WO2017145712A1 - 圧縮機及び熱サイクルシステム - Google Patents

圧縮機及び熱サイクルシステム Download PDF

Info

Publication number
WO2017145712A1
WO2017145712A1 PCT/JP2017/004057 JP2017004057W WO2017145712A1 WO 2017145712 A1 WO2017145712 A1 WO 2017145712A1 JP 2017004057 W JP2017004057 W JP 2017004057W WO 2017145712 A1 WO2017145712 A1 WO 2017145712A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfo
working medium
sealed container
hfc
mass
Prior art date
Application number
PCT/JP2017/004057
Other languages
English (en)
French (fr)
Inventor
洋輝 速水
正人 福島
高木 洋一
哲央 大塚
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780012542.2A priority Critical patent/CN109072900B/zh
Priority to EP17756154.5A priority patent/EP3421798B1/en
Priority to JP2018501111A priority patent/JP6922885B2/ja
Publication of WO2017145712A1 publication Critical patent/WO2017145712A1/ja
Priority to US16/106,306 priority patent/US10418876B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/136Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas explosion-proof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type

Definitions

  • the present invention relates to a compressor and a heat cycle system.
  • CFC chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • HFC difluoromethane
  • HFC-125 pentafluoroethane
  • R410A a pseudo-azeotropic mixed working medium having a mass ratio of 1: 1 between HFC-32 and HFC-125
  • HFC may cause global warming.
  • R410A has been widely used for ordinary air-conditioning equipment called so-called package air conditioners and room air conditioners because of its high refrigerating capacity.
  • GWP global warming potential
  • the global warming potential (GWP) is as high as 2088, and therefore development of a low GWP working medium is required.
  • HFO hydrofluoroolefins
  • saturated HFC is referred to as HFC, and is used separately from HFO.
  • HFC is specified as a saturated hydrofluorocarbon.
  • halogenated hydrocarbons such as HFC and HFO, the abbreviations of the compounds are shown in parentheses after the compound names, but in the present specification, the abbreviations are used instead of the compound names as necessary.
  • Patent Document 1 relates to a working medium using 1,1,2-trifluoroethylene (HFO-1123) which has the above-mentioned characteristics and provides excellent cycle performance. Technology is disclosed. In Patent Document 1, an attempt is made to use HFO-1123 in combination with various HFCs as a working medium in order to further improve the nonflammability and cycle performance of the working medium.
  • HFO-1123 1,1,2-trifluoroethylene
  • Non-Patent Document 1 reports an attempt to suppress the self-decomposition reaction by mixing HFO-1123 with other components such as vinylidene fluoride to reduce the content of HFO-1123. ing.
  • Patent Document 2 proposes that HFO-1123 is used as a single working medium in a heat cycle system, and is used as a mixed working medium of HFO-1123 and HFC-32, or HFO-1123 and HFO-1234yf. Yes.
  • hydrofluoroolefin such as HFO-1123
  • ignition energy is applied in a state where the working medium is exposed to high temperature or high pressure due to abnormal operation or the like in a thermal cycle system
  • the hydrofluoroolefin It should be noted that the self-decomposition reaction may occur.
  • the place where there is a high possibility that a constant ignition energy is given to the working medium under high temperature and high pressure is mainly inside the compressor. If ignition energy is generated inside the compressor due to factors such as the occurrence of discharge (spark) at the power supply terminal, this ignition energy may be applied to the working medium to cause a self-decomposition reaction.
  • an object of the present invention is to provide a compressor and a thermal cycle system that can prevent a spark from being generated from a power supply terminal in the compressor and prevent a self-decomposing reaction of a working medium.
  • a compressor includes: A sealed container; A compression unit provided at an upper portion in the sealed container and compressing the working medium; An oil reservoir provided at the bottom of the sealed container for storing lubricating oil; An electric part provided between the compression part and the oil sump part in the sealed container, and driving the compression part; Provided through the wall surface in the region of the oil reservoir of the sealed container, can be connected to an external power source outside the sealed container, and is electrically connected to the motorized part in the sealed container via a lead wire And a power supply terminal connected to.
  • a thermal cycle system has a working medium circuit to which the compressor is connected and in which a working medium containing HFO circulates.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an example of a compressor according to an embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view of the fixed spiral body and the swing spiral body.
  • FIG. 3 is a diagram illustrating an example of an air conditioner that is an example of a heat cycle system according to an embodiment of the present invention.
  • FIG. 1 is a sectional view showing an example of the configuration of a compressor 100 according to an embodiment of the present invention.
  • the compressor of the present invention can be applied to various compressors including a scroll compressor and a rotary compressor as long as the compression unit is disposed above and the electric unit is disposed below. An example in which the machine is applied to a scroll compressor will be described.
  • the compressor 100 includes a sealed container 10, a suction pipe 20, a discharge pipe 21, a compression unit 30, a shaft 40, an electric unit 50, and a power supply terminal 60.
  • the sealed container 10 plays a role as a casing of the compressor 100, and houses the compression unit 30, the shaft 40, the electric unit 50, the power supply terminal 60, and the like.
  • an oil reservoir 15 is formed at the bottom of the hermetic container 10 to store lubricating oil (refrigeration oil) 70.
  • Lubricating oil 70 is slid on parts, bearings, and the like that constitute the compression portion 30 through an oil supply passage (not shown) provided in the shaft 40 so that the compression portion 30 can perform a smooth compression operation. Supplied.
  • the oil sump portion 15 is provided with a power supply terminal 60 installed through an insulating member 62 so as to penetrate the sealed container 10.
  • the power supply terminal 60 is a terminal for supplying power from an external power supply to the electric motor unit 50 in the sealed container 10, and includes an external terminal 61 and an internal terminal 63.
  • the external terminal 61 is a terminal for receiving power supply from an external power source (not shown) outside the sealed container 10, and is provided outside the sealed container 10.
  • the internal terminal 63 is a terminal for supplying power to the electric unit 50 and is provided in the sealed container 10.
  • the internal terminal 63 is provided on the inner peripheral surface of the sealed container 10 in the region where the oil reservoir 15 is provided, and is immersed in the lubricating oil 70.
  • the lubricating oil 70 having an extremely high insulating property is interposed between the terminals of the internal terminals 63, and the possibility of occurrence of sparks between the terminals can be eliminated.
  • the suction pipe 20 is a pipe for sucking the working medium into the sealed container 10, and is provided on the side surface of the sealed container 10 so as to communicate with the inside and outside of the sealed container 10.
  • the working medium in a gas state sucked into the sealed container 10 through the suction pipe 20 cools the electric unit 50 and is guided to the compression unit 30.
  • the compression unit 30 plays a role of compressing the working medium sucked into the sealed container 10 to a predetermined pressure, and is provided above the electric unit 50.
  • the structure of the compression unit 30 is not limited, and can be applied to the compression unit 30 having various structures as long as it is disposed above the electric unit 50. Therefore, it demonstrates as an example of the compression part 30 which can apply the compressor 100 which concerns on this embodiment here.
  • the compression unit 30 includes a fixed scroll 31, an orbiting scroll 32, an Oldham ring 33, a frame 34, and a discharge pipe connection unit 35.
  • the fixed scroll 31 is disposed at the upper portion
  • the swing scroll 32 is disposed at the lower portion, and are provided so as to face each other.
  • a frame 34 that houses the swing scroll 32 is provided below the swing scroll 32.
  • a discharge pipe connecting portion 35 is provided above the fixed scroll 31.
  • the Oldham ring 33 is provided below the swing scroll 32.
  • a space is formed by respective spiral bodies, which will be described later, of the fixed scroll 31 and the orbiting scroll 32, and these are formed in a compression chamber A that becomes a sealed space and a suction chamber B that is in open communication with the sealed container 10. Become.
  • the fixed scroll 31 and the swing scroll 32 cooperate to compress the working medium.
  • the fixed scroll 31 includes a base plate 31a provided substantially horizontally, and a fixed spiral body 31b that stands vertically downward from the lower surface of the base plate 31a.
  • the base plate 31 a is a flat plate-like member fixed in the sealed container 10, the outer peripheral surface is in contact with the inner peripheral surface of the sealed container 10, and the lower peripheral edge is in contact with the upper portion of the frame 34.
  • a discharge port 31c through which the working medium compressed in the compression chamber A is discharged and a communication portion 31d capable of communicating with the discharge port 31c are formed at the center of the base plate 31a.
  • the discharge port 31c is provided to extend in the vertical direction of the base plate 31a so that one communicates with the compression chamber A and the other communicates with the communication portion 31d.
  • the discharge valve 31e is provided between the discharge port 31c and the communication portion 31d, and is attached so as to cover the discharge port 31c.
  • the discharge valve 31e is in a state in which the discharge port 31c is closed while the pressure in the compression chamber A is smaller than a predetermined pressure (pressure in the communication portion 31d), and the working medium flows from the compression chamber A side to the discharge pipe 21.
  • a predetermined pressure pressure in the communication portion 31d
  • the pressure in the compression chamber A becomes equal to or higher than a predetermined pressure (pressure in the communication portion 31 d)
  • the pressure is pushed up, the discharge port 31 c is opened, and the working medium is allowed to flow into the discharge pipe 21.
  • the discharge pipe connection part 35 connects the discharge pipe 21 to the compression part 30, and plays a role of connecting the discharge pipe 21 and the communication part 31d.
  • the discharge pipe 21 is a pipe for discharging the working medium compressed by the compression unit 30 from the sealed container 10 to the outside.
  • the swing scroll 32 includes a substantially horizontal base plate 32a, a swing spiral body 32b formed upright from the upper surface of the base plate 32a, and a boss portion 32c extending downward from the lower surface of the base plate 32a.
  • the base plate 32 a is made of a disk-shaped member, and is driven through a boss portion 32 c described later by the eccentric rotation of the eccentric portion 41 by the rotation of the shaft 40, and swings (rotates) in the frame 34.
  • FIG. 2 is a horizontal sectional view of the fixed spiral body 31b and the swinging spiral body 32b.
  • the fixed spiral body 31b and the swinging spiral body 32b are both formed in a spiral shape, that is, an involute curve shape, and are arranged to face each other.
  • the rocking scroll body 32b of the rocking scroll 32 swings (turns) by the rotation of the shaft 40, and the working medium is compressed from the outside to the inside, The compressed working medium is discharged upward from the central discharge port 31c.
  • the boss portion 32c has a hollow cylindrical shape formed on the lower surface of the base plate 32a.
  • a cylindrical eccentric portion 41 provided at the upper end of the shaft 40 is accommodated in the boss portion 32c in a slidable state. That is, as the shaft 40 rotates, the orbiting scroll 32 is driven through the eccentric portion 41 accommodated in the boss portion 32c.
  • the frame 34 confines the swing scroll 32 so as to be slidable. Therefore, a sliding surface is formed by the upper surface of the frame 34 and the lower surface of the base plate 32 a of the swing scroll 32.
  • the frame 34 has a shape in which an upper part and a lower part are opened, and an upper part is provided with a base plate 31a of a fixed scroll 31 and is closed, and a shaft 40 and an eccentric part 41 are accommodated in the lower part.
  • the outer peripheral surface is fixed to the inner peripheral surface of the sealed container 10.
  • the Oldham ring 33 is provided below the lower surface of the base plate 32a of the orbiting scroll 32, and has a mechanism for preventing the rotation movement of the orbiting scroll 32 during the orbiting operation. Play a role to do.
  • the compression chamber A is a space formed by the lower surface of the base plate 31a and the fixed spiral body 31b and the upper surface of the base plate 32a and the swinging spiral body 32b, and the number of spirals of the fixed spiral body 31b and the peristaltic spiral body 32b.
  • a plurality of compression chambers A are formed as sealed spaces.
  • the suction chamber B is formed at the distal end portions of the fixed spiral body 31b and the peristaltic spiral body 32b, and the inner surface of the frame 34, the outer peripheral portion of the base plate 32a, the fixed spiral body. It is formed by the inner peripheral surface 31B of 31b and the outer peripheral surface 32B of the swinging spiral body 32b, and is in a state of communicating with the sealed container 10.
  • the suction chamber B is moved by the fixed spiral body 31b and the peristaltic spiral body 32b as the shaft 40 rotates.
  • a confined space (compression chamber A) is formed and continuously compressed as the shaft 40 rotates.
  • the electric unit 50 rotates the shaft 40 and drives the compression unit 30 by its output, and supplies power (energy) for compressing the working medium.
  • the electric unit 50 includes a motor 51.
  • the motor 51 is combined with a stator 53 fixedly supported on the hermetic container 10 and a rotor 52 attached to the shaft 40.
  • the stator 53 is configured, for example, by attaching a multiphase stator winding 54 to a laminated iron core via an insulating member 55.
  • the rotor 52 has, for example, a permanent magnet (not shown) inside, and is attached to the shaft 40 so that a predetermined gap is formed between the rotor 52 and the inner peripheral surface of the stator 53.
  • the rotor 52 generates a rotating magnetic field inside the stator 53 when a current flows through the stator winding 54, and rotates the rotor 52, that is, the united shaft 40.
  • the rotor 52 may be provided with a balancer 56 in order to suppress rotational imbalance associated with the movement of the orbiting scroll 32 and the Oldham ring 33.
  • the current is supplied to the stator winding 54 via the lead wire 57.
  • the lead wire 57 has one end connected to the stator winding 54 and the other end connected to the connector 58.
  • the connector 58 is connected to the internal terminal 63 of the power supply terminal 60.
  • a current flows through the stator winding 54 via the internal terminal 63 ⁇ the connector 58 ⁇ the lead wire 57.
  • a subframe 11 is provided below the electric unit 50 so as to partition the space in the sealed container 10.
  • a space serving as an oil sump 15 is formed in the lower part of the subframe 11 and has a structure for storing the lubricating oil 70.
  • the subframe 11 is provided with a bearing 12 at the center thereof for rotatably supporting the lower end portion of the shaft 40, and further, a through hole 13 through which the lead wire 57 passes is provided at the peripheral portion. Yes.
  • the through hole 13 is provided to enable power (current) to be supplied from the power supply terminal 60 provided at the lower portion of the subframe 11 to the motor unit 50, and allows the lead wire 57 to easily pass through. Is.
  • the electric part 50 is provided between the compression part 30 and the oil sump part 15, that is, below the compression part 30 and above the oil sump part 15. With such an arrangement, the electric part 50 can be arranged close to the oil sump part 15.
  • the power supply terminal 60 is a terminal provided to supply electric power (current) to the motor unit 50, and the internal terminal 63 is immersed in the lubricating oil 70 stored in the oil reservoir 15. It is provided as follows. Thereby, the electrical insulation of the internal terminal 63 can be improved, and it can prevent generating a spark from the internal terminal 63.
  • FIG. Normally, the internal terminal 63 has a plurality of metal terminal exposed portions adjacent to each other, and the metal terminal exposed portions are provided adjacent to each other, so that sparks can be generated from the exposed metal terminal portions. It is in.
  • the connector 58 and the lead wire 57 connected to the internal terminal 63 so as to be immersed in the refrigerating machine oil, the damage (insulation breakdown) of the coating of the lead wire 57 due to abnormal heat generation in the compressor is suppressed. In addition, the occurrence of sparks can be prevented.
  • the internal terminal 63 is immersed in the lubricating oil 70, and the exposed portions of the adjacent metal terminals are configured to be in a highly insulating state by the lubricating oil. That is, the power terminal 60 is installed in the region of the oil reservoir 15 so that the internal terminal 63 is surely immersed in the lubricating oil 70.
  • the connector 58 connected thereto at least a part of the lead wire 57 and the exposed portion of the metal terminal are naturally immersed in the lubricating oil 70, Suppression of these abnormal heat generation and electrical insulation can be improved as well.
  • the power terminal 60 is provided above the subframe 11 and on the side surface of the sealed container 10 closest to the stator winding 54, the power terminal 60 is in a state in which it is easy to directly touch the gaseous working medium. Depending on the characteristics of the medium (dielectric constant, etc.), sparks may occur, and as a result, a self-decomposition reaction of the working medium may be induced.
  • the internal terminal 63 is immersed in the lubricating oil 70, and the self-decomposition reaction of the working medium is extremely difficult to occur due to the high electrical insulating force of the lubricating oil 70. It is.
  • the power terminal 60 may be provided at any location including the bottom surface of the hermetic container 10 as long as the exposed portion of the metal terminal of the internal terminal 63 is immersed in the lubricating oil 70. In consideration of direct placement, it is preferable to provide the airtight container 10 on the side surface. Thereby, the compressor 100 can be placed directly on the floor, and the connection work with the external power source and the installation of the compressor 100 can be facilitated.
  • lubricating oil (refrigerating machine oil) 70 a known refrigerating machine oil used for a composition for a heat cycle system can be employed without particular limitation, together with a working medium made of a halogenated hydrocarbon.
  • usable refrigerating machine oils include oxygen-containing refrigerating machine oils (ester refrigerating machine oils, ether refrigerating machine oils, etc.), fluorine refrigerating machine oils, mineral refrigerating machine oils, hydrocarbon refrigerating machine oils, and the like. Can be mentioned.
  • the orbiting scroll 32 performs the orbiting motion by the orbiting motion of the eccentric portion 41 at the tip of the shaft 40, thereby forming a sealed space formed by the fixed spiral body 31 b and the peristaltic spiral body 32 b.
  • the volume of (compression chamber A) decreases as the shaft 40 rotates.
  • the gaseous working medium is sucked into the sealed container 10 from the suction pipe 20 while the swing scroll 32 is swinging.
  • the sucked gaseous working medium is taken in through the suction chamber B constituting the compression section 30 and is compressed in the compression chamber A that becomes a sealed space as the shaft 40 rotates, and the pressure rises sequentially.
  • the pressure in the compression chamber A exceeds a predetermined pressure (pressure in the communication portion 31d)
  • the discharge valve 31e opens upward, and the working medium flows out from the discharge port 31c to the discharge valve 31e ⁇ the communication portion 31d, and the discharge pipe It is discharged to the outside of the sealed container 10 through 21.
  • thermal cycle system according to the embodiment of the present invention will be described.
  • the compressor 100 according to the present embodiment is used.
  • FIG. 3 is a diagram illustrating an example of an air conditioner 150 that is an example of a thermal cycle system according to an embodiment of the present invention.
  • the air conditioner 150 includes an outdoor unit 150a and an indoor unit 150b.
  • the compressor 100 as a compression mechanism provided in the outdoor unit 150a, a four-way switching valve 154, an expansion unit
  • An expansion valve 156 as a mechanism, an outdoor heat exchanger 157, and an indoor heat exchanger 155 provided in the indoor unit 150b are connected by piping to constitute a working medium circulation path 151.
  • the outdoor heat exchanger 157 is provided with a fan 160
  • the indoor unit 150b is provided with a fan 161
  • the outdoor heat exchanger 157 and the indoor heat exchanger 155 function by blowing air from the fans 160 and 161, respectively. Then, heat exchange between the working medium circulating in the path 151 and the surroundings is performed.
  • the air conditioner 150 can reverse the direction of circulation of the working medium by the switching operation of the four-way switching valve 154, and can perform cooling and heating operations.
  • the air conditioner 150 includes a power supply device 172 such as an inverter power supply that supplies power to the compressor 100 and a control device 170 that controls the power supply device 172, and supplies power from the AC power supply 171 to the power supply device 172.
  • a power supply device 172 such as an inverter power supply that supplies power to the compressor 100
  • a control device 170 that controls the power supply device 172, and supplies power from the AC power supply 171 to the power supply device 172.
  • the four-way switching valve 154 is set as shown by a solid line in FIG.
  • the indoor heat exchanger 155 serves as a condenser and the outdoor heat exchanger 157 serves as an evaporator to operate the refrigeration cycle.
  • the high-temperature and high-pressure working medium discharged from the compressor 100 passes through the four-way switching valve 154 (point d2 in FIG. 3), flows to the indoor heat exchanger 155, dissipates heat to the indoor air, and condenses (point d3 in FIG. 3). ).
  • the condensed high-pressure working medium is decompressed by the expansion valve 156 to become a low-pressure working medium (point d4 in FIG. 3), and flows into the outdoor heat exchanger 157.
  • the low-pressure working medium that has flowed into the outdoor heat exchanger 157 is in a gas-liquid mixed two-phase state (gas phase / liquid phase), easily absorbs heat and evaporates, absorbs heat from outdoor air, and evaporates.
  • the evaporated low-pressure working medium returns to the compressor 100 through the four-way switching valve 154 through the point d1 in FIG.
  • the suctioned low-pressure working medium is compressed and discharged again as a high-temperature and high-pressure working medium. By repeating this operation, the heating operation of the air conditioner 150 is performed.
  • the flow path of the four-way switching valve 154 is changed (broken line in FIG. 3), the flow direction of the working medium is completely opposite to that of the heating operation, and the function of the heat exchanger is also opposite (the indoor heat exchanger 155). Is an evaporator, and the outdoor heat exchanger 157 is a condenser).
  • the working medium used in the compressor 100 and the thermal cycle system according to the embodiment of the present invention may be a conventionally known working medium, but is preferably a working medium containing hydrofluoroolefin (HFO).
  • HFO include trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf).
  • HFO-1243yc 1,1,2-trifluoropropene
  • HFO-1225ye (E) trans-1,2,3,3,3-pentafluoropropene
  • HFO-1225ye (E) cis-1,2,3,3 , 3-Pentafluoropropene
  • HFO-1234ze (E) trans-1,3,3,3-tetrafluoropropene
  • HFO-1234ze (Z) cis-1,3,3,3-tetrafluoropropene
  • HFO-1243zf 3,3,3-trifluoropropene
  • HFO-1234yf preferably comprising HFO-1234ze (E) or HFO-1234ze (Z), more preferably containing HFO-1234yf or HFO-1123, it is particularly preferred that it include a HFO-1123.
  • the working medium used in the present invention preferably contains HFO-1123, and may further contain an optional component described later, if necessary.
  • the content of HFO-1123 with respect to 100% by mass of the working medium is preferably 10% by mass or more, more preferably 20 to 80% by mass, still more preferably 40 to 80% by mass, and further preferably 40 to 60% by mass.
  • HFO-1123 The characteristics of HFO-1123 as a working medium are shown in Table 1 particularly in a relative comparison with R410A (a pseudo-azeotropic mixed working medium having a mass ratio of HFC-32 and HFC-125 of 1: 1).
  • the cycle performance is indicated by a coefficient of performance and a refrigerating capacity obtained by a method described later.
  • the coefficient of performance and the refrigeration capacity of HFO-1123 are expressed as relative values (hereinafter referred to as the relative coefficient of performance and relative refrigeration capacity) with R410A as the reference (1.000).
  • the global warming potential (GWP) is a value of 100 years indicated in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method. In this specification, GWP refers to this value unless otherwise specified.
  • IPCC Intergovernmental Panel on climate Change
  • the working medium used in the present invention preferably contains HFO-1123, and may optionally contain a compound used as a normal working medium in addition to HFO-1123 as long as the effects of the present invention are not impaired.
  • a compound used as a normal working medium in addition to HFO-1123 examples include HFO other than HFC and HFO-1123 (HFC having a carbon-carbon double bond), other components that vaporize and liquefy together with HFO-1123 other than these, etc. Is mentioned.
  • HFO other than HFC and HFO-1123 HFC having a carbon-carbon double bond
  • an optional component for example, when used in a heat cycle in combination with HFO-1123, there is a compound capable of keeping the GWP and the temperature gradient within an allowable range while having the effect of further increasing the relative coefficient of performance and the relative refrigeration capacity. preferable.
  • the working medium contains such a compound in combination with HFO-1123, a better cycle performance can be obtained while keeping the GWP low, and the influence of the temperature gradient is small.
  • Temporal gradient When the working medium contains, for example, HFO-1123 and an optional component, it has a considerable temperature gradient except when the HFO-1123 and the optional component have an azeotropic composition.
  • the temperature gradient of the working medium varies depending on the type of the optional component and the mixing ratio of HFO-1123 and the optional component.
  • azeotropic or pseudo-azeotropic mixture such as R410A is preferably used.
  • Non-azeotropic compositions have the problem of causing composition changes when filled from a pressure vessel to a refrigeration air conditioner. Furthermore, when the working medium leakage from the refrigerating and air-conditioning equipment occurs, the working medium composition in the refrigerating and air-conditioning equipment is very likely to change, and it is difficult to restore the working medium composition to the initial state. On the other hand, the above problem can be avoided if the mixture is azeotropic or pseudo-azeotropic.
  • Temperature gradient is generally used as an index for measuring the possibility of using the mixture in the working medium.
  • a temperature gradient is defined as the property of the start and end temperatures of a heat exchanger, for example, evaporation in an evaporator or condensation in a condenser, differing. In the azeotrope, the temperature gradient is 0, and in the pseudoazeotrope, the temperature gradient is very close to 0, for example, the temperature gradient of R410A is 0.2.
  • the inlet temperature in the evaporator decreases, which increases the possibility of frost formation.
  • a heat cycle system in order to improve heat exchange efficiency, it is common to make the working medium flowing through the heat exchanger and a heat source fluid such as water or air counter flow, and in a stable operation state Since the temperature difference of the heat source fluid is small, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixed medium having a large temperature gradient. For this reason, when a mixture is used as a working medium, a working medium having an appropriate temperature gradient is desired.
  • the optional HFC is preferably selected from the above viewpoint.
  • HFC is known to have higher GWP than HFO-1123. Therefore, the HFC combined with HFO-1123 is appropriately selected from the viewpoint of improving the cycle performance as the working medium and keeping the temperature gradient within an appropriate range, and particularly keeping the GWP within an allowable range. It is preferred that
  • an HFC having 1 to 5 carbon atoms is preferable as an HFC that has little influence on the ozone layer and has little influence on global warming.
  • the HFC may be linear, branched, or cyclic.
  • HFC examples include HFC-32, difluoroethane, trifluoroethane, tetrafluoroethane, HFC-125, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane, and the like.
  • HFC 1,1-difluoroethane
  • HFC-152a 1,1,1-trifluoroethane
  • HFC-125 1,1,2,2-tetrafluoroethane
  • HFC-132, HFC -152a, HFC-134a, and HFC-125 are more preferred.
  • HFC may be used alone or in combination of two or more.
  • the content of HFC in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium.
  • the coefficient of performance and the refrigerating capacity are improved when the content of HFC-32 is in the range of 1 to 99% by mass.
  • the coefficient of performance improves when the content of HFC-134a is in the range of 1 to 99% by mass.
  • the preferred HFC GWP is 675 for HFC-32, 1430 for HFC-134a and 3500 for HFC-125. From the viewpoint of keeping the GWP of the obtained working medium low, the HFC-32 is most preferable as an optional HFC.
  • HFO-1123 and HFC-32 can form a pseudo-azeotropic mixture close to azeotropy in a composition range of 99: 1 to 1:99 by mass ratio. The temperature gradient is close to zero. Also in this respect, HFC-32 is advantageous as an HFC combined with HFO-1123.
  • the content of HFC-32 with respect to 100% by mass of the working medium is specifically preferably 20% by mass or more, and 20 to 80% by mass. % Is more preferable, and 40 to 60% by mass is further preferable.
  • HFOs other than HFO-1123 may be used alone or in combination of two or more.
  • the content of HFO other than HFO-1123 in the working medium (100% by mass) can be arbitrarily selected according to the required characteristics of the working medium.
  • the coefficient of performance improves when the content of HFO-1234yf or HFO-1234ze is in the range of 1 to 99% by mass.
  • composition range (S) A preferred composition range in the case where the working medium used in the present invention contains HFO-1123 and HFO-1234yf is shown below as a composition range (S).
  • each formula showing the composition range (S) indicates the ratio (% by mass) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and other components (such as HFC-32). .
  • the working medium in the composition range (S) has a very low GWP and a small temperature gradient.
  • refrigeration cycle performance that can be substituted for the conventional R410A can be expressed.
  • the ratio of HFO-1123 to the total amount of HFO-1123 and HFO-1234yf is more preferably 40 to 95% by mass, further preferably 50 to 90% by mass, and more preferably 50 to 85%. Mass% is particularly preferable, and 60 to 85 mass% is most preferable.
  • the total content of HFO-1123 and HFO-1234yf in 100% by mass of the working medium is more preferably 80 to 100% by mass, further preferably 90 to 100% by mass, and particularly preferably 95 to 100% by mass. .
  • the working medium used in the present invention preferably contains HFO-1123, HFC-32, and HFO-1234yf, and a preferred composition range (P) in the case of containing HFO-1123, HFO-1234yf, and HFC-32. Is shown below.
  • each formula showing the composition range (P) the abbreviation of each compound indicates the ratio (mass%) of the compound with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32.
  • the total amount of HFO-1123, HFO-1234yf, and HFC-32 specifically described is more than 90% by mass and less than 100% by mass with respect to the total amount of the working medium for heat cycle.
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each of them are suppressed.
  • this working medium is a working medium that has a very low GWP, has a small temperature gradient, and has a certain capacity and efficiency when used in a thermal cycle, and can obtain good cycle performance.
  • the total amount of HFO-1123 and HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32 is preferably 70% by mass or more.
  • the working medium used in the present invention is more preferably composed of 30 to 70% by mass of HFO-1123 and 4 to 4% of HFO-1234yf with respect to the total amount of HFO-1123, HFO-1234yf, and HFC-32.
  • Examples include a composition containing 40% by mass and HFC-32 in a proportion of 0 to 30% by mass, and the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less.
  • the working medium in the above range is a highly durable working medium in which the above effect is enhanced and the self-decomposition reaction of HFO-1123 is suppressed.
  • the content of HFC-32 is preferably 5% by mass or more, and more preferably 8% by mass or more.
  • the working medium used in the present invention contains HFO-1123, HFO-1234yf, and HFC-32.
  • the content of HFO-1123 with respect to the total amount of the working medium is 70 mol% or less.
  • the self-decomposition reaction of HFO-1123 is suppressed, and a highly durable working medium can be obtained.
  • composition range (R) A more preferred composition range (R) is shown below.
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a well-balanced manner, and the defects possessed by each of them are suppressed. That is, it is a working medium in which good cycle performance can be obtained by having a low temperature gradient and high performance and efficiency when used in a thermal cycle after GWP is kept low and durability is ensured.
  • the working medium having the above composition is a working medium in which the characteristics of HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the disadvantages of each of them are suppressed. That is, it is a working medium in which GWP is kept low and durability is ensured, and when used in a thermal cycle, the temperature gradient is smaller and the cycle performance is higher by having higher capacity and efficiency. is there.
  • composition range (M) a more preferred composition range (L) is shown below.
  • the composition range (M) is more preferable.
  • the working medium having the composition range (M) is a working medium in which the characteristics of the HFO-1123, HFO-1234yf, and HFC-32 are exhibited in a particularly well-balanced manner, and the drawbacks of the working medium are suppressed.
  • this working medium has a GWP with an upper limit of 300 or less, and durability is ensured, and when used in a heat cycle, the temperature gradient is less than 5.8, and the relative coefficient of performance and relative This is a working medium having a refrigerating capacity close to 1 and good cycle performance.
  • another working medium used in the present invention preferably contains HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the combustibility of the working medium is suppressed by this composition.
  • the working medium includes HFO-1123, HFC-134a, HFC-125, and HFO-1234yf, and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90%.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 3% by mass or more and 35% by mass or less, and HFC-134a.
  • the ratio of HFC-125 is preferably 4% by mass to 50% by mass
  • the ratio of HFO-1234yf is preferably 5% by mass to 50% by mass.
  • HFO-1123, HFC-134a, HFC-125, and HFO-1234yf and the ratio of the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf to the total amount of the working medium is 90%.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-134a, HFC-125, and HFO-1234yf is 6 mass% or more and 25 mass% or less, and HFC-134a. It is even more preferable that the ratio of HFC-125 is 20% by mass to 35% by mass, the ratio of HFC-125 is 8% by mass to 30% by mass, and the ratio of HFO-1234yf is 20% by mass to 50% by mass.
  • the working medium used in the composition for a heat cycle system of the present invention may contain carbon dioxide, hydrocarbon, chlorofluoroolefin (CFO), hydrochlorofluoroolefin (HCFO) and the like in addition to the above optional components.
  • CFO chlorofluoroolefin
  • HCFO hydrochlorofluoroolefin
  • Other optional components are preferably components that have little influence on the ozone layer and little influence on global warming.
  • hydrocarbon examples include propane, propylene, cyclopropane, butane, isobutane, pentane, and isopentane.
  • Hydrocarbons may be used alone or in combination of two or more.
  • the working medium contains a hydrocarbon
  • the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 5% by weight, and more preferably 3 to 5% by weight. If a hydrocarbon is more than a lower limit, the solubility of the mineral refrigeration oil to a working medium will become more favorable.
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 is easy to suppress the flammability of the working medium without greatly reducing the cycle performance of the working medium.
  • CFO-1214yb 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) and 1,2-dichloro-1,2-difluoroethylene (CFO-1112) are preferred.
  • CFO may be used alone or in combination of two or more.
  • the working medium contains CFO
  • the content thereof is less than 10% by weight with respect to 100% by weight of the working medium, preferably 1 to 8% by weight, and more preferably 2 to 5% by weight. If the CFO content is at least the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of CFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • HCFO examples include hydrochlorofluoropropene and hydrochlorofluoroethylene.
  • HCFO 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd)
  • 1-chloro can be used because flammability of the working medium can be easily suppressed without greatly reducing the cycle performance of the working medium.
  • -1,2-difluoroethylene (HCFO-1122) is preferred.
  • HCFO may be used alone or in combination of two or more.
  • the content of HCFO in 100% by mass of the working medium is less than 10% by mass, preferably 1 to 8% by mass, and more preferably 2 to 5% by mass. If the content of HCFO is equal to or higher than the lower limit value, it is easy to suppress the combustibility of the working medium. If the content of HCFO is not more than the upper limit value, good cycle performance can be easily obtained.
  • the total content of other optional components in the working medium is less than 10% by mass with respect to 100% by mass of the working medium, and 8% by mass. % Or less is preferable, and 5 mass% or less is more preferable.
  • the compressor 100 and the thermal cycle system according to the embodiment of the present invention, even if the working medium is such that a self-decomposing reaction is likely to occur, the occurrence of the self-decomposing reaction due to the spark in the compressor 100 is prevented, The compression operation and the heat cycle operation can be performed stably.
  • the scroll compressor has been described as an example of the compressor 100.
  • the compression unit 30 is disposed in the upper part and the electric unit 50 is disposed in the lower part of the sealed container
  • the present invention is applicable to various compressors. Is possible.
  • the present invention can be suitably applied to a rotary compressor that includes a rotary piston, a cylinder, a vane, and the like and compresses a working medium by a rolling operation of the rotary piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

密閉容器(10)と、密閉容器内の上部に設けられ、作動媒体を圧縮する圧縮部(30)と、密閉容器内の底部に設けられ、潤滑油を貯留する油溜め部(15)と、密閉容器内の圧縮部と油溜め部との間に設けられ、圧縮部を駆動する電動部(50)と、密閉容器の油溜め部の領域内の壁面を貫通して設けられ、密閉容器外で外部電源と接続可能であるとともに、密閉容器内で電動部にリード線(57)を介して電気的に接続された電源端子(60)と、を有する。

Description

圧縮機及び熱サイクルシステム
 本発明は、圧縮機及び熱サイクルシステムに関する。
 従来から、冷凍機用作動媒体、空調機器用作動媒体、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクル用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のハイドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。
 かかる経緯から、熱サイクル用作動媒体としては、CFCやHCFCに代えて、オゾン層への影響が少ない、ジフルオロメタン(HFC-32)、テトラフルオロエタン、ペンタフルオロエタン(HFC-125)等のハイドロフルオロカーボン(HFC)が用いられるようになった。例えば、R410A(HFC-32とHFC-125との質量比1:1の擬似共沸混合作動媒体)等は従来から広く使用されてきた作動媒体である。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。
 R410Aは、冷凍能力の高さからいわゆるパッケージエアコンやルームエアコンと言われる通常の空調機器等に広く用いられてきた。しかし、地球温暖化係数(GWP)が2088と高く、そのため低GWP作動媒体の開発が求められている。
 そこで最近では、炭素-炭素二重結合を有しその結合が大気中のOHラジカルによって分解されやすいことから、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない作動媒体である、ハイドロフルオロオレフィン(HFO)、すなわち炭素-炭素二重結合を有するHFCに期待が集まっている。本明細書においては、特に断りのない限り飽和のHFCをHFCといい、HFOとは区別して用いる。また、HFCを飽和のハイドロフルオロカーボンのように明記する場合もある。さらに、HFCやHFOのハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。
 このHFOを用いた作動媒体として、例えば、特許文献1には上記特性を有するとともに、優れたサイクル性能が得られる1,1,2-トリフルオロエチレン(HFO-1123)を用いた作動媒体に係る技術が開示されている。特許文献1においては、さらに、該作動媒体の不燃性、サイクル性能等を高める目的で、HFO-1123に、各種HFCを組み合わせて作動媒体とする試みもされている。
 また、このHFO-1123は、単独で用いた場合に高温または高圧下で着火源があると、自己分解することが知られている。そこで、非特許文献1には、HFO-1123を、他の成分、例えばフッ化ビニリデン等と混合し、HFO-1123の含有量を抑えた混合物とすることで自己分解反応を抑える試みが報告されている。
 また、特許文献2には、HFO-1123を単独作動媒体として熱サイクルシステムに用いる他、HFO-1123とHFC-32、又はHFO-1123とHFO-1234yfの混合作動媒体として用いることが提案されている。
国際公開第2012/157764号 国際公開第2015/136703号
Combusion, Explosion, and Shock Waves, Vol. 42, No 2, pp. 140-143, 2006
 HFO-1123のようなハイドロフルオロオレフィンを含む作動媒体を用いる場合は、熱サイクルシステムにおいて異常運転等により作動媒体が高温または高圧下に晒された状態で着火エネルギーが付与されると、ハイドロフルオロオレフィンの自己分解反応が生じるおそれがある点に留意する必要がある。
 熱サイクルシステム内において、高温高圧下で作動媒体に一定の着火エネルギーが与えられる可能性の高い場所は、主に圧縮機内部である。圧縮機内部において、電源端子での放電(スパーク)の発生などの要因により着火エネルギーが生じると、この着火エネルギーが作動媒体に与えられて自己分解反応が生じるおそれがある。
 そこで、本発明は、圧縮機内の電源端子からスパークが発生することを防止し、作動媒体の自己分解反応の発生を防止することができる圧縮機及び熱サイクルシステムを提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る圧縮機は、
 密閉容器と、
 該密閉容器内の上部に設けられ、作動媒体を圧縮する圧縮部と、
 前記密閉容器内の底部に設けられ、潤滑油を貯留する油溜め部と、
 前記密閉容器内の前記圧縮部と前記油溜め部との間に設けられ、前記圧縮部を駆動する電動部と、
 前記密閉容器の前記油溜め部の領域内の壁面を貫通して設けられ、前記密閉容器外で外部電源と接続可能であるとともに、前記密閉容器内で前記電動部にリード線を介して電気的に接続された電源端子と、を有する。
 本発明の他の態様に係る熱サイクルシステムは、前記圧縮機が接続され、HFOを含む作動媒体が循環する作動媒体回路を有する。
 本発明によれば、圧縮機内部の電源端子からのスパーク発生を防止し、これに起因する作動媒体の自己分解反応の発生を防止することができる。
図1は、本発明の実施形態に係る圧縮機の一例の構成を示した断面図である。 図2は、固定渦巻体及び揺動渦巻体の水平断面図である。 図3は、本発明実施形態に係る熱サイクルシステムの一例である空気調和装置の一例を示した図である。
 以下、図面を参照して、本発明を実施するための形態の説明を行う。
 図1は、本発明の実施形態に係る圧縮機100の一例の構成を示した断面図である。本発明の圧縮機は、圧縮部が上方、電動部が下方に配置されていれば、スクロール圧縮機、ロータリー圧縮機を含む種々の圧縮機に適用できるが、本実施形態では、本発明の圧縮機をスクロール圧縮機に適用した例を挙げて説明する。
 圧縮機100は、密閉容器10と、吸入管20と、吐出管21と、圧縮部30と、軸40と、電動部50と、電源端子60とを備える。
 密閉容器10は、圧縮機100のケーシングとして役割を果たし、内部に圧縮部30、軸40、電動部50、電源端子60等を収容する。また、密閉容器10の底部に、油溜め部15を形成し、潤滑油(冷凍機油)70を貯留する。潤滑油70は、圧縮部30が円滑な圧縮動作を行えるように、軸40に設けられる給油通路(図示せず)を介して、圧縮部30を構成する部品や軸受等の摺動する箇所に供給される。
 油溜め部15には、密閉容器10を貫通するように絶縁部材62を介して設置された電源端子60が設けられている。電源端子60は、外部電源から密閉容器10内の電動部50に電力供給を行うための端子であり、外部端子61と、内部端子63とを備える。外部端子61は、密閉容器10の外部にある外部電源(図示せず)からの電力供給を受けるための端子であり、密閉容器10の外部に設けられる。内部端子63は、電動部50に電源供給を行うための端子であり、密閉容器10内に設けられる。内部端子63は、油溜め部15が設けられた領域内の密閉容器10の内周面に設けられ、潤滑油70に浸漬された状態となる。よって、内部端子63の端子間には、絶縁性の極めて高い潤滑油70が介在する状態となり、端子間にスパークが発生する可能性をなくすことができる。かかる構成により、スパークの発生が起因と成り得る、作動媒体の自己分解反応の発生を防止することができ、その詳細は、再度後述するものとし、他の構成要素の説明を行う。
 吸入管20は、密閉容器10内に作動媒体を吸入するための配管であり、密閉容器10の内外を連通すべく、その側面に設けられる。吸入管20を通って密閉容器10内に吸入されたガス状態の作動媒体は、電動部50を冷却するとともに圧縮部30に導かれる。
 圧縮部30は、密閉容器10内に吸入された作動媒体を所定圧力まで圧縮する役割を担うもので、電動部50よりも上方に設けられている。本実施形態に係る圧縮機100においては、圧縮部30の構造は限定的ではなく、電動部50よりも上方に配置される限り、種々の構造を有する圧縮部30に適用可能である。よって、ここでは、本実施形態に係る圧縮機100が適用可能な圧縮部30の一例として説明する。
 圧縮部30は、固定スクロール31と、揺動スクロール32と、オルダムリング33と、フレーム34と、吐出管接続部35とを備える。固定スクロール31は上部に、揺動スクロール32は下部に配置され、互いに対向するように設けられている。揺動スクロール32の下方には、揺動スクロール32を収容するフレーム34が設けられている。また、固定スクロール31の上方には、吐出管接続部35が設けられている。オルダムリング33は、揺動スクロール32の下方に設けられている。また、固定スクロール31と揺動スクロール32との、後述するそれぞれの渦巻体によって空間が形成され、これらは密閉空間となる圧縮室Aと、密閉容器10内に開放連通している吸入室Bになる。
 固定スクロール31及び揺動スクロール32は、協働して作動媒体を圧縮する。固定スクロール31は、略水平に設けられた台板31aと、台板31aの下面から下方に直立する固定渦巻体31bとを有して構成される。
 台板31aは、密閉容器10内に固定された平板状の部材であり、外周面は密閉容器10の内周面と接しており、下面の周縁部はフレーム34の上部と接している。台板31aの中央部には、圧縮室Aで圧縮された作動媒体が吐出される吐出ポート31cと、吐出ポート31cと連通可能な連通部31dとが形成されている。
 吐出ポート31cは、一方が圧縮室Aと連通し、他方が連通部31dと連通するように台板31aの上下方向に延びるように設けられている。吐出弁31eは、吐出ポート31cと連通部31dとの間に設けられ、吐出ポート31cを覆うように取り付けられている。
 吐出弁31eは、圧縮室A内の圧力が所定圧力(連通部31d内の圧力)より小さなうちは吐出ポート31cを閉塞した状態にあり、圧縮室A側から吐出管21に作動媒体が流れることを規制するが、圧縮室A内の圧力が所定圧力(連通部31d内の圧力)以上になると押し上げられ、吐出ポート31cを開放し、作動媒体が吐出管21に流れることを許容する。
 吐出管接続部35は、吐出管21を圧縮部30に接続するもので、吐出管21と連通部31dとを連通させる役割を担う。
 吐出管21は、圧縮部30により圧縮された作動媒体を密閉容器10から外部に吐出するための配管である。
 揺動スクロール32は、略水平な台板32aと、台板32aの上面から上方に直立して形成された揺動渦巻体32bと、台板32aの下面から下方に延在するボス部32cとを有する。
 台板32aは、円板形状の部材からなり、軸40の回転による偏心部41の偏心回転により、後述するボス部32cを介して駆動され、フレーム34内で揺動運動(旋回運動)する。
 図2は、固定渦巻体31b及び揺動渦巻体32bの水平断面図である。図2に示されるように、固定渦巻体31b及び揺動渦巻体32bはともに渦巻形状、即ちインボリュート曲線形状に構成され、互いに対向して配置されている。固定スクロール31の固定渦巻体31bが固定した状態で、揺動スクロール32の揺動渦巻体32bが軸40の回転により揺動(旋回運動)し、外側から内側に向かって作動媒体が圧縮され、中央の吐出ポート31cから圧縮された作動媒体が上方に吐出されることになる。
 図1の説明に戻る。ボス部32cは、台板32aの下面に形成された中空円筒の形状をしている。ボス部32cには、軸40の上端に設けた円筒状の偏心部41が摺動可能な状態で収容されている。つまり、軸40が回転することにより、ボス部32cに収納された偏心部41を介して揺動スクロール32が駆動される。
 フレーム34は、揺動スクロール32を摺動可能に収用する。よって、フレーム34の上面と揺動スクロール32の台板32aの下面とで、摺動面が形成されている。フレーム34は、上部及び下部が開放された形状を有し、上部は固定スクロール31の台板31aが設けられて閉塞され、下部には軸40および偏心部41が収容されている。また、外周面は、密閉容器10の内周面に固定されている。
 オルダムリング33は、揺動スクロール32の台板32aの下面の下側に設けられ、揺動スクロール32の揺動運転中における自転運動を阻止する機構を持ち、揺動運動(旋回運動)のみを行わせる役割を果たす。
 なお、圧縮室Aは、台板31aの下面及び固定渦巻体31bと、台板32aの上面及び揺動渦巻体32bにより形成される空間で、固定渦巻体31bや搖動渦巻体32bの渦巻きの巻数により、複数の圧縮室Aが密閉空間として形成される。また、図2に示されるように、吸入室Bは、固定渦巻体31bおよび搖動渦巻体32bの先端部分に形成されるもので、フレーム34の内側面、台板32aの外周部、固定渦巻体31bの内周面31B及び揺動渦巻体32bの外周面32Bにより形成され、密閉容器10内に連通した状態にある。よって、密閉容器10のフレーム34の下側の空間からフレーム34に流れ込んだ作動媒体は吸入室Bに吸い込まれ、軸40の回転に従い、吸入室Bは固定渦巻体31bと搖動渦巻体32bとにより閉じ込められた空間(圧縮室A)を形成していき、軸40の回転に従って連続的に圧縮される。
 図1に戻り、他の構成要素について説明する。
 電動部50は、その出力により、軸40を回転させて圧縮部30を駆動するもので、作動媒体を圧縮するための動力(エネルギー)を供給する。電動部50は、モータ51を備える。モータ51は、密閉容器10に固着支持されたステータ53と、軸40に装着されるロータ52とで組み合わされる。
 ステータ53は、例えば、積層鉄心に絶縁部材55を介して複数相の固定子巻線54を装着して構成される。
 ロータ52は、例えば、内部に永久磁石(図示せず)を有し、ステータ53の内周面との間に所定の空隙が形成されるように軸40に装着されている。ロータ52は、固定子巻線54に電流が流れることにより、ステータ53の内側に回転磁界が発生し、ロータ52を、すなわち一体となった軸40を回転させる。ロータ52には、揺動スクロール32とオルダムリング33の運動に伴う回転アンバランスを抑制するため、バランサ56が設けられてもよい。
 固定子巻線54への電流の供給は、リード線57を介して行われる。リード線57は、一端が固定子巻線54に接続され、他端がコネクタ58に接続されている。コネクタ58は電源端子60の内部端子63に接続される。外部電源(図示せず)から電源端子60に電力が供給されると、内部端子63→コネクタ58→リード線57を介して固定子巻線54に電流が流れる。
 電動部50の下方に、密閉容器10内の空間を区画するように、サブフレーム11が設けられている。サブフレーム11の下部には、油溜め部15となる空間が形成され、潤滑油70を貯留する構造となっている。サブフレーム11は、その中心部に、軸40の下端部を回転自在に支持する軸受12が設けられており、更に、その周縁部には、リード線57を貫通させる貫通孔13が設けられている。貫通孔13は、サブフレーム11の下部に設けられた電源端子60から電動部50への電力(電流)の供給を可能とするために設けられており、リード線57を容易に貫通させるためのものである。
 ここで、電動部50は、圧縮部30と油溜め部15との間、つまり、圧縮部30の下方かつ油溜め部15の上方に設けられる。このような配置とすることにより、電動部50を油溜め部15に接近させて配置することができる。
 電源端子60は、上述のように、電動部50に電力(電流)の供給を行うために設けられた端子であり、油溜め部15内に貯留された潤滑油70に内部端子63が浸漬するように設けられる。これにより、内部端子63の電気絶縁性を高めることができ、内部端子63からスパークを発生させることを防止できる。通常、内部端子63は、金属端子露出部分を複数個互いに隣接して有しており、金属端子露出部分同士が隣接して設けられることになり、露出した金属端子部分からスパークが発生し得る状態にある。また内部端子63に接続されたコネクタ58及びリード線57の少なくとも一部を冷凍機油に浸漬するように設けることで、圧縮機内での異常発熱によるリード線57の被覆の損傷(絶縁破壊)を抑制し、スパーク発生を防止することができる。
 本実施形態では、内部端子63が潤滑油70に浸漬し、隣接する金属端子露出部分同士が潤滑油により絶縁性の高い状態とするように構成する。即ち、電源端子60を、油溜め部15の領域内に設置し、内部端子63が確実に潤滑油70に浸漬する構成とする。なお、内部端子63が潤滑油70に浸漬することにより、これに接続されるコネクタ58、リード線57の少なくとも一部及びその金属端子露出部分も当然に潤滑油70に浸漬されることになり、これらの異常発熱の抑制や電気絶縁性も同様に高めることができる。一般的に、電源端子60はサブフレーム11よりも上方であって、固定子巻線54に最も近い密閉容器10の側面に設けられるため、ガス状の作動媒体に直接触れ易い状態にあり、作動媒体の特性(誘電率等)によってはスパークが発生し、その結果、作動媒体の自己分解反応を誘発する可能性がある。本実施形態では、図1に示すように、内部端子63を潤滑油70内に浸漬させる構造とし、潤滑油70の持つ高い電気絶縁力により、作動媒体の自己分解反応を極めて発生し難くしたものである。
 なお、電源端子60は、内部端子63の金属端子露出部分が潤滑油70に浸漬する限り、密閉容器10の底面を含めて如何なる箇所に設けてもよいが、設置の容易さや、圧縮機100を直置きすることを考慮すると、密閉容器10の側面に設けることが好ましい。これにより、圧縮機100を床の上に直置きすることが可能となり、外部電源との接続作業及び圧縮機100の設置を容易にすることができる。
 また、潤滑油(冷凍機油)70としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステム用組成物に用いられる公知の冷凍機油を特に制限なく採用できる。具体的には、使用可能な冷凍機油の例としては、含酸素系冷凍機油(エステル系冷凍機油、エーテル系冷凍機油等)、フッ素系冷凍機油、鉱物系冷凍機油、炭化水素系冷凍機油等が挙げられる。
 ここで、圧縮機100の動作について簡単に説明する。
 図1において、外部電源(図示せず)から電源端子60に電力(電流)が供給されると、潤滑油70に浸漬された内部端子63、接続されたリード線57を介して固定子巻線54に電流が流れ、回転磁界が発生してロータ52が回転し、これに伴い軸40が回転する。
 軸40の回転に伴い、軸40の先端にある偏心部41の旋回運動により揺動スクロール32が揺動運動を行い、これにより、固定渦巻体31bと搖動渦巻体32bとで形成される密閉空間(圧縮室A)の容積が、軸40の回転とともに減少していく。
 揺動スクロール32が揺動運動している状態で、吸入管20から密閉容器10内にガス状の作動媒体が吸入される。吸入されたガス状の作動媒体は、圧縮部30を構成する吸入室Bを介して取り込まれ、軸40の回転とともに密閉空間となる圧縮室Aにて圧縮され、順次圧力が上昇していく。そして圧縮室Aの圧力が所定の圧力(連通部31dの圧力)を超えると、吐出弁31eが上方に開き、作動媒体は吐出ポート31cから吐出弁31e→連通部31dへと流出し、吐出管21を介して、密閉容器10の外部に吐出される。
 以上のような動作において、電源端子60の内部端子63の金属端子露出部分におけるスパークの発生のおそれは無いので、HFOを含むような作動媒体であっても、安定的に動作を継続することができる。
 次に、本発明の実施形態に係る熱サイクルシステムについて説明する。本実施形態に係る熱サイクルシステムでは、本実施形態に係る圧縮機100を用いる。
 以下、図3を用いて、本発明の熱サイクルシステムの一例としての空気調和装置150を説明する。図3は、本発明の実施形態に係る熱サイクルシステムの一例である空気調和装置150の一例を示した図である。
 図3に示すように、空気調和装置150は室外ユニット150aと室内ユニット150bとを有しており、室外ユニット150a内に設けた圧縮機構としての圧縮機100と、四路切換弁154と、膨張機構としての膨張弁156と、室外熱交換器157と、室内ユニット150b内に設けた室内熱交換器155とを配管で接続し作動媒体循環の経路151を構成している。
 室外熱交換器157にはファン160が設けられ、室内ユニット150bにはファン161が設けられており、ファン160および161の送風により、それぞれ、室外熱交換器157および室内熱交換器155が機能し、経路151を循環する作動媒体と周囲との熱交換を行う。
 空気調和装置150は、四路切換弁154の切換動作によって、作動媒体の循環方向が反転可能であり、冷房・暖房運転が可能である。
 また空気調和装置150は、圧縮機100へ電力を供給するインバータ電源などの電力供給装置172と、これを制御する制御装置170とを備え、交流電源171からの電力を電力供給装置172へ供給することにより、圧縮機100の電源端子60を介して、電動部50に電力が供給され、固定子巻線54に電流が流れる。
 ここで、この空気調和装置150の概要的な運転動作を説明する。
 暖房運転では、四路切換弁154が図3に実線で示すように設定される。この状態で圧縮機100を運転すると、室内熱交換器155が凝縮器となり、室外熱交換器157が蒸発器となって冷凍サイクルが動作する。
 圧縮機100から吐出された高温高圧の作動媒体は、四路切換弁154を経て(図3の点d2)、室内熱交換器155に流れて室内空気へ放熱し凝縮する(図3の点d3)。凝縮した高圧の作動媒体は、膨張弁156で減圧されて低圧の作動媒体となり(図3の点d4)、室外熱交換器157に流入する。
 室外熱交換器157に流入した低圧の作動媒体は、気液混合の2相状態(気相・液相)にあり、熱を吸収して蒸発しやすく、室外空気から吸熱し蒸発する。蒸発した低圧の作動媒体は、四路切換弁154を経て図3の点d1を通って圧縮機100に戻り、吸入される。吸入された低圧の作動媒体は、圧縮されて、再び高温・高圧の作動媒体となって吐出される。この動作を繰り返すことにより、上記空気調和装置150の暖房運転が行われる。
 冷房運転では、四路切換弁154の流路が替わり(図3では破線)、作動媒体の流れ方向は暖房運転と全く逆になり、熱交換器の機能も逆になる(室内熱交換器155は蒸発器、室外熱交換器157は凝縮器)。
 次に、本発明の実施形態に係る圧縮機100及び熱サイクルシステムで用いられる作動媒体について説明する。
 上述のように、本発明の実施形態に係る圧縮機100及び熱サイクルシステムで用いる作動媒体は従来公知の作動媒体を用いてもよいが、ハイドロフルオレフィン(HFO)を含む作動媒体が好ましい。HFOとしては、トリフルオロエチレン(HFO-1123)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)等が挙げられるが、HFO-1234yf、HFO-1234ze(E)又はHFO-1234ze(Z)を含むことが好ましく、HFO-1234yf又はHFO-1123を含むことがより好ましく、HFO-1123を含むことが特に好ましい。
 本発明で用いる作動媒体は、HFO-1123を含むことが好ましく、さらに、必要に応じて、後述する任意成分を含んでいてもよい。作動媒体の100質量%に対するHFO-1123の含有量は、10質量%以上が好ましく、20~80質量%がより好ましく、40~80質量%が一層好ましく、40~60質量%がさらに好ましい。
(HFO-1123)
 HFO-1123の作動媒体としての特性を、特に、R410A(HFC-32とHFC-125との質量比1:1の擬似共沸混合作動媒体)との相対比較において表1に示す。サイクル性能は、後述する方法で求められる成績係数と冷凍能力とで示される。HFO-1123の成績係数と冷凍能力とは、R410Aを基準(1.000)とした相対値(以下、相対成績係数および相対冷凍能力という)で示す。地球温暖化係数(GWP)は、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)に示される、または該方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。作動媒体が混合物からなる場合、後述するとおり温度勾配は、作動媒体を評価する上で重要なファクターとなり、値は小さい方が好ましい。
Figure JPOXMLDOC01-appb-T000001
[任意成分]
 本発明で用いる作動媒体はHFO-1123を含むことが好ましく、本発明の効果を損なわない範囲でHFO-1123以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。このような任意の化合物(任意成分)としては、例えば、HFC、HFO-1123以外のHFO(炭素-炭素二重結合を有するHFC)、これら以外のHFO-1123とともに気化、液化する他の成分等が挙げられる。任意成分としては、HFC、HFO-1123以外のHFO(炭素-炭素二重結合を有するHFC)が好ましい。
 任意成分としては、例えばHFO-1123と組み合わせて熱サイクルに用いた際に、上記相対成績係数、相対冷凍能力をより高める作用を有しながら、GWPや温度勾配を許容の範囲にとどめられる化合物が好ましい。作動媒体がHFO-1123との組合せにおいてこのような化合物を含むと、GWPを低く維持しながら、より良好なサイクル性能が得られるとともに、温度勾配による影響も少ない。
(温度勾配)
 作動媒体が例えばHFO-1123と任意成分とを含有する場合、HFO-1123と任意成分とが共沸組成である場合を除いて相当の温度勾配を有する。作動媒体の温度勾配は、任意成分の種類およびHFO-1123と任意成分との混合割合により異なる。
 作動媒体として混合物を用いる場合、通常、共沸またはR410Aのような擬似共沸の混合物が好ましく用いられる。非共沸組成物は、圧力容器から冷凍空調機器へ充てんされる際に組成変化を生じる問題点を有している。さらに、冷凍空調機器からの作動媒体漏えいが生じた場合、冷凍空調機器内の作動媒体組成が変化する可能性が極めて大きく、初期状態への作動媒体組成の復元が困難である。一方、共沸または擬似共沸の混合物であれば上記問題が回避できる。
 混合物の作動媒体における使用可能性をはかる指標として、一般に「温度勾配」が用いられる。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度とが異なる性質、と定義される。共沸混合物においては、温度勾配は0であり、擬似共沸混合物では、例えばR410Aの温度勾配が0.2であるように、温度勾配は極めて0に近い。
 温度勾配が大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる作動媒体と水や空気等の熱源流体とを対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度勾配の大きい非共沸混合媒体の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度勾配を有する作動媒体が望まれる。
(HFC)
 任意成分のHFCとしては、上記観点から選択されることが好ましい。ここで、HFCは、HFO-1123に比べてGWPが高いことが知られている。したがって、HFO-1123と組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、かつ温度勾配を適切な範囲にとどめることに加えて、特にGWPを許容の範囲にとどめる観点から、適宜選択されることが好ましい。
 オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。
 HFCとしては、HFC-32、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、HFC-125、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。
 なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、HFC-32、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、およびHFC-125が好ましく、HFC-32、HFC-152a、HFC-134a、およびHFC-125がより好ましい。
 HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体(100質量%)中のHFCの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO-1123とHFC-32とからなる作動媒体の場合、HFC-32の含有量が1~99質量%の範囲で成績係数および冷凍能力が向上する。HFO-1123とHFC-134aとからなる作動媒体の場合、HFC-134aの含有量が1~99質量%の範囲で成績係数が向上する。
 また、上記好ましいHFCのGWPは、HFC-32については675であり、HFC-134aについては1430であり、HFC-125については3500である。得られる作動媒体のGWPを低く抑える観点から、任意成分のHFCとしては、HFC-32が最も好ましい。
 また、HFO-1123とHFC-32とは、質量比で99:1~1:99の組成範囲で共沸に近い擬似共沸混合物を形成可能であり、両者の混合物はほぼ組成範囲を選ばずに温度勾配が0に近い。この点においてもHFO-1123と組合せるHFCとしてはHFC-32が有利である。
 本発明に用いる作動媒体において、HFO-1123とともにHFC-32を用いる場合、作動媒体の100質量%に対するHFC-32の含有量は、具体的には、20質量%以上が好ましく、20~80質量%がより好ましく、40~60質量%がさらに好ましい。
 本発明に用いる作動媒体において、例えば、HFO―1123を含む場合は、HFO-1123以外のHFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HFO-1234yf(GWP=4)、HFO-1234ze(E)、HFO-1234ze(Z)((E)体、(Z)体共にGWP=6)が好ましく、HFO-1234yf、HFO-1234ze(E)がより好ましい。HFO-1123以外のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。作動媒体(100質量%)中のHFO-1123以外のHFOの含有量は、作動媒体の要求特性に応じ任意に選択可能である。例えば、HFO-1123とHFO-1234yfまたはHFO-1234zeとからなる作動媒体の場合、HFO-1234yfまたはHFO-1234zeの含有量が1~99質量%の範囲で成績係数が向上する。
 本発明に用いる作動媒体が、HFO-1123およびHFO-1234yfを含む場合の、好ましい組成範囲を組成範囲(S)として以下に示す。
 なお、組成範囲(S)を示す各式において、各化合物の略称は、HFO-1123とHFO-1234yfとその他の成分(HFC-32等)の合計量に対する当該化合物の割合(質量%)を示す。
<組成範囲(S)>
 HFO-1123+HFO-1234yf≧70質量%
 95質量%≧HFO-1123/(HFO-1123+HFO-1234yf)≧35質量%
 組成範囲(S)の作動媒体は、GWPが極めて低く、温度勾配が小さい。また、成績係数、冷凍能力および臨界温度の観点からも従来のR410Aに代替し得る冷凍サイクル性能を発現できる。
 組成範囲(S)の作動媒体において、HFO-1123とHFO-1234yfとの合計量に対するHFO-1123の割合は、40~95質量%がより好ましく、50~90質量%がさらに好ましく、50~85質量%が特に好ましく、60~85質量%がもっとも好ましい。
 また、作動媒体100質量%中のHFO-1123とHFO-1234yfとの合計の含有量は、80~100質量%がより好ましく、90~100質量%がさらに好ましく、95~100質量%が特に好ましい。
 また、本発明に用いる作動媒体は、HFO-1123とHFC-32とHFO-1234yfとを含むことが好ましく、HFO-1123、HFO-1234yfおよびHFC-32を含有する場合の好ましい組成範囲(P)を以下に示す。
 なお、組成範囲(P)を示す各式において、各化合物の略称は、HFO-1123とHFO-1234yfとHFC-32との合計量に対する当該化合物の割合(質量%)を示す。組成範囲(R)、組成範囲(L)、組成範囲(M)においても同様である。また、以下に記載の組成範囲では、具体的に記載したHFO-1123とHFO-1234yfとHFC-32との合計量が、熱サイクル用作動媒体全量に対して90質量%を超え100質量%以下であることが好ましい。
<組成範囲(P)>
 70質量%≦HFO-1123+HFO-1234yf
 30質量%≦HFO-1123≦80質量%
 0質量%<HFO-1234yf≦40質量%
 0質量%<HFC-32≦30質量%
 HFO-1123/HFO-1234yf≦95/5質量%
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPが極めて低く抑えられ、熱サイクルに用いた際に、温度勾配が小さく、一定の能力と効率を有することで良好なサイクル性能が得られる作動媒体である。ここで、HFO-1123とHFO-1234yfとHFC-32との合計量に対する、HFO-1123とHFO-1234yfとの合計量は70質量%以上であることが好ましい。
 また、本発明に用いる作動媒体のより好ましい組成としては、HFO-1123とHFO-1234yfとHFC-32との合計量に対して、HFO-1123を30~70質量%、HFO-1234yfを4~40質量%、およびHFC-32を0~30質量%の割合で含有し、かつ、作動媒体全量に対するHFO-1123の含有量が70モル%以下である組成が挙げられる。前記範囲の作動媒体は、上記の効果が高まるのに加え、HFO-1123の自己分解反応が抑制され、耐久性の高い作動媒体である。相対成績係数の観点からは、HFC-32の含有量は5質量%以上が好ましく、8質量%以上がより好ましい。
 また、本発明に用いる作動媒体がHFO-1123、HFO-1234yfおよびHFC-32を含む場合の、別の好ましい組成を示すが、作動媒体全量に対するHFO-1123の含有量が70モル%以下であれば、HFO-1123の自己分解反応が抑制され、耐久性の高い作動媒体が得られる。
 さらに好ましい組成範囲(R)を、以下に示す。
<組成範囲(R)>
 10質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦50質量%
 30質量%<HFC-32≦75質量%
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性がバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が小さく、高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。
 上記組成範囲(R)を有する本発明の作動媒体において、好ましい範囲を、以下に示す。
 20質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦40質量%
 30質量%<HFC-32≦75質量%
 上記組成を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、GWPが低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配がより小さく、より高い能力と効率を有することで良好なサイクル性能が得られる作動媒体である。
 上記組成範囲(R)を有する本発明の作動媒体において、より好ましい組成範囲(L)を、以下に示す。組成範囲(M)がさらに好ましい。
<組成範囲(L)>
 10質量%≦HFO-1123<70質量%
 0質量%<HFO-1234yf≦50質量%
 30質量%<HFC-32≦44質量%
<組成範囲(M)>
 20質量%≦HFO-1123<70質量%
 5質量%≦HFO-1234yf≦40質量%
 30質量%<HFC-32≦44質量%
 上記組成範囲(M)を有する作動媒体は、HFO-1123、HFO-1234yfおよびHFC-32がそれぞれ有する特性が特にバランスよく発揮され、かつそれぞれが有する欠点が抑制された作動媒体である。すなわち、この作動媒体は、GWPの上限が300以下に低く抑えられ、耐久性が確保されたうえで、熱サイクルに用いた際に、温度勾配が5.8未満と小さく、相対成績係数および相対冷凍能力が1に近く良好なサイクル性能が得られる作動媒体である。
 この範囲にあると温度勾配の上限が下がり、相対成績係数×相対冷凍能力の下限が上がる。相対成績係数が大きい点から8質量%≦HFO-1234yfがより好ましい。また、相対冷凍能力が大きい点からHFO-1234yf≦35質量%がより好ましい。
 また、本発明に用いる別の作動媒体は、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含むことが好ましく、この組成により作動媒体の燃焼性が抑えられる。
 さらに好ましくは、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含み、作動媒体全量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が3質量%以上35質量%以下、HFC-134aの割合が10質量%以上53質量%以下、HFC-125の割合が4質量%以上50質量%以下、HFO-1234yfの割合が5質量%以上50質量%以下であることが好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性に優れ、オゾン層および地球温暖化への影響をより少なくし、熱サイクルシステムに用いた際により優れたサイクル性能を有する作動媒体とすることができる。
 最も好ましくは、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとを含み、作動媒体全量に対するHFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量の割合が90質量%を超え100質量%以下であり、HFO-1123とHFC-134aとHFC-125とHFO-1234yfとの合計量に対する、HFO-1123の割合が6質量%以上25質量%以下、HFC-134aの割合が20質量%以上35質量%以下、HFC-125の割合が8質量%以上30質量%以下、HFO-1234yfの割合が20質量%以上50質量%以下であることがより一層好ましい。このような作動媒体とすることにより、作動媒体が不燃性であり、かつ安全性により一層優れ、オゾン層および地球温暖化への影響をより一層少なくし、熱サイクルシステムに用いた際により一層優れたサイクル性能を有する作動媒体とすることができる。
(その他の任意成分)
 本発明の熱サイクルシステム用組成物に用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)、ヒドロクロロフルオロオレフィン(HCFO)等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。
 炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記作動媒体が炭化水素を含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1~5質量%が好ましく、3~5質量%がさらに好ましい。炭化水素が下限値以上であれば、作動媒体への鉱物系冷凍機油の溶解性がより良好になる。
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。
 CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 作動媒体がCFOを含有する場合、その含有量は作動媒体の100質量%に対して10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。CFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。CFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。
 HCFOとしては、ヒドロクロロフルオロプロペン、ヒドロクロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、HCFOとしては、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)、1-クロロ-1,2-ジフルオロエチレン(HCFO-1122)が好ましい。
 HCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記作動媒体がHCFOを含む場合、作動媒体100質量%中のHCFOの含有量は、10質量%未満であり、1~8質量%が好ましく、2~5質量%がさらに好ましい。HCFOの含有量が下限値以上であれば、作動媒体の燃焼性を抑制しやすい。HCFOの含有量が上限値以下であれば、良好なサイクル性能が得られやすい。
 本発明に用いる作動媒体が上記のようなその他の任意成分を含有する場合、作動媒体におけるその他の任意成分の合計含有量は、作動媒体100質量%に対して10質量%未満であり、8質量%以下が好ましく、5質量%以下がさらに好ましい。
 本発明の実施形態に係る圧縮機100及び熱サイクルシステムによれば、自己分解反応が発生し易いような作動媒体であっても、圧縮機100内のスパークによる自己分解反応の発生を防止し、安定的に圧縮動作及び熱サイクル動作を行うことができる。
 また、本実施形態では、圧縮機100として、スクロール圧縮機を例に挙げて説明したが、密閉容器内の上部に圧縮部30、下部に電動部50を配置する限り、種々の圧縮機に適用可能である。例えば、本発明は、ロータリーピストン、シリンダ、ベーン等を備え、ロータリーピストンのローリング動作により作動媒体の圧縮を行うロータリー圧縮機にも好適に適用可能である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年2月22日出願の日本特許出願(特願2016-31193)に基づくものであり、その内容はここに参照として取り込まれる。
 10  密閉容器
 15  油溜め部
 20  吸入管
 21  吐出管
 30  圧縮部
 31  固定スクロール
 32  揺動スクロール
 40  軸
 50  電動部
 51  モータ
 52  ロータ
 53  ステータ
 57  リード線
 58  コネクタ
 60  電源端子
 61  外部端子
 62  絶縁部材
 63  内部端子
 70  潤滑油
 100  圧縮機
 150  空気調和装置

Claims (8)

  1.  密閉容器と、
     該密閉容器内の上部に設けられ、作動媒体を圧縮する圧縮部と、
     前記密閉容器内の底部に設けられ、潤滑油を貯留する油溜め部と、
     前記密閉容器内の前記圧縮部と前記油溜め部との間に設けられ、前記圧縮部を駆動する電動部と、
     前記密閉容器の前記油溜め部の領域内の壁面を貫通して設けられ、前記密閉容器外で外部電源と接続可能であるとともに、前記密閉容器内で前記電動部にリード線を介して電気的に接続された電源端子と、を有する圧縮機。
  2.  前記電源端子は、前記密閉容器内に金属端子露出部分を有し、
     該金属端子露出部分は、前記潤滑油に浸漬される請求項1に記載の圧縮機。
  3.  前記リード線は前記電源端子にコネクタで接続され、前記コネクタ及び前記リード線の少なくとも一部は前記潤滑油に浸漬される請求項1又は2に記載の圧縮機。
  4.  前記電源端子は、前記密閉容器の前記油溜め部の領域内の前記壁面のうち、前記密閉容器の側面に設けられた請求項1乃至3のいずれか一項に記載の圧縮機。
  5.  前記作動媒体は、ハイドロフルオロオレフィン(HFO)を含む作動媒体である請求項1乃至4のいずれか一項に記載の圧縮機。
  6.  前記HFOは、HFO-1123を含む請求項5に記載の圧縮機。
  7.  前記作動媒体は、HFO-1123の単独作動媒体、HFO-1123とHFC-32との混合作動媒体、又はHFO-1123とHFO-1234yfとの混合作動媒体である請求項6に記載の圧縮機。
  8.  請求項1乃至7のいずれか一項に記載の圧縮機が接続され、前記作動媒体が循環する冷媒回路を有する熱サイクルシステム。
     
PCT/JP2017/004057 2016-02-22 2017-02-03 圧縮機及び熱サイクルシステム WO2017145712A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780012542.2A CN109072900B (zh) 2016-02-22 2017-02-03 压缩机和热循环系统
EP17756154.5A EP3421798B1 (en) 2016-02-22 2017-02-03 Compressor and heat cycle system
JP2018501111A JP6922885B2 (ja) 2016-02-22 2017-02-03 圧縮機及び熱サイクルシステム
US16/106,306 US10418876B2 (en) 2016-02-22 2018-08-21 Compressor and heat cycle system for refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-031193 2016-02-22
JP2016031193 2016-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/106,306 Continuation US10418876B2 (en) 2016-02-22 2018-08-21 Compressor and heat cycle system for refrigerator

Publications (1)

Publication Number Publication Date
WO2017145712A1 true WO2017145712A1 (ja) 2017-08-31

Family

ID=59685250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004057 WO2017145712A1 (ja) 2016-02-22 2017-02-03 圧縮機及び熱サイクルシステム

Country Status (5)

Country Link
US (1) US10418876B2 (ja)
EP (1) EP3421798B1 (ja)
JP (1) JP6922885B2 (ja)
CN (1) CN109072900B (ja)
WO (1) WO2017145712A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467308A1 (en) * 2017-10-05 2019-04-10 Mitsubishi Heavy Industries Thermal Systems, Ltd. Hermetic type compressor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470489B1 (en) * 2013-07-12 2020-10-14 AGC Inc. Working fluid for heat cycle, a process for its preparation, composition for heat cycle system, and heat cycle system
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200385622A1 (en) 2017-12-18 2020-12-10 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
EP3730593A4 (en) 2017-12-18 2021-10-27 Daikin Industries, Ltd. REFRIGERATION OIL FOR REFRIGERANT OR REFRIGERANT COMPOSITION, METHOD OF USING REFRIGERATION OIL, AND REFRIGERATION OIL USE
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN213450841U (zh) * 2020-09-04 2021-06-15 松下·万宝(广州)压缩机有限公司 一种带固线组件的挡油机构和一种压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206998A (ja) * 1984-03-30 1985-10-18 Mitsubishi Electric Corp スクロ−ル形流体機械
JPH03194173A (ja) * 1989-12-20 1991-08-23 Sanyo Electric Co Ltd 冷媒用密閉型電動圧縮機
JPH03242477A (ja) * 1990-02-16 1991-10-29 Matsushita Refrig Co Ltd 圧縮機
WO2009083359A1 (en) * 2007-12-28 2009-07-09 Arcelik Anonim Sirketi A hermetic compressor
WO2015136977A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1229671B (de) * 1960-01-25 1966-12-01 Danfoss As Kolbenmaschine, insbesondere Motorkompressor fuer hermetisch gekapselte Kleinkaeltemaschinen
US4569639A (en) * 1982-05-03 1986-02-11 Tecumseh Products Company Oil distribution system for a compressor
JPH05256261A (ja) * 1992-03-11 1993-10-05 Matsushita Refrig Co Ltd 密閉型電動圧縮機
US5348455A (en) * 1993-05-24 1994-09-20 Tecumseh Products Company Rotary compressor with rotation preventing pin
JP3627467B2 (ja) * 1997-09-11 2005-03-09 株式会社日立製作所 冷媒圧縮機および冷凍装置
TW411382B (en) * 1997-10-23 2000-11-11 Toshiba Corp Helical compressor and method of assembling the same
JP3490950B2 (ja) * 2000-03-15 2004-01-26 三洋電機株式会社 2シリンダ型2段圧縮式ロータリーコンプレッサ
JP2002070743A (ja) * 2000-08-29 2002-03-08 Sanden Corp 冷媒圧縮用電動式圧縮機
BR0006484A (pt) * 2000-12-13 2002-08-20 Empresa Brasileira De Compressores S.A - Embraco Conector elétrico para motor de compressor hermético
JP4018367B2 (ja) * 2001-10-26 2007-12-05 サンデン株式会社 電動式圧縮機
US6634870B2 (en) * 2002-01-03 2003-10-21 Tecumseh Products Company Hermetic compressor having improved motor cooling
CN200985869Y (zh) * 2005-09-08 2007-12-05 松下电器产业株式会社 制冷剂压缩机
JP2008082223A (ja) * 2006-09-27 2008-04-10 Sanden Corp 密閉型圧縮機
JP4916421B2 (ja) * 2007-11-16 2012-04-11 サンデン株式会社 電動圧縮機の端子装置
EP3517590B1 (en) 2011-05-19 2021-03-31 Agc Inc. Working medium and heat-cycle system
JP6071660B2 (ja) * 2013-03-11 2017-02-01 三菱電機株式会社 スクロール流体機械
WO2015136704A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
JP6218922B2 (ja) 2014-03-14 2017-10-25 三菱電機株式会社 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206998A (ja) * 1984-03-30 1985-10-18 Mitsubishi Electric Corp スクロ−ル形流体機械
JPH03194173A (ja) * 1989-12-20 1991-08-23 Sanyo Electric Co Ltd 冷媒用密閉型電動圧縮機
JPH03242477A (ja) * 1990-02-16 1991-10-29 Matsushita Refrig Co Ltd 圧縮機
WO2009083359A1 (en) * 2007-12-28 2009-07-09 Arcelik Anonim Sirketi A hermetic compressor
WO2015136977A1 (ja) * 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
WO2016024576A1 (ja) * 2014-08-12 2016-02-18 旭硝子株式会社 熱サイクルシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467308A1 (en) * 2017-10-05 2019-04-10 Mitsubishi Heavy Industries Thermal Systems, Ltd. Hermetic type compressor
JP2019065822A (ja) * 2017-10-05 2019-04-25 三菱重工サーマルシステムズ株式会社 密閉型圧縮機

Also Published As

Publication number Publication date
EP3421798A4 (en) 2019-10-23
US20180358861A1 (en) 2018-12-13
CN109072900B (zh) 2020-11-10
US10418876B2 (en) 2019-09-17
JPWO2017145712A1 (ja) 2018-12-20
JP6922885B2 (ja) 2021-08-18
EP3421798A1 (en) 2019-01-02
EP3421798B1 (en) 2020-11-11
CN109072900A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6922885B2 (ja) 圧縮機及び熱サイクルシステム
US11441819B2 (en) Refrigeration cycle apparatus
US20200333041A1 (en) Refrigeration cycle apparatus
US20180331436A1 (en) Refrigeration cycle device
US20110023535A1 (en) Refrigeration apparatus
JP2017133010A (ja) 冷却のための組成物および方法
JP6979565B2 (ja) 冷凍サイクル装置
JP2009228476A (ja) スクロール圧縮機
JP6979564B2 (ja) 冷凍サイクル装置
JP2016027296A (ja) 熱サイクルシステム
WO2020050020A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP7060017B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP7035201B2 (ja) 圧縮機及びこれを用いた空気調和機
JPWO2020049844A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
JP6914419B2 (ja) 密閉型電動圧縮機及びこれを用いた冷凍空調装置
JP6897119B2 (ja) 冷凍装置
WO2020050022A1 (ja) 電動圧縮機及びこれを用いた冷凍空調装置
JP6899360B2 (ja) 冷凍サイクル装置
WO2023210271A1 (ja) 冷凍サイクルシステム用の圧縮機
WO2023210504A1 (ja) 空気調和機
JP2009228471A (ja) スクロール圧縮機
JP2010024983A (ja) スクリュー圧縮機
WO2015140918A1 (ja) 冷媒装置及び冷媒装置用圧縮機
JP2009228473A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501111

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756154

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756154

Country of ref document: EP

Kind code of ref document: A1