WO2017141953A1 - 高強度冷延鋼板 - Google Patents

高強度冷延鋼板 Download PDF

Info

Publication number
WO2017141953A1
WO2017141953A1 PCT/JP2017/005467 JP2017005467W WO2017141953A1 WO 2017141953 A1 WO2017141953 A1 WO 2017141953A1 JP 2017005467 W JP2017005467 W JP 2017005467W WO 2017141953 A1 WO2017141953 A1 WO 2017141953A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
strength
rolled steel
Prior art date
Application number
PCT/JP2017/005467
Other languages
English (en)
French (fr)
Inventor
真平 吉岡
義彦 小野
雄介 木俣
弘之 増岡
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA3009784A priority Critical patent/CA3009784A1/en
Priority to CN201780011827.4A priority patent/CN108699648B/zh
Priority to JP2017537330A priority patent/JP6308335B2/ja
Priority to US16/077,266 priority patent/US11008635B2/en
Priority to MX2018009982A priority patent/MX2018009982A/es
Priority to KR1020187023533A priority patent/KR102114741B1/ko
Priority to EP17753209.0A priority patent/EP3418417B1/en
Publication of WO2017141953A1 publication Critical patent/WO2017141953A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet excellent in delayed fracture resistance and chemical conversion property, characterized by having a tensile strength of 1180 MPa or more.
  • automotive steel sheets are used after being coated, and chemical conversion treatment such as phosphate treatment is performed as a pretreatment for the coating. Since the chemical conversion treatment of this steel plate is one of the important treatments for ensuring the corrosion resistance after coating, the automotive steel plate is also required to have excellent chemical conversion treatment properties.
  • Si is an element that improves the ductility of steel with the same strength by strengthening ferrite in solid solution and refining the carbide in martensite or bainite. Moreover, since Si suppresses the formation of carbides, it also facilitates securing retained austenite that contributes to improving ductility. Furthermore, it is known that Si refines grain boundary carbides in martensite or bainite, thereby reducing stress / strain concentration near the grain boundary and improving delayed fracture resistance. For this reason, many techniques for producing high-strength thin steel sheets using Si have been disclosed so far.
  • Patent Document 1 describes a steel sheet having a structure composed of ferrite and tempered martensite and having excellent delayed fracture resistance with a structure of ferrite and tempered martensite added with 1 to 3% by mass of Si.
  • Patent Document 2 One element that improves delayed fracture resistance is Cu.
  • the corrosion resistance of steel is improved by adding Cu, and the delayed fracture resistance is remarkably improved.
  • the Si content is 0.05 to 0.5% by mass.
  • Patent Document 3 describes a steel sheet excellent in chemical conversion treatment, to which Si is added by mass%, 0.5 to 3%, and Cu is added to 2% or less.
  • the surface of a continuously annealed steel sheet is pickled, and the Si-containing oxide layer formed on the surface of the steel sheet during annealing is removed, so that an excellent chemical conversion treatment can be achieved even with 0.5% or more of Si addition. The sex is secured.
  • JP 2012-12642 A Japanese Patent No. 3545980 Japanese Patent No. 5729211
  • Patent Document 1 a Si-containing oxide is formed on the surface of a steel plate in a continuous annealing line, and it cannot be said that the chemical conversion treatment property is sufficient. Moreover, even if the Si addition amount is further increased, the effect is not saturated but manufacturing problems such as an increase in hot rolling load occur.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-strength cold-rolled steel sheet excellent in delayed fracture resistance and chemical conversion property, characterized by having a tensile strength of 1180 MPa or more.
  • pickling the surface of the steel sheet that has been continuously annealed removes the Si-containing oxide on the surface of the steel sheet, but Cu reprecipitates on the surface of the steel sheet, so that good chemical conversion properties cannot be obtained.
  • the inventors have conducted extensive research to solve the above problems, and as a result, the Si-containing oxide layer on the steel sheet surface layer is removed by pickling after the continuous annealing, and Cu S / Cu B is 4.0 or less. It was found that by controlling (Cu S is the Cu concentration in the surface layer of the steel sheet and Cu B is the Cu concentration in the base material), deterioration of chemical conversion property due to Si and Cu can be prevented and delayed fracture resistance can be improved.
  • the present invention is based on the above findings. That is, the gist configuration of the present invention is as follows.
  • Component composition is mass%, C: 0.10% to 0.6%, Si: 1.0% to 3.0%, Mn: more than 2.5% to 10.0%, P: 0.05% or less, S: 0.02% or less, Al: 0.01% or more and 1.5% or less, N: 0.005% or less, Cu: 0.05% or more and 0.50% or less And the balance consists of iron and inevitable impurities, the steel sheet surface coverage of the oxide mainly composed of Si is 1% or less, the steel sheet surface coverage of the iron-based oxide is 40% or less, Cu 2 S 2 / Cu B is a high-strength cold-rolled steel sheet that satisfies 4.0 or less (Cu S is Cu concentration in the steel sheet surface layer, Cu B is Cu concentration in the base material) and has a tensile strength of 1180 MPa or more.
  • the steel structure has tempered martensite and / or bainite in a total volume ratio of 40% to 100%, ferrite in a volume ratio of 0% to 60%, and residual austenite in a range of 2% to 30%.
  • the component composition further includes, in mass%, Nb: 0.2% or less, Ti: 0.2% or less, V: 0.5% or less, Mo: 0.3% or less, Cr: 1.
  • Nb 0.2% or less
  • Ti 0.2% or less
  • V 0.5% or less
  • Mo 0.3% or less
  • Cr 1.
  • the component composition further includes, by mass%, Sn: 0.1% or less, Sb: 0.1% or less, W: 0.1% or less, Co: 0.1% or less, Ca: 0.0.
  • the high-strength cold-rolled steel sheet of the present invention is excellent in delayed fracture resistance and chemical conversion properties while having a high tensile strength of 1180 MPa or more.
  • FIG. 1 is a diagram schematically showing a test piece used for evaluation of delayed fracture resistance.
  • FIG. 2 is an example of a histogram of the number of pixels with respect to the gray value of a reflection electron image photograph.
  • the component composition of the high-strength steel sheet of the present invention (sometimes referred to as the steel sheet of the present invention) will be described.
  • the component composition of the steel sheet of the present invention is mass%, C: 0.10% to 0.6%, Si: 1.0% to 3.0%, Mn: more than 2.5% and 10.0%.
  • the above component composition is further in mass%, Nb: 0.2% or less, Ti: 0.2% or less, V: 0.5% or less, Mo: 0.3% or less, Cr: 1.0 %, B: 0.005% or less may be contained.
  • the above-mentioned component composition is further mass%, Sn: 0.1% or less, Sb: 0.1% or less, W: 0.1% or less, Co: 0.1% or less, Ca: 0.005 % Or less, REM: Any one or more of 0.005% or less may be contained.
  • % representing the content of a component means “mass%”.
  • C 0.10% to 0.6%
  • C is an element effective for improving the strength-ductility balance of the steel sheet. If the C content is less than 0.10%, it is difficult to ensure a tensile strength of 1180 MPa or more. On the other hand, when the C content exceeds 0.6%, coarse cementite precipitates, and hydrogen cracking occurs starting from the coarse cementite. Therefore, the C content is in the range of 0.10% to 0.6%.
  • the lower limit is preferably 0.15% or more.
  • the upper limit is preferably 0.4% or less.
  • Si 1.0 or more and 3.0% or less Si is an effective element for ensuring strength without significantly reducing the ductility of the steel sheet.
  • Si content is less than 1.0%, not only high strength and high workability (excellent workability) can be achieved, but also the cementite coarsening cannot be suppressed and the delayed fracture resistance is deteriorated.
  • Si content exceeds 3.0%, not only the rolling load load at the time of hot rolling will increase, but an oxidation scale will be produced on the steel plate surface, and chemical conversion property will be deteriorated. Therefore, the Si content is in the range of 1.0% to 3.0%.
  • the lower limit is preferably 1.2% or more.
  • the upper limit is preferably 2.0% or less.
  • Mn more than 2.5% and 10.0% or less Mn is an element effective for strengthening steel and stabilizing austenite.
  • Mn content is more than 2.5% and not more than 10.0%.
  • the lower limit is preferably 2.7% or more.
  • the upper limit is preferably 4.5% or less.
  • P 0.05% or less
  • P is an impurity element, and if its content exceeds 0.05%, after forming through deterioration of local ductility due to grain boundary embrittlement accompanying P segregation to austenite grain boundaries during casting. Deteriorates the delayed fracture resistance of steel sheets. Therefore, the content is preferably 0.05% or less, more preferably 0.02% or less. In consideration of the manufacturing cost, the P content is preferably 0.001% or more.
  • S 0.02% or less S is present as MnS in the steel sheet, and causes a reduction in impact resistance, strength, and delayed fracture resistance. For this reason, it is preferable to reduce S content as much as possible. Therefore, the upper limit of the S content is 0.02%. Preferably it is 0.002% or less. More preferably, it is 0.001% or less. In consideration of the manufacturing cost, the S content is preferably 0.0001% or more.
  • Al 0.01% or more and 1.5% or less Since Al reduces the amount of oxides such as Si by itself forming an oxide, it has the effect of improving delayed fracture resistance. However, if the Al content is less than 0.01%, a significant effect cannot be obtained. On the other hand, when the Al content exceeds 1.5%, Al and N are combined to form a nitride. Nitride precipitates on the austenite grain boundary during casting and causes the grain boundary to become brittle, which degrades the delayed fracture resistance. For this reason, Al content shall be 1.5% or less. Preferably it is less than 0.08%, more preferably 0.07% or less.
  • N 0.005% or less N, as described above, combines with Al to form a nitride and deteriorate the delayed fracture resistance. For this reason, it is preferable to reduce N content as much as possible. Therefore, the N content is set to 0.005% or less. More preferably, it is 0.003% or less. In consideration of the manufacturing cost, the N content is preferably 0.0001% or more.
  • Cu 0.05% or more and 0.50% or less Cu, when exposed to a corrosive environment, has an effect of reducing the amount of hydrogen entering the steel sheet by suppressing dissolution of the steel sheet. If the Cu content is less than 0.05%, the effect is small. If the Cu content exceeds 0.50%, it becomes difficult to control the pickling conditions for obtaining a predetermined surface Cu concentration distribution. For this reason, Cu content shall be 0.05% or more and 0.50% or less. The lower limit is preferably 0.08% or more. The upper limit is preferably 0.3% or less.
  • Nb, Ti, V, Mo, Cr, and B may be contained. Each reason for limitation will be described.
  • Nb 0.2% or less Nb forms fine Nb carbonitride, refines the structure and improves delayed fracture resistance by the hydrogen trap effect, and may be added as necessary.
  • the Nb content exceeds 0.2%, the effect of refining the structure is saturated, and in the presence of Ti, coarse composite carbides are formed with Ti and Nb to deteriorate the strength-ductility balance and delayed fracture resistance.
  • the content shall be 0.2% or less.
  • it is 0.1% or less. More preferably, it is made 0.05% or less.
  • the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.004% or more.
  • Ti 0.2% or less Ti has the effect of generating carbides to refine the structure and the hydrogen trapping effect, so it may be added as necessary.
  • the Ti content exceeds 0.2%, not only the effect of refining the structure is saturated, but also coarse TiN is formed, and in the presence of Nb, a Ti—Nb composite carbide is formed, resulting in a strength-ductility balance and resistance. Deteriorating delayed fracture characteristics. For this reason, when Ti is contained, the content is made 0.2% or less. Moreover, Preferably it is 0.1% or less. More preferably, it is made 0.05% or less.
  • the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.004% or more.
  • V 0.5% or less Fine carbide formed by the combination of V and C acts as a precipitation strengthening of the steel sheet and acts as a hydrogen trap site, so it is effective in improving delayed fracture resistance. May be. If the V content exceeds 0.5%, carbides precipitate excessively and the strength-ductility balance deteriorates. For this reason, when it contains V, the content shall be 0.5% or less. Moreover, Preferably it is 0.1% or less. More preferably, it is made 0.05% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.004% or more.
  • Mo 0.3% or less Mo is effective in improving the hardenability of the steel sheet and has a hydrogen trap effect due to fine precipitates, so it may be added as necessary.
  • Mo content exceeds 0.3%, not only the effect is saturated, but also the formation of Mo oxides on the steel sheet surface is promoted during continuous annealing, and the chemical conversion property of the steel sheet is significantly reduced.
  • the content shall be 0.3% or less.
  • the content is 0.1% or less. More preferably, it is made 0.05% or less.
  • the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.005% or more.
  • Cr 1.0% or less Cr, like Mo, is effective in improving the hardenability of the steel sheet, and may be added as necessary.
  • the content exceeds 1.0%, even if the pickling treatment is performed after the continuous annealing, the Cr oxide on the surface of the steel sheet cannot be completely removed, so that the chemical conversion property of the steel sheet is remarkably lowered.
  • the content shall be 1.0% or less.
  • it is 0.5% or less. More preferably, the content is 0.1% or less.
  • the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.04% or more.
  • B 0.005% or less B segregates at austenite grain boundaries during heating in continuous annealing, suppresses ferrite transformation and bainite transformation from austenite during cooling, and facilitates the formation of tempered martensite. Effective for strengthening. Further, B may be added as necessary in order to improve the delayed fracture resistance by grain boundary strengthening. If the B content exceeds 0.005%, borocarbide Fe 23 (C, B) 6 is generated, resulting in deterioration of workability and strength. For this reason, when it contains B, the content shall be 0.005% or less. Moreover, Preferably it is 0.003% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.0002% or more.
  • any one or more of Sn, Sb, W, Co, Ca, or REM may be contained within a range that does not adversely affect the characteristics. The reason for this limitation will be described.
  • Sn, Sb 0.1% or less Since both Sn and Sb have the effect of suppressing surface oxidation, decarburization, and nitriding, they may be added as necessary. However, even if the content exceeds 0.1%, the effect is saturated. For this reason, when it contains Sn and Sb, these content shall be 0.1% or less, respectively. Moreover, Preferably it is 0.05% or less. In the present invention, a lower limit value is not particularly defined, but in order to obtain the above effect, each content is preferably at least 0.001%.
  • W, Co 0.1% or less Since W and Co have the effect of improving the properties of the steel sheet through the form control of sulfide, grain boundary strengthening, and solid solution strengthening, they may be added as necessary. However, if W or Co is contained excessively, ductility deteriorates due to grain boundary segregation or the like. For this reason, the content of these elements is preferably 0.1% or less. Moreover, Preferably it is 0.05% or less. In the present invention, the lower limit value is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.01%.
  • Ca and REM both have the effect of improving ductility and delayed fracture resistance through sulfide morphology control, and may be added as necessary. However, if Ca or REM is excessively contained, ductility deteriorates due to grain boundary segregation or the like. Therefore, the content of these components is preferably 0.005% or less. More preferably, it is 0.002% or less. In the present invention, the lower limit is not particularly defined, but in order to obtain the above effect, the content is preferably at least 0.0002% or more.
  • the remainder other than the above is Fe and inevitable impurities.
  • the steel sheet surface coverage of an oxide mainly composed of Si is 1% or less.
  • the steel sheet surface coverage of the oxide mainly composed of Si is set to 1% or less.
  • it is 0%.
  • the oxide mainly composed of Si is, for example, SiO 2 .
  • the oxide mainly composed of Si can be measured by the method of Examples described later.
  • “mainly Si” means that the atomic concentration ratio of Si among elements other than oxygen constituting the oxide is 70% or more.
  • Iron-based oxide steel sheet surface coverage is 40% or less If iron-based oxide steel sheet surface coverage exceeds 85%, the dissolution reaction of iron in chemical conversion treatment is inhibited, and growth of chemical crystals such as zinc phosphate occurs. Is suppressed.
  • the chemical conversion treatment liquid has been lowered in temperature, and the chemical conversion treatment conditions are stricter than before. Therefore, a surface coverage of 85% or less is insufficient, and preferably 40% or less. More preferably, it is 35% or less.
  • the lower limit is not particularly limited, but the steel sheet surface coverage is often 20% or more.
  • the steel plate surface coverage of an iron-type oxide can be measured by the method of the Example mentioned later.
  • the iron-based oxide means an iron-based oxide having an atomic concentration ratio of iron of 30% or more among elements other than oxygen constituting the oxide.
  • Cu S / Cu B 4.0 or less
  • the Cu content is 0.05% or more and 0.50% or less
  • Cu S / Cu B is 4.0 or less
  • Cu S is the Cu concentration in the steel sheet surface layer
  • Cu B is the Cu concentration in the base material
  • the lower limit is not particularly limited, from the viewpoint of improving the chemical conversion treatability, Cu S / Cu B is 2.0 or more.
  • the steel sheet surface layer means a region within 20 nm in the thickness direction from the surface.
  • [Cu%] Cu content in steel
  • the above Cu concentration distribution is also achieved by removing Cu re-precipitated on the surface of the steel sheet by grinding or the like, but an excellent chemical conversion property cannot be obtained because the grinding iron remains.
  • Cu S / Cu B was measured by the method described in the examples.
  • tempered martensite and / or bainite be 40% or more and 100% or less in total volume ratio. Tempered martensite and / or bainite is a structure indispensable for increasing the strength of steel. When the volume ratio is less than 40%, a tensile strength of 1180 MPa or more may not be obtained.
  • ferrite is 0% to 60% by volume. Ferrite may be combined as necessary to contribute to improvement of ductility and to improve the workability of steel. This effect is obtained at over 0%.
  • volume ratio exceeds 60%, in order to obtain a tensile strength of 1180 MPa or more, it is necessary to extremely increase the hardness of tempered martensite or bainite. As a result, at the interface due to the hardness difference between the structures. Delayed fracture is promoted by stress and strain concentration.
  • the retained austenite is 2% to 30% by volume. Residual austenite improves the strength-ductility balance of the steel. This effect is obtained at 2% or more.
  • the lower limit value of the volume fraction of retained austenite is not particularly specified, but it is preferable to include 5% or more in order to stably ensure that the tensile strength ⁇ total elongation is 16500 MPa ⁇ % or more.
  • the upper limit of the volume ratio is 30%.
  • the average aspect ratio of retained austenite is more than 2.0.
  • the present invention may include other phases other than the tempered martensite, bainite, ferrite, and retained austenite as the steel sheet structure.
  • other phases other than the tempered martensite, bainite, ferrite, and retained austenite as the steel sheet structure.
  • pearlite, as-quenched martensite, or the like may be included.
  • the other phase is preferably 5% or less by volume ratio.
  • strength cold-rolled steel plate of this invention is demonstrated.
  • the slab obtained by continuous casting is used as a steel material, hot-rolled, and after finishing rolling, cooled and wound into a coil, then pickled, cold-rolled, and then subjected to continuous annealing. Then, after the overaging treatment, pickling and re- pickling to obtain a cold-rolled steel sheet.
  • the steps from the steel making process to the cold rolling may be performed according to a conventional method.
  • the high-strength cold-rolled steel sheet of the present invention can be manufactured by setting the following conditions for continuous annealing, overaging treatment and pickling treatment.
  • the annealing temperature is less than 1 Ac, austenite (transformation into martensite after quenching) necessary for securing a predetermined strength is not generated during annealing, and tensile strength of 1180 MPa or more is achieved even after quenching is performed. Cannot be obtained. Therefore, the annealing temperature is preferably Ac 1 point or higher. In this temperature range, the annealing temperature is preferably set to 800 ° C. or higher from the viewpoint of stably securing an equilibrium area ratio of austenite of 40% or higher.
  • the residence (holding) time at the annealing temperature is too short, the steel structure is not sufficiently annealed and becomes a non-uniform structure in which a cold-rolled processed structure exists, and ductility is lowered.
  • the residence time is preferably 30 to 1200 seconds.
  • a particularly preferred residence time is in the range of 250 to 600 seconds.
  • Ac1 point (degreeC) is calculated
  • [X%] is mass% of the component element X of the steel sheet, and 0 is not included for the components not included.
  • Ac1 723-10.7 ⁇ [Mn%] + 29.1 ⁇ [Si%] + 16.9 ⁇ [Cr%] + 6.38 ⁇ [W%]
  • the annealed cold-rolled steel sheet is cooled by controlling the average cooling rate to 3 ° C./s or higher to the primary cooling stop temperature range of Ms-100 ° C. or higher and lower than the Ms point. In this cooling, a part of austenite is martensitic transformed by cooling to below the Ms point.
  • the primary cooling stop temperature range is set to Ms-100 ° C. or higher and lower than the Ms point. It is preferably Ms-80 ° C. or higher and lower than Ms point, more preferably Ms ⁇ 50 ° C. or higher and lower than Ms point.
  • the average cooling rate from the annealing temperature to the primary cooling stop temperature region is set to 3 ° C./s or more. Preferably it is 5 degrees C / s or more, More preferably, it is 8 degrees C / s or more.
  • the upper limit of the average cooling rate is not particularly limited as long as the cooling stop temperature does not vary.
  • the Ms point described above can be obtained by an approximate expression as shown in the following expression. Ms is an approximate value obtained empirically.
  • Overaging conditions The steel sheet cooled to the primary cooling stop temperature range is heated to an overaging temperature range of 300 ° C to Bs-50 ° C and 450 ° C and stays in the overaging temperature range for 15 seconds to 1000 seconds. (Held).
  • Bs indicates a bainite transformation start temperature and can be obtained by an approximate expression as shown in the following expression.
  • Bs is an approximate value obtained empirically.
  • Bs (° C.) 830 ⁇ 270 ⁇ [C%] ⁇ 90 ⁇ [Mn%] ⁇ 70 ⁇ [Cr%] ⁇ 83 ⁇ [Mo%]
  • [X%] is mass% of the component element X of the steel sheet, and 0 is not included for elements not included.
  • the overaging temperature range tempering martensite generated by cooling from the annealing temperature to the primary cooling stop temperature range, transforming untransformed austenite to lower bainite, concentrating solid solution C in austenite, etc. Promote stabilization.
  • the upper limit of the overaging temperature range exceeds Bs-50 ° C or 450 ° C, the bainite transformation itself is suppressed.
  • the lower limit of the overaging temperature range is less than 300 ° C., tempering of martensite becomes insufficient, and a predetermined tensile strength ⁇ total elongation cannot be obtained. Therefore, the range of the overaging temperature range is 300 ° C. or higher and Bs ⁇ 50 ° C. or lower and 450 ° C. or lower. Preferably, it is in the range of 320 ° C. or higher and Bs ⁇ 50 ° C. or lower and 420 ° C. or lower.
  • the residence time in this overaging temperature range needs to be 15 seconds or longer.
  • the residence time in the overaging temperature region is 1000 seconds due to the bainite transformation promoting effect by martensite generated in the primary cooling stop temperature region.
  • the bainite transformation is delayed, but when martensite and untransformed austenite coexist as in the present invention, the bainite transformation rate is remarkably increased.
  • the residence time in the overaging temperature region exceeds 1000 seconds, stable residual austenite in which C is concentrated by precipitation of carbides from untransformed austenite, which becomes residual austenite as the final structure of the steel sheet, cannot be obtained. As a result, the desired strength and / or ductility may not be obtained. Therefore, the residence time is 15 seconds or more and 1000 seconds or less. Preferably, it is 100 seconds or more and 700 seconds or less.
  • the temperature does not have to be constant as long as it is within the predetermined temperature range described above, and even if it fluctuates within the predetermined temperature range, the gist of the present invention is not impaired.
  • the cooling rate As long as the thermal history is satisfied, the steel sheet may be heat-treated with any equipment. Furthermore, it is included in the scope of the present invention to perform temper rolling on the surface of the steel sheet for shape correction after the heat treatment.
  • the composition of the solution used for pickling is not particularly limited.
  • any one of nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid and an acid obtained by mixing two or more of them can be used.
  • a strong oxidizing acid such as nitric acid
  • a non-oxidizing acid is used as the pickling solution, unlike the pickling solution used in pickling. .
  • the steel sheet after tempering treatment has a concentration: nitric acid concentration in the range of more than 50 g / L and not more than 200 g / L. / HNO 3 ) in the range of 0.01 to 1.0, or pickling solution mixed with hydrofluoric acid, the ratio of the hydrofluoric acid concentration to the nitric acid concentration (HF / HNO 3 ) is 0.01 to 1.
  • pickling using a pickling solution mixed so as to be in the range of 0 it is possible to remove oxides mainly composed of Si and Si—Mn composite oxides on the steel sheet surface, which deteriorate the chemical conversion properties. is there.
  • non-oxidizing acid examples include hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, oxalic acid, and acids obtained by mixing two or more of these.
  • hydrochloric acid having a concentration of 0.1 to 50 g / L, sulfuric acid of 0.1 to 150 g / L, an acid obtained by mixing 0.1 to 20 g / L hydrochloric acid and 0.1 to 60 g / L sulfuric acid, and the like are preferable.
  • Sample steels having the composition shown in Table 1 were vacuum-melted into slabs, heated to 1250 ° C., and hot-rolled and rolled at 870 ° C. at 550 ° C., then hot rolled. After the steel plate was pickled, it was cold-rolled at a rolling rate (rolling rate) of 60% to obtain a cold-rolled steel plate having a thickness of 1.2 mm. The obtained cold-rolled steel sheet was subjected to continuous annealing and tempering treatment (overaging treatment) under the conditions described in Table 2, and pickling and re- pickling.
  • Specimens were collected from the steel sheets obtained as described above, and observation of the metal structure (steel structure), analysis of surface Cu concentration distribution, tensile test, chemical conversion treatment evaluation and delayed fracture resistance evaluation were performed.
  • the metal structure was observed with a scanning electron microscope (SEM) for a typical microstructure (steel structure) after a nital etching of a plate thickness section parallel to the rolling direction.
  • SEM scanning electron microscope
  • the area ratio of the ferrite region was obtained by image analysis of a SEM image at a magnification of 2000 times, and was used as the volume ratio of ferrite.
  • the volume ratio was calculated
  • Residual austenite was observed on the plate surface. After grinding to a thickness of 1 ⁇ 4 of the plate thickness, chemical polishing was performed, and the volume fraction of retained austenite was obtained by X-ray diffraction.
  • the volume ratio of martensite and bainite was determined as the remainder of the volume ratio of ferrite, pearlite, and retained austenite. In the inventive examples, the average aspect ratio of retained austenite was more than 2.0.
  • the evaluation of the Cu concentration distribution in the surface layer was performed by discharge emission spectroscopy (GDS).
  • GDS discharge emission spectroscopy
  • a 30 mm square was sheared from the target steel sheet, and GDS analysis was performed using a Rigaku GDA750, with an 8 mm ⁇ anode, DC 50 mA, and a discharge time of 2.9 hPa. I went there.
  • the sputtering rate of the steel sheet under this discharge condition is about 20 nm / s.
  • Fe: 371 nm, Si: 288 nm, Mn: 403 nm, and O: 130 nm were used for the measurement emission lines.
  • the ratio of the average Cu intensity (corresponding to Cu S ) at a sputtering time of 0 to 1 s and the average Cu intensity (corresponding to Cu B ) at a sputtering time of 50 to 100 s was obtained.
  • the steel sheet surface coverage of the oxide mainly composed of Si is to identify the oxide mainly composed of Si by observing 5 fields of view at 1000 times using SEM and analyzing the same field of view with EDX. The coverage was determined by the point counting method.
  • the hot-rolled steel sheet was pickled, scale was removed, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.8 mm.
  • the cold-rolled steel sheet was heated to a soaking temperature of 750 ° C. and held for 30 seconds, and then cooled from the soaking temperature to 400 ° C., which is a cooling stop temperature, at 20 ° C./sec.
  • pickling and re- pickling under the conditions shown in Table 4 washing with water and drying, then subjected to temper rolling of 0.7%, the number of iron-based oxides on the steel sheet surface differing. Two types of cold-rolled steel sheets a and b were obtained. Then, the above No.
  • the cold rolled steel sheet a is a standard sample with a lot of iron-based oxides, No.
  • the cold rolled steel sheet b was a standard sample with a small amount of iron-based oxides, and a reflected electron image was obtained for each steel sheet under the conditions described above.
  • FIG. 2 is a histogram of the number of pixels with respect to the gray value (parameter value indicating the intermediate tone of white to black) of the reflected electronic image photograph.
  • the gray value (Y point) corresponding to the intersection (X point) of the histograms a and b is defined as a threshold value, and the area of the gray value (black tone) portion below the threshold value is defined as the surface coverage of the iron-based oxide. .
  • using the above threshold No.
  • the steel sheet of a is 85.3%
  • No. As for the steel plate of b 25.8% was obtained.
  • the tensile test was performed by cutting a JIS No. 5 test piece (distance between gauge points: 50 mm, width of parallel part: 25 mm) with the direction perpendicular to the rolling direction as the length on the plate surface, and a strain rate of 3.3 ⁇ 10 ⁇ 3 s ⁇ 1 . It was.
  • the chemical conversion treatment evaluation was conducted using a degreasing agent: Surf Cleaner EC90, a surface conditioner: 5N-10, and a chemical conversion treatment agent: Surfdyne EC1000 manufactured by Nippon Paint Co., Ltd. under the following standard conditions. Chemical conversion treatment was performed so as to be 1.7 to 3.0 g / m 2 .
  • the delayed fracture resistance evaluation was conducted by an immersion test. After cutting to 35 m ⁇ 105 mm with the direction perpendicular to the rolling direction as the long side, the end face was ground to prepare a 30 mm ⁇ 100 mm test piece. After bending the test piece 180 ° with a punch having a curvature radius of 10 mm at the tip so that the bending ridge line is parallel to the rolling direction, the inner distance between the test pieces 1 is reduced to 10 mm with bolts 2 as shown in FIG. Stress was applied. The test piece under stress was immersed in hydrochloric acid at 25 ° C. and pH 3, and the time until failure occurred was measured up to 100 hours.
  • Those with a destruction time of less than 40 hours are evaluated as “ ⁇ ”, those with a breakdown time of 40 hours or more and less than 100 hours are evaluated as “ ⁇ ”, and those without cracking for 100 hours are evaluated as “ ⁇ ”, and the breakdown time is 40 hours or more. It was decided to have excellent delayed fracture resistance.
  • the examples conforming to the conditions of the present invention have a tensile strength of 1180 MPa or more, an excellent chemical conversion treatment property is obtained, and no fracture occurs for 100 hours in delayed fracture resistance. It was confirmed that it had excellent delayed fracture resistance.
  • Nos. 11 to 18 are examples in which the component composition is outside the scope of the present invention. No. Since No. 11 has a low C content, a predetermined microstructure and tensile strength are not obtained. No. Since No. 12 has a high C content, the carbides are coarsened and the delayed fracture resistance is inferior. No. Since No. 13 has a low Si content, carbides are coarsened and delayed fracture resistance is inferior. No. Since No. 14 has a large Si content, the Si-containing oxide on the surface of the steel sheet cannot be sufficiently removed by pickling, so that the chemical conversion property is inferior. If the pickling weight loss is increased, the Cu concentration distribution in the surface layer exceeds the specified range, so the chemical conversion treatment performance is not improved. No. Since No. Since No. 11 has a low C content, a predetermined microstructure and tensile strength are not obtained. No. Since No. 12 has a high C content, the carbides are coarsened and the delayed fracture resistance is inferior. No. Since No. 13 has a low Si
  • No. Reference numerals 17 to 21 are invention steels and comparative steels whose production methods are outside the recommended range of the present invention. No. Although Nos. 17 and 18 have excellent strength, chemical conversion properties, and delayed fracture resistance, the steel structure is not in a preferable range, so TS ⁇ El is less than 16,500.
  • No. No. 19 is an example in which pickling was not performed after continuous annealing. Since Si-containing oxide remained on the steel sheet surface, the chemical conversion treatment property was inferior.
  • No. No. 21 is an example in which re-acid pickling after pickling is omitted, and iron-based oxides remain on the surface of the steel sheet, so that the chemical conversion property is inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

引張強さが1180MPa以上であることを特徴とする耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板を提供する。 成分組成が、質量%で、C:0.10%以上0.6%以下、Si:1.0%以上3.0%以下、Mn:2.5%超え10.0%以下、P:0.05%以下、S:0.02%以下、Al:0.01%以上1.5%以下、N:0.005%以下、Cu:0.05%以上0.50%以下を含有し、残部は鉄及び不可避的不純物からなり、Siを主体とする酸化物の鋼板表面被覆率が1%以下であり、鉄系酸化物の鋼板表面被覆率が40%以下であり、Cu/Cuが4.0以下(Cuは鋼板表層におけるCu濃度、Cuは母材におけるCu濃度)を満たし、引張強さが1180MPa以上である高強度冷延鋼板とする。

Description

高強度冷延鋼板
 本発明は、引張強さが1180MPa以上であることを特徴とする耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板に関するものである。
 近年、CO排出量低減と衝突安全性に対するニーズを背景に、自動車ボディの軽量化と高強度化が進められている。現状、これらの自動車用鋼板の引張強さは980MPa級が主流であるが、鋼板高強度化への要求は益々増加しており、引張強さで1180MPaを超える高強度鋼板の開発が必要とされている。しかし、鋼板を高強度化すると、延性が低下するとともに、使用環境から侵入した水素による遅れ破壊が懸念される。
 また、自動車用鋼板は塗装をして使用されており、その塗装の前処理として、リン酸塩処理等の化成処理が施される。この鋼板の化成処理は塗装後の耐食性を確保するための重要な処理のひとつであるため、自動車用鋼板には化成処理性に優れることも要求される。
 Siはフェライトを固溶強化するとともにマルテンサイトもしくはベイナイト内部の炭化物を微細化することで、同一強度で鋼の延性を向上させる元素である。また、Siは炭化物の生成を抑制するため、延性改善に寄与する残留オーステナイトの確保をも容易にする。更には、Siは、マルテンサイトもしくはベイナイト中の粒界炭化物を微細化することで粒界近傍における応力・歪の集中を小さくし、耐遅れ破壊特性を向上させることも知られている。そのため、これまでにSiを活用した高強度薄鋼板の製造技術が多数開示されている。
 特許文献1ではSiを質量%で、1~3%添加した、フェライトと焼戻しマルテンサイトからなる組織を有した引張強さが1320MPa以上の耐遅れ破壊特性に優れた鋼板に関して記載されている。
 耐遅れ破壊特性を向上させる元素のひとつとしてCuが挙げられる。特許文献2ではCuの添加により鋼の耐食性を向上させ、耐遅れ破壊特性を著しく向上させている。また、特許文献2ではSi含有量が0.05~0.5質量%である。
 特許文献3ではSiを質量%で、0.5~3%、Cuを2%以下添加した、化成処理性に優れた鋼板に関して記載されている。特許文献3では、連続焼鈍した鋼板表面を酸洗し、焼鈍時に鋼板表層に形成されたSi含有酸化物層を除去することで、0.5%以上のSi添加であっても優れた化成処理性を確保している。
特開2012-12642号公報 特許3545980号公報 特許5729211号公報
 特許文献1に記載の製造方法では、連続焼鈍ライン内にて鋼板表面にSi含有酸化物が形成され、化成処理性が十分とはいえない。また、さらにSi添加量を増やしてもその効果が飽和するどころか、熱間圧延負荷を増大させるなどの製造上の問題が生じる。
 特許文献2に記載の技術では、Si含有量が低いため、耐遅れ破壊特性、加工性が良好ではない。
 特許文献3に記載の技術では、上記酸洗により地鉄が溶解し、鋼板表面にCuが再析出することで、化成処理における鉄の溶解反応がCu析出部で抑制され、リン酸亜鉛などの化成結晶の析出が阻害される問題がある。
 腐食による遅れ破壊が懸念される高強度鋼板において、塗装密着性に関わる化成処理性への要求はますます厳しくなっており、より厳しい処理条件でも良好な化成処理性が得られる鋼板の開発が求められている。
 本発明はかかる事情に鑑みてなされたものであって、引張強さが1180MPa以上であることを特徴とする耐遅れ破壊特性および化成処理性に優れた高強度冷延鋼板を提供することを目的とする。
 上記のように、連続焼鈍した鋼板表面を酸洗することで、鋼板表面のSi含有酸化物は除去されるが、鋼板表面にCuが再析出するため良好な化成処理性が得られない。
 発明者らは、上記の課題を解決すべく鋭意研究を重ねたところ、上記連続焼鈍後の酸洗で鋼板表層のSi含有酸化物層を除去し、かつCu/Cuを4.0以下(Cuは鋼板表層におけるCu濃度、Cuは母材におけるCu濃度)に制御することによって、SiおよびCuによる化成処理性の劣化を防ぐとともに、耐遅れ破壊特性を向上できることを見出した。
 本発明は、上記の知見に立脚するものである。すなわち、本発明の要旨構成は次の通りである。
 [1]成分組成が、質量%で、C:0.10%以上0.6%以下、Si:1.0%以上3.0%以下、Mn:2.5%超え10.0%以下、P:0.05%以下、S:0.02%以下、Al:0.01%以上1.5%以下、N:0.005%以下、Cu:0.05%以上0.50%以下を含有し、残部は鉄及び不可避的不純物からなり、Siを主体とする酸化物の鋼板表面被覆率が1%以下であり、鉄系酸化物の鋼板表面被覆率が40%以下であり、Cu/Cuが4.0以下(Cuは鋼板表層におけるCu濃度、Cuは母材におけるCu濃度)を満たし、引張強さが1180MPa以上である高強度冷延鋼板。
 [2]鋼組織が、焼戻しマルテンサイト及び/又はベイナイトを合計体積率で40%以上100%以下、フェライトを体積率で0%以上60%以下、残留オーステナイトを2%以上30%以下であり、引張強さ×全伸びが16500MPa・%以上である[1]に記載の高強度冷延鋼板。
 [3][Si]/[Mn]が0.40超([Si]はSi含有量(質量%)、[Mn]はMn含有量(質量%))を満たす[1]又は[2]に記載の高強度冷延鋼板。
 [4]前記成分組成が、さらに、質量%で、Nb:0.2%以下、Ti:0.2%以下、V:0.5%以下、Mo:0.3%以下、Cr:1.0%以下、B:0.005%以下の1種以上を含有する[1]~[3]のいずれかに記載の高強度冷延鋼板。
 [5]前記成分組成は、さらに、質量%で、Sn:0.1%以下、Sb:0.1%以下、W:0.1%以下、Co:0.1%以下、Ca:0.005%以下、REM:0.005%以下のいずれか1種以上を含有する[1]~[4]のいずれかに記載の高強度冷延鋼板。
 本発明の高強度冷延鋼板は、引張強さで1180MPa以上の高強度を有しながら、耐遅れ破壊特性および化成処理性に優れる。
図1は、耐遅れ破壊特性評価に用いた試験片を模式的に示す図である。 図2は、反射電子像写真のグレー値に対するピクセル数のヒストグラムの一例である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 先ず、本発明の高強度鋼板(本発明の鋼板という場合がある)の成分組成について説明する。本発明の鋼板の成分組成は、質量%で、C:0.10%以上0.6%以下、Si:1.0%以上3.0%以下、Mn:2.5%超10.0%以下、P:0.05%以下、S:0.02%以下、Al:0.01%以上1.5%以下、N:0.005%以下、Cu:0.05%以上0.50%以下を含有し、残部は鉄及び不可避的不純物からなる。
 また、上記成分組成は、さらに、質量%で、Nb:0.2%以下、Ti:0.2%以下、V:0.5%以下、Mo:0.3%以下、Cr:1.0%以下、B:0.005%以下の1種以上を含有してもよい。
 また、上記成分組成は、さらに、質量%で、Sn:0.1%以下、Sb:0.1%以下、W:0.1%以下、Co:0.1%以下、Ca:0.005%以下、REM:0.005%以下のいずれか1種以上を含有してもよい。
 以下、各成分の含有量について説明する。なお、以下の説明における成分の含有量を表す「%」は「質量%」を意味する。
 C:0.10%以上0.6%以下
 Cは鋼板の強度-延性バランスを改善するのに有効な元素である。C含有量が0.10%未満では、引張強さ1180MPa以上を確保するのが困難である。一方、C含有量が0.6%を超えると粗大なセメンタイトが析出し、粗大セメンタイトを起点として水素割れが発生する。そこで、C含有量は0.10%以上0.6%以下の範囲とする。下限について好ましくは0.15%以上である。上限について好ましくは0.4%以下である。
 Si:1.0以上3.0%以下
 Siは鋼板の延性をさほど低下させることなく強度を確保するために有効な元素である。Si含有量が1.0%未満の場合、高強度かつ高加工性(優れた加工性)を達成できないばかりかセメンタイトの粗大化を抑制できず耐遅れ破壊特性が劣化する。また、Si含有量が3.0%を超えると、熱間圧延時の圧延負荷荷重が増大するばかりか、鋼板表面に酸化スケールを生じ、化成処理性を劣化させる。そこで、Si含有量は1.0%以上3.0%以下の範囲とする。下限について好ましくは1.2%以上である。上限について好ましくは2.0%以下である。
 Mn:2.5%超10.0%以下
 Mnは鋼の強化とオーステナイトの安定化に有効な元素である。一方、Mn含有量が多くなり過ぎると、鋳造時の偏析によりフェライトとマルテンサイトが帯状に分布した鋼組織を形成する。その結果、機械的特性に異方性が生じ、加工性が劣化する。更に粗大なMnSの生成による耐遅れ破壊特性の劣化も著しい。そこで、Mn含有量は2.5%超10.0%以下とする。下限について好ましくは2.7%以上である。上限について好ましくは4.5%以下の範囲である。
 [Si]/[Mn]:0.40超
 SiとMnのバランスにより、Si主体の酸化物とSi-Mn複合酸化物のそれぞれの生成量が決まる。各々の酸化物のどちらか一方が極端に多く生成した場合、酸洗後に再酸洗する工程を経たとしても鋼板表面の酸化物を除去しきれず、化成処理性が劣化する場合がある。そのため、SiとMnの含有量比を規定することが好ましい。Siに比べてMnが過剰に多い場合、つまり[Si]/[Mn]≦0.4のとき、Si-Mnを主体とする酸化物が過剰に生成する場合があり、本発明で意図する化成処理性が得られないことがある。よって、[Si]/[Mn]>0.4とすることが好ましい。また、Si含有量の最大値とMn含有量の最小値から[Si]/[Mn]は1.2未満となる。なお、[Si]はSi含有量、[Mn]はMn含有量を意味する。
 P:0.05%以下
 Pは不純物元素であり、その含有量が0.05%を超えると、鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により局部延性の劣化を通じて成形後の鋼板の耐遅れ破壊特性を劣化させる。そこで、その含有量は0.05%以下が好ましく、より好ましくは0.02%以下とする。なお、製造コストを考慮すればP含有量は、0.001%以上が好ましい。
 S:0.02%以下
 Sは鋼板中にMnSとして存在し、耐衝撃特性や強度、耐遅れ破壊特性の低下を招く。このため、S含有量は極力低減することが好ましい。そのため、S含有量の上限は0.02%とする。好ましくは0.002%以下とする。より好ましくは0.001%以下とする。なお、製造コストを考慮すると、S含有量は、0.0001%以上が好ましい。
 Al:0.01%以上1.5%以下
 Alは自身が酸化物を形成することによってSiなどの酸化物の生成量を低減するため、耐遅れ破壊特性を改善する効果がある。しかしながら、Al含有量が0.01%未満では有意な効果は得られない。また、Al含有量が1.5%を超えるとAlとNとが結合して窒化物が生成する。窒化物は鋳造時にオーステナイト粒界上に析出して粒界脆化させるため、耐遅れ破壊特性を劣化させる。このため、Al含有量は1.5%以下とする。好ましくは0.08%未満、より好ましくは0.07%以下である。
 N:0.005%以下
 Nは前述の通り、Alと結合して窒化物を生成し耐遅れ破壊特性を劣化させる。このためN含有量は、極力低減することが好ましい。そこで、N含有量は0.005%以下とする。より好ましくは0.003%以下とする。なお、製造コストを考慮すると、N含有量は0.0001%以上が好ましい。
 Cu:0.05%以上0.50%以下
 Cuは腐食環境に晒された際、鋼板の溶解を抑制することで、鋼板に侵入する水素量を低減させる効果がある。Cu含有量が0.05%未満では、その効果は小さい。また、Cu含有量が0.50%を超えると、所定の表層Cu濃度分布を得るための酸洗条件の制御が困難となる。このため、Cu含有量は0.05%以上0.50%以下とする。下限について好ましくは0.08%以上とする。上限について好ましくは0.3%以下とする。
 本発明において、更に特性を向上させる場合、Nb、Ti、V、Mo、Cr、Bのいずれか1種以上を含有してもよい。それぞれの限定理由を説明する。
 Nb:0.2%以下
 Nbは微細なNb炭窒化物を形成し、組織を微細化するとともに水素トラップ効果により耐遅れ破壊特性を向上させるため、必要に応じて添加してもよい。Nb含有量が0.2%を超えると、組織微細化の効果は飽和するばかりか、Ti存在下ではTiとNbで粗大な複合炭化物を形成して強度-延性バランスと耐遅れ破壊特性を劣化させる。このため、Nbを含有する場合には、その含有量を0.2%以下とする。また、好ましくは0.1%以下とする。より好ましくは0.05%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.004%以上の含有が好ましい。
 Ti:0.2%以下
 Tiは炭化物を生成して組織を微細化する効果と水素トラップ効果を有するため、必要に応じて添加してもよい。Ti含有量が0.2%を超えると、組織微細化の効果は飽和するばかりか、粗大なTiNを形成し、Nbの存在下ではTi-Nb複合炭化物を形成して強度-延性バランスと耐遅れ破壊特性を劣化させる。このため、Tiを含有する場合には、0.2%以下とする。また、好ましくは0.1%以下とする。より好ましくは0.05%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.004%以上の含有が好ましい。
 V:0.5%以下
 VとCとが結合して形成される微細炭化物は鋼板の析出強化および水素のトラップサイトとして作用するため耐遅れ破壊向上に有効であるため、必要に応じて添加してもよい。V含有量が0.5%を超えると、炭化物が過剰に析出して強度-延性バランスが劣化する。このため、Vを含有する場合にはその含有量を0.5%以下とする。また、好ましくは0.1%以下とする。より好ましくは0.05%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.004%以上の含有が好ましい。
 Mo:0.3%以下
 Moは鋼板の焼入性向上に有効であり、微細析出物による水素トラップ効果も有するので必要に応じて添加してもよい。Mo含有量が0.3%を超えると、効果が飽和するばかりか、連続焼鈍時に鋼板表面にMo酸化物の形成が促進され、鋼板の化成処理性が著しく低下する。このため、Moを含有する場合には、その含有量を0.3%以下とする。好ましくは0.1%以下とする。より好ましくは0.05%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.005%以上の含有が好ましい。
 Cr:1.0%以下
 CrはMoと同様、鋼板の焼入性向上に有効であり、必要に応じて添加してもよい。その含有量が1.0%を超えると、連続焼鈍後に酸洗処理を施しても鋼板表面のCr酸化物を除去しきれないため、鋼板の化成処理性が著しく低下する。このため、Crを含有する場合には、その含有量を1.0%以下とする。また、好ましくは0.5%以下とする。より好ましくは0.1%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.04%以上の含有が好ましい。
 B:0.005%以下
 Bは連続焼鈍における加熱時にオーステナイト粒界に偏析し、冷却時のオーステナイトからのフェライト変態およびベイナイト変態を抑制して、焼戻しマルテンサイトの形成を容易化するため、鋼板の強化に有効である。また、Bは、粒界強化により耐遅れ破壊特性を向上させるため、必要に応じて添加してもよい。B含有量が0.005%を超えると、ホウ炭化物Fe23(C,B)が生じて加工性の劣化と強度の低下が起きる。このため、Bを含有する場合には、その含有量を0.005%以下とする。また、好ましくは0.003%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.0002%以上の含有が好ましい。
 本発明において、特性に悪影響を及ぼさない範囲で、Sn、Sb、W、Co、CaまたはREMのいずれか一種以上を含有してもよい。この限定理由を説明する。
 Sn、Sb:0.1%以下
 Sn、Sbはいずれも表面酸化や脱炭、窒化を抑制する効果を有するため、必要に応じて添加してもよい。しかしながら、含有量がそれぞれ0.1%を超えてもその効果は飽和する。このため、Sn、Sbを含有する場合にはこれらの含有量をそれぞれ0.1%以下とする。また、好ましくは0.05%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには、それぞれ少なくとも0.001%以上の含有が好ましい。
 W、Co:0.1%以下
 W、Coはいずれも硫化物の形態制御や粒界強化、固溶強化を通じて鋼板の特性を向上させる効果を有するため、必要に応じて添加してもよい。しかしながら、WやCoを過度に含有すると粒界偏析などにより延性が劣化する。このため、これらの元素の含有量は0.1%以下とするのが好ましい。また、好ましくは0.05%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.01%以上の含有が好ましい。
 Ca、REM:0.005%以下
 Ca、REMはいずれも硫化物の形態制御を通じて延性や耐遅れ破壊特性向上させる効果を有するため、必要に応じて添加してもよい。しかしながら、CaやREMを過度に含有すると粒界偏析などにより延性が劣化する。このためこれらの成分の含有量は0.005%以下とするのが好ましい。より好ましくは0.002%以下とする。本発明では特に下限値を規定していないが、上記効果を得るためには少なくとも0.0002%以上の含有が好ましい。
 上記以外の残部はFeおよび不可避的不純物である。
 続いて、本発明の高強度鋼板の表面状態について説明する。
 Siを主体とする酸化物の鋼板表面被覆率が1%以下
 Siを主体とする酸化物が鋼板表面に存在すると、化成処理性が著しく低下する。そこで、Siを主体とする酸化物の鋼板表面被覆率は1%以下とする。好ましくは0%である。なお、Siを主体とする酸化物とは、例えばSiOである。また、Siを主体とする酸化物は後述する実施例の方法にて測定することができる。なお、「Siを主体とする」とは酸化物を構成する酸素以外の元素のうちSiの原子濃度比が70%以上であることを意味する。
 鉄系酸化物の鋼板表面被覆率が40%以下
 鉄系酸化物の鋼板表面被覆率が85%を超えると、化成処理における鉄の溶解反応が阻害されて、リン酸亜鉛等の化成結晶の成長が抑制される。近年では、製造コスト削減の観点から、化成処理液を低温化しており、化成処理条件としては従来よりも厳しい条件となっている。そのため、表面被覆率85%以下では不十分であり、好ましくは40%以下である。さらに好ましくは35%以下である。下限は特に限定されないが、鋼板表面被覆率は20%以上であることが多い。また、鉄系酸化物の鋼板表面被覆率は後述する実施例の方法にて測定することができる。なお、鉄系酸化物とは酸化物を構成する酸素以外の元素のうち鉄の原子濃度比が30%以上である鉄主体の酸化物のことを意味する。
 Cu/Cu:4.0以下
 本発明で所期した効果を得るには、Si含有量、Cu含有量を上記の範囲に調整するだけでは不十分で、Si含有酸化物を除去するための酸洗において、鋼板表層におけるCu濃度分布を制御する必要がある。すなわち、本発明では、Cu含有量を0.05%以上0.50%以下とし、Cu/Cuを4.0以下(Cuは鋼板表層におけるCu濃度、Cuは母材におけるCu濃度)とする必要がある。このCu濃度分布は、連続焼鈍後の酸洗処理において、酸洗減量を下記(1)式の範囲に制御することにより達成できる。下限は特に限定されないが、化成処理性を改善する観点から、Cu/Cuは2.0以上が好ましい。なお、鋼板表層とは表面から板厚方向に20nm以内の領域を意味する。
WR≦33.25×exp(-7.1×[Cu%])   (1)
(WR:酸洗減量(g/m)、[Cu%]:鋼中のCu含有量)
 鋼板表面に再析出したCuを研削等により除去することでも上記のCu濃度分布は達成されるが、研削疵が残るため優れた化成処理性が得られない。Cu/Cuは実施例に記載の方法で測定した。
 続いて、本発明の高強度冷延鋼板の好ましい鋼組織について説明する。
 焼戻しマルテンサイト及び/又はベイナイトを合計体積率で40%以上100%以下とすることが好ましい。焼戻しマルテンサイト及び/又はベイナイトは、鋼の高強度化に欠かせない組織である。その体積率が40%未満の場合、1180MPa以上の引張強さが得られないおそれがある。
 フェライトを体積率で0%以上60%以下とすることが好ましい。フェライトは延性改善に寄与し鋼の加工性を向上させるため必要に応じて複合させてもよい。この効果は0%超で得られる。体積率が60%を超えると、1180MPa以上の引張強さを得るためには、焼戻しマルテンサイトもしくはベイナイトの硬度を極度に高める必要があり、その結果、組織間の硬度差に起因した界面での応力・歪集中により遅れ破壊が助長される。
 残留オーステナイトを体積率で2%以上30%以下とすることが好ましい。残留オーステナイトは鋼の強度-延性バランスを向上させる。この効果は2%以上で得られる。本発明では残留オーステナイトの体積率の下限値を特に規定しないが、引張強さ×全伸びが16500MPa・%以上の安定的な確保のためには5%以上含むことが好ましい。一方で、残留オーステナイトは、加工を受けると硬質な焼戻しマルテンサイトに変態するため、前述のように組織間の硬度差に起因した界面での応力・歪集中により遅れ破壊が助長される。従って、その体積率は30%を上限とする。なお、本発明で残留オーステナイトの平均アスペクト比は、2.0超になる。
 また、本発明は、鋼板組織として、上記焼戻しマルテンサイト、ベイナイト、フェライト、残留オーステナイト以外のその他の相を含んでもよい。例えば、パーライト、焼き入れままのマルテンサイト等を含んでもよい。本発明の効果を確保する観点から、該その他の相は体積率で5%以下とすることが好ましい。
 なお、上記体積率は実施例に記載の方法で得られる値を採用する。
 続いて、本発明の高強度冷延鋼板の製造方法について説明する。本発明では、連続鋳造で得られたスラブを鋼素材とし、熱間圧延を施し、仕上げ圧延終了後、冷却してコイルに巻き取り、ついで酸洗後、冷間圧延したのち、連続焼鈍を施し、過時効処理後、酸洗し、さらに再酸洗を施すことによって冷延鋼板とする。
 本発明において、製鋼工程から冷間圧延までの工程は常法に従って行えばよい。連続焼鈍、過時効処理および酸洗処理を、以下の条件とすることで、本発明の高強度冷延鋼板を製造できる。
 連続焼鈍条件
 焼鈍温度がAc点未満になると、焼鈍中に所定の強度確保に必要なオーステナイト(焼入れ後にマルテンサイトに変態)が生成せず、焼鈍後焼入れを実施しても1180MPa以上の引張強さが得られない。そのため、焼鈍温度はAc点以上が好ましい。この温度範囲において、オーステナイトの平衡面積率が40%以上を安定して確保する観点から、焼鈍温度は800℃以上とするのが好ましい。また、焼鈍温度での滞留(保持)時間が短すぎると鋼組織が十分に焼鈍されずに冷間圧延による加工組織が存在した不均一な組織となり延性が低下する。一方、滞留時間が長すぎると製造時間の増加を招き製造コスト上好ましくない。このため、滞留時間は30~1200秒が好ましい。特に好ましい滞留時間は250~600秒の範囲である。
 本発明において、Ac1点(℃)は下記式により求める。以下の式において[X%]は鋼板の成分元素Xの質量%とし、含まない成分は0とする。
Ac1=723-10.7×[Mn%]+29.1×[Si%]+16.9×[Cr%]+6.38×[W%]
 焼鈍後の冷延鋼板は、Ms-100℃以上Ms点未満の一次冷却停止温度域まで、平均冷却速度を3℃/s以上に制御して冷却される。この冷却は、Ms点未満まで冷却することによりオーステナイトの一部をマルテンサイト変態させるものである。ここで、一次冷却停止温度域の下限がMs-100℃未満では、この時点で未変態オーステナイトがマルテンサイト化する量が過大となり、優れた強度と加工性の両立ができない。一方、一次冷却停止温度域の上限がMs以上になると、適正な焼戻しマルテンサイト量が確保できなくなる。従って、一次冷却停止温度域の範囲は、Ms-100℃以上Ms点未満とする。好ましくはMs-80℃以上Ms点未満、更に好ましくはMs-50℃以上Ms点未満である。また、平均冷却速度が3℃/s未満の場合、フェライトの過剰な生成、成長や、パーライト等の析出が生じ、所望の鋼組織を得られない。従って、焼鈍温度から一次冷却停止温度域までの平均冷却速度は、3℃/s以上とする。好ましくは5℃/s以上、さらに好ましくは8℃/s以上である。平均冷却速度の上限は、冷却停止温度にバラツキが生じない限り特に限定されない。なお、上述したMs点は、次式に示すような近似式によって求めることができる。Msは、経験的に求められる近似値である。
Ms(℃)=565-31×[Mn%]-13×[Si%]-10×[Cr%]-12×[Mo%]-600×(1-exp(-0.96×[C%]))
 ただし、[X%]は鋼板の成分元素Xの質量%とし、含まない元素は0とする。
 過時効処理条件
 一次冷却停止温度域まで冷却された鋼板は、300℃以上Bs-50℃以下かつ450℃以下の過時効温度域まで昇温され、過時効温度域で15秒以上1000秒以下滞留(保持)される。
 Bsとはベイナイト変態開始温度を示し、次式に示すような近似式によって求めることができる。Bsは、経験的に求められる近似値である。
Bs(℃)=830-270×[C%]-90×[Mn%]-70×[Cr%]-83×[Mo%]
 ただし、[X%]は鋼板の成分元素Xの質量%とし、含まない元素は0とする。
 過時効温度域では、焼鈍温度から一次冷却停止温度域までの冷却により生成したマルテンサイトを焼戻し、未変態オーステナイトを下部ベイナイトに変態させ、固溶Cをオーステナイト中に濃化させることなどによりオーステナイトの安定化を進める。過時効温度域の上限がBs-50℃または450℃を超えると、ベイナイト変態そのものが抑制される。一方、過時効温度域の下限が300℃未満の場合、マルテンサイトの焼戻しが不十分となり、所定の引張強さ×全伸びが得られない。従って、過時効温度域の範囲は、300℃以上Bs-50℃以下かつ450℃以下の範囲とする。好ましくは、320℃以上Bs-50℃以下かつ420℃以下の範囲である。
 また、過時効温度域での滞留時間が15秒未満の場合、マルテンサイトの焼戻しや下部ベイナイト変態が不十分となり、所望の鋼組織とすることができず、その結果、得られる鋼板の加工性を十分に確保することができない場合がある。そこで、この過時効温度域における滞留時間は15秒以上とする必要がある。一方、本発明において、過時効温度域での滞留時間は一次冷却停止温度域で生成したマルテンサイトによるベイナイト変態促進効果により、1000秒あれば十分である。通常、本発明のように、C、Cr、Mnなどの合金成分が多くなると、ベイナイト変態は遅延するが、本発明のようにマルテンサイトと未変態オーステナイトが共存すると、ベイナイト変態速度が著しく速くなる。一方、過時効温度域での滞留時間が、1000秒を超える場合、鋼板の最終組織として残留オーステナイトとなる未変態オーステナイトから炭化物が析出してC濃化した安定な残留オーステナイトが得られず、その結果、所望の強度と延性またはその両方が得られない場合がある。従って、滞留時間は15秒以上1000秒以下とする。好ましくは、100秒以上700秒以下である。
 なお、本発明における一連の熱処理では、上述した所定の温度範囲内であれば、温度は一定である必要はなく、所定の温度範囲内で変動しても本発明の趣旨を損なわない。冷却速度についても同様である。また、熱履歴さえ満足すれば、鋼板はいかなる設備で熱処理を施されても構わない。さらに、熱処理後に、形状矯正のために鋼板の表面に調質圧延を施すことも本発明の範囲に含まれる。
 酸洗、再酸洗
 酸洗に用いる溶液の組成は特に限定されない。例えば、硝酸、塩酸、弗酸、硫酸およびそれらを2種以上混合した酸のいずれかを用いることができる。なお、酸洗では強酸化性の酸(硝酸等)を酸洗液として用い、再酸洗では、酸洗で用いる酸洗液とは異なり、かつ、非酸化性の酸を酸洗液として用いる。
 焼戻し処理(過時効処理)後の鋼板に例えば濃度:硝酸濃度を50g/L超え200g/L以下の範囲とし、さらに、酸化膜破壊効果のある塩酸を、硝酸濃度に対する塩酸濃度の比R(HCl/HNO)が0.01~1.0の範囲となるよう混合した酸洗液、あるいは、弗酸を、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01~1.0の範囲となるよう混合した酸洗液を用いて酸洗することで、化成処理性を劣化させる鋼板表面のSiを主体とする酸化物やSi-Mn複合酸化物を除去することが可能である。しかし、前述の通り、鋼板表面に再析出したCuの影響を抑制し、化成処理性を更に向上させるためには、酸洗減量を上述の式(1)の範囲に制御することが好ましい。また、上記酸洗によって鋼板表面から溶解したFeが鉄系酸化物を生成し、鋼板表面に沈殿析出して鋼板表面を覆うことにより化成処理性が劣化してしまう場合がある。そのため、化成処理性改善のためには、上記酸洗後にさらに適正な条件で再酸洗し、鋼板表面に析出した鉄系酸化物を溶解・除去することが好ましい。以上の理由により、再酸洗では、酸洗で用いる酸洗液とは異なり、かつ、非酸化性の酸を酸洗液として用いる。上記非酸化性の酸とは、例えば、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかが挙げられる。例えば、濃度が0.1~50g/Lの塩酸、0.1~150g/Lの硫酸、0.1~20g/Lの塩酸と0.1~60g/Lの硫酸を混合した酸などが好適に利用できる。
 表1に記載の成分組成からなる供試鋼を真空溶製し、スラブとした後、1250℃に加熱し、870℃で仕上げ熱間圧延した熱延鋼板を550℃で巻取り、ついで熱延鋼板を酸洗後、60%の圧延率(圧下率)で冷間圧延し、板厚:1.2mmの冷延鋼板とした。得られた冷延鋼板を表2に記載の条件で連続焼鈍および焼戻し処理(過時効処理)を施し、酸洗、再酸洗を行った。
 以上のように得られた鋼板から試験片を採取し、金属組織(鋼組織)の観察、表層Cu濃度分布の分析、引張試験、化成処理性評価および耐遅れ破壊特性評価を実施した。
 金属組織の観察は圧延方向に平行な板厚断面を、ナイタールエッチング後、代表的なミクロ組織(鋼組織)を走査型電子顕微鏡(SEM)にて観察した。倍率2000倍のSEM像を画像解析することで、フェライト領域の面積比率を求め、フェライトの体積比率とした。なお、パーライト(残部組織)が生成しているものについても、同様にして体積率を求めた。残留オーステナイトは板面を観察対象とした。板厚の4分の1の厚さまで研削したのち化学研磨し、X線回折法により残留オーステナイトの体積率を得た。マルテンサイトおよびベイナイトの体積率は、フェライトとパーライトと残留オーステナイトを合計した体積率の残部として求めた。なお、発明例において、残留オーステナイトの平均アスペクト比は2.0超であった。
 表層のCu濃度分布の評価は、放電発光分光分析法(GDS)で行った。対象の鋼板より30mm角をせん断し、GDS分析は、Rigaku製GDA750を使用し、8mmφアノード、DC50mA、2.9hPaの放電条件のもと測定時間0~200sとし、サンプリング周期0.1sの測定条件にて行った。なお、この放電条件における鋼板のスパッタ速度は約20nm/sである。また、測定発光線はFe:371nm、Si:288nm、Mn:403nm、O:130nmを使用した。そして、スパッタ時間0~1sにおけるCuの平均強度(Cuに対応)とスパッタ時間50~100sにおけるCuの平均強度(Cuに対応)の比を求めた。
 Siを主体とする酸化物の鋼板表面被覆率は、鋼板表面を、SEMを用いて1000倍で5視野を観察するとともに同一視野をEDXで分析することでSiを主体とする酸化物を同定し、ポイントカウンティング法で被覆率を求めた。
 極低加速電圧の走査型電子顕微鏡(ULV-SEM;SEISS社製;ULTRA55)を用いて鋼板表面を加速電圧2kV、作動距離3.0mm、倍率1000倍で5視野を観察し、エネルギー分散型X線分光器(EDX;Thermo Fisher社製;NSS312E)を用いて分光分析して反射電子像を得た。この反射電子像を2値化処理して黒色部の面積率を測定し、5視野の平均値を求めて、鉄系酸化物の表面被覆率とした。なお、上記の2値化処理の閾値については、以下の通り定めた。
 C:0.14質量%、Si:1.7質量%、Mn:1.3質量%、P:0.02質量%、S:0.002質量%およびAl:0.035質量%を含有し、残部がFeおよび不可避的不純物からなる鋼を、転炉、脱ガス処理等を経る通常の精練プロセスで溶製し、連続鋳造してスラブとした。次いで、このスラブを1150℃に再加熱した後、仕上げ圧延終了温度を850℃とする熱間圧延を施し、550℃でコイルに巻き取り、板厚が3.2mmの熱延鋼板とした。その後、この熱延鋼板を酸洗し、スケールを除去した後、冷間圧延し、板厚が1.8mmの冷延鋼板とした。次いで、この冷延鋼板を、750℃の均熱温度まで加熱し、30秒間保持した後、上記均熱温度から冷却停止温度である400℃までを20℃/秒で冷却し、上記冷却停止温度に100秒間保持する連続焼鈍を施した。その後、表4に示した条件で酸洗および再酸洗し、水洗し、乾燥した後、0.7%の調質圧延を施して、鋼板表面の鉄系酸化物量が異なるNo.aおよびbの2種類の冷延鋼板を得た。次いで、上記No.aの冷延鋼板を鉄系酸化物の多い標準サンプル、No.bの冷延鋼板を鉄系酸化物の少ない標準サンプルとし、それぞれの鋼板について、前述した条件で反射電子像を得た。図2は上記反射電子像写真のグレー値(白から黒の中間の色調を示すパラメータ値)に対するピクセル数のヒストグラムである。本発明では、図2に示したNo.a、bのヒストグラムの交点(X点)に対応するグレー値(Y点)を閾値として定め、その閾値以下のグレー値(黒い色調)の部分の面積を鉄系酸化物の表面被覆率とした。因みに、上記閾値を用いて、No.a,bの鋼板の鉄系酸化物の表面被覆率を求めたところ、No.aの鋼板は85.3%、No.bの鋼板は25.8%が得られた。
 引張試験は板面において圧延方向と垂直な方向を長手としてJIS5号試験片(標点間距離:50mm、平行部幅:25mm)を切出し、ひずみ速度3.3×10-3-1で行った。
 化成処理性評価は、日本ペイント社製の脱脂剤:サーフクリーナEC90、表面調整剤:5N-10、および化成処理剤:サーフダインEC1000を用いて、下記の標準条件で、化成処理皮膜付着量が1.7~3.0g/mとなるように化成処理を施した。
<標準条件>
・脱脂工程:処理温度 45℃、処理時間120秒
・スプレー脱脂、表面調整工程:pH8.5、処理温度室温、処理時間 30秒
・化成処理工程:化成処理液の温度 40℃、処理時間 90秒
 化成処理後の鋼板表面を、SEMを用いて倍率500倍で5視野観察し、5視野全てにおいて面積率95%以上で均一な化成結晶が生成している場合を化成処理性が良好「○」、1視野でも面積率5%超のスケが認められた場合を化成処理性が劣位「×」と評価した。
 耐遅れ破壊特性評価は浸漬試験にて行った。圧延方向と垂直な方向を長手として35m×105mmに切断後、端面を研削加工し30mm×100mmの試験片を作成した。試験片を先端の曲率半径10mmのポンチで曲げ稜線が圧延方向と平行になるように180°曲げ加工後、図1に示すようにボルト2により試験片1の内側間隔が10mmになるように絞込むことで応力を負荷した。応力が負荷された状態の試験片を25℃、pH3の塩酸中に浸漬し、破壊が生じるまでの時間を最大100時間まで測定した。破壊時間が40時間未満のものを「×」、40時間以上100時間未満のものを「○」、100時間割れが発生しなかったものを「◎」と評価し、破壊時間が40時間以上のものを耐遅れ破壊特性に優れることとした。
 以上の結果を表3に示した。
 表1~表3によれば、本発明の条件に適合した実施例は、引張強さ1180MPa以上で、優れた化成処理性が得られ、耐遅れ破壊特性において、100時間破壊が生じておらず、優れた耐遅れ破壊特性を有することが確認された。
 No.11~18は成分組成が本発明範囲外となっている例である。
No.11はC含有量が少ないため、所定のミクロ組織と引張強さが得られていない。
No.12はC含有量が多いため、炭化物が粗大化し、耐遅れ破壊特性が劣位である。
No.13はSi含有量が少ないため、炭化物が粗大化し、耐遅れ破壊特性が劣位である。
No.14はSi含有量が多いため、鋼板表面のSi含有酸化物が酸洗によって十分に除去しきれないため、化成処理性が劣位である。酸洗減量を増すと、表層におけるCu濃度分布が規定の範囲を超えるため、化成処理性は改善しない。
No.15はCu含有量が少ないため、耐遅れ破壊特性が劣位である。
No.16はCu含有量が多いため、所定の表層Cu濃度分布を得るための酸洗条件の制御が困難となる。No.16では酸洗減量が小さくなるように制御したが、Si含有酸化物が十分に除去されなかったために化成処理性が劣位であった。
 No.17~21は製造方法が本発明推奨の範囲外となる場合の発明鋼、比較鋼である。
No.17、18は優れた強度、化成処理性、耐遅れ破壊特性を有するものの、鋼組織が好ましい範囲にないため、TS×Elが16500未満となっている。
 No.19は連続焼鈍後に酸洗を行わなかった例で、鋼板表面にSi含有酸化物が残存していたため、化成処理性が劣位である。
 No.20は酸洗減量を多くしたため、本発明規定の表層Cu濃度分布が得られず、化成処理性が劣位である。
 No.21は酸洗後の再酸洗を省略した例で、鋼板表面に鉄系酸化物が残存していたため、化成処理性が劣位である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 1  試験片
 2  ボルト
 

Claims (5)

  1.  成分組成が、質量%で、
    C:0.10%以上0.6%以下、
    Si:1.0%以上3.0%以下、
    Mn:2.5%超え10.0%以下、
    P:0.05%以下、
    S:0.02%以下、
    Al:0.01%以上1.5%以下、
    N:0.005%以下、
    Cu:0.05%以上0.50%以下
    を含有し、残部は鉄及び不可避的不純物からなり、
     Siを主体とする酸化物の鋼板表面被覆率が1%以下であり、
     鉄系酸化物の鋼板表面被覆率が40%以下であり、
     Cu/Cuが4.0以下(Cuは鋼板表層におけるCu濃度、Cuは母材におけるCu濃度)を満たし、
     引張強さが1180MPa以上である高強度冷延鋼板。
  2.  鋼組織が、焼戻しマルテンサイト及び/又はベイナイトを合計体積率で40%以上100%以下、フェライトを体積率で0%以上60%以下、残留オーステナイトを体積率で2%以上30%以下であり、
     引張強さ×全伸びが16500MPa・%以上である請求項1に記載の高強度冷延鋼板。
  3.  [Si]/[Mn]が0.40超([Si]はSi含有量(質量%)、[Mn]はMn含有量(質量%))を満たす請求項1又は2に記載の高強度冷延鋼板。
  4.  前記成分組成が、さらに、質量%で、
    Nb:0.2%以下、
    Ti:0.2%以下、
    V:0.5%以下、
    Mo:0.3%以下、
    Cr:1.0%以下、
    B:0.005%以下の1種以上を含有する請求項1~3のいずれかに記載の高強度冷延鋼板。
  5.  前記成分組成は、さらに、質量%で、
    Sn:0.1%以下、
    Sb:0.1%以下、
    W:0.1%以下、
    Co:0.1%以下、
    Ca:0.005%以下、
    REM:0.005%以下のいずれか1種以上を含有する請求項1~4のいずれかに記載の高強度冷延鋼板。
     
     
PCT/JP2017/005467 2016-02-18 2017-02-15 高強度冷延鋼板 WO2017141953A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3009784A CA3009784A1 (en) 2016-02-18 2017-02-15 High-strength cold-rolled steel sheet
CN201780011827.4A CN108699648B (zh) 2016-02-18 2017-02-15 高强度冷轧钢板
JP2017537330A JP6308335B2 (ja) 2016-02-18 2017-02-15 高強度冷延鋼板
US16/077,266 US11008635B2 (en) 2016-02-18 2017-02-15 High-strength cold-rolled steel sheet
MX2018009982A MX2018009982A (es) 2016-02-18 2017-02-15 Lamina de acero laminada en frio de alta resistencia.
KR1020187023533A KR102114741B1 (ko) 2016-02-18 2017-02-15 고강도 냉연 강판
EP17753209.0A EP3418417B1 (en) 2016-02-18 2017-02-15 High-strength cold-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016028881 2016-02-18
JP2016-028881 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017141953A1 true WO2017141953A1 (ja) 2017-08-24

Family

ID=59625126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005467 WO2017141953A1 (ja) 2016-02-18 2017-02-15 高強度冷延鋼板

Country Status (8)

Country Link
US (1) US11008635B2 (ja)
EP (1) EP3418417B1 (ja)
JP (1) JP6308335B2 (ja)
KR (1) KR102114741B1 (ja)
CN (1) CN108699648B (ja)
CA (1) CA3009784A1 (ja)
MX (1) MX2018009982A (ja)
WO (1) WO2017141953A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162509A1 (ja) * 2019-02-05 2020-08-13 日本製鉄株式会社 鋼部材、鋼板、及びそれらの製造方法
JP2022501515A (ja) * 2018-09-28 2022-01-06 コーニング インコーポレイテッド オーステナイト変態温度を上昇させた合金金属、及びこれを含む物品
WO2023027778A1 (en) 2021-08-24 2023-03-02 Cleveland-Cliffs Steel Properties Inc. Steel sheet and method of producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104800A1 (de) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines warmumgeformten Stahlbauteils und ein warmumgeformtes Stahlbauteil
CN112771184B (zh) * 2019-02-05 2022-05-17 日本制铁株式会社 被覆钢构件、被覆钢板及它们的制造方法
US11827964B2 (en) * 2019-11-22 2023-11-28 Nippon Steel Corporation Coated steel member, coated steel sheet, and methods for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545980B2 (ja) 1973-01-31 1979-03-23
JPS5729211B2 (ja) 1980-03-10 1982-06-21
JP2011231377A (ja) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd 高強度鋼板
JP2012012642A (ja) 2010-06-30 2012-01-19 Jfe Steel Corp 延性及び耐遅れ破壊特性に優れる超高強度冷延鋼板およびその製造方法
JP2012132092A (ja) * 2010-08-31 2012-07-12 Jfe Steel Corp 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP2012172183A (ja) * 2011-02-21 2012-09-10 Jfe Steel Corp Si含有冷延鋼板とその製造方法および自動車部材
JP2013124383A (ja) * 2011-12-14 2013-06-24 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2013173976A (ja) * 2012-02-24 2013-09-05 Jfe Steel Corp 冷延鋼板の製造方法およびその製造設備
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011696B2 (ja) 1977-06-16 1985-03-27 財団法人仙台複素環化学研究所 2−置換テトラハイドロピリジン誘導体の製造法
JPS5729211A (en) 1980-07-31 1982-02-17 Iseki Agricult Mach Straw transporting device of reaper
JP3545980B2 (ja) 1999-12-06 2004-07-21 株式会社神戸製鋼所 耐遅れ破壊特性の優れた自動車用超高強度電縫鋼管およびその製造方法
KR100786052B1 (ko) 2000-09-12 2007-12-17 제이에프이 스틸 가부시키가이샤 고장력 용융도금강판 및 그 제조방법
JP4362318B2 (ja) 2003-06-02 2009-11-11 新日本製鐵株式会社 耐遅れ破壊特性に優れた高強度鋼板及びその製造方法
GB2450066B (en) 2006-03-31 2011-03-30 Kobe Steel Ltd High-strength cold rolled steel sheet excellent in chemical conversion treatment property
JP5391606B2 (ja) 2008-08-05 2014-01-15 Jfeスチール株式会社 溶接性に優れた高強度冷延鋼板およびその製造方法
JP5835558B2 (ja) 2010-08-31 2015-12-24 Jfeスチール株式会社 冷延鋼板の製造方法
UA112771C2 (uk) 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл Сталевий лист з високою механічною міцністю, пластичністю і формованістю, спосіб виготовлення та застосування таких листів
JP6037882B2 (ja) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5962540B2 (ja) 2012-07-23 2016-08-03 Jfeスチール株式会社 高強度鋼板の製造方法
JP5632947B2 (ja) 2012-12-12 2014-11-26 株式会社神戸製鋼所 加工性と低温靭性に優れた高強度鋼板およびその製造方法
JP5821912B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP5967319B2 (ja) 2014-08-07 2016-08-10 Jfeスチール株式会社 高強度鋼板およびその製造方法
BR112018007877B1 (pt) 2015-10-26 2021-09-21 Nippon Steel Corporation Chapa de aço elétrico com grão orientado, chapa de aço descarburada usada para produzir a mesma e métodos de produção das referidas chapas de aço
MX2018009968A (es) * 2016-02-18 2018-11-09 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545980B2 (ja) 1973-01-31 1979-03-23
JPS5729211B2 (ja) 1980-03-10 1982-06-21
JP2011231377A (ja) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd 高強度鋼板
JP2012012642A (ja) 2010-06-30 2012-01-19 Jfe Steel Corp 延性及び耐遅れ破壊特性に優れる超高強度冷延鋼板およびその製造方法
JP2012132092A (ja) * 2010-08-31 2012-07-12 Jfe Steel Corp 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP2012172183A (ja) * 2011-02-21 2012-09-10 Jfe Steel Corp Si含有冷延鋼板とその製造方法および自動車部材
JP2013124383A (ja) * 2011-12-14 2013-06-24 Jfe Steel Corp 高強度鋼板およびその製造方法
JP2013173976A (ja) * 2012-02-24 2013-09-05 Jfe Steel Corp 冷延鋼板の製造方法およびその製造設備
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501515A (ja) * 2018-09-28 2022-01-06 コーニング インコーポレイテッド オーステナイト変態温度を上昇させた合金金属、及びこれを含む物品
WO2020162509A1 (ja) * 2019-02-05 2020-08-13 日本製鉄株式会社 鋼部材、鋼板、及びそれらの製造方法
CN111801436A (zh) * 2019-02-05 2020-10-20 日本制铁株式会社 钢构件、钢板及它们的制造方法
JPWO2020162509A1 (ja) * 2019-02-05 2021-02-18 日本製鉄株式会社 鋼部材、鋼板、及びそれらの製造方法
CN111801436B (zh) * 2019-02-05 2021-10-29 日本制铁株式会社 钢构件、钢板及它们的制造方法
US11352684B2 (en) 2019-02-05 2022-06-07 Nippon Steel Corporation Steel member, steel sheet, and methods for manufacturing same
WO2023027778A1 (en) 2021-08-24 2023-03-02 Cleveland-Cliffs Steel Properties Inc. Steel sheet and method of producing same
KR20240052794A (ko) 2021-08-24 2024-04-23 클리블랜드-클리프스 스틸 프로퍼티즈 인코포레이티드 강판 및 그의 제조 방법

Also Published As

Publication number Publication date
CN108699648A (zh) 2018-10-23
KR20180102165A (ko) 2018-09-14
MX2018009982A (es) 2018-11-09
EP3418417B1 (en) 2020-07-29
JP6308335B2 (ja) 2018-04-11
KR102114741B1 (ko) 2020-05-25
US20190040490A1 (en) 2019-02-07
CN108699648B (zh) 2020-11-03
US11008635B2 (en) 2021-05-18
CA3009784A1 (en) 2017-08-24
EP3418417A4 (en) 2019-01-02
EP3418417A1 (en) 2018-12-26
JPWO2017141953A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6384641B1 (ja) 高強度鋼板およびその製造方法
CN108603271B (zh) 高强度钢板及其制造方法
JP6308335B2 (ja) 高強度冷延鋼板
JP6308334B2 (ja) 高強度冷延鋼板
JP6210175B2 (ja) 高強度冷延鋼板およびその製造方法
EP3106528B1 (en) High-strength hot-dip galvanized steel sheet, and method for manufacturing high-strength alloyed hot-dip galvanized steel sheet
KR20130086062A (ko) 균일 연신과 도금성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
WO2017138503A1 (ja) 高強度鋼板およびその製造方法
CN111511945B (zh) 高强度冷轧钢板及其制造方法
CN110475892B (zh) 高强度冷轧钢板及其制造方法
JP7239685B2 (ja) 穴広げ率の高い熱間圧延鋼板及びその製造方法
JP4840269B2 (ja) 高強度鋼板とその製造方法
KR102635009B1 (ko) 고강도 열연 강판 및 그 제조 방법
CN115244200A (zh) 高强度钢板及其制造方法
KR20210092796A (ko) 용융 아연 도금 강판 및 그 제조 방법
WO2021167079A1 (ja) 熱延鋼板
JP2012172181A (ja) Si含有熱延鋼板とその製造方法および自動車部材
JP4333356B2 (ja) 冷延鋼板の製造方法
JP5524814B2 (ja) 化成処理性に優れた高強度冷延鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017537330

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3009784

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187023533

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009982

Country of ref document: MX

Ref document number: 1020187023533

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753209

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753209

Country of ref document: EP

Effective date: 20180918