JP4661710B2 - 蒸気圧縮式冷凍サイクル - Google Patents

蒸気圧縮式冷凍サイクル Download PDF

Info

Publication number
JP4661710B2
JP4661710B2 JP2006189747A JP2006189747A JP4661710B2 JP 4661710 B2 JP4661710 B2 JP 4661710B2 JP 2006189747 A JP2006189747 A JP 2006189747A JP 2006189747 A JP2006189747 A JP 2006189747A JP 4661710 B2 JP4661710 B2 JP 4661710B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
evaporator
refrigeration cycle
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006189747A
Other languages
English (en)
Other versions
JP2007315738A (ja
Inventor
秀明 鈴木
正▲琢▼ 今津
恒 家田
忠裕 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006189747A priority Critical patent/JP4661710B2/ja
Publication of JP2007315738A publication Critical patent/JP2007315738A/ja
Application granted granted Critical
Publication of JP4661710B2 publication Critical patent/JP4661710B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Description

本発明は、ノズル部から噴射する冷媒流により圧縮機が吸入する冷媒の圧力を昇圧させるエジェクタを用いた蒸気圧縮式冷凍サイクルに関する。
従来技術として、下記特許文献1に開示されたエジェクタを用いた蒸気圧縮式冷凍サイクルがある。この特許文献1では、冷媒減圧手段および冷媒循環手段の役割を果たすエジェクタの冷媒流れ下流側に第1蒸発器を配置するともに、エジェクタの冷媒吸引口の冷媒流れ上流側に第2蒸発器を配置した冷凍サイクルが開示されている。
特許文献1の冷凍サイクルによると、エジェクタノズル部から噴射された膨張時の冷媒の高速な流れにより生じる圧力低下を利用して、第2蒸発器から排出される気相冷媒を吸引するとともに、膨張時の冷媒の速度エネルギーをエジェクタ昇圧部にて圧力エネルギーに変換して冷媒圧力を上昇させるので、圧縮機の駆動動力を低減できる。
また、エジェクタ下流側の第1蒸発器とエジェクタ吸引側の第2蒸発器とにより吸熱作用を発揮することができるようになっている。
さらに、上記従来技術では、エジェクタの上流部から分岐したエジェクタ冷媒吸引口に至る冷媒分岐通路と第2蒸発器との間に固定絞り機構を設け、冷媒蒸発温度をそれぞれ異ならせた第1蒸発器と第2蒸発器とを空気流れ方向に並設して、冷房性能(蒸発器による空気冷却性能)を向上させている。
特開2005−308384号公報
本発明者らは、一層の性能向上を目指して鋭意検討を行なった結果、冷媒圧縮機を複数個設け、第1蒸発器および第2蒸発器を流れる冷媒流量を調節すれば、更なる冷却性能の向上が可能であることを見出した。
本発明は、上記点に鑑みてなされたものであり、複数の冷媒圧縮機を設けて冷却性能を更に向上することが可能な蒸気圧縮式冷凍サイクルを提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、
冷媒を吸入圧縮して吐出する第1圧縮機(11)と、
第1圧縮機(11)から吐出された冷媒の放熱を行なう第1放熱器(12)と、
第1放熱器(12)から流出した冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル部(13a)、ノズル部(13a)から噴射する冷媒流により冷媒が内部に吸引される冷媒吸引口(13b)、およびノズル部(13a)から噴射する冷媒と冷媒吸引口(13b)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(13c、13d)を有するエジェクタ(13)と、
エジェクタ(13)から流出した冷媒を蒸発させる第1蒸発器(14)と、
冷媒を吸入圧縮して吐出する第2圧縮機(21)と、
第2圧縮機(21)から吐出された冷媒の放熱を行なう第2放熱器(22)と、
第2放熱器(22)から流出した冷媒を減圧膨張させる減圧手段(23)と、
減圧手段(23)で減圧された冷媒を蒸発させ、蒸発した冷媒を冷媒吸引口(13b)に流入させる第2蒸発器(24)とを備え、
第1蒸発器(14)で蒸発した冷媒を第1圧縮機(11)および第2圧縮機(21)に分配して吸入させる蒸気圧縮式冷凍サイクルであって、
第2放熱器(22)は、第2圧縮機(21)から流出した冷媒の放熱を行う第2放熱部(22a)と、第2放熱部(22a)を流出した液相冷媒を過冷却する第2過冷却部(22b)とから構成されており、
第1圧縮機(11)の冷媒吐出量およびノズル部(13a)の冷媒減圧量の少なくともいずれかを調節可能とし、
かつ、第2圧縮機(21)の冷媒吐出量および減圧手段(23)の冷媒減圧量の少なくともいずれかを調節可能としたことを特徴としている。
これによると、第1圧縮機(11)の冷媒吐出量およびノズル部(13a)の冷媒減圧量の少なくともいずれかを調節して、ノズル部(13a)から噴射する冷媒流量(G1)を調節するとともに、第2圧縮機(21)の冷媒吐出量および減圧手段(23)の冷媒減圧量の少なくともいずれかを調節して、冷媒吸引口(13b)から吸入される冷媒流量(G2)を調節することができる。
すなわち、第1蒸発器(14)および第2蒸発器(24)を流れる冷媒流量(G1+G2、G2)を調節することが可能であり、冷却性能を一層向上することができる。
また、第2蒸発器(24)には、第2放熱部(22a)と第2過冷却部(22b)とを備える第2放熱器(22)からの冷媒が流入するようにしているから、第2蒸発器(24)入口の冷媒のエンタルピを低エンタルピ側にシフトさせることができる。これにより、第2蒸発器(24)の冷却能力を向上させることができる。
一方、エジェクタ(13)のノズル部(13a)には、第2放熱器(22)とは独立した第1放熱器(12)からの冷媒が流入するようになっているため、エジェクタ(13)のノズル部(13a)入口での冷媒のエンタルピが低エンタルピ側へシフトされることが止められる。これにより、エジェクタ(13)の回収可能エネルギの低下を防ぐことがきる。
以上により、第2蒸発器(24)における冷却能力を向上させるとともに、エジェクタ(13)における回収可能エネルギを確保することができるため、冷却効率と冷却能力とを両立させることが可能となる。
請求項2の発明では、第1放熱器(12)の伝熱面積(AR1)と第2放熱器(22)の伝熱面積(AR2)との比率(AR1:AR2)が、第1蒸発器(14)の伝熱面積(AE1)と第2蒸発器(24)の伝熱面積(AE2)との比率(AE1:AE2)と同一となるように設定されていることを特徴としている。
請求項2の発明によれば、放熱器(12,22)における熱交換能力が、蒸発器(14,24)側での熱交換能力に制限されることがない。このため、放熱器(12,22)の熱交換能力は、それぞれ本来的に発揮される熱交換能力とすることができるため、熱交換能力の向上を図ることができる。
請求項3の発明では、第2放熱部(22a)と第2過冷却部(22b)とは、一の放熱器内部を分割して形成されていることを特徴としている。このようにすれば、部品点数を抑えることができるため、装置構成が簡易化される。
請求項4の発明では、第1放熱器(12)は、第1圧縮機(11)から流出した冷媒の放熱を行う第1放熱部(12a)と、第1放熱部(12a)を流出した液相冷媒を過冷却する第1過冷却部(12b)とから構成されていることを特徴としている。
本構成においては、以下のようにして第1放熱部(12a)と第1過冷却部(12b)との体格を設定することが望ましい。本構成のように第1放熱器(12)を第1放熱部(12a)と第1過冷却部(12b)とで構成したものと、第1放熱器を第1放熱部のみで構成したもの(従来構成)とを同一体格で比較し、本構成と従来構成とで同一の放熱能力となるように圧縮機の動作を制御したとする。このときに、本構成での第1過冷却部(12b)を流出する冷媒のエンタルピを、従来構成での第1放熱器を流出する冷媒のエンタルピよりも高くできるように、第1放熱部(12a)と第1過冷却部(12b)との体格をそれぞれ設定するのである。
このようにすることで、第1過冷却部(12b)から流出する冷媒のエンタルピが、従来構成でのエンタルピよりも高くなるため、エジェクタ(13)の回収可能エネルギを増加させることができる。
請求項5の発明では、第1過冷却部(12b)及び第2過冷却部(22b)のうち少なくともいずれかは、内部熱交換器により構成されていることを特徴としている。第1過冷却部(12b)及び第2過冷却部(22b)の構成としては、本構成のように内部熱交換器によって構成するようにしても良い。
また、請求項6に記載の発明のように、制御手段(100)により、第1圧縮機(11)の冷媒吐出量およびノズル部(13a)の冷媒減圧量の少なくともいずれかを調節するとともに、第2圧縮機(21)の冷媒吐出量および減圧手段(23)の冷媒減圧量の少なくともいずれかを調節して、容易にノズル部(13a)から噴射する冷媒流量(G1)と冷媒吸引口(13b)から吸入される冷媒流量(G2)との比率を制御することができる。
また、請求項7の発明では、制御手段(100)は、ノズル部(13a)から噴射する冷媒流量(G1)と冷媒吸引口(13b)から吸入される冷媒流量(G2)との比率(G1:G2)を、第1放熱器(12)の伝熱面積(AR1)と第2放熱器(22)の伝熱面積(AR2)との比率(AR1:AR2)と同一となるように制御することを特徴としている。
この種の冷凍サイクルでは、所定の運転条件の下で最大能力が発揮される流量比(G1:G2)が決まっており、この流量比(G1:G2)に基づいてサイクル内の各構成要素の仕様を設定するのが通常である。ここで、各構成要素の仕様の設定としては、第1放熱器(12)と第2放熱器(22)との伝熱面積の比率(AR1:AR2)、及び第1蒸発器(14)と第2蒸発器(24)との伝熱面積の比率(AE1:AE2)が流量比(G1:G2)と同一となるように放熱器(12,22)及び蒸発器(14,24)の仕様を決定することが望ましい。
従って、放熱器(12,22)及び蒸発器(14,24)が上述の仕様に設定されていれば、流量比(G1:G2)を本発明のように制御することで、請求項2に記載した効果が発揮され、発生する最大能力を飛躍的に向上させることができる。
また、請求項8に記載の発明では、制御手段(100)は、第2蒸発器(24)の出口における冷媒の過熱度に基づいて、ノズル部(13a)から噴射する冷媒流量と冷媒吸引口(13b)から吸入される冷媒流量との比率を制御することを特徴としている。
これによると、第2蒸発器(24)に流れる冷媒流量を、過熱度に基づいて最適に制御することが可能である。したがって、効率のよい運転を行ない冷却性能をより一層向上することが可能である。
また、請求項9に記載の発明では、請求項3に記載の発明において、
第2蒸発器(24)の出口における冷媒の圧力を検出する冷媒圧力検出手段(94)と、
第2蒸発器(24)の出口における冷媒の温度またはその関連値を検出する冷媒温度検出手段(95)とを備え、
制御手段(100)は、冷媒圧力検出手段(94)が検出した冷媒圧力、および冷媒温度検出手段(95)が検出した冷媒温度に基づいて、第2蒸発器(24)の出口における冷媒の過熱度を算出することを特徴としている。
これによると、制御装置(100)は、冷媒の圧力と温度とから、容易に第2蒸発器(24)の出口における冷媒の冷媒の過熱度を算出することができる。
また、請求項10に記載の発明では、請求項2に記載の発明において、
第2蒸発器(24)の出口における冷媒の圧力を検出する冷媒圧力検出手段(94)と、
第2蒸発器(24)の出口における冷媒の温度またはその関連値を検出する冷媒温度検出手段(95)とを備え、
制御手段(100)は、冷媒圧力検出手段(94)が検出した冷媒圧力、および冷媒温度検出手段(95)が検出した冷媒温度に基づいて、ノズル部(13a)から噴射する冷媒流量と冷媒吸引口(13b)から吸入される冷媒流量との比率を制御することを特徴としている。
これによると、冷媒圧力および冷媒温度に基づいて、第2蒸発器(24)に流れる冷媒流量を最適に制御することが可能である。したがって、制御の都度冷媒過熱度の算出を行なわなくても、効率のよい運転を行ない冷却性能をより一層向上することが可能である。
また、請求項11に記載の発明のように、冷媒圧力検出手段(94)は、第2蒸発器(24)の出口側に設けた圧力センサ(94)とし、冷媒温度検出手段(95)は、関連値として、第2蒸発器(24)を通過した外部流体の温度を検出する温度センサ(95)とすることができる。
また、請求項12に記載の発明では、第1圧縮機(11)の冷媒吐出量および第2圧縮機(21)の冷媒吐出量の両者を調節可能としたことを特徴としている。
これによると、第1圧縮機(11)および第2圧縮機(21)の作動を制御することで、容易にノズル部(13a)から噴射する冷媒流量(G1)、および冷媒吸引口(13b)から吸入される冷媒流量(G2)を調節することができる。
また、請求項13に記載の発明のように、第1圧縮機(11)の冷媒吐出量および第2圧縮機(21)の冷媒吐出量のいずれかを調節可能としたものとすることもできる。
すなわち、請求項14に記載の発明のように、第1圧縮機(11)の冷媒吐出量を調節可能としたものとすることができ、請求項15に記載の発明のように、第2圧縮機(21)の冷媒吐出量を調節可能としたものとすることもできる。
また、請求項12または請求項114に記載の発明のように、第1圧縮機(11)の冷媒吐出量を調節可能とした場合には、請求項16に記載の発明のように、ノズル部(13a)は、開度を固定することができる。すなわち、固定開度ノズルを備えるエジェクタ(13)を採用することができる。これによると、エジェクタ(13)のノズル部開度調節機構等が不要であるので、構成を簡素化することができる。
また、請求項12または請求項15に記載の発明のように、第2圧縮機(21)の冷媒吐出量を調節可能とした場合には、請求項17に記載の発明のように、減圧手段(23)は固定絞り手段(23)とすることができる。これによると、減圧手段(23)の絞り開度調節機構等が不要であるので、構成を簡素化することができる。
また、請求項18に記載の発明では、
第2圧縮機(21)の冷媒吐出量および減圧手段(23A)の冷媒減圧量の両者が調節可能であり、
第2圧縮機(21)の冷媒吐出量が所定量まで減少した場合に、減圧手段(23A)の冷媒減圧量を増大させることを特徴としている。
これによると、第2蒸発器(24)を流れる冷媒を低流量とする必要があるときには、第2圧縮機(21)を安定作動するように運転しつつ、減圧手段(23)により流量調節することができる。
また、請求項19に記載の発明のように、請求項18に記載の発明において、第2圧縮機(21)の冷媒吐出量が前記所定量まで減少した場合に、第2圧縮機(21)の冷媒吐出量を前記所定量に固定すれば、第2圧縮機(21)を確実に安定作動状態で運転することができる。また、第2圧縮機(21)の冷媒吐出量および減圧手段(23A)の冷媒減圧量を同時に変更する必要がないので、制御が容易である。
なお、上記各手段に付した括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示す一例である。
以下、本発明の実施の形態を図に基づいて説明する。
(第1の実施形態)
図1は、本発明を適用した第1の実施形態における蒸気圧縮式の冷凍サイクル1を示す模式構成図である。本実施形態では、冷凍サイクル1を車両用冷凍サイクル装置に適用した例を示す。
本実施形態の冷凍サイクル1では、冷媒を吸入圧縮する圧縮機を複数個(第1圧縮機11および第2圧縮機21の2個)備えており、第1圧縮機11、第2圧縮機21は、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電動モータの回転数調整により冷媒吐出能力を調整できる電動圧縮機としている。
第1圧縮機11の冷媒吐出側には第1放熱器12が配置されている。第1放熱器12は第1圧縮機11から吐出された高圧冷媒とコンデンサファン(冷却ファン)36により送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
第1放熱器12よりもさらに冷媒流れ下流側部位には、液相冷媒と気相冷媒とを分離するレシーバ51が配されており、このうち液相冷媒のみが当該レシーバ51の下流側部位に配置されたエジェクタ13に流出する。
エジェクタ13は冷媒を減圧する減圧手段であるとともに、高速で噴出する冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行なう冷媒循環手段(運動量輸送式ポンプ)でもある(JIS Z 8126 番号2.1.2.3等参照)。
エジェクタ13には、第1放熱器12から流入する高圧冷媒の通路面積を小さく絞って、高圧冷媒を等エントロピ的に減圧膨張させるノズル部13aと、ノズル部13aの冷媒噴出口と同一空間に配置され、後述する第2蒸発器24からの気相冷媒を吸引する冷媒吸引口13bが備えられている。
本実施形態におけるエジェクタ13のノズル部13aは、ノズル開度を固定された固定ノズルである。したがって、ニードル弁体等を駆動するためのステッピングモータ等の駆動手段を備えていない。
ノズル部13aおよび冷媒吸引口13bの冷媒流れ下流側部位には、ノズル部13aからの高速度の冷媒流と冷媒吸引口13bの吸引冷媒とを混合する混合部13cが設けられている。
そして、混合部13cの冷媒流れ下流側にディフューザ部13dが配置されている。このディフューザ部13dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。
なお、本実施形態のエジェクタ13では、混合部13cも冷媒の通路面積を徐々に大きくする形状に形成されており、混合部13cとディフューザ部13dとからなる構成が本実施形態のエジェクタ13における昇圧部である。
エジェクタ13のディフューザ部13dの下流側に第1蒸発器14が接続され、この第1蒸発器14の冷媒流れ下流側は分岐点zにおいて分岐しており、第1圧縮機11および第2圧縮機21の吸入側に接続される。
第1圧縮機11、第1放熱器12、エジェクタ13、および第1蒸発器14は、冷媒循環通路10により環状に接続されている。
そして、この冷媒循環通路10の第1蒸発器14下流側かつ第1圧縮機11上流側にある分岐点zから冷媒分岐通路20が分岐されており、この冷媒分岐通路20の下流側はエジェクタ13の冷媒吸引口13bに接続されている。
この冷媒分岐通路20には、分岐点z下流側直後に第2圧縮機21が配設され、第2圧縮機21の冷媒吐出側には第2放熱器22が配置されている。第2放熱器22は第1放熱器12に並設されており、第2圧縮機21から吐出された高圧冷媒と前述のコンデンサファン(冷却ファン)36により送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
この第2放熱器22は、第2圧縮機21から流出した冷媒を冷却する第2放熱部22aと、この第2放熱部22aから流出した冷媒を過冷却する第2過冷却部22bとを備える。第2放熱部22aでは、第2圧縮機21から流出した冷媒を外気との熱交換によって冷却し、凝縮する。また、第2過冷却部22bでは、第2放熱部22aからの冷媒を外気との熱交換によってさらに冷却する。なお、第2放熱部22aと第2過冷却部22bとの間には、液相冷媒と気相冷媒とに分離するレシーバ52が配置されており、第2放熱部22aを流出した冷媒のうち液相冷媒のみが第2過冷却部22bに流入するようになっている。
第2放熱器22よりもさらに冷媒流れ下流側部位には、減圧手段である膨張弁23が配置され、この膨張弁23よりも冷媒流れ下流側部位には第2蒸発器24が配置されている。本実施形態の膨張弁23は固定絞り機構(固定絞り手段)であり、具体的にはオリフィスのような固定絞りで構成できる。
本実施形態では、第1放熱器12及び第2放熱器22は、1つの放熱器を複数の領域に区画して構成しており、具体的には、第1放熱器12として機能する領域、第2放熱器22のうち第2放熱部22aとして機能する領域、及び第2放熱器22のうち第2過冷却部22bとして機能する領域の3つの領域に区画して構成されている。
また、蒸発器14、24は一体構造に組み付けられており、2つの蒸発器14、24を1つのケース30内に収納するようになっている。そして、ケース30内に構成される空気通路に共通のブロワ(電動送風機)31により空気(被冷却空気)を矢印Aのごとく送風し、この送風空気を2つの蒸発器14、24で冷却するようなっている。
2つの蒸発器14、24で冷却された冷風を共通の冷却対象空間40に送り込み、これにより、2つの蒸発器14、24にて共通の冷却対象空間40を冷却するようになっている。
ここで、2つの蒸発器14、24のうち、エジェクタ13下流側の冷媒循環通路10に配設される第1蒸発器14を空気流れAの上流側に配置し、エジェクタ13の冷媒吸引口13bに接続される第2蒸発器24を空気流れAの下流側に配置している。
なお、本実施形態の冷凍サイクル1を車両空調用冷凍サイクル装置に適用する場合は、車室内空間が冷却対象空間40となる。また、本実施形態の冷凍サイクル1を冷凍車用冷凍サイクル装置に適用する場合は冷凍車の冷凍冷蔵庫内空間が冷却対象空間40となる。
図1において符号100を付した構成は空調装置用の制御装置であって、制御装置100は本実施形態における制御手段である。
制御装置100は、冷却対象空間40内の温度(内気温度)を検出する内気温検出手段である内気温センサ90からの温度情報や、図示しない操作パネルに設けられた冷却対象空間40温度設定手段からの設定温度情報等の入力情報に基づいて、第1圧縮機11、第2圧縮機21、ブロワ31、コンデンサファン36等を作動制御するようになっている。
次に、上記構成に基づき、本実施形態の蒸気圧縮式冷凍サイクル1の作動について説明する。
図2は、制御装置100の概略制御動作を示すフローチャートである。
図2に示すように、制御装置100は、まず、要求される冷房能力を算出する(ステップ110)。具体的には、冷却対象空間40の設定温度と内気温センサ90が検出する冷却対象空間40内の温度との差ΔTを算出する。
そして、次に、全体冷媒流量を算出する(ステップ120)。全体冷媒流量は、第1圧縮機11および第2圧縮機21により吐出され冷媒循環通路10および冷媒分岐通路20を流れる冷媒の全体流量であり、第1蒸発器14を流れる冷媒流量に相当する。
全体冷媒流量の算出は、例えば、予め設定した冷房条件と冷媒流量との関係式から算出する方法、もしくは冷凍サイクル1の冷媒高圧側圧力と低圧側圧力とを検出する圧力センサを設け両圧力センサの検出値に基づいて算出する方法等の周知の方法で実施する。
その後、全体流量に対し予めマップ化された最適な流量比(冷媒循環通路10を流れエジェクタ13ノズル部13aから噴射される冷媒流量G1と冷媒分岐通路20を流れエジェクタ13冷媒吸引口13bから吸引される冷媒流量G2の比)を算出する(ステップ130)。
次に、ステップ130で算出した最適な流量比から、第1圧縮機11および第2圧縮機21の最適な冷媒吐出量を算出する。両圧縮機11、21が可変容量タイプである場合には最適な容量を決定し、両圧縮機11、21が電動圧縮機である場合には電動モータの最適回転数を決定して、第1、第2圧縮機11、21を作動制御する(ステップ160)。
そして、最後に、コンデンサファン36およびブロワ31が最適風量を発生するように、コンデンサファン36の駆動モータおよびブロワ31の駆動モータを作動制御して(ステップ170)、ステップ110にリターンする。
上述した制御装置100の制御動作により、図1に示す第1圧縮機11および第2圧縮機21が作動すると、第1蒸発器14から流出したガス状冷媒が分岐点zにおいて分配されて両圧縮機11、21に吸入圧縮される。
第1圧縮機11で圧縮され吐出された高温高圧状態の冷媒は第1放熱器12に流入する。第1放熱器12では高温の冷媒が外気により冷却されて凝縮する。第1放熱器12から流出した高圧液相冷媒は、レシーバ51を介してエジェクタ13に向かって流れる。
一方、第2圧縮機21で圧縮され吐出された高温高圧状態の冷媒は第2放熱部22aに流入する。第2放熱部22aでは高温の冷媒が外気により冷却されて凝縮する。第2放熱部22aから流出した高圧液相冷媒は、レシーバ52を介して第2過冷却部22bに流入し、この第2過冷却部22bでさらに冷却される。第2過冷却部22bを流出した冷媒は、膨張弁23で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器24に流入する。第2蒸発器24内では、矢印A方向に外部を流れる送風空気から冷媒が吸熱して蒸発する。
第1放熱器12から流出してエジェクタ13に流入した冷媒流れはノズル部13aで減圧され膨張する。従って、ノズル部13aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部13aの噴出口から冷媒は高速度の流れとなって噴出する。この際の冷媒圧力低下により、冷媒吸引口13bから分岐冷媒通路20の第2蒸発器24通過後の冷媒(気相冷媒)を吸引する。
ノズル部13aから噴出した冷媒と冷媒吸引口13bから吸引された冷媒は、ノズル部13a下流側の混合部13cで混合してディフューザ部13dに流入する。このディフューザ部13dでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
そして、エジェクタ13のディフューザ部13dから流出した冷媒は第1蒸発器14に流入する。第1蒸発器14内を流れる低温の低圧冷媒は、矢印A方向に外部を流れる送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、前述の分岐点zで分流され第1圧縮機11および第2圧縮機21に再び吸入圧縮される。
本実施形態の冷凍サイクルにおけるP−h線図は図3に示すようである。線図上のa〜zの符号は、図1に示す冷凍サイクル1上の各位置a〜zにおける冷媒の状態を示したものである。これによると、第1放熱器12の出口(符号bの位置。エジェクタ13のノズル部13a入口)での冷媒のエンタルピは過冷却されることがないため飽和液線に一致している。一方、第2放熱器22においては、第2放熱部22a出口(符号fの位置)での冷媒が飽和液線に一致しており、第2過冷却部22b出口(符号gの位置。第2蒸発器24入口)における冷媒のエンタルピは、過冷却によって第2放熱部22a出口でのエンタルピよりも低くなっている。
ここで、エジェクタ13での吸入圧上昇分ΔPは、エジェクタ13のノズル部13aの冷媒入口(符号bの位置)とノズル部13bの冷媒出口(符号cの位置)との比エンタルピ差Δhe(即ち、回収可能エネルギのことである。)に応じて決まる。一方、第2蒸発器24における冷却能力は、当該第2蒸発器24出口(符号iの位置)のエンタルピと第2放熱器22出口(符号hの位置)のエンタルピとのエンタルピ差Δherに応じて決まる。
従来構成の冷凍サイクルでは、放熱器が1つで構成されており、この放熱器から流出した冷媒をエジェクタ13のノズル部13a側と第2蒸発器24側とに分岐するようにしているため、第2蒸発器24入口でのエンタルピを低エンタルピ側にシフトすることができない(図3において、符号gの位置が符号bの位置に一致した状態となる)。このため、第2凝縮器24の冷却能力を向上させるこが困難である。
そこで、放熱器に過冷却器を設けた構成とした場合、第2蒸発器24入口の冷媒のエンタルピを低エンタルピ側にシフトさせてこの第2蒸発器24の冷却能力を向上させることはできるものの、エジェクタ13のノズル部13a入口の冷媒のエンタルピも同時に低エンタルピ側にシフトするため(図3において、符号bの位置が符号gの位置に一致した状態となる)、エジェクタ13での回収可能エネルギが低下し、冷却効率が低下する。
これに対して、本実施形態では、第2蒸発器24には、第2放熱部22aと第2過冷却部22bとを備える第2放熱器22からの冷媒が流入するようにしているから、第2蒸発器24入口の冷媒のエンタルピを低エンタルピ側にシフトさせることができる。これにより、第2蒸発器24の冷却能力を向上させることができる。
一方、エジェクタ13のノズル部13aには、第2放熱器22とは独立した第1放熱器12からの冷媒が流入するようになっているため、エジェクタ13のノズル部13a入口での冷媒のエンタルピが低エンタルピ側へシフトされることを止めることができる。これにより、エジェクタ13の回収可能エネルギの低下を防ぐことがきる。
以上により、第2蒸発器24における冷却能力を向上させることがとともに、エジェクタ13における回収可能エネルギを確保することができるため、冷却効率と冷却能力とを両立させることが可能となる。
さらに、図3に示すように、第1放熱器12での冷媒圧力のみを高圧側にシフトさせることができるため、エジェクタ13での回収可能エネルギが増加し、両圧縮機11,21での消費動力を低減して冷却効率を向上させることができる。
また、エジェクタ13の昇圧部において冷媒圧力が昇圧されるので、第1蒸発器14内の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器24内の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。
そして、送風空気の流れ方向Aに対して冷媒蒸発温度が高い第1蒸発器14を上流側に配置し、冷媒蒸発温度が低い第2蒸発器24を下流側に配置しているので、第1蒸発器14における冷媒蒸発温度と送風空気との温度差および第2蒸発器24における冷媒蒸発温度と送風空気との温度差を両方とも確保し易い。
このため、第1、第2蒸発器14、24の冷却性能を両方とも有効に発揮できる。従って、共通の冷却対象空間40に対する冷却性能を第1、第2蒸発器14、24の組み合わせにて効果的に向上できる。また、混合部13c、ディフューザ部13dでの昇圧作用により第1、第2圧縮機11、21の吸入圧を上昇して、両圧縮機11、21の駆動動力を低減することができる。
第1圧縮機11および第2圧縮機21は、図2に示すステップ160の制御により、それぞれ制御装置100により決定された量の冷媒を吐出するように作動される。
したがって、冷媒循環通路10を流れエジェクタ13ノズル部13aから噴射される冷媒流量G1および冷媒分岐通路20を流れエジェクタ13冷媒吸引口13bから吸引される冷媒流量G2は、ステップ130で算出された最適流量比となる。また、冷凍サイクル1内を循環する全体冷媒流量(G1とG2との和)はステップ120で算出された冷房能力に対応した流量となる。
上述の構成および作動によれば、制御手段(100)は、要求される冷房能力に応じて、第1圧縮機11の冷媒吐出量および第2圧縮機21の冷媒吐出量を調節して、冷凍サイクル1内を循環する冷媒流量(全体冷媒流量G1+G2)、およびエジェクタ13ノズル部13aから噴射する冷媒流量G1とエジェクタ13冷媒吸引口13bから吸入される冷媒流量G2との比率を制御するようになっている。
したがって、第1蒸発器14を流れる冷媒流量(G1+G2)および第2蒸発器24を流れる冷媒流量(G2)を、要求される冷房能力に応じて調節することが可能であり、冷却性能を一層向上することができる。
通常サイクル熱負荷が小さい条件では、サイクルの高低圧差が小さくなって、エジェクタ13の入力が小さくなる。この場合に、特許文献1のサイクルでは、第2蒸発器を通過する冷媒流量がエジェクタの冷媒吸引能力のみに依存するので、エジェクタの入力低下→エジェクタの冷媒吸引能力の低下→第2蒸発器の冷媒流量の減少が発生して、第2蒸発器の冷却性能を確保しにくい。
これに対し、本実施形態によると、冷凍サイクル1の冷媒回路は圧縮機の上流部で分岐されており、エジェクタ13のノズル部13aに入力される冷媒の通路とエジェクタ13の冷媒吸引口13bに吸引される冷媒の通路とが、並列的な接続関係となっている。そして、両通路にそれぞれ圧縮機11、21を設けて冷媒吐出量を制御している。
このため、冷媒分岐通路20にエジェクタ13の冷媒吸引能力だけでなく、圧縮機21の冷媒吸入、吐出能力をも利用して冷媒を供給できる。これにより、エジェクタ13の入力低下→エジェクタ13の冷媒吸引能力の低下という現象が発生しても、第2蒸発器24側の冷媒流量の減少度合いを特許文献1のサイクルよりも小さくできる。したがって、低熱負荷条件でも、第2蒸発器24の冷却性能を確保しやすい。
また、制御装置100は、第1圧縮機11および第2圧縮機21の作動を制御することで、エジェクタ13ノズル部13aから噴射する冷媒流量G1、およびエジェクタ13冷媒吸引口13bから吸入される冷媒流量G2を、容易に調節することができる。
さらに、エジェクタ13はノズル部13a開度を固定するタイプとすることができ、膨張弁23は固定絞りとすることができる。したがって、エジェクタ13のノズル部開度調節機構、および膨張弁23の絞り開度調節機構等が不要であるので、構成を簡素化してコストを低減することが可能である。
なお、本実施形態では蒸気圧縮式の冷凍サイクル1を車両用冷凍サイクル装置に適用した例を説明したが、本発明を適用した冷凍サイクルは、特に車室内空間が大きいバス等の車両の車両用空調装置に適用して好適である。
バス等の空調装置は、上述したように空調空間が大きいため、従来から複数の冷媒圧縮機を備え、圧縮機の数に対応した数の冷凍サイクルを搭載したものが知られている。例えば、圧縮機を有する独立した冷凍サイクルを2系統搭載した空調装置がある。
これに対し、本実施形態の冷凍サイクル1を採用した空調装置であれば、従来の独立2系統サイクルと同様に2台の圧縮機を用いて2つの蒸発器で冷房能力を発揮する場合であっても、低圧側の冷媒配管系を一部共通に用いる構成となり、配管を簡素化することができる。
(第2の実施形態)
本発明に係る第2の実施形態について図4ないし図6を参照して説明する。尚、第1の実施形態と同一の部分についてはその説明を省略し、相違点のみを説明する。本実施形態では、図4に示すように、第1放熱器12の伝熱面積(AR1)と第2放熱器22の伝熱面積(AR2)との比率(AR1:AR2)(以下、放熱器側比率(AR1:AR2)という)は、第1蒸発器14の伝熱面積(AE1)と第2蒸発器24の伝熱面積(AE2)との比率(AE1:AE2)(以下、蒸発器側比率(AE1:AE2)という)と同一となるように設定されている。
ここで、蒸発器14,24について、例えばプレートフィンタイプのものを用いているときには、それぞれのプレートフィン枚数の比率を蒸発器側比率(AE1:AE2)として規定できる(図4(A)参照)。
そして、放熱器側比率(AR1:AR2)は、以下の手順によって設定することができる。例えば、放熱器12,22がプレートフィンタイプの放熱器によって区画形成されている場合には、それぞれの放熱器12,22の正面面積の比率が上記の放熱器側比率(AR1:AR2)と一致するように放熱器を区画すれば良い。あるいは、各放熱器12,22に備えられるチューブ本数の比率が上記の比率(AR1:AR2)と一致するように放熱器を区画するようにしてもよい(図4(B)参照)。
このように、放熱器側比率(AR1:AR2)が、蒸発器側比率(AE1:AE2)と同一とされていれば、放熱器12,22における放熱能力が、蒸発器14,24の冷凍能力に制限されることがなくなり、放熱器12,22での放熱能力を最大限に発揮できる。
図5は、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)とは異なる比率にしたときの放熱器12、22全体の熱交換能力(Qr1)と、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)と同一比率にしたときの放熱器12、22全体の熱交換能力(Qr2)とを示している。各熱交換能力(Qr1)(Qr2)は、放熱器12,22における冷媒側能力と空気側能力とのバランス点によって示される。
また、図6は、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)とは異なる比率にしたときの蒸発器14、24全体の熱交換能力(Qe1)と、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)と同一比率にしたときの蒸発器14、24全体の熱交換能力(Qe2)とを示している。各熱交換能力(Qe1)(Qe2)は、蒸発器14,24における冷媒側能力と空気側能力とのバランス点によって示される。
まず、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)とは異なる比率にしたときの熱交換能力(Qr1)について説明する。例えば、第1蒸発器14の伝熱面積(AE1)と第2蒸発器24の伝熱面積(AE2)との比率(AE1:AE2)が6:4とされているときに、第1放熱器12の伝熱面積(AR1)と第2放熱器22の伝熱面積(AR2)との比率(AR1:AR2)を5:5としたとする。このとき、第2蒸発器24の冷媒蒸発量が第2放熱器22の冷媒凝縮量よりも少なくなるため、第2放熱器22の冷媒側能力は第2蒸発器24の冷媒側能力に制限されることとなる。従って、放熱器12,22全体での冷媒側能力は、第2放熱器22が本来的に発揮できる冷媒側能力から第2蒸発器24によって制限された冷媒側能力の差分だけ低い能力となり(図5中(A)のライン)、この冷媒側能力と空気側能力とのバランス点が放熱器12,22全体としての熱交換能力(Qr1)となる。
また、蒸発器側においては、第1放熱器12の冷媒凝縮量が第1蒸発器14の冷媒蒸発量よりも少なくなるため、第1蒸発器14の冷媒側能力は第1放熱器12の冷媒側能力に制限されることとなる。従って、蒸発器14,24全体での冷媒側能力は、第1蒸発器14において、この第1蒸発器14が本来的に発揮できる冷媒側能力から第1放熱器12によって制限された冷媒側能力の差分だけ低い能力となり(図6中(C)のライン)、この冷媒側能力と空気側能力とのバランス点が蒸発器14,24全体としての熱交換能力(Qe1)となる。
従って、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)とは異なる比率にしたときには、放熱器12,22と蒸発器14,24とが互いに冷媒側能力を制限しあうことで、熱交換能力(Qr1)と熱交換能力(Qe1)とが同一となるようにバランスする。
一方、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)と同一の比率にしたときの熱交換能力(Qr2)について説明する。例えば、第1蒸発器14の伝熱面積(AE1)と第2蒸発器24の伝熱面積(AE2)との比率(AE1:AE2)が6:4とされているときに、第1放熱器12の伝熱面積(AR1)と第2放熱器22の伝熱面積(AR2)との比率(AR1:AR2)を同じく6:4としたとする。このとき、第1放熱器12の冷媒凝縮量と第1蒸発器14の冷媒蒸発量とは等しくなり、第1放熱器12の冷媒側能力が第1蒸発器14の冷媒側能力に制限されることがない。また、第2放熱器22の冷媒凝縮量と第2蒸発器24の冷媒蒸発量とも等しくなり、第2放熱器22の冷媒側能力が第2蒸発器24の冷媒側能力に制限されることがない。
従って、放熱器12,22全体での冷媒側能力は、両放熱器12,22が本来的に発揮できる冷媒側能力と同等となることで、上述した場合での冷媒側能力よりも向上することとなる(図5中(B)のライン)。この結果、冷媒側能力と空気側能力とのバランス点が高能力に移動し、放熱器12,22全体としての熱交換能力(Qr2)は前述の熱交換能力(Qr1)よりも向上する。
また、蒸発器器14,24全体での冷媒側能力についても、両蒸発器14,24が本来的に発揮できる冷媒側能力と同等となることで、上述した場合での冷媒側能力よりも向上することとなる(図6中(D)のライン)。この結果、冷媒側能力と空気側能力とのバランス点が高能力に移動し、蒸発器14,24全体としての熱交換能力(Qe2)は前述の熱交換能力(Qe1)よりも向上する。
従って、放熱器側比率(AR1:AR2)を蒸発器側比率(AE1:AE2)と同一比率にしたときには、放熱器12,22と蒸発器14,24とはそれぞれ本来の冷媒側能力を発揮できるため、上述の熱交換能力(Qr1=Qe1)よりも高い熱交換能力(Qr2=Qe2)でバランスする。
また、図2におけるステップ130にて、流量比(G1:G2)を、放熱器側比率(AR1:AR2)、蒸発器側比率(AE1:AE2)と同一となるように制御した場合には(請求項に記載の「ノズル部(13a)から噴射する冷媒流量と冷媒吸引口(13b)から吸入される冷媒流量との比率(G1:G2)を、伝熱面積の比率(AR1:AR2)と同一となるように制御する」構成に相当)、以下の効果も得られる。
この種の冷凍サイクルでは、所定の条件の下で最大能力が発揮される流量比(G1:G2)が決まっており、この流量比(G1:G2)に基づいてサイクル内の各構成要素の仕様を設定するのが通常である。ここで、本実施形態においては、放熱器側比率(AR1:AR2)と蒸発器側比率(AE1:AE2)とを、上述した流量比(G1:G2)と同一となるように放熱器12,22及び蒸発器14,24の仕様を決定すればよい。
これにより、流量比(G1:G2)を放熱器側比率(AR1:AR2)、蒸発器側比率(AE1:AE2)と同一となるように制御した場合には、上述した放熱器12,22の熱交換能力の向上分が、冷凍サイクル全体としての能力に作用し、発揮される最大能力を飛躍的に向上させることができる。
(第3の実施形態)
本発明に係る第3の実施形態について図7または図8を参照して説明する。尚、上記第1の実施形態と同一の部分についてはその説明を省略し、相違点のみを説明する。第1の実施形態では、第2放熱器22のみに当該冷媒を過冷却する第2過冷却部22bを備えた構成を示したが、例えば、図7に示すように、第1放熱器12にも過冷却部を備えた構成としても良い。具体的には、第1放熱器12を、第1圧縮機11から流出した冷媒を冷却する第1放熱部12aと、この第1放熱部12aから流出した冷媒を過冷却する第1過冷却部12bとにより構成する。
この構成では、第1放熱部12aは、第1圧縮機11から流出した冷媒を外気との熱交換によって冷却し、凝縮する。また、第1過冷却部12bは、第1放熱部12aからの冷媒を外気との熱交換によってさらに冷却する。なお、第1放熱部12aと第1過冷却部12bとの間に、レシーバ51を配置し、第1放熱部12aを流出した冷媒のうち液相冷媒のみを第1過冷却部12bに流入させるようにする。
本実施形態のように、第1放熱器12を、第1放熱部12aと第1過冷却部12bとで構成する場合には、以下のようにして両者12a,12bの体格を設定する。
本実施形態のように第1放熱器12を第1放熱部12aと第1過冷却部12bとで構成したもの(本構成)と、第1放熱器を第1放熱部のみで構成したもの(従来構成)とを同一体格で比較し、本構成と従来構成とで同一の放熱能力となるように制御装置100が圧縮機の動作を制御したとする。このような条件において、第1過冷却部12b出口(符号bsの位置)での冷媒のエンタルピを、従来構成での第1放熱器出口(符号bdの位置)での冷媒のエンタルピよりも高くできるように、第1放熱部(12a)と第1過冷却部(12b)との体格をそれぞれ設定するのである(図8参照)。
このようにすることで、本構成でのエジェクタ13の回収可能エネルギを従来構成のものよりも増加させることができる。
また、本構成の第1放熱部12aは、従来構成での第1放熱器よりも体格が小さくなるため、第1過冷却部12b出口での冷媒圧力が従来構成における第1放熱器出口での冷媒圧力よりも高くされる。これにより、エジェクタ13での回収可能エネルギを増大させることができる。
(第4の実施形態)
次に、第4の実施形態について図9および図10に基づいて説明する。
本第4の実施形態は、前述の第1の実施形態と比較して、第2蒸発器に流入する冷媒の減圧手段を減圧量可変減圧手段とした点が異なる。なお、第1の実施形態と同様の部分については、同一の符号をつけ、その説明を省略する。
図9に示すように、本実施形態では、冷媒分岐通路20の減圧手段を電子膨張弁23Aとしており、制御装置100は、電子膨張弁23Aの開度調節を行ない冷媒減圧量を調節できるようになっている。
そして、制御装置100は、図10に示すように、ステップ130において最適な流量比(G1とG2との比)を算出したら、第2圧縮機21の最適な冷媒吐出量を達成するための作動状態が安定した運転状態となるか否か判定する(ステップ140)。具体的には、第2圧縮機21を安定作動運転できる所定回転数(例えば、下限回転数、下限近傍回転数)以下としなければサイクルに最適な冷媒吐出量(G2)とならないか否か判定する。
第2圧縮機21が安定作動運転できる前記所定回転数以下としなければ最適冷媒流量が達成できない場合(第2圧縮機21にとってサイクルに最適な冷媒吐出量が小さすぎる場合)には、第2圧縮機21の回転数を前記所定回転数に固定して、電子膨張弁23Aの開度を絞り低流量に対応する(ステップ150)。そして、ステップ160において両圧縮機11、21の作動制御を行なう。
上述の構成および作動によれば、第2圧縮機21は冷媒吐出量を調節可能であるとともに、電子膨張弁23Aは冷媒減圧量が調節可能であり、制御装置100は、第2蒸発器24に流通する冷媒流量G2を第2圧縮機21および電子膨張弁23Aのいずれかで調節制御する。
本実施形態では、制御装置100は、第2圧縮機21が安定作動できる場合には、電子膨張弁23Aの絞り開度を固定して第2圧縮機21の冷媒吐出量調節により冷媒流量G2を制御し、第2圧縮機21の安定作動が困難な場合には、第2圧縮機21の冷媒吐出量を固定して電子膨張弁23Aの絞り開度調節により冷媒流量G2を制御する。
したがって、第2蒸発器24を流れる冷媒を低流量とする必要があるときには、第2圧縮機21の安定作動領域での回転数制御(吐出量制御)、もしくは電子膨張弁23Aの開度制御により、対応することができる。
また、第2圧縮機21の冷媒吐出量および電子膨張弁23Aの冷媒減圧量を同時に変更する必要がないので、制御装置100による制御が容易である。
なお、第2圧縮機21冷媒吐出量および電子膨張弁23A冷媒減圧量を同時に変更する必要はあるが、第2蒸発器24を流れる冷媒を低流量とする必要がある場合には、第2圧縮機21の安定作動が可能な範囲における吐出量調節に、電子膨張弁23Aによる絞り開度調節を組み合わせて、流量調節するものであってもよい。
(第5の実施形態)
次に、第5の実施形態について図11〜図15に基づいて説明する。
本第5の実施形態は、前述の第1の実施形態と比較して、第2蒸発器に流入する冷媒流量を熱交換後の冷媒の過熱度に基づいて調節している点が異なる。なお、第1の実施形態と同様の部分については、同一の符号をつけ、その説明を省略する。
図11に示すように、本実施形態の冷凍サイクル1は、冷媒循環通路10の第1圧縮機11より下流側かつ第1放熱器12より上流側に、冷媒循環通路10の高圧側の冷媒圧力を検出する高圧センサ91を備えている。また、冷媒分岐通路20の第2圧縮機21より下流側かつ第2放熱器22より上流側に、冷媒分岐通路20の高圧側の冷媒圧力を検出する高圧センサ92を備えている。
一方、冷媒循環通路10の第1蒸発器14より下流側かつ第1圧縮機11より上流側(本例では、分岐点zより上流側)に、冷媒循環通路10の低圧側の冷媒圧力を検出する低圧センサ93を備えている。また、冷媒分岐通路20の第2蒸発器24より下流側かつエジェクタ13の冷媒吸引口13bより上流側に、冷媒分岐通路20の低圧側の冷媒圧力を検出する低圧センサ94を備えている。
さらに、第2蒸発器24の空気流れ方向Aの下流側には、第2蒸発器24を通過し冷却された送風空気の温度を検出する吹出温度センサ95を備えている。
ここで、低圧センサ94は、第2蒸発器24の出口における冷媒圧力を検出する本実施形態における冷媒圧力検出手段としての圧力センサである。また、吹出温度センサ95は、第2蒸発器24の出口における冷媒温度の関連値である吹出空気(外部流体に相当)の温度を検出する温度センサであり、本実施形態における冷媒温度検出手段としても機能するものである。
そして、制御装置100は、冷却対象空間40内の温度(内気温度)を検出する内気温検出手段である内気温センサ90および吹出温度センサ95からの温度情報や、高圧センサ91、92、低圧センサ93、94からの圧力情報、図示しない操作パネルに設けられた冷却対象空間40温度設定手段からの設定温度情報等の入力情報に基づいて、第1圧縮機11、第2圧縮機21、ブロワ31、コンデンサファン36等を作動制御するようになっている。
なお、本実施形態の第1、第2圧縮機11、21は、いずれもインバータで駆動する電動コンプレッサとしており、第1圧縮機11はインバータ回路11aを備えており、第2圧縮機21はインバータ回路21aを備えている。したがって、制御装置100は、第1、第2圧縮機11、21を制御するときには、これらのインバータ回路11a、21aに制御信号を出力するようになっている。
次に、上記構成に基づき、本実施形態の蒸気圧縮式冷凍サイクル1の作動について説明する。
図12は、本実施形態の制御装置100の概略制御動作を示すフローチャートである。
図12に示すように、制御装置100は、イグニッションスイッチがONされて直流電源が供給されると、まず、所定のデータ等の初期化を行なう(ステップ101)。次に、前述の各種センサや温度設定スイッチ等からの信号を読み込む(ステップ102)。
そして、次に、目標吹出温度の算出を行なう(ステップ110A)。目標吹出温度を算出するということは冷却対象空間40の設定温度と内気温センサ90が検出する冷却対象空間40内の温度との差ΔT(要求冷房能力に相当)を算出することと同義であり、ステップ110Aは、第1、第2実施形態におけるステップ110と同義のステップであると言える。
ステップ110Aを実行したら、算出した目標吹出温度に基づいて、第1圧縮機11の回転数を決定する(目標回転数を算出する)(ステップ210)。第1圧縮機11の目標回転数は、例えば、図13に示す関係から決定する。
すなわち、目標回転数は、現在の回転数を基準に温度差ΔTに応じて補正することで算出する。関係式で表すと、目標回転数=現在の回転数±温度差に応じた回転数増量、ということになる。
したがって、ΔTが大きい場合には、冷媒循環通路10の冷媒流量増加を大きくするように、第1圧縮機11の回転数を大きく増大させ、ΔTが小さい場合には、冷媒循環通路10の冷媒流量増加を小さくするように、第1圧縮機11の回転数の増大量は小さくする。
ステップ210を実行して第1圧縮機11の目標回転数を算出したら、次に、第2蒸発器24の出口における冷媒の過熱度SHを算出する(ステップ220)。具体的には、低圧センサ94が検出した第2蒸発器24の出口における冷媒圧力と、吹出温度センサ95が検出した冷却された送風空気温度から推定される第2蒸発器24の出口における冷媒温度とに基づいて、第2蒸発器24の出口における冷媒の過熱度SHを算出する。
ステップ220を実行したら、算出した第2蒸発器24出口における冷媒過熱度SHに基づいて、第2圧縮機21の回転数を決定する(目標回転数を算出する)(ステップ230)。ステップ230において、第2圧縮機21の目標回転数は、例えば、図14に示すフローにより決定する。
図14に示すように、第2蒸発器24出口における冷媒過熱度SHがa以上かつb以下であるか否か判断する(ステップ231)。過熱度SHがa〜bの範囲にあると判断した場合(ステップ231でYESと判断した場合)には、第2圧縮機21の回転数は現状を維持する(ステップ232)。
ステップ231で過熱度SHがa〜bの範囲にないと判断した場合には、冷媒過熱度SHがa未満であるか否か判断する(ステップ233)。冷媒過熱度SHがa未満であると判断した場合には、第2圧縮機21の回転数は現状より減少させる(ステップ234)。ステップ233で冷媒過熱度SHがa以上と判断した場合(ステップ231の後であるので実質的には過熱度SHがbを超えていると判断した場合)には、第2圧縮機21の回転数は現状より増加させる(ステップ235)。
この図14に示すフローにおいて判断の基準とする過熱度の値a、bは、図15に例示するような過熱度SHと冷房能力との関係から決定している。この関係は、本発明者らが鋭意検討の結果明らかにしたものであって、冷房能力に対して第2蒸発器24出口の冷媒過熱度SHが及ぼす影響は小さくない。
第2蒸発器24出口の冷媒過熱度SHがaより小さい場合には、第2蒸発器24内において液状冷媒が良好に蒸発しておらず、充分な冷房能力を発揮することができない。
また、第2蒸発器24出口の冷媒過熱度SHがbより大きい場合には、第2蒸発器24内に流入する冷媒量が不足しており、第2蒸発器24内の下流側部では気相冷媒と送風空気との熱交換が行なわれる。これに加えて、エジェクタ13を介して第1蒸発器14内に過熱度SHの大きい冷媒が混入することになるので、第1蒸発器14における熱交換の効率も低下する。これらにより、第2蒸発器24出口の冷媒過熱度SHがbより大きい場合にも、充分な冷房能力を発揮することができない。
したがって、ステップ230では、所定以上の冷房能力を発揮できる第2蒸発器24出口の冷媒過熱度SHの範囲を維持するように(a≦SH≦bの値を保つように)、第2圧縮機21の目標回転数を決定する。
具体的には、過熱度SH大→圧縮機21回転数増加→冷媒流量G2増加→過熱度SH減少、および、過熱度SH小→圧縮機21回転数減少→冷媒流量G2減少→過熱度SH増加、という作動を繰り返し、最終的にa≦SH≦bという値に落ち着かせることができる。
ステップ230までを実行したら、第1、第2圧縮機11、21のインバータ回路11a、21aに目標回転数となる制御信号を出力して、第1、第2圧縮機11、21を作動制御するとともに、コンデンサファン36およびブロワ31が最適風量を発生するようにコンデンサファン36の駆動モータおよびブロワ31の駆動モータに作動制御出力を行なう(ステップ160A)。そして、その後リターンする。
上述の構成および作動によれば、制御装置100は、第2蒸発器24の出口における冷媒の過熱度SHに基づいて、ノズル部13aから噴射する冷媒流量G1と冷媒吸引口13bから吸入される冷媒流量G2との比率を制御し、第2蒸発器24に流れる冷媒流量G2を過熱度SHに基づいて最適に制御することができる。したがって、変動する負荷に左右されることなく効率のよい運転を行なって安定した冷却性能を発揮することができ、成績係数COPを向上することができる。
また、第2蒸発器24の出口における冷媒の圧力および温度に基づいて第2蒸発器24の出口における冷媒の過熱度SHを容易に算出することができる。さらに、第2蒸発器24の出口における冷媒の圧力および温度は、低圧センサ94および吹出温度センサ95の検出値に基づいており、過熱度SHを検出するための専用の検出手段を設けていない。したがって、冷凍サイクル1の構成が複雑になることもない。
また、第1の実施形態と同様に、冷媒分岐通路20の膨張弁23に固定絞りを採用しており、比較的高価な電子膨張弁を用いることなく、安定した冷却性能を発揮する制御を行なうことができる。
(他の実施形態)
第1の実施形態及び第2の実施形態では、第1放熱器12、第2放熱部22a、及び第2過冷却部22bを一体で設けた構成を示したが、これらをそれぞれ別体で構成するようにしても良い。
上記第1、第5の実施形態では、第1、第2圧縮機11、21を冷媒吐出量可変タイプとし、エジェクタノズル部13a、膨張弁23を絞り固定タイプとしていた。また、上記第3の実施形態では、第1、第2圧縮機11、21を冷媒吐出量可変タイプとし、エジェクタノズル部13aを絞り固定タイプとし、電子膨張弁23Aを絞り可変タイプとしていた。
しかしながら、これらに限定されるものではなく、第1圧縮機11の冷媒吐出量およびエジェクタノズル部13aの冷媒減圧量の少なくともいずれかが調節可能であるとともに、第2圧縮機21の冷媒吐出量および膨張弁23の冷媒減圧量の少なくともいずれかが調節可能であればよい。
これらのいずれかによると、第1圧縮機11の冷媒吐出量およびエジェクタノズル部13aの冷媒減圧量の少なくともいずれかを調節して、ノズル部13aから噴射する冷媒流量G1を調節するとともに、第2圧縮機21の冷媒吐出量および膨張弁23の冷媒減圧量の少なくともいずれかを調節して、エジェクタ13の冷媒吸引口13bから吸入される冷媒流量G2を調節することができる。
すなわち、第1蒸発器14および第2蒸発器24を流れる冷媒流量を調節することが可能であり、冷却性能を一層向上することができる。
また、第1の実施形態から第3の実施形態では、第1過冷却部12b及び第2過冷却部22bは、外気との熱交換により冷媒を過冷却するものであったが、これらを内部熱交換器により構成しても良い。
また、上記第5の実施形態では、低圧センサ94の検出圧力と吹出温度センサ95の検出温度に基づいて第2蒸発器24出口の冷媒過熱度SHを算出していたが、過熱度SHを検出もしくは算出できるものであれば、これに限定されるものではない。例えば、第2蒸発器24の下流側に低圧センサ94に合わせて冷媒温度センサを設けるものであってもよい。
また、上記第5の実施形態では、第2蒸発器24出口における冷媒過熱度SHを算出し、算出した過熱度SHに基づいて流量比制御を行なうものであったが、予め過熱度SHが適切な値となる流量比を明らかにしている場合には、第2圧縮機21の制御は過熱度SHが適切な値となる流量比に基づいて行なうものであってもよい。
この場合であっても、第2蒸発器24出口の冷媒過熱度SHに基づいて流量比率を制御していると言える。これによれば、各ルーチンの都度過熱度SHを算出することなく、良好な冷却性能を得ることができる。
例えば、第1、第2圧縮機11、21が同一仕様の圧縮機であり、流量比φ=0.5(G1:G2=1:1)で過熱度SHが適切な値となることが明らかになっている場合には、第1圧縮機11と第2圧縮機21とを同一回転数となるように制御すればよい。これによれば、制御が極めてシンプルになる。
また、第2蒸発器24出口の冷媒過熱度SHの算出を行なわず、全流量(G1+G2相当流量)を算出し、予め冷媒過熱度SHを考慮してマップ化あるいは関係式化された流量比となるように、両圧縮機11、21の回転数制御を行なうものであってもよい。この場合であっても、第2蒸発器24出口の冷媒過熱度SHに基づいて流量比率を制御していると言える。
また、図12に示す制御フローにおいて、第2蒸発器24の出口における冷媒の圧力および温度に基づいて、過熱度SHを算出するステップ220を省略して、直接ノズル部13aから噴射する冷媒流量G1と冷媒吸引口13bから吸入される冷媒流量G2との比率を制御するものであってもよい。これによると、冷媒圧力および冷媒温度に基づいて、第2蒸発器24に流れる冷媒流量を最適に制御することが可能である。したがって、制御の都度冷媒過熱度SHの算出を行なわなくても、効率のよい運転を行ない冷却性能をより一層向上することができる。
また、上記各実施形態では、冷凍サイクル1は、第1、第2圧縮機11、21、第1、第2放熱器12、22、エジェクタ13、膨張弁23または23A、第1、第2蒸発器14、24を配管接続して構成していたが、構成要素はこれらのみに限定されるものではない。
例えば、図16に示すように、エジェクタ13のノズル部13aが絞り固定タイプである場合に第1蒸発器14から流出する冷媒過熱度に応じてエジェクタ13のノズル部13aに流入する冷媒圧力を微調節する膨張弁53、圧縮機11,21上流で冷媒を気液分離して余剰冷媒を貯えるとともに圧縮機11,21へのオイル戻り量を調節するためのアキュムレータ54等のいずれかを、必要に応じて適宜設定するものであってもよい。
上記第4及び第5の実施形態では、第1放熱器12について、第1過冷却部12bを省略した構成を示したが、これらの実施形態についても第1放熱器12を第1放熱部12aと第1過冷却部12bとを備えて構成しても良い。
また、上記各実施形態では、車両用の冷凍サイクルについて説明したが、車両用に限らず、定置用等の冷凍サイクルに対しても本発明を同様に適用できることはもちろんである。
本発明を適用した第1の実施形態における蒸気圧縮式の冷凍サイクル1を示す模式構成図である。 第1の実施形態における制御装置100の概略制御動作を示すフローチャートである。 冷凍サイクル1上の各位置における冷媒の状態を示したp−h線図である。 第2の実施形態において、放熱器12,22の伝熱面積の比率の設定方法について示した概念図である。 放熱器12,22の熱交換能力の変化を示した図である。 蒸発器14,24の熱交換能力の変化を示した図である。 第3の実施形態における上記圧縮式の冷凍サイクルの1の模式構成図である。 冷凍サイクル1のp−h線図のうち、高圧・低エンタルピ領域を拡大表示した拡大図である。 本発明を適用した第4の実施形態における蒸気圧縮式の冷凍サイクル1を示す模式構成図である。 第4の実施形態における制御装置100の概略制御動作を示すフローチャートである。 本発明を適用した第5の実施形態における蒸気圧縮式の冷凍サイクル1を示す模式構成図である。 第5の実施形態における制御装置100の概略制御動作を示すフローチャートである。 温度差ΔT(要求冷房能力、目標吹出温度に関連)と第1圧縮機11の目標回転数との関係を示すグラフである。 図12のステップ230の内容を示すフローチャートである。 過熱度SHと冷房能力との関係を示すグラフである。 他の実施形態における蒸気圧縮式の冷凍サイクル1の構成例を示す模式構成図である。
符号の説明
1…冷凍サイクル
11…第1圧縮機
12…第1放熱器
12a…第1放熱部
12b…第1過冷却部
13…エジェクタ
13a…ノズル部
13b…冷媒吸引口
13c…混合部(昇圧部の一部)
13d…ディフューザ部(昇圧部の一部)
14…第1蒸発器
21…第2圧縮機
22…第2放熱器
22a…第2放熱部
22b…第2過冷却部
23…膨張弁(減圧手段)
23A…電子膨張弁(減圧手段)
24…第2蒸発器
94…低圧センサ(冷媒圧力検出手段、圧力センサ)
95…吹出温度センサ(冷媒温度検出手段、温度センサ)
100…制御装置(制御手段)
AR1…第1放熱器の伝熱面積
AR2…第2放熱器の伝熱面積
AE1…第1蒸発器の伝熱面積
AE2…第2蒸発器の伝熱面積
G1、G2…冷媒流量

Claims (19)

  1. 冷媒を吸入圧縮して吐出する第1圧縮機(11)と、
    前記第1圧縮機(11)から吐出された冷媒の放熱を行なう第1放熱器(12)と、
    前記第1放熱器(12)から流出した冷媒の圧力エネルギーを速度エネルギーに変換して冷媒を減圧膨張させるノズル部(13a)、前記ノズル部(13a)から噴射する冷媒流により冷媒が内部に吸引される冷媒吸引口(13b)、および前記ノズル部(13a)から噴射する冷媒と前記冷媒吸引口(13b)から吸引した冷媒とを混合させながら速度エネルギーを圧力エネルギーに変換して冷媒の圧力を昇圧させる昇圧部(13c、13d)を有するエジェクタ(13)と、
    前記エジェクタ(13)から流出した冷媒を蒸発させる第1蒸発器(14)と、
    冷媒を吸入圧縮して吐出する第2圧縮機(21)と、
    前記第2圧縮機(21)から吐出された冷媒の放熱を行なう第2放熱器(22)と、
    前記第2放熱器(22)から流出した冷媒を減圧膨張させる減圧手段(23)と、
    前記減圧手段(23)で減圧された冷媒を蒸発させ、蒸発した冷媒を前記冷媒吸引口(13b)に流入させる第2蒸発器(24)とを備え、
    前記第1蒸発器(14)で蒸発した冷媒を前記第1圧縮機(11)および前記第2圧縮機(21)に分配して吸入させる蒸気圧縮式冷凍サイクルであって、
    前記第2放熱器(22)は、前記第2圧縮機(21)から流出した冷媒の放熱を行う第2放熱部(22a)と、前記第2放熱部(22a)を流出した液相冷媒を過冷却する第2過冷却部(22b)とから構成されており、
    前記第1圧縮機(11)の冷媒吐出量および前記ノズル部(13a)の冷媒減圧量の少なくともいずれかを調節可能とし、
    かつ、前記第2圧縮機(21)の冷媒吐出量および前記減圧手段(23)の冷媒減圧量の少なくともいずれかを調節可能としたことを特徴とする蒸気圧縮式冷凍サイクル。
  2. 前記第1放熱器(12)の伝熱面積(AR1)と前記第2放熱器(22)の伝熱面積(AR2)との比率(AR1:AR2)が、前記第1蒸発器(14)の伝熱面積(AE1)と前記第2蒸発器(24)の伝熱面積(AE2)との比率(AE1:AE2)と同一となるように設定されていることを特徴とする請求項1に記載の蒸気圧縮式冷凍サイクル。
  3. 前記第2放熱部(22a)と前記第2過冷却部(22b)とは、一の放熱器内部を分割して形成されていることを特徴とする請求項1または請求項2に記載の蒸気圧縮式冷凍サイクル。
  4. 前記第1放熱器(12)は、前記第1圧縮機(11)から流出した冷媒の放熱を行う第1放熱部(12a)と、前記第1放熱部(12a)を流出した液相冷媒を過冷却する第1過冷却部(12b)とから構成されていることを特徴とする請求項1から請求項3のいずれかに記載の蒸気圧縮式冷凍サイクル。
  5. 前記第1過冷却部(12b)及び前記第2過冷却部(22b)のうち少なくともいずれかは、内部熱交換器により構成されていることを特徴とする請求項1から請求項4のいずれかに記載の蒸気圧縮式冷凍サイクル。
  6. 前記第1圧縮機(11)の冷媒吐出量および前記ノズル部(13a)の冷媒減圧量の少なくともいずれかを調節するとともに、
    前記第2圧縮機(21)の冷媒吐出量および前記減圧手段(23)の冷媒減圧量の少なくともいずれかを調節し、
    前記ノズル部(13a)から噴射する冷媒流量と前記冷媒吸引口(13b)から吸入される冷媒流量との比率を制御する制御手段(100)を備えることを特徴とする請求項1から請求項5のいずれかに記載の蒸気圧縮式冷凍サイクル。
  7. 前記制御手段(100)は、前記ノズル部(13a)から噴射する冷媒流量(G1)と前記冷媒吸引口(13b)から吸入される冷媒流量(G2)との比率(G1:G2)を、前記第1放熱器(12)の伝熱面積(AR1)と前記第2放熱器(22)の伝熱面積(AR2)との比率(AR1:AR2)と同一となるように制御することを特徴とする請求項6に記載の蒸気圧縮式冷凍サイクル。
  8. 前記制御手段(100)は、前記第2蒸発器(24)の出口における冷媒の過熱度に基づいて、前記ノズル部(13a)から噴射する冷媒流量と前記冷媒吸引口(13b)から吸入される冷媒流量との比率を制御することを特徴とする請求項6に記載の蒸気圧縮式冷凍サイクル。
  9. 前記第2蒸発器(24)の出口における冷媒の圧力を検出する冷媒圧力検出手段(94)と、
    前記第2蒸発器(24)の出口における冷媒の温度またはその関連値を検出する冷媒温度検出手段(95)とを備え、
    前記制御手段(100)は、前記冷媒圧力検出手段(94)が検出した冷媒圧力、および前記冷媒温度検出手段(95)が検出した冷媒温度に基づいて、前記過熱度を算出することを特徴とする請求項8に記載の蒸気圧縮式冷凍サイクル。
  10. 前記第2蒸発器(24)の出口における冷媒の圧力を検出する冷媒圧力検出手段(94)と、
    前記第2蒸発器(24)の出口における冷媒の温度またはその関連値を検出する冷媒温度検出手段(95)とを備え、
    前記制御手段(100)は、前記冷媒圧力検出手段(94)が検出した冷媒圧力、および前記冷媒温度検出手段(95)が検出した冷媒温度に基づいて、前記ノズル部(13a)から噴射する冷媒流量と前記冷媒吸引口(13b)から吸入される冷媒流量との比率を制御することを特徴とする請求項8に記載の蒸気圧縮式冷凍サイクル。
  11. 前記冷媒圧力検出手段(94)は、前記第2蒸発器(24)の出口側に設けた圧力センサ(94)であり、前記冷媒温度検出手段(95)は、前記関連値として前記第2蒸発器(24)を通過した外部流体の温度を検出する温度センサ(95)であることを特徴とする請求項9または請求項10に記載の蒸気圧縮式冷凍サイクル。
  12. 前記第1圧縮機(11)の冷媒吐出量および前記第2圧縮機(21)の冷媒吐出量の両者を調節可能としたことを特徴とする請求項1から請求項11のいずれか1つに記載の蒸気圧縮式冷凍サイクル。
  13. 前記第1圧縮機(11)の冷媒吐出量および前記第2圧縮機(21)の冷媒吐出量のいずれかを調節可能としたことを特徴とする請求項1から請求項11のいずれか1つに記載の蒸気圧縮式冷凍サイクル。
  14. 前記第1圧縮機(11)の冷媒吐出量を調節可能としたことを特徴とする請求項13に記載の蒸気圧縮式冷凍サイクル。
  15. 前記第2圧縮機(21)の冷媒吐出量を調節可能としたことを特徴とする請求項13に記載の蒸気圧縮式冷凍サイクル。
  16. 前記ノズル部(13a)は、開度が固定されていることを特徴とする請求項12から請求項14のいずれかに記載の蒸気圧縮式冷凍サイクル。
  17. 前記減圧手段(23)は、固定絞り手段(23)であることを特徴とする請求項12から請求項15のいずれかに記載の蒸気圧縮式冷凍サイクル。
  18. 前記第2圧縮機(21)の冷媒吐出量および前記減圧手段(23A)の冷媒減圧量の両者が調節可能であり、
    前記第2圧縮機(21)の冷媒吐出量が所定量まで減少した場合に、前記減圧手段(23)の冷媒減圧量を増大させることを特徴とする請求項1から請求項13のいずれか1つに記載の蒸気圧縮式冷凍サイクル。
  19. 前記第2圧縮機(21)の冷媒吐出量が所定量まで減少した場合に、前記第2圧縮機(21)の冷媒吐出量を前記所定量に固定することを特徴とする請求項18に記載の蒸気圧縮式冷凍サイクル。
JP2006189747A 2006-04-28 2006-07-10 蒸気圧縮式冷凍サイクル Expired - Fee Related JP4661710B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006189747A JP4661710B2 (ja) 2006-04-28 2006-07-10 蒸気圧縮式冷凍サイクル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006124741 2006-04-28
JP2006189747A JP4661710B2 (ja) 2006-04-28 2006-07-10 蒸気圧縮式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2007315738A JP2007315738A (ja) 2007-12-06
JP4661710B2 true JP4661710B2 (ja) 2011-03-30

Family

ID=38849749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006189747A Expired - Fee Related JP4661710B2 (ja) 2006-04-28 2006-07-10 蒸気圧縮式冷凍サイクル

Country Status (1)

Country Link
JP (1) JP4661710B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4622960B2 (ja) * 2006-08-11 2011-02-02 株式会社デンソー エジェクタ式冷凍サイクル
US9523364B2 (en) 2010-11-30 2016-12-20 Carrier Corporation Ejector cycle with dual heat absorption heat exchangers
JP2013057467A (ja) * 2011-09-09 2013-03-28 Science Kk 排熱回収型ヒートポンプ
CN104764248A (zh) * 2015-03-19 2015-07-08 珠海格力电器股份有限公司 空调器和多联机空调系统
CN106553765B (zh) * 2015-09-29 2019-01-01 中国飞机强度研究所 一种高温环境下的快速冷却方法
JP2022175024A (ja) * 2021-05-12 2022-11-25 株式会社デンソー 冷凍サイクル装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318018A (ja) * 2000-03-15 2002-10-31 Denso Corp エジェクタサイクルおよび気液分離器
JP2005055113A (ja) * 2003-08-06 2005-03-03 Denso Corp 蒸気圧縮式冷凍機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116516Y2 (ja) * 1971-09-03 1976-05-01
JPS5236354A (en) * 1975-09-17 1977-03-19 Matsushita Electric Ind Co Ltd Refrigerant circuit
JP2684814B2 (ja) * 1990-04-11 1997-12-03 ダイキン工業株式会社 空気調和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318018A (ja) * 2000-03-15 2002-10-31 Denso Corp エジェクタサイクルおよび気液分離器
JP2005055113A (ja) * 2003-08-06 2005-03-03 Denso Corp 蒸気圧縮式冷凍機

Also Published As

Publication number Publication date
JP2007315738A (ja) 2007-12-06

Similar Documents

Publication Publication Date Title
US7987685B2 (en) Refrigerant cycle device with ejector
JP4626531B2 (ja) エジェクタ式冷凍サイクル
US7367202B2 (en) Refrigerant cycle device with ejector
US10132526B2 (en) Ejector refrigeration cycle
JP4832458B2 (ja) 蒸気圧縮式冷凍サイクル
JP4765828B2 (ja) エジェクタ式冷凍サイクル
JP2007139269A (ja) 超臨界冷凍サイクル
JP4661710B2 (ja) 蒸気圧縮式冷凍サイクル
JP6623962B2 (ja) 冷凍サイクル装置
JP2007051833A (ja) エジェクタ式冷凍サイクル
JP2009276046A (ja) エジェクタ式冷凍サイクル
JP2007040612A (ja) 蒸気圧縮式サイクル
JP4415835B2 (ja) 車両用冷凍サイクル装置
JP2009222255A (ja) 蒸気圧縮式冷凍サイクル
JP4631721B2 (ja) 蒸気圧縮式冷凍サイクル
JP4952830B2 (ja) エジェクタ式冷凍サイクル
JP4930214B2 (ja) 冷凍サイクル装置
JP2001001754A (ja) 車両用空調装置
JP4992819B2 (ja) エジェクタ式冷凍サイクル
WO2019017168A1 (ja) エジェクタ式冷凍サイクル
JP4400533B2 (ja) エジェクタ式冷凍サイクル
JP2010127498A (ja) 冷凍サイクル装置
JP2010038456A (ja) 蒸気圧縮式冷凍サイクル
JP4725449B2 (ja) エジェクタ式冷凍サイクル
JP2020085382A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees