WO2017141720A1 - 冷凍機およびその制御方法 - Google Patents

冷凍機およびその制御方法 Download PDF

Info

Publication number
WO2017141720A1
WO2017141720A1 PCT/JP2017/003828 JP2017003828W WO2017141720A1 WO 2017141720 A1 WO2017141720 A1 WO 2017141720A1 JP 2017003828 W JP2017003828 W JP 2017003828W WO 2017141720 A1 WO2017141720 A1 WO 2017141720A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
condenser
expansion valve
liquid refrigerant
intermediate cooler
Prior art date
Application number
PCT/JP2017/003828
Other languages
English (en)
French (fr)
Inventor
紀行 松倉
長谷川 泰士
潤 宮本
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to US16/065,918 priority Critical patent/US20190017730A1/en
Priority to CN201780005701.6A priority patent/CN108474598A/zh
Publication of WO2017141720A1 publication Critical patent/WO2017141720A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/022Compressor control for multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Definitions

  • the present invention relates to a refrigerator having an intercooler that is a plate heat exchanger and a control method thereof.
  • the two-stage compression subcooler one-stage expansion cycle is a gas-liquid separation type intercooler used in the two-stage compression subcooler two-stage expansion cycle because the intermediate cooler is a plate heat exchanger as described in Patent Document 1, for example. As a result, the refrigerant charging amount can be reduced.
  • This invention is made
  • An object is to provide a refrigerator and a control method thereof.
  • a refrigerator includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a liquid refrigerant that is led from the condenser, and a condenser that is led from the condenser.
  • An intermediate cooler that is a plate heat exchanger that exchanges heat with a two-phase refrigerant in which a part of the liquid refrigerant is expanded by a sub-expansion valve, and a main expansion that expands the liquid refrigerant led from the intermediate cooler
  • the plate heat exchanger has a plate width of 100 mm to 400 mm, a plate height of 300 mm to 1000 mm, The number of stacked plates is 80 or more.
  • the width of the laminated plate is 100 mm or more and 400 mm or less, the height of the laminated plate is 300 mm or more and 1000 mm or less, and the number of laminated plates is 80 or more.
  • the pressure loss of the cooler can be 100 kPa or more, preferably 150 kPa or more and 200 kPa or less. As a result, a predetermined pressure loss can be secured even if the refrigerant circulation amount increases, so that the refrigerant is properly distributed in the intermediate cooler that is a plate heat exchanger, and the operation is performed without impairing the performance of the refrigerator. be able to.
  • HFC-134a is preferably used, and HFO-1234ze (E), HFO-1233zd (E), or HFO-1233zd (Z) may be used.
  • a refrigerator includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a liquid refrigerant that is led from the condenser, and a condenser that is led from the condenser.
  • An intermediate cooler that is a plate heat exchanger that exchanges heat with a two-phase refrigerant in which a part of the liquid refrigerant is expanded by a sub-expansion valve, and a main expansion that expands the liquid refrigerant led from the intermediate cooler A valve, an evaporator that evaporates the refrigerant guided from the main expansion valve, a bypass path that bypasses the intermediate cooler and guides the liquid refrigerant from the condenser to the upstream side of the main expansion valve, and the bypass A bypass valve provided in the path and a control unit for controlling the opening degree of the bypass valve are provided.
  • the flow rate of the liquid refrigerant flowing into the intermediate cooler can be reduced by opening the bypass valve according to the command from the control unit and increasing the flow rate of the refrigerant flowing through the bypass path.
  • a refrigerator includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a liquid refrigerant that is led from the condenser, and a condenser that is led from the condenser.
  • An intermediate cooler that is a plate heat exchanger that exchanges heat with a two-phase refrigerant in which a part of the liquid refrigerant is expanded by a sub-expansion valve, and a main expansion that expands the liquid refrigerant led from the intermediate cooler A valve, an evaporator that evaporates the refrigerant led from the main expansion valve, a bypass path that bypasses the intermediate cooler and guides the liquid refrigerant from the condenser to the cooled medium inlet side of the evaporator, A bypass valve provided in the bypass path and a control unit for controlling the opening degree of the bypass valve are provided.
  • the flow rate of the liquid refrigerant flowing into the intermediate cooler can be decreased by opening the bypass valve according to the command from the control unit and increasing the flow rate of the refrigerant flowing through the bypass path.
  • the main expansion valve can also be bypassed, it is not necessary to employ an expansion valve having a large diameter in anticipation of an increase in the amount of refrigerant circulation, and there is no possibility of reducing the control accuracy of the expansion valve.
  • the liquid refrigerant is guided to the cooling medium (for example, cold water) inlet side of the evaporator through the bypass path.
  • the refrigerant can be guided to the inlet side of the medium to be cooled, which is a region where the heat exchange amount is large and the refrigerant evaporates easily, so that the dryout in this region is suppressed and the heat in the evaporator is reduced.
  • the transmission rate can be improved.
  • control unit is configured such that when the difference between the pressure in the condenser and the pressure in the evaporator becomes a predetermined value or less, or the main expansion valve When the opening degree exceeds a predetermined value, the opening degree of the bypass valve is increased.
  • a control method for a refrigerator includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a liquid refrigerant led from the condenser, and the condensation
  • An intermediate cooler that is a plate heat exchanger that exchanges heat with a two-phase refrigerant that is expanded by a sub-expansion valve from a portion of the liquid refrigerant that is led from the vessel, and the liquid refrigerant that is led from the intermediate cooler is expanded
  • the flow rate of the liquid refrigerant flowing into the intercooler can be decreased by opening the bypass valve and increasing the flow rate of the refrigerant flowing through the bypass path.
  • a control method for a refrigerator includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, a liquid refrigerant led from the condenser, and the condensation
  • An intermediate cooler that is a plate heat exchanger that exchanges heat with a two-phase refrigerant that is expanded by a sub-expansion valve from a portion of the liquid refrigerant that is led from the vessel, and the liquid refrigerant that is led from the intermediate cooler is expanded
  • the flow rate of the liquid refrigerant flowing into the intermediate cooler can be reduced by opening the bypass valve and increasing the flow rate of the refrigerant flowing through the bypass path.
  • the main expansion valve can also be bypassed, it is not necessary to employ an expansion valve having a large diameter in anticipation of an increase in the amount of refrigerant circulation, and there is no possibility of reducing the control accuracy of the expansion valve.
  • the liquid refrigerant is guided to the cooling medium (for example, cold water) inlet side of the evaporator through the bypass path.
  • the refrigerant can be guided to the inlet side of the medium to be cooled, which is a region where the heat exchange amount is large and the refrigerant evaporates easily, so that the dryout in this region is suppressed and the heat in the evaporator is reduced.
  • the transmission rate can be improved.
  • a predetermined pressure loss can be secured even if the amount of refrigerant circulation increases, so that the refrigerant distribution is performed in the intermediate cooler that is a plate heat exchanger. It is carried out properly and can be operated without impairing the performance of the refrigerator. Even if the amount of refrigerant circulation increases, the flow rate of the liquid refrigerant flowing into the intermediate cooler can be reduced by increasing the flow rate of the refrigerant flowing through the bypass path that bypasses the intermediate cooler. Further, it is possible to suppress the occurrence of poor refrigerant distribution in the intermediate cooler.
  • FIG. 1 is a schematic configuration diagram illustrating a turbo refrigerator according to a first embodiment of the present invention. It is the longitudinal cross-sectional view which showed schematic structure of the intercooler of FIG. It is the figure which showed the result of the thermography of the intercooler which concerns on 1st Embodiment. It is the figure which showed the result of the thermography of the intercooler which concerns on a reference example. It is the schematic block diagram which showed the turbo refrigerator based on 2nd Embodiment of this invention. It is the schematic block diagram which showed the turbo refrigerator which concerns on 3rd Embodiment of this invention. It is the longitudinal cross-sectional view which showed the evaporator of FIG. 6 schematically.
  • a turbo refrigerator (refrigerator) 1 includes a turbo compressor (compressor) 2, a condenser 3, an intermediate cooler 4, a main expansion valve 5, an evaporator 7, and a control. Part (not shown).
  • the turbo compressor 2 is a centrifugal compressor that is driven by an inverter motor 9, and in addition to the suction port 2A and the discharge port 2B, an intermediate suction provided between a first impeller and a second impeller (not shown).
  • the low-pressure gas refrigerant sucked from the suction port 2A is compressed in two stages by the rotation of the first impeller and the second impeller, and the compressed high-pressure gas refrigerant is discharged from the discharge port 2B.
  • HFC-134a is used as the refrigerant.
  • HFO-1234ze (E), HFO-1233zd (E), or HFO-1233zd (Z) may be used.
  • the high-pressure gas refrigerant discharged from the discharge port 2B of the turbo compressor 2 is guided to the oil mist separation tank 10, and the oil content in the refrigerant is centrifuged.
  • the high-pressure cooling gas from which the oil has been centrifuged is guided from the oil mist separation tank 10 to the condenser 3.
  • the condenser 3 is a shell-and-tube heat exchanger, and exchanges heat between the high-pressure gas refrigerant supplied from the turbo compressor 2 via the oil mist separation tank 10 and the cooling water circulated through the cooling water circuit 11. By doing so, the high-pressure cooling gas is condensed and liquefied.
  • a cooling tower (not shown) is connected to the cooling water circuit 11, and the cooling water is cooled to a predetermined temperature in this cooling tower.
  • a plate heat exchanger may be used as the condenser 3.
  • the intercooler 4 exchanges heat between the liquid refrigerant that flows in the main circuit of the refrigeration cycle 8 and is guided from the condenser 3, and the two-phase refrigerant that is diverted from the main circuit and decompressed by the sub-expansion valve 13, This is a plate heat exchanger that supercools the liquid refrigerant flowing in the main circuit by the latent heat of vaporization of the refrigerant.
  • the intermediate cooler 4 also includes a gas for injecting gas refrigerant (intermediate pressure refrigerant) evaporated by supercooling the liquid refrigerant into the intermediate pressure compressed refrigerant from the intermediate suction port 2C of the turbo compressor 2.
  • a circuit 14 is connected.
  • the refrigerant supercooled through the intermediate cooler 4 is expanded by passing through the main expansion valve 5 and supplied to the evaporator 7.
  • the evaporator 7 is a shell-and-tube heat exchanger, and exchanges heat between the refrigerant guided from the main expansion valve 5 and cold water (cooled medium) circulated through the cold water circuit 15, thereby It evaporates, and cool water is cooled by the latent heat of evaporation. Note that it is desirable that the flow of the cold water supplied by the cold water pump 16 and the flow of the refrigerant be opposed to each other.
  • a plate heat exchanger may be used as the evaporator 7.
  • the refrigeration cycle 8 includes a hot gas bypass circuit 17 that bypasses a part of the high-pressure gas refrigerant from which oil has been separated by the oil mist separation tank 10 from between the condenser 3 and the turbo compressor 2.
  • a hot gas bypass valve 18 that adjusts the flow rate of the high-pressure gas refrigerant guided from the hot gas bypass circuit 17 to the turbo compressor 2 is provided.
  • thermometers 41, 42, 43 and thermometers 31, 32 are provided at the suction port 2 A, the discharge port 2 B, and the intermediate suction port 2 C of the turbo compressor 2. 33 are provided at the inlet and outlet of the cooling water circuit 11 and at the inlet and outlet of the cooling water circuit 15 respectively, and thermometers are provided at the inlet of the main expansion valve 5 respectively. 34 is provided.
  • the turbo refrigerator 1 is controlled by a control unit (not shown).
  • the control unit includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • FIG. 2 shows a schematic structure of the intercooler 4.
  • the intermediate cooler 4 is a plate heat exchanger in which a plurality of laminated plates 40 are stacked to form a plurality of adjacent flow paths.
  • the flow path 42a of the liquid refrigerant led from the condenser 3 (indicated by “CON” in the drawing) and the flow path 42b of the two-phase refrigerant led after branching from the condenser 3 and passing through the sub-expansion valve 13 are: It is provided alternately and is a counter flow.
  • the liquid refrigerant from the condenser 3 flows through the intermediate cooler 4 through the flow path 42a from the upper side to the lower side in the figure.
  • the liquid refrigerant that has passed through the intermediate cooler 4 is throttled by the main expansion valve 5 and then guided to the evaporator 7 (indicated as “EVA” in the drawing).
  • a part of the liquid refrigerant branched from the condenser 3 is throttled by the sub-expansion valve 13 to become a two-phase refrigerant, and then flows into the flow path 42b of the intermediate cooler 4 from the lower side to the upper side in the figure. Flowing.
  • a distributor 44 that provides a predetermined pressure loss is provided on the upstream side of the flow path 42b. The distributor 44 distributes the two-phase refrigerant equally to each flow path 42b.
  • the gas refrigerant changed from the two-phase refrigerant to the gas refrigerant while passing through the intermediate cooler 4 flows to the intermediate suction port 2C of the turbo compressor 2 (indicated as “COMP” in the drawing).
  • the liquid refrigerant that is guided from the condenser 3 and flows from the upper side to the lower side in the flow path 42a in the drawing is cooled by the latent heat of vaporization of the adjacent two-phase refrigerant to become a supercooled refrigerant, and is led from the sub expansion valve 13.
  • the two-phase refrigerant flowing from the lower side to the upper side in the drawing in the flow path 42b changes to a gas refrigerant by obtaining latent heat of evaporation from the adjacent liquid refrigerant.
  • the width of the laminated plate 40 is 100 mm to 400 mm, the height of the laminated plate 40 is 300 mm to 1000 mm, and the number of laminated plates 40 is 80 to 400.
  • the pressure loss of the intercooler 4 can be made 100 kPa or more, preferably 150 kPa or more and 200 kPa or less, and poor refrigerant distribution in the flow path 42b of the two-phase refrigerant can be suppressed.
  • the pressure loss of the intercooler 4 that is a plate heat exchanger is adjusted by increasing or decreasing the number of stacked layers of the stacked plates 40. Specifically, increasing the number of stacked layers increases the total channel cross-sectional area and decreases the flow velocity to reduce the pressure loss, and decreasing the number of stacked layers decreases the total channel cross-sectional area and increases the flow rate to increase the pressure loss. .
  • FIG. 3 and 4 show the state of refrigerant distribution in the intercooler 4.
  • FIG. 3 shows the intercooler 4 according to this embodiment, in which the number of stacked layers is 86.
  • the refrigerant HFC-134a is used.
  • the figure shows the result of thermography when the intercooler 4 is viewed from the front as shown in FIG. That is, in the figure, the horizontal direction is the stacking direction, the two-phase refrigerant flows from the bottom to the top, and the liquid refrigerant flows from the top to the bottom.
  • FIG. 3 shows that the temperature difference in the left-right direction is not large. This means that the refrigerant distribution is good.
  • the pressure loss was 100 kPa or more.
  • FIG. 4 is a reference example and is the result of thermography similar to FIG. 3, but is different in that the number of stacked layers is 212. From the figure, it can be seen that the temperature difference in the left-right direction (stacking direction) is large and the refrigerant distribution is not good. In the case of FIG. 4, the pressure loss was 10 to 20 kPa. In this way, it is understood that when the number of stacked layers is increased in accordance with the increase in the refrigerant circulation amount, the pressure loss in the intermediate cooler is reduced and refrigerant distribution failure occurs.
  • the width of the laminated plate 40 is 100 mm to 400 mm
  • the height of the laminated plate 40 is 300 mm to 1000 mm
  • the number of laminated plates 40 is 80 or more.
  • the pressure loss of the intercooler 4 can be 100 kPa or more, preferably 150 kPa or more and 200 kPa or less. As a result, a predetermined pressure loss can be ensured even if the refrigerant circulation amount increases, so that the refrigerant is properly distributed in the intermediate cooler 4 that is a plate heat exchanger, and the operation is performed without impairing the performance of the refrigerator. It can be carried out.
  • a bypass path 50 that bypasses the intercooler 4 and guides the liquid refrigerant from the condenser 3 to the upstream side of the main expansion valve 5 is provided.
  • the upstream end of the bypass path 50 is provided downstream of the branch point A that branches to the sub expansion valve 13.
  • a bypass valve 52 is provided in the bypass path 50.
  • an electric ball valve capable of adjusting the opening is used. However, it may be a solenoid valve that simply opens and closes.
  • a command for opening the bypass valve 52 is issued by a control unit (not shown).
  • the flow rate of the liquid refrigerant flowing into the intercooler 4 can be decreased by opening the bypass valve 52 according to the command from the control unit and increasing the flow rate of the refrigerant flowing through the bypass path 50. it can.
  • the intermediate cooler 4 does not use the plate-type heat exchanger having the configuration shown in the first embodiment, but with respect to the refrigerant flow rate that flows into the intermediate cooler 4 when liquid refrigerant is bypassed in the bypass path 50.
  • An intermediate cooler in which the pressure loss is adjusted so that desired refrigerant distribution is performed may be used.
  • a bypass path 60 is provided that bypasses the intermediate cooler 4 and guides the liquid refrigerant from the condenser 3 to the cold water (cooled medium) inlet side of the evaporator 7.
  • the upstream end of the bypass path 60 is provided downstream of the branch point A that branches to the sub expansion valve 13.
  • the bypass path 60 is provided with a bypass valve 62.
  • As the bypass valve 62 an electric ball valve capable of adjusting the opening is used. However, it may be a solenoid valve that simply opens and closes.
  • the opening degree command of the bypass valve 62 is performed by a control unit (not shown).
  • FIG. 7 shows a schematic configuration of the evaporator 7.
  • the evaporator 7 is of a shell and tube type, and is a cylindrical container having a horizontal axis whose cross section is substantially circular. Water chambers through which cold water is guided are provided on both sides of the evaporator 7, and a space sandwiched between the water chambers 45 and 46 is an evaporation chamber 47 in which refrigerant guided from the intermediate cooler 4 exists. It has become.
  • the water chambers 45 and 46 and the evaporation chamber 47 are partitioned by a tube plate 48.
  • a large number of heat transfer tubes 49 are connected between the water chambers 45 and 46. Although not shown, these heat transfer tubes 49 constitute a plurality of tube groups. Below the heat transfer tube 49, a liquid distribution structure 68, for example, a perforated plate for distributing the two-phase refrigerant flowing into the evaporator 7 is provided below the heat transfer tube 49.
  • a liquid distribution structure 68 for example, a perforated plate for distributing the two-phase refrigerant flowing into the evaporator 7 is provided below the heat transfer tube 49.
  • the cold water that has entered from one water chamber 45 passes through each heat transfer tube 49, is turned back in the other water chamber 46, returns to the water chamber 45 again, and is led to an external load. Therefore, in this case, one water chamber 45 is partitioned into a cold water inlet and a cold water outlet.
  • a refrigerant pipe 53 that introduces the refrigerant guided from the intermediate cooler 4 through the main expansion valve 5 is connected to a substantially central position of the horizontal axis.
  • a of the turbo compressor 2 is connected to the upper part of the evaporator 7.
  • a gas-liquid separation structure 66 for separating gas-liquid formed as a perforated plate is provided in the vicinity of the upstream side of the position where the suction pipe 64 is connected.
  • a hot gas bypass pipe 65 is connected to the upper end of the evaporator 7.
  • the bypass path 60 is connected to the cold water inlet side (left side in the drawing) from the central position of the evaporator 7 in the horizontal axis direction. As a result, the refrigerant having passed through the bypass valve 62 is guided to the vicinity of the heat transfer tube 49 through which the cold water on the cold water inlet side of the evaporator 7 flows.
  • the flow rate of the liquid refrigerant flowing into the intercooler 4 can be reduced by opening the bypass valve 62 according to a command from the control unit and increasing the flow rate of the refrigerant flowing through the bypass path 60. it can.
  • the refrigerant circulation amount becomes large, it is possible to prevent the liquid refrigerant from flowing excessively to the intermediate cooler 4, so that the refrigerant distribution failure in the intermediate cooler 4 that is a plate heat exchanger is prevented. Can be suppressed.
  • the main expansion valve 5 can also be bypassed, it is not necessary to employ an expansion valve having a large diameter in anticipation of an increase in the amount of refrigerant circulation, and there is no possibility of causing a decrease in the control accuracy of the expansion valve. Furthermore, since the refrigerant is guided to the cold water inlet side of the evaporator 7 via the bypass path 60, the refrigerant can be guided to the cold water inlet side, which is a region where the heat exchange amount is large and the refrigerant is liable to evaporate. It is possible to suppress the dryout in this region and improve the heat transfer coefficient in the evaporator.
  • the intermediate cooler 4 does not use the plate heat exchanger having the configuration shown in the first embodiment, but with respect to the refrigerant flow rate that flows into the intermediate cooler 4 when the liquid refrigerant is bypassed in the bypass path 60.
  • An intermediate cooler in which the pressure loss is adjusted so that desired refrigerant distribution is performed may be used.

Abstract

冷媒を圧縮するターボ圧縮機2と、ターボ圧縮機2により圧縮された冷媒を凝縮する凝縮器3と、凝縮器3から導かれる液冷媒と凝縮器3から導かれる一部の液冷媒を副膨張弁13で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器4と、中間冷却器4から導かれた液冷媒を膨張させる主膨張弁5と、主膨張弁5から導かれた冷媒を蒸発させる蒸発器7とを備え、プレート式熱交換器は、プレートの幅が100mm以上400mm以下、該プレートの高さが300mm以上1000mm以下、該プレートの積層枚数が80枚以上とされている。

Description

冷凍機およびその制御方法
 本発明は、プレート式熱交換器とされた中間冷却器を備えた冷凍機およびその制御方法に関するものである。
 二段圧縮サブクーラ一段膨張サイクルは、例えば特許文献1に記載されているように中間冷却器がプレート式熱交換器のため、二段圧縮サブクーラ二段膨張サイクルで使用する気液分離型中間冷却器よりも冷媒充填量の削減ができる。
特開2012-77971号公報([0034],図1)
 しかし、冷却水温度が低く冷媒循環量が多い場合、膨張弁前後差圧(=凝縮圧力-蒸発圧力-中間冷却器圧損)が小さくなり、膨張弁開度が大きくなりすぎて制御ができないといった問題がある。
 この対策として、膨張弁口径を大きくすることが考えられる。しかし、最小開度変化での流量調整量が大きくなり、膨張弁制御の精度の低下という問題が生じる。
 その他の対策として、中間冷却器の積層数を増やして全体の流路断面積を大きくして圧損を小さくすることが考えられる。しかし、積層数を増やして圧損を小さくしても、副膨張弁を経由した二相冷媒を各流路に分配する際の抵抗が小さくなり、冷媒分配の偏りが生じる。これでは、中間冷却器の伝熱面積を有効に使えず、冷凍機性能が低下してしまう。また、二相冷媒が十分にガス化されずに圧縮機の中間吸込口へ流れ込むキャリーオーバーが発生してしまう。
 本発明は、このような事情に鑑みてなされたものであって、プレート式熱交換器を中間冷却器に使用した場合に生じ得る冷媒循環量の増大に対して適正に運転を行うことができる冷凍機およびその制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の冷凍機およびその制御方法は以下の手段を採用する。
 すなわち、本発明の一態様にかかる冷凍機は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、該主膨張弁から導かれた冷媒を蒸発させる蒸発器とを備え、前記プレート式熱交換器は、プレートの幅が100mm以上400mm以下、該プレートの高さが300mm以上1000mm以下、該プレートの積層枚数が80枚以上とされている。
 中間冷却器としてプレート式熱交換器を用い、積層プレートの幅が100mm以上400mm以下、該積層プレートの高さが300mm以上1000mm以下、該積層プレートの積層枚数が80枚以上とすることにより、中間冷却器の圧損を100kPa以上、好ましくは150kPa以上200kPa以下とすることができる。これにより、冷媒循環量が増大しても所定の圧損を確保できるので、プレート式熱交換器とされた中間冷却器内で冷媒分配が適正に行われ、冷凍機性能を損なわずに運転を行うことができる。
 冷媒としては、HFC-134aが好適に用いられ、HFO-1234ze(E)やHFO-1233zd(E)、HFO-1233zd(Z)を用いても良い。
 また、本発明の一態様にかかる冷凍機は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記主膨張弁の上流側に導くバイパス経路と、該バイパス経路に設けられたバイパス弁と、該バイパス弁の開度を制御する制御部とを備えている。
 制御部の指令によってバイパス弁を開き、バイパス経路を流れる冷媒流量を増大させることで、中間冷却器へ流れ込む液冷媒の流量を減少させることができる。これにより、冷媒循環量が大きくなった場合でも、中間冷却器に液冷媒が過剰に流れることを抑制できるので、プレート式熱交換器とされた中間冷却器での冷媒分配不良の発生を抑制することができる。
 また、本発明の一態様にかかる冷凍機は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記蒸発器の被冷却媒体入口側に導くバイパス経路と、該バイパス経路に設けられたバイパス弁と、該バイパス弁の開度を制御する制御部とを備えている。
 制御部の指令によってバイパス弁を開き、バイパス経路を流れる冷媒流量を増大させることで、中間冷却器へ流れ込む液冷媒の流量を減少させることができる。これにより、冷媒循環量が大きくなった場合でも、中間冷却器に液冷媒が過剰に流れることを抑制できるので、プレート式熱交換器とされた中間冷却器での冷媒分配不良の発生を抑制することができる。
 また、主膨張弁もバイパスさせることができるので、冷媒循環量の増大を見込んで口径が大きな膨張弁を採用する必要もなく、膨張弁の制御精度の低下を招くおそれがない。
 さらに、バイパス経路を経て液冷媒を蒸発器の被冷却媒体(例えば冷水)入口側に導くこととした。これにより、熱交換量が大きく冷媒が蒸発してドライアウトが生じ易い領域である被冷却媒体入口側に冷媒を導くことができるので、この領域でのドライアウトを抑制して蒸発器での熱伝達率の向上を図ることができる。
 さらに、本発明の一態様にかかる冷凍機では、前記制御部は、前記凝縮器内の圧力と前記蒸発器内の圧力との差が所定値以下になった場合、又は、前記主膨張弁の開度が所定値以上になった場合に、前記バイパス弁の開度を増大させる。
 凝縮器内の圧力と蒸発器内の圧力との差が所定値以下になると、または、主膨張弁の開度が所定値以上になると、冷媒循環量が過剰になったと判断し、バイパス弁の開度を増大させる。これにより、プレート式熱交換器とされた中間冷却器での冷媒分配不良の発生を抑制することができる。
 また、本発明の一態様にかかる冷凍機の制御方法は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記主膨張弁の上流側に導くバイパス経路と、該バイパス経路に設けられたバイパス弁とを備えた冷凍機の制御方法であって、前記凝縮器内の圧力と前記蒸発器内の圧力との差が所定値以下になった場合、又は、前記主膨張弁の開度が所定値以上になった場合に、前記バイパス弁の開度を増大する。
 バイパス弁を開き、バイパス経路を流れる冷媒流量を増大させることで、中間冷却器へ流れ込む液冷媒の流量を減少させることができる。これにより、冷媒循環量が大きくなった場合でも、中間冷却器に液冷媒が過剰に流れることを抑制できるので、プレート式熱交換器とされた中間冷却器での冷媒分配不良の発生を抑制することができる。
 また、本発明の一態様にかかる冷凍機の制御方法は、冷媒を圧縮する圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記蒸発器の被冷却媒体入口側に導くバイパス経路と、該バイパス経路に設けられたバイパス弁とを備えた冷凍機の制御方法であって、前記凝縮器内の圧力と前記蒸発器内の圧力との差が所定値以下になった場合、又は、前記主膨張弁の開度が所定値以上になった場合に、前記バイパス弁の開度を増大する。
 バイパス弁を開き、バイパス経路を流れる冷媒流量を増大させることで、中間冷却器へ流れ込む液冷媒の流量を減少させることができる。これにより、冷媒循環量が大きくなった場合でも、中間冷却器に液冷媒が過剰に流れることを抑制できるので、プレート式熱交換器とされた中間冷却器での冷媒分配不良の発生を抑制することができる。
 また、主膨張弁もバイパスさせることができるので、冷媒循環量の増大を見込んで口径が大きな膨張弁を採用する必要もなく、膨張弁の制御精度の低下を招くおそれがない。
 さらに、バイパス経路を経て液冷媒を蒸発器の被冷却媒体(例えば冷水)入口側に導くこととした。これにより、熱交換量が大きく冷媒が蒸発してドライアウトが生じ易い領域である被冷却媒体入口側に冷媒を導くことができるので、この領域でのドライアウトを抑制して蒸発器での熱伝達率の向上を図ることができる。
 積層プレートの幅、高さ及び積層数を適正に選定することにより、冷媒循環量が増大しても所定の圧損を確保できるので、プレート式熱交換器とされた中間冷却器内で冷媒分配が適正に行われ、冷凍機性能を損なわずに運転を行うことができる。
 冷媒循環量が増大しても中間冷却器をバイパスするバイパス経路を流れる冷媒流量を増大させることで、中間冷却器へ流れ込む液冷媒の流量を減少させることができるので、プレート式熱交換器とされた中間冷却器での冷媒分配不良の発生を抑制することができる。
本発明の第1実施形態に係るターボ冷凍機を示した概略構成図である。 図1の中間冷却器の概略構成を示した縦断面図である。 第1実施形態に係る中間冷却器のサーモグラフィの結果を示した図である。 参考例に係る中間冷却器のサーモグラフィの結果を示した図である。 本発明の第2実施形態に係るターボ冷凍機を示した概略構成図である。 本発明の第3実施形態に係るターボ冷凍機を示した概略構成図である。 図6の蒸発器を概略的に示した縦断面図である。
 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について説明する。
 図1に示すように、ターボ冷凍機(冷凍機)1は、ターボ圧縮機(圧縮機)2と、凝縮器3と、中間冷却器4と、主膨張弁5と、蒸発器7と、制御部(図示せず)とを備えている。
 ターボ圧縮機2は、インバータモータ9により駆動される遠心圧縮機であり、吸入口2Aおよび吐出口2Bの他に、図示省略の第1羽根車と第2羽根車との間に設けられる中間吸入口2Cを備え、吸入口2Aから吸い込んだ低圧ガス冷媒を第1羽根車および第2羽根車の回転により2段圧縮し、圧縮した高圧ガス冷媒を吐出口2Bから吐き出すように構成されている。
 冷媒としては、HFC-134aが用いられる。ただし、HFO-1234ze(E)やHFO-1233zd(E)、HFO-1233zd(Z)を用いても良い。
 ターボ圧縮機2の吐出口2Bから吐き出された高圧ガス冷媒は、油ミスト分離タンク10へと導かれて、冷媒中の油分が遠心分離される。油分が遠心分離された高圧冷却ガスは、油ミスト分離タンク10から凝縮器3へと導かれる。
 凝縮器3は、シェルアンドチューブ式熱交換器であり、ターボ圧縮機2から油ミスト分離タンク10を経て供給される高圧ガス冷媒と冷却水回路11を介して循環される冷却水とを熱交換させることにより、高圧冷却ガスを凝縮液化するものである。冷却水回路11には、図示しない冷却塔が接続されており、この冷却塔にて冷却水が所定温度まで冷却される。なお、冷却水ポンプ12によって供給される冷却水の流れと高圧ガス冷媒の流れとは、対向流となるようにすることが望ましい。なお、凝縮器3としてプレート式熱交換器を用いても良い。
 中間冷却器4は、冷凍サイクル8の主回路中を流れて凝縮器3から導かれた液冷媒と、主回路から分流されて副膨張弁13により減圧された二相冷媒とを熱交換させ、冷媒の蒸発潜熱により主回路中を流れる液冷媒を過冷却するプレート式熱交換器である。また、中間冷却器4には、液冷媒を過冷却することにより蒸発されたガス冷媒(中間圧冷媒)をターボ圧縮機2の中間吸入口2Cから中間圧の圧縮冷媒中に注入するためのガス回路14が接続されている。
 中間冷却器4を経て過冷却された冷媒は、主膨張弁5を通過することにより膨張して蒸発器7に供給される。蒸発器7は、シェルアンドチューブ式熱交換器であり、主膨張弁5から導かれた冷媒と冷水回路15を介して循環される冷水(被冷却媒体)とを熱交換させることにより、冷媒を蒸発させ、その蒸発潜熱により冷水を冷却するものである。なお、冷水ポンプ16によって供給される冷水の流れと冷媒の流れとは、対向流となるようにすることが望ましい。なお、蒸発器7としてプレート式熱交換器を用いても良い。
 また、冷凍サイクル8は、油ミスト分離タンク10によって油分が分離された高圧ガス冷媒の一部を凝縮器3とターボ圧縮機2との間からバイパスするホットガスバイパス回路17を備えている。このホットガスバイパス回路17上には、ホットガスバイパス回路17からターボ圧縮機2へと導かれる高圧ガス冷媒の流量を調整するホットガスバイパス弁18が設けられている。
 冷媒、冷却水および冷水の温度や圧力を測定する測定手段として、ターボ圧縮機2の吸入口2A、吐出口2B、中間吸入口2Cには、圧力計41、42、43および温度計31、32、33が設けられ、冷却水回路11の入口および出口、冷水回路15の入口および出口には、各々温度計35、36、37、38が設けられ、主膨張弁5の入口には、温度計34が設けられている。
 ターボ冷凍機1の制御は、図示しない制御部によって行われる。
 制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 図2には、中間冷却器4の概略構造が示されている。中間冷却器4は、積層プレート40を複数枚重ねることによって並列に隣り合う複数の流路を形成したプレート式熱交換器となっている。なお、同図では、流路42a,42bが6つのみ示されているが、これはあくまでも例示であり、実際には80以上の流路となる。
 凝縮器3(図中に「CON」と表示)から導かれる液冷媒の流路42aと、凝縮器3から分岐されて副膨張弁13を経た後に導かれる二相冷媒の流路42bとは、交互に設けられており、また対向流となっている。
 凝縮器3からの液冷媒は、図において上方から下方へと流路42a内を流れて中間冷却器4を通過する。中間冷却器4を通過した液冷媒は、主膨張弁5にて絞られた後に蒸発器7(図中に「EVA」と表示)へと導かれる。
 凝縮器3から分岐された一部の液冷媒は、副膨張弁13にて絞られて二相冷媒とされた後に中間冷却器4の流路42b内へと流れ込み、図において下方から上方へと流れる。流路42bの上流側には、所定の圧損を与えるディストリビュータ44が設けられている。ディストリビュータ44によって、各流路42bに対して均等に二相冷媒を分配するようになっている。中間冷却器4を通過する間に二相冷媒からガス冷媒へと変化したガス冷媒は、ターボ圧縮機2(図中に「COMP」と表示)の中間吸込口2Cへと流れる。
 このように、凝縮器3から導かれて図において流路42aを上方から下方へ流れる液冷媒は、隣接する二相冷媒の蒸発潜熱によって冷却されて過冷却冷媒となり、副膨張弁13から導かれて流路42bを図において下方から上方へと流れる二相冷媒は、隣接する液冷媒から蒸発潜熱を得ることによってガス冷媒へと変化する。
 積層プレート40の幅は100mm以上400mm以下、積層プレート40の高さは300mm以上1000mm以下、積層プレート40の積層枚数が80枚以上400枚以下とされている。これにより、中間冷却器4の圧損を100kPa以上、好ましくは150kPa以上200kPa以下とすることができ、二相冷媒の流路42bの冷媒分配不良を抑制することができる。
 プレート式熱交換器とされた中間冷却器4の圧損は、積層プレート40の積層数を増減することによって調整される。具体的には、積層枚数を増やすことによって合計の流路断面積を増やし流速を落として圧損を小さくし、積層枚数を減らすことによって合計の流路断面積を減らし流速を上げて圧損を大きくする。
 図3及び図4には、中間冷却器4における冷媒分配の状態が示されている。
 図3は、本実施形態に係る中間冷却器4であり、積層枚数は86枚とされている。冷媒はHFC-134aを用いている。同図は、中間冷却器4を図2のように正面から見込んだ際のサーモグラフィの結果を示している。すなわち、図において左右方向が積層方向であり、下から上に向かって二相冷媒が流れ、上から下に向かって液冷媒が流れる。図3から、左右方向における温度差が大きくないことが分かる。これは、冷媒分配が良好であることを意味する。図3の場合、圧損は100kPa以上となっていた。
 一方、図4は、参考例であり、図3と同様のサーモグラフィの結果であるが、積層数が212枚という点で相違する。同図から、左右方向(積層方向)における温度差が大きく、冷媒分配が良好でないことが分かる。図4の場合、圧損は10~20kPaとなっていた。このように、冷媒循環量の増大に応じて積層数を増やすと、中間冷却器での圧損が小さくなり冷媒分配不良が生じることが分かる。
 以上により、本実施形態によれば、以下の作用効果を奏する。
 中間冷却器4としてプレート式熱交換器を用い、積層プレート40の幅が100mm以上400mm以下、積層プレート40の高さが300mm以上1000mm以下、積層プレート40の積層枚数が80枚以上とすることにより、中間冷却器4の圧損を100kPa以上、好ましくは150kPa以上200kPa以下とすることができる。これにより、冷媒循環量が増大しても所定の圧損を確保できるので、プレート式熱交換器とされた中間冷却器4内で冷媒分配が適正に行われ、冷凍機性能を損なわずに運転を行うことができる。
[第2実施形態]
 次に、本発明の第2実施形態について、図5を用いて説明する。
 本実施形態は、第1実施形態に対してバイパス経路を備えている点で相違し、その他については同様である。したがって、同一構成については同一符号を付し、その説明を省略する。
 図5に示されているように、中間冷却器4をバイパスして凝縮器3からの液冷媒を主膨張弁5の上流側に導くバイパス経路50が設けられている。バイパス経路50の上流端は、副膨張弁13へと分岐する分岐点Aよりも下流側に設けられている。
 また、バイパス経路50には、バイパス弁52が設けられている。バイパス弁52としては、開度調整が可能な電動ボール弁が用いられる。ただし、単なる開閉を行う電磁弁としても良い。バイパス弁52の開度指令は、図示しない制御部によって行われる。制御部は、凝縮器3内の圧力と蒸発器7内の圧力との差が所定値以下になった場合、又は、主膨張弁5の開度が所定値以上になった場合、冷媒循環量が過剰になったと判断し、バイパス弁52の開度を増大させる。
 このように、本実施形態によれば、制御部の指令によってバイパス弁52を開き、バイパス経路50を流れる冷媒流量を増大させることで、中間冷却器4へ流れ込む液冷媒の流量を減少させることができる。これにより、冷媒循環量が大きくなった場合でも、中間冷却器4に液冷媒が過剰に流れることを抑制できるので、プレート式熱交換器とされた中間冷却器4での冷媒分配不良の発生を抑制することができる。
 なお、中間冷却器4としては、第1実施形態で示した構成のプレート式熱交換器を用いずに、バイパス経路50に液冷媒をバイパスさせた際に中間冷却器4に流れ込む冷媒流量に対して所望の冷媒分配が行われるように圧損が調整された中間冷却器でもよい。
[第3実施形態]
 次に、本発明の第3実施形態について、図6及び図7を用いて説明する。
 本実施形態は、第1実施形態に対してバイパス経路を備えている点で相違し、その他については同様である。したがって、同一構成については同一符号を付し、その説明を省略する。
 図6に示されているように、中間冷却器4をバイパスして凝縮器3からの液冷媒を蒸発器7の冷水(被冷却媒体)入口側に導くバイパス経路60が設けられている。バイパス経路60の上流端は、副膨張弁13へと分岐する分岐点Aよりも下流側に設けられている。
 また、バイパス経路60には、バイパス弁62が設けられている。バイパス弁62としては、開度調整が可能な電動ボール弁が用いられる。ただし、単なる開閉を行う電磁弁としても良い。バイパス弁62の開度指令は、図示しない制御部によって行われる。制御部は、凝縮器3内の圧力と蒸発器7内の圧力との差が所定値以下になった場合、又は、主膨張弁5の開度が所定値以上になった場合、冷媒循環量が過剰になったと判断し、バイパス弁62の開度を増大させる。
 図7には、蒸発器7の概略構成が示されている。蒸発器7は、シェルアンドチューブ式とされており、横断面が略円形とされた水平方向軸線を有する円筒形状の容器とされている。蒸発器7の両側部には冷水が導かれる水室が設けられており、各水室45,46の間に挟まれた空間が中間冷却器4から導かれた冷媒が存在する蒸発室47となっている。各水室45,46と蒸発室47との間は、管板48にて仕切られている。
 各水室45,46間には多数の伝熱管49が接続されている。これら伝熱管49は、図示しないが複数の管群を構成している。伝熱管49の下方には、蒸発器7内に流入した二相冷媒を分配するための例えば多孔板とされた液分配構造68が設けられている。
 一方の水室45から入った冷水は、各伝熱管49を通り他方の水室46にて折り返した後に、再び水室45へと戻り、外部負荷へと導かれる。したがって、この場合、一方の水室45は、冷水入口と冷水出口の部屋が仕切られていることになる。
 蒸発器7の下方には、水平方向軸線の略中央位置に、中間冷却器4から主膨張弁5を経て導かれた冷媒を導入する冷媒配管53が接続されている。蒸発器7の上部には、蒸発器7内で蒸発した冷媒ガスをターボ圧縮機2の吸込口2Aへと導く吸込配管64が接続されている。吸込配管64が接続された位置の上流側近傍には、例えば多孔板とされた気液を分離するための気液分離構造66が設けられている。蒸発器7の上方の端部には、ホットガスバイパス管65が接続されている。
 そして、バイパス経路60は、蒸発器7の水平軸線方向の中央位置よりも冷水入口側(図において左側)に接続されている。これにより、バイパス弁62を経た冷媒は、蒸発器7の冷水入口側の冷水を流す伝熱管49の近傍に導かれることになる。
 このように、本実施形態によれば、制御部の指令によってバイパス弁62を開き、バイパス経路60を流れる冷媒流量を増大させることで、中間冷却器4へ流れ込む液冷媒の流量を減少させることができる。これにより、冷媒循環量が大きくなった場合でも、中間冷却器4に液冷媒が過剰に流れることを抑制できるので、プレート式熱交換器とされた中間冷却器4での冷媒分配不良の発生を抑制することができる。
 また、主膨張弁5もバイパスさせることができるので、冷媒循環量の増大を見込んで口径が大きな膨張弁を採用する必要もなく、膨張弁の制御精度の低下を招くおそれがない。
 さらに、バイパス経路60を経て冷媒を蒸発器7の冷水入口側に導くこととしたので、熱交換量が大きく冷媒が蒸発してドライアウトが生じ易い領域である冷水入口側に冷媒を導くことができ、この領域でのドライアウトを抑制して蒸発器での熱伝達率の向上を図ることができる。
 なお、中間冷却器4としては、第1実施形態で示した構成のプレート式熱交換器を用いずに、バイパス経路60に液冷媒をバイパスさせた際に中間冷却器4に流れ込む冷媒流量に対して所望の冷媒分配が行われるように圧損が調整された中間冷却器でもよい。
1 ターボ冷凍機(冷凍機)
2 ターボ圧縮機(圧縮機)
2A 吸入口
2B 吐出口
2C 中間吸込口
3 凝縮器
4 中間冷却器
5 主膨張弁
7 蒸発器
13 副膨張弁
40 積層プレート
50,60 バイパス経路
52,62 バイパス弁

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
     該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、
     該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、
     該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、
    を備え、
     前記プレート式熱交換器は、プレートの幅が100mm以上400mm以下、該プレートの高さが300mm以上1000mm以下、該プレートの積層枚数が80枚以上とされている冷凍機。
  2.  冷媒を圧縮する圧縮機と、
     該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
     該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、
     該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、
     該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、
     前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記主膨張弁の上流側に導くバイパス経路と、
     該バイパス経路に設けられたバイパス弁と、
     該バイパス弁の開度を制御する制御部と、
    を備えている冷凍機。
  3.  冷媒を圧縮する圧縮機と、
     該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
     該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、
     該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、
     該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、
     前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記蒸発器の被冷却媒体入口側に導くバイパス経路と、
     該バイパス経路に設けられたバイパス弁と、
     該バイパス弁の開度を制御する制御部と、
    を備えている冷凍機。
  4.  前記制御部は、前記凝縮器内の圧力と前記蒸発器内の圧力との差が所定値以下になった場合、又は、前記主膨張弁の開度が所定値以上になった場合に、前記バイパス弁の開度を増大させる請求項2又は3に記載の冷凍機。
  5.  冷媒を圧縮する圧縮機と、
     該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
     該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、
     該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、
     該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、
     前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記主膨張弁の上流側に導くバイパス経路と、
     該バイパス経路に設けられたバイパス弁と、
    を備えた冷凍機の制御方法であって、
     前記凝縮器内の圧力と前記蒸発器内の圧力との差が所定値以下になった場合、又は、前記主膨張弁の開度が所定値以上になった場合に、前記バイパス弁の開度を増大する冷凍機の制御方法。
  6.  冷媒を圧縮する圧縮機と、
     該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
     該凝縮器から導かれる液冷媒と該凝縮器から導かれる一部の液冷媒を副膨張弁で膨張させた二相冷媒とを熱交換させるプレート式熱交換器とされた中間冷却器と、
     該中間冷却器から導かれた液冷媒を膨張させる主膨張弁と、
     該主膨張弁から導かれた冷媒を蒸発させる蒸発器と、
     前記中間冷却器をバイパスして前記凝縮器からの液冷媒を前記蒸発器の被冷却媒体入口側に導くバイパス経路と、
     該バイパス経路に設けられたバイパス弁と、
    を備えた冷凍機の制御方法であって、
     前記凝縮器内の圧力と前記蒸発器内の圧力との差が所定値以下になった場合、又は、前記主膨張弁の開度が所定値以上になった場合に、前記バイパス弁の開度を増大する冷凍機の制御方法。
PCT/JP2017/003828 2016-02-19 2017-02-02 冷凍機およびその制御方法 WO2017141720A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/065,918 US20190017730A1 (en) 2016-02-19 2017-02-02 Refrigerating machine and control method thereof
CN201780005701.6A CN108474598A (zh) 2016-02-19 2017-02-02 制冷机及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030060A JP2017146068A (ja) 2016-02-19 2016-02-19 冷凍機およびその制御方法
JP2016-030060 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017141720A1 true WO2017141720A1 (ja) 2017-08-24

Family

ID=59626050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003828 WO2017141720A1 (ja) 2016-02-19 2017-02-02 冷凍機およびその制御方法

Country Status (4)

Country Link
US (1) US20190017730A1 (ja)
JP (1) JP2017146068A (ja)
CN (1) CN108474598A (ja)
WO (1) WO2017141720A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210285704A1 (en) * 2020-03-10 2021-09-16 Trane International Inc. Refrigeration apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10578342B1 (en) * 2018-10-25 2020-03-03 Ricardo Hiyagon Moromisato Enhanced compression refrigeration cycle with turbo-compressor
US11162723B2 (en) * 2019-03-29 2021-11-02 Trane International Inc. Methods and systems for controlling working fluid in HVACR systems
JP7357915B2 (ja) * 2019-10-07 2023-10-10 伸和コントロールズ株式会社 水素冷却装置、水素供給システム及び冷凍機
JP6878550B2 (ja) * 2019-10-31 2021-05-26 三菱重工サーマルシステムズ株式会社 冷凍装置
JP2022085386A (ja) * 2020-11-27 2022-06-08 三菱重工サーマルシステムズ株式会社 冷凍機
CN113048667B (zh) * 2021-03-22 2022-04-05 西安交通大学 一种低温保存箱快速启动的混合工质制冷系统及控制方法
CN113294925A (zh) * 2021-05-21 2021-08-24 浙江国祥股份有限公司 一种带复合式经济器的蒸发冷凝式冷水机组
US20230056234A1 (en) * 2021-08-20 2023-02-23 Carrier Corporation Expansion control system on a centrifugal chiller with an integral subcooler

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193390A (ja) * 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器
US20060123840A1 (en) * 2004-12-10 2006-06-15 Alexander Lifson Refrigerant system with common economizer and liquid-suction heat exchanger
JP2010091270A (ja) * 2002-11-01 2010-04-22 Ep Technology Ab 補強手段を備えた熱交換器
JP2011002186A (ja) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP2012077971A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd ターボ冷凍装置、その制御装置及びその制御方法
JP2012163243A (ja) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd 冷凍機
WO2013183113A1 (ja) * 2012-06-05 2013-12-12 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
JP2014020585A (ja) * 2012-07-12 2014-02-03 Panasonic Corp 熱交換器ユニットおよびそれを備えたヒートポンプ温水暖房装置
JP2014163625A (ja) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP2015194301A (ja) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 ターボ冷凍機
WO2016009516A1 (ja) * 2014-07-16 2016-01-21 三菱電機株式会社 冷凍空調装置
WO2016017718A1 (ja) * 2014-07-30 2016-02-04 三菱重工業株式会社 ターボ冷凍機及びその制御装置並びにその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832068A (en) * 1987-12-21 1989-05-23 American Standard Inc. Liquid/gas bypass
US20060207753A1 (en) * 2005-03-18 2006-09-21 Homayoun Sanatgar Intank oil cooler
CN101886852B (zh) * 2009-05-15 2012-07-25 珠海格力电器股份有限公司 应用过冷器的空调系统的制冷剂流量的控制方法
JP6271195B2 (ja) * 2013-09-18 2018-01-31 サンデンホールディングス株式会社 車両用空気調和装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193390A (ja) * 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器
JP2010091270A (ja) * 2002-11-01 2010-04-22 Ep Technology Ab 補強手段を備えた熱交換器
US20060123840A1 (en) * 2004-12-10 2006-06-15 Alexander Lifson Refrigerant system with common economizer and liquid-suction heat exchanger
JP2011002186A (ja) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP2012077971A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd ターボ冷凍装置、その制御装置及びその制御方法
JP2012163243A (ja) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd 冷凍機
WO2013183113A1 (ja) * 2012-06-05 2013-12-12 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
JP2014020585A (ja) * 2012-07-12 2014-02-03 Panasonic Corp 熱交換器ユニットおよびそれを備えたヒートポンプ温水暖房装置
JP2014163625A (ja) * 2013-02-27 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd ターボ冷凍機
JP2015194301A (ja) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 ターボ冷凍機
WO2016009516A1 (ja) * 2014-07-16 2016-01-21 三菱電機株式会社 冷凍空調装置
WO2016017718A1 (ja) * 2014-07-30 2016-02-04 三菱重工業株式会社 ターボ冷凍機及びその制御装置並びにその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210285704A1 (en) * 2020-03-10 2021-09-16 Trane International Inc. Refrigeration apparatus

Also Published As

Publication number Publication date
JP2017146068A (ja) 2017-08-24
US20190017730A1 (en) 2019-01-17
CN108474598A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2017141720A1 (ja) 冷凍機およびその制御方法
US10215444B2 (en) Heat exchanger having stacked coil sections
US20100005831A1 (en) Enhanced refrigerant system
JP2009150594A (ja) 冷凍装置
US7032411B2 (en) Integrated dual circuit evaporator
JP2008528946A (ja) ヒートポンプ用並流熱交換器
JP2007198693A (ja) カスケード型ヒートポンプシステム
JP6715929B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
EP2568232B1 (en) Air conditioner
US20150253040A1 (en) Refrigerator
KR101755456B1 (ko) 열교환기
WO2018154957A1 (ja) 冷凍サイクル装置
KR101173157B1 (ko) 수냉식 응축기 및 과냉각용 수냉식 열교환기를 구비하는 차량용 공조 시스템
JP2014169830A (ja) 冷凍サイクル装置、ならびに冷凍サイクル装置を備えた冷凍装置および空気調和装置
JP4661710B2 (ja) 蒸気圧縮式冷凍サイクル
JP6176470B2 (ja) 冷凍機
KR20170062160A (ko) 냉장고
JP2002205535A (ja) 自動車用凝縮器
JP2017036900A (ja) 放熱器およびそれを用いた超臨界圧冷凍サイクル
JP4352327B2 (ja) エジェクタサイクル
JP2009293887A (ja) 冷凍装置
KR100562836B1 (ko) 히트펌프 사이클
JP2010255884A (ja) 熱源機およびその制御方法
JP2014211292A (ja) 冷凍装置
JP7021582B2 (ja) 冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752983

Country of ref document: EP

Kind code of ref document: A1