンパニー パージプラグ

Also Published As

Publication number Publication date
JP6540879B2 (ja) 2019-07-10
CN108138247A (zh) 2018-06-08
KR20180055874A (ko) 2018-05-25
JPWO2017145758A1 (ja) 2018-06-07
KR102119462B1 (ko) 2020-06-05
CN108138247B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
AU2010285725B2 (en) Pearlite rail
ES2675907T3 (es) Herramienta de soldadura por fricción y agitación fabricada a partir de carburo de tungsteno cementado con níquel y con un recubrimiento superficial de Al2O3
WO2017145758A1 (ja) ガス吹き込みノズル
JP4742855B2 (ja) 溶融金属精錬用ランス
EP3279340B1 (en) Method of operating top and bottom blowing converter
EP3170616A1 (en) SINGLE SUBMERGED ARC WELDING METHOD FOR HIGH-Cr CSEF STEEL
KR101261424B1 (ko) 취련용 랜스 노즐
US4477279A (en) Annular tuyere and method
JP5360334B1 (ja) 連続鋳造用浸漬ノズルおよびそれを用いた連続鋳造方法
CN101883647B (zh) 连续铸造方法
KR101190773B1 (ko) 제강용 슬래그포트의 트러니언샤프트 및 그 제조방법과 이를 통해 제조된 슬래그포트
KR101175627B1 (ko) 래들
KR102235235B1 (ko) 제강 래들
US20040206451A1 (en) High-speed chemical drill
KR101504815B1 (ko) 연속주조용 몰드
JPH0426448Y2 (ja)
JP6604062B2 (ja) 金属溶解・精錬炉用ガス吹込み方法、および金属溶解・精錬炉用ガス吹込みノズル
JP2006283066A (ja) ガス吹き込み羽口
JP6024223B2 (ja) 精錬用上吹きランス
JP6112176B1 (ja) 浸漬ノズル
JP2013173149A (ja) 注入管
GB2064079A (en) Surface coated copper furnace components
JP4211631B2 (ja) 転炉型反応容器の炉口金物溶損防止方法
CN112518090A (zh) 一种防止无缝管端部内折的方法
KR20150006281A (ko) 분리성이 향상된 콜렉터 노즐용 링 가스켓

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501555

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187011071

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756199

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756199

Country of ref document: EP

Kind code of ref document: A1