JP2020085382A - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP2020085382A
JP2020085382A JP2018222783A JP2018222783A JP2020085382A JP 2020085382 A JP2020085382 A JP 2020085382A JP 2018222783 A JP2018222783 A JP 2018222783A JP 2018222783 A JP2018222783 A JP 2018222783A JP 2020085382 A JP2020085382 A JP 2020085382A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
battery
refrigeration cycle
reducing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018222783A
Other languages
English (en)
Inventor
真悟 大鹿
Shingo Oshika
真悟 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018222783A priority Critical patent/JP2020085382A/ja
Publication of JP2020085382A publication Critical patent/JP2020085382A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】構成を簡素にすることにより製造上のコストを低減することの可能な冷凍サイクル装置を提供する。【解決手段】車室内空調と電池冷却とを同時に行うことの可能な冷凍サイクル装置1は、圧縮機2、凝縮器3、第1減圧機構4、第2減圧機構5、電池用蒸発器6、空調用蒸発器7および蒸発圧力調整弁8を備える。圧縮機2で圧縮された冷媒は、凝縮器3で凝縮され、第1減圧機構4と第2減圧機構5によって減圧される。電池用蒸発器6は、第1減圧機構4から流出した冷媒の蒸発熱により電池を冷却する。空調用蒸発器7は、第2減圧機構5から流出した冷媒の蒸発熱により車室内空調のための空調風を生成する。蒸発圧力調整弁8は、電池用蒸発器6と圧縮機2とを接続する配管の途中に設けられ、電池用蒸発器6を流れる冷媒の蒸発圧力を、空調用蒸発器7を流れる冷媒の蒸発圧力より高く維持する。【選択図】図1

Description

本発明は、車両に搭載される冷凍サイクル装置に関するものである。
従来、車両に搭載され、車両用電池の冷却と車室内空調とを同時に行うことの可能な冷凍サイクル装置が知られている。一般に、この種の冷凍サイクル装置では、車両用電池を冷却するための電池用蒸発器の温度が20℃程度に維持され、車室内空調を行うための空調用蒸発器の温度が0〜10℃程度に維持される。
特許文献1に記載の冷凍サイクル装置は、電池用蒸発器の上流側の配管に電気制御式膨張弁を設置している。電気制御式膨張弁は、電子制御装置から伝送される制御信号に応じて弁開度を制御可能なものである。電子制御装置は、電池用蒸発器に設置した温度センサで検出される温度をフィードバックしながら、電気制御式膨張弁の弁開度を制御している。
特開2014−37959号公報
しかしながら、特許文献1に記載の冷凍サイクル装置に使用される電気制御式膨張弁は、一般に、温度式膨張弁や固定式の膨張弁に比べて部品コストが高い。また、この冷凍サイクル装置は、電気制御式膨張弁の弁開度を制御するために、電池用蒸発器の温度を検出する温度センサや、制御用の配線などの部品点数が増加する構成となっている。そのため、この冷凍サイクル装置は、構成部品のコストが高いことに加えて部品点数が増加し、構成が複雑化することで製造上のコストが高くなるといった問題がある。
本発明は上記点に鑑みて、構成を簡素にすることにより製造上のコストを低減することの可能な冷凍サイクル装置を提供することを目的とする。
上記目的を達成するため、請求項1に係る発明は、
車室内空調と電池冷却とを同時に行うことの可能な冷凍サイクル装置において、
冷媒を吸入し、圧縮して吐き出す圧縮機と、
圧縮機から吐き出された冷媒と外気との熱交換により冷媒を凝縮させる凝縮器と、
凝縮器から流出した冷媒を減圧膨張させる第1減圧機構と、
第1減圧機構と並列に設けられ、凝縮器から流出した冷媒を減圧膨張させる第2減圧機構と、
第1減圧機構から流出した冷媒の蒸発熱により電池を冷却する電池用蒸発器と、
第2減圧機構から流出した冷媒の蒸発熱により車室内空調のための空調風を生成する空調用蒸発器と、
電池用蒸発器の冷媒出口と圧縮機の冷媒吸入口とを接続する配管の途中に設けられ、電池用蒸発器を流れる冷媒の蒸発圧力を、空調用蒸発器を流れる冷媒の蒸発圧力より高く維持する蒸発圧力調整弁と、を備える。
ここで、蒸発圧力調整弁は、その蒸発圧力調整弁より上流側に配置される電池用蒸発器を流れる冷媒の蒸発圧力が設定圧力以上に維持されるよう弁開度が機械的に調整される機能を有する弁である。一般に、車両用空調装置に用いられる冷凍サイクルにおいて、蒸発圧力調整弁は、冷房負荷が小さい運転条件のときに空調用蒸発器が着霜することを防止するために使われる。なお、蒸発圧力調整弁は、EPR(Evaporator Pressure Regulator )とも呼ばれる。
請求項1に係る発明は、そのような蒸発圧力調整弁を、電池用蒸発器の冷媒出口と圧縮機の冷媒吸入口とを接続する配管の途中に設けることで、電池用蒸発器を流れる冷媒の蒸発圧力を、空調用蒸発器を流れる冷媒の蒸発圧力より高く維持する構成である。これにより、電池用蒸発器を流れる冷媒の温度は、空調用蒸発器を流れる冷媒の温度より高く維持される。そして、この冷凍サイクル装置は、電池用蒸発器の下流側に蒸発圧力調整弁を設けたことにより、電池用蒸発器と空調用蒸発器のそれぞれ上流側に配置される減圧機構に、温度式膨張弁または固定絞りなどの簡素な構成部品を用いることが可能である。したがって、この冷凍サイクル装置は、構成を簡素にすることにより製造上のコストを低減することができる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る冷凍サイクル装置の構成図である。 冷凍サイクル装置を循環する冷媒の状態をモリエル線図上に示した図である。 比較例の冷凍サイクル装置の構成図である。 第2実施形態に係る冷凍サイクル装置の構成図である。 第3実施形態に係る冷凍サイクル装置の構成図である。 第4実施形態に係る冷凍サイクル装置の構成図である。 第5実施形態に係る冷凍サイクル装置の構成図である。 第6実施形態に係る冷凍サイクル装置の構成図である。 第7実施形態に係る冷凍サイクル装置の構成図である。 第8実施形態に係る冷凍サイクル装置の構成図である。
以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
(第1実施形態)
第1実施形態について説明する。本実施形態の冷凍サイクル装置1は、例えば、車両走行用の駆動力を電動モータから得る構成とした電気自動車またはハイブリッド車などに搭載される。そして、この冷凍サイクル装置1は、その電動モータなどに電力を供給するための電池の冷却と、車室内の空調とを同時に行うことが可能なものである。
図1に示すように、冷凍サイクル装置1は、圧縮機2、凝縮器3、第1減圧機構4、第2減圧機構5、電池用蒸発器6、空調用蒸発器7、蒸発圧力調整弁8、および、それらの機器を接続するための第1〜第7配管11〜17などを備えている。この冷凍サイクル装置1は、蒸気圧縮式冷凍機を構成している。この冷凍サイクル装置1を循環する冷媒として、例えばHFC系冷媒(例えば、R134a)またはHFO系冷媒(例えば、R1234yf)等が用いられる。なお、冷媒として、自然冷媒(例えば、二酸化炭素)等を用いてもよい。
圧縮機2は、冷媒吸入口から吸入した冷媒を圧縮し、冷媒吐出口から第1配管11に吐き出すものである。圧縮機2は、図示しない電動モータまたはエンジンの動力により駆動される。圧縮機2として、固定容量型または可変容量型のいずれを採用してもよい。圧縮機2は、電子制御装置(以下、ECUという)10から伝送される制御信号によって回転数が制御される。したがって、ECU10が圧縮機2の回転数を制御することにより、圧縮機2の冷媒吐出能力が変更される。なお、ECU10は、制御処理や演算処理を行うプロセッサ、プログラムやデータ等を記憶するROM、RAM等の記憶部を含むマイクロコンピュータ、およびその周辺回路で構成されている。
圧縮機2から吐き出された高温高圧の冷媒は、第1配管11を通じて凝縮器3に流入する。凝縮器3は、圧縮機2から吐き出された冷媒と外気とを熱交換させる熱交換器である。凝縮器3を流れる冷媒は、外気に放熱して凝縮する。また、図示していないが、凝縮器3の下流側に気液分離器としてのレシーバ、および過冷却用熱交換器をこの順に設置してもよい。これにより、凝縮器3で凝縮した液冷媒の過冷却度を大きくすることが可能となる。凝縮器3の近傍には、その凝縮器3に対して外気を送風するための図示しない凝縮器用送風機が設けられる。
凝縮器3と電池用蒸発器6と空調用蒸発器7とは、第2〜第4配管12〜14と、三方継手により構成される第1分岐部18によって接続されている。具体的には、第2配管12は、凝縮器3の冷媒出口と第1分岐部18とを接続している。第3配管13は、第1分岐部18と電池用蒸発器6の冷媒入口とを接続している。第4配管14は、第1分岐部18と空調用蒸発器7の冷媒入口とを接続している。
上述した第3配管13の途中に、第1減圧機構4が設けられている。第1減圧機構4は、凝縮器3から流出した冷媒を減圧膨張させるための絞り弁である。第1実施形態では、第1減圧機構4として、温度式膨張弁41が採用されている。温度式膨張弁41は、電池用蒸発器6の冷媒出口側に設置される図示しない感温部によって検出された冷媒の過熱度に応じて、膨張弁本体の弁開度が自動調整される機械式の膨張弁である。第1減圧機構4を通過して減圧された冷媒は、気液二相状態となって電池用蒸発器6に流入する。
一方、上述した第4配管14の途中に、第2減圧機構5が設けられている。第2減圧機構5も、凝縮器3から流出した冷媒を減圧膨張させるための絞り弁である。第1実施形態では、第2減圧機構5として、温度式膨張弁51が採用されている。第2減圧機構5を通過して減圧された冷媒は、気液二相状態となって空調用蒸発器7に流入する。
電池用蒸発器6は、第1減圧機構4から流出した冷媒と、電池とを直接または間接的に熱交換させる熱交換器である。電池用蒸発器6は、第1減圧機構4から流出して気液二相となった冷媒の蒸発熱により電池を直接または間接的に冷却することが可能である。電池用蒸発器6による電池の冷却方法として、例えば、電池用蒸発器6を電池またはそのケースに直接設置してもよい。または、電池用蒸発器6により生成される冷風または冷却水などが電池に供給されるように構成してもよい。または、電池用蒸発器6と電池とを、ヒートパイプなどを介して熱輸送可能に接続する構成としてもよい。そのように構成することで、電池用蒸発器6を流れる気液二相冷媒は、冷却対象である電池から直接吸熱するか、または、電池との間で熱を輸送する熱媒体から吸熱して蒸発する。
一方、空調用蒸発器7は、第2減圧機構5から流出した冷媒と、空調用蒸発器7を通過する空気とを熱交換させる熱交換器である。空調用蒸発器7は、第2減圧機構5から流出して気液二相となった冷媒の蒸発熱により車室内空調のための空調風を生成することが可能である。空調用蒸発器7は、例えば、車両のインストルメントパネルの内側などに設置される図示しない空調ケース内に設けられる。空調用蒸発器7を流れる気液二相冷媒は、その空調ケース内で空調用蒸発器7を通過する空気から吸熱して蒸発する。空調用蒸発器7を通過する空気は、空調用蒸発器7を流れる冷媒に放熱して冷却された後、車室内に設けられた図示しない吹出口から車室内に吹き出される。これにより、車室内の冷房が行われる。
電池用蒸発器6と空調用蒸発器7と圧縮機2とは、第5〜第7配管15〜17と、三方継手により構成される第2分岐部19によって接続されている。具体的には、第5配管15は、電池用蒸発器6の冷媒出口と第2分岐部19とを接続している。第6配管16は、空調用蒸発器7の冷媒出口と第2分岐部19とを接続している。第7配管17は、第2分岐部19と圧縮機2の冷媒吸入口とを接続している。
上述した第5配管15の途中に、蒸発圧力調整弁8が設けられている。第5配管15は、電池用蒸発器6の冷媒出口と圧縮機2の冷媒吸入口とを接続する配管の一部である。そのため、蒸発圧力調整弁8は、電池用蒸発器6の冷媒出口と圧縮機2の冷媒吸入口とを接続する配管の途中に設けられているといえる。
蒸発圧力調整弁8は、その蒸発圧力調整弁8より上流側に配置される電池用蒸発器6を流れる冷媒の蒸発圧力が設定圧力以上に維持されるよう弁開度が機械的に調整される機能を有する弁である。すなわち、凝縮器3→第3配管13→第1減圧機構4→電池用蒸発器6→蒸発圧力調整弁8→第5配管→圧縮機2へ流れる冷媒は、第1減圧機構4と蒸発圧力調整弁8とで2回減圧されることになる。そして、本実施形態の蒸発圧力調整弁8は、電池用蒸発器6を流れる冷媒の蒸発圧力を、空調用蒸発器7を流れる冷媒の蒸発圧力より高く維持するように設定されている。冷媒の蒸発圧力と冷媒温度とは相関関係を有する。具体的には、蒸発圧力調整弁8は、電池用蒸発器6の温度が、例えば20℃程度に維持されるように調整されている。
次に、本実施形態の冷凍サイクル装置1の特性を、図2を参照して説明する。
図2は、冷凍サイクル装置1を循環する冷媒の状態を、モリエル線図上に表したものである。図2において、R1は、圧縮機2の冷媒吐出口から吐き出され、凝縮器3の冷媒入口に流入する冷媒の状態を示している。R2は、凝縮器3の冷媒出口から流出し、第1減圧機構4と第2減圧機構5にそれぞれ流入する冷媒の状態を示している。R3は、第1減圧機構4から流出し、電池用蒸発器6の冷媒入口に流入する冷媒の状態を示している。R4は、第2減圧機構5から流出し、空調用蒸発器7の冷媒入口に流入する冷媒の状態を示している。R5は、電池用蒸発器6の冷媒出口から流出し、蒸発圧力調整弁8に流入する冷媒の状態を示している。R6は、空調用蒸発器7の冷媒出口から流出する冷媒の状態を示している。R7は、蒸発圧力調整弁8から流出した冷媒と空調用蒸発器7から流出した冷媒とが第2分岐部19で合流し、圧縮機2の冷媒吸入口に吸入される冷媒の状態を示している。
上述したように、R3およびR5に示される冷媒圧力は、電池用蒸発器6を流れる冷媒の圧力である。一方、R4およびR6に示される冷媒圧力は、空調用蒸発器7を流れる冷媒の圧力である。このように、この冷凍サイクル装置1は、電池用蒸発器6の下流側に蒸発圧力調整弁8を設けたことで、電池用蒸発器6を流れる冷媒の蒸発圧力を、空調用蒸発器7を流れる冷媒の蒸発圧力より高く維持することが可能である。したがって、この冷凍サイクル装置1は、電池用蒸発器6を流れる冷媒の温度を、空調用蒸発器7を流れる冷媒の温度より高い温度で維持することができる。
そして、この冷凍サイクル装置1は、電池用蒸発器6の下流側に蒸発圧力調整弁8を設けたことにより、電池用蒸発器6の上流側に配置される第1減圧機構4に、温度式膨張弁41などの簡素な構成の絞り弁を用いることが可能である。したがって、本実施形態の冷凍サイクル装置1は、構成を簡素にすることにより、製造上のコストを低減することができる。
上述した第1実施形態の冷凍サイクル装置1と比較するため、比較例の冷凍サイクル装置100について説明する。
図3に示すように、比較例では、第1分岐部18と電池用蒸発器6の冷媒入口とを接続する第3配管13の途中に設けられる第1減圧機構4として、電気制御式膨張弁400が採用されている。電気制御式膨張弁400は、弁開度を変更可能に構成された図示しない弁体と、その弁体による弁開度を変化させる図示しないアクチュエータを有する可変絞り機構である。電気制御式膨張弁400は、ECU10からアクチュエータに出力される制御信号に応じて弁体による弁開度を制御可能に構成されている。
また、比較例では、電池用蒸発器6と第2分岐部19とを接続する第5配管15の途中に蒸発圧力調整弁8が設けられていない。その代り、比較例では、その第5配管15の途中に、電池用蒸発器6の冷媒出口側の冷媒温度を検出するための温度センサ401が設けられている。温度センサ401の出力信号は、ECU10に伝送される。ECU10は、温度センサ401から出力される信号をフィードバックしながら、電気制御式膨張弁400の弁開度を制御する。具体的には、ECU10は、電池用蒸発器6の温度が、例えば20℃程度に維持されるように、電気制御式膨張弁400の弁開度を制御する。
このように、比較例の冷凍サイクル装置100は、第1減圧機構4として電気制御式膨張弁400を採用しているので、温度式膨張弁41などに比べて部品コストが高いものとなっている。また、この比較例の冷凍サイクル装置100は、電気制御式膨張弁400の弁開度を制御するために、電池用蒸発器6の温度を検出する温度センサ401や、制御用の配線などの部品点数が増加する構成となっている。そのため、この比較例の冷凍サイクル装置100は、構成部品のコストが高いことに加えて、配線等の部品点数が増加し構成が複雑化することで、製造上のコストが高くなることが懸念される。
これに対し、本実施形態の冷凍サイクル装置1は、電池用蒸発器6の下流側に蒸発圧力調整弁8を設けたことで、電池用蒸発器6の上流側に配置される第1減圧機構4に温度式膨張弁41などの簡素な構成部品を用いることが可能である。したがって、本実施形態の冷凍サイクル装置1は、構成部品のコストを下げると共に、構成を簡素にすることにより製造上のコストを低減することができる。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、第1実施形態に対して第1減圧機構4の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図4に示すように、第2実施形態では、第1減圧機構4として、固定絞り42が採用されている。固定絞り42は、例えば、オリフィスまたはキャピラリチューブ等により構成されるものである。この固定絞り42により減圧された冷媒は、気液二相状態となって電池用蒸発器6に流入する。第2実施形態でも、第1実施形態と同様に、電池用蒸発器6の下流側には蒸発圧力調整弁8が設けられている。そのため、この蒸発圧力調整弁8により、電池用蒸発器6を流れる冷媒の蒸発圧力を、空調用蒸発器7を流れる冷媒の蒸発圧力より高く維持することが可能である。
以上説明した第2実施形態では、第1減圧機構4に関し、固定絞り42といったより簡素な構成のものを採用している。したがって、この冷凍サイクル装置1は、部品コストをより下げることで、製造上のコストをより低減することができる。
なお、蒸発圧力調整弁8によって電池用蒸発器6の冷媒の蒸発圧力は空調用蒸発器7の冷媒の蒸発圧力より高く維持されるので、第1減圧機構4に固定絞り42を採用した場合でも、電池用蒸発器6から流出する冷媒に液相冷媒が含まれることは殆ど無い。
(第3実施形態)
第3実施形態について説明する。第3実施形態は、第2実施形態等に対して第2減圧機構5の構成と空調用蒸発器7の下流側の構成を変更したものであり、その他については第2実施形態と同様であるため、第2実施形態と異なる部分についてのみ説明する。
図5に示すように、第3実施形態では、第2減圧機構5として、固定絞り52が採用されている。固定絞り52は、例えば、オリフィスまたはキャピラリチューブ等により構成されるものである。この固定絞り52により減圧された冷媒は、気液二相状態となって空調用蒸発器7に流入する。
また、第3実施形態では、第2分岐部19と圧縮機2の冷媒吸入口とを接続する第7配管17の途中にアキュムレータ9が設けられている。アキュムレータ9は、空調用蒸発器7から流出した冷媒の気液を分離し、冷凍サイクル内の余剰冷媒を蓄えると共に、気相冷媒を圧縮機2の冷媒吸入口に供給するものである。したがって、空調用蒸発器7に対する冷房負荷が小さい条件のときに、空調用蒸発器7の出口から気液が混合した冷媒が流出する場合でも、アキュムレータ9により気液が分離され、気相冷媒のみが圧縮機2へ供給される。
以上説明した第3実施形態では、第1減圧機構4と第2減圧機構5の両方に、固定絞り42、52といったより簡素な構成のものを採用している。したがって、この冷凍サイクル装置1は、部品コストをより下げることで、製造上のコストをより低減することができる。
また、第3実施形態では、第2分岐部19と圧縮機2の冷媒吸入口とを接続する第7配管17の途中にアキュムレータ9を設けることで、圧縮機2に液相冷媒が吸入されることが防がれる。言い換えれば、この冷凍サイクル装置1は、第7配管17にアキュムレータ9を設けることで、第1減圧機構4と第2減圧機構5の両方に固定絞り42、52を用いることが可能である。したがって、冷凍サイクル装置1をより簡素な構成にすることで、製造上のコストをより低減することができる。
(第4実施形態)
第4実施形態について説明する。第4実施形態は、第1実施形態等に対して蒸発圧力調整弁8の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
図6に示すように、第4実施形態では、蒸発圧力調整弁8として、電気制御式の蒸発圧力調整弁81が採用されている。電気制御式の蒸発圧力調整弁81は、ECU10から出力される制御信号に応じて、電池用蒸発器6を流れる冷媒の蒸発圧力の設定を調整可能に構成されたものである。具体的には、電気制御式の蒸発圧力調整弁81は、上流側の冷媒圧力が所定の圧力以上になると開弁するように構成された図示しない弁体と、その弁体が開弁する所定の圧力を変更可能な図示しないアクチュエータを有している。そのアクチュエータは、ECU10から出力される制御信号に応じて駆動する。したがって、電気制御式の蒸発圧力調整弁81は、電池用蒸発器6を流れる冷媒の蒸発圧力の設定を、ECU10からアクチュエータへ出力される制御信号に応じて調整可能である。
車両に搭載される電池には、車両の走行状態に応じて電池の発熱量が大きくなる場合など、車両側から電池を急冷する要求(以下、電池急冷要求という)が生じることがある。そこで、第4実施形態では、蒸発圧力調整弁8に電気制御式のものを採用している。この電気制御式の蒸発圧力調整弁81は、車両側から電池急冷要求が生じた場合、ECU10から出力される制御信号により、電池用蒸発器6の冷媒の蒸発圧力の設定を下げるように制御される。すなわち、車両側から電池急冷要求が生じた場合、電気制御式の蒸発圧力調整弁81は、上流側の冷媒圧力が通常時よりも低圧で開弁するように制御される。そのため、電池用蒸発器6の冷媒の蒸発圧力が下がり、それに伴って電池用蒸発器6の冷媒温度が低下する。そのため、電池用蒸発器6と電池との温度差が大きくなり、電池用蒸発器6による電池の冷却能力が向上する。したがって、この冷凍サイクル装置1は、車両側の電池急冷要求に応じて、電池用蒸発器6を流れる冷媒の温度を低くし、電池を急冷することができる。
(第5実施形態)
第5実施形態について説明する。第5実施形態は、第1実施形態等に対して電池用蒸発器6の下流側の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
図7に示すように、第5実施形態では、第5配管15のうち、電池用蒸発器6の冷媒出口と蒸発圧力調整弁8との間の部位に三方弁20が設けられている。三方弁20は、ECU10から出力される制御信号に応じて冷媒が流れる流路を切り替え可能なように構成されている。また、第5実施形態では、第5配管15のうち蒸発圧力調整弁8より下流側の部位と、三方弁20とを迂回通路21が接続している。この迂回通路21を流れる冷媒は、蒸発圧力調整弁8を迂回して流れることになる。
第5実施形態では、通常時(すなわち、車両側から電池急冷要求が無い状態)において、ECU10は三方弁20を制御し、電池用蒸発器6から流出する冷媒が蒸発圧力調整弁8を経由して圧縮機2側へ流れるようにしている。
これに対し、車両側から電池急冷要求が生じた場合、ECU10は三方弁20を制御し、電池用蒸発器6から流出する冷媒が迂回通路21に流れるように三方弁20の流路を切り替える。これにより、電池用蒸発器6から流出する冷媒は、蒸発圧力調整弁8を迂回して圧縮機2側へ流れる。そのため、電池用蒸発器6の冷媒の蒸発圧力は、空調用蒸発器7の冷媒の蒸発圧力と同程度まで低下する。したがって、この冷凍サイクル装置1は、車両側の電池急冷要求に応じて電池用蒸発器6を流れる冷媒の温度を低下させ、電池を急冷することができる。
(第6実施形態)
第6実施形態について説明する。第6実施形態は、第5実施形態の変形例であるため、第5実施形態と異なる部分についてのみ説明する。
図8に示すように、第6実施形態では、第5実施形態で説明した迂回通路21に代えて、連絡通路22を備えている。連絡通路22は、空調用蒸発器7の冷媒出口と第2分岐部19とを接続する第6配管16と、三方弁20とを接続する通路である。この連絡通路22を流れる冷媒は、蒸発圧力調整弁8を迂回して流れることになる。
第6実施形態においても、三方弁20の動作は、第5実施形態で説明したものと同様である。したがって、第6実施形態の構成も、車両側の電池急冷要求に応じて電池用蒸発器6を流れる冷媒の温度を低下させ、電池を急冷することができる。
なお、第6実施形態では、冷凍サイクル装置1が搭載される車両において第5配管15と第6配管16とが近い位置に設けられている場合、第5実施形態で説明した迂回通路21よりも、連絡通路22を短い配管で構成することができる。
(第7実施形態)
第7実施形態について説明する。第7実施形態は、第1実施形態等に対して電池用蒸発器6と空調用蒸発器7の上流側の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
図9に示すように、第7実施形態では、第3配管13のうち、第1分岐部18と第1減圧機構4との間の部位に第1流量調整弁31が設けられている。第1流量調整弁31は、ECU10から出力される制御信号に応じて、第3配管13を流れる冷媒の流量を調整可能である。また、第7実施形態では、第4配管14のうち、第1分岐部18と第2減圧機構5との間の部位に第2流量調整弁32が設けられている。第2流量調整弁32は、ECU10から出力される制御信号に応じて、第4配管14を流れる冷媒の流量を調整可能である。これにより、ECU10は、第1流量調整弁31と第2流量調整弁32を駆動制御することにより、電池用蒸発器6を流れる冷媒流量と、空調用蒸発器7を流れる冷媒流量を調整することが可能である。
第7実施形態では、車両側から電池急冷要求が生じた場合、ECU10は、圧縮機2の回転数を上げると共に、第1流量調整弁31および第2流量調整弁32による流量制御を行う。具体的には、凝縮器3から第1流量調整弁31を経由して電池用蒸発器6に流れる冷媒流量を増やし、凝縮器3から第2流量調整弁32を経由して空調用蒸発器7に流れる冷媒流量が増えることを抑制する。これにより、電池用蒸発器6による電池冷却能力を増大させると共に、空調用蒸発器7による車室内空調能力の変化を抑制することができる。したがって、第7実施形態では、車両側の電池急冷要求に応じて電池を急冷可能であると共に、車室内の空調能力を維持することが可能である。
以上説明した第7実施形態の冷凍サイクル装置1は、第1〜第6実施形態と同様に構成を簡素化して製造上のコストを低減することが可能であると共に、電池冷却と車室内空調のそれぞれの要求に対応することができる。
(第8実施形態)
第8実施形態について説明する。第8実施形態は、第7実施形態の変形例であるため、第7実施形態と異なる部分についてのみ説明する。
図10に示すように、第8実施形態では、第1分岐部18が流量調整弁33により構成されている。流量調整弁33は、ECU10から出力される制御信号に応じて、第2配管12から第3配管13と第4配管14へそれぞれ流れる冷媒の流量を調整可能に構成されたものである。これにより、ECU10は、流量調整弁33の制御により、電池用蒸発器6を流れる冷媒流量と、空調用蒸発器7を流れる冷媒流量を調整することが可能である。
第8実施形態では、車両側から電池急冷要求が生じた場合、ECU10は、圧縮機2の回転数を上げると共に、流量調整弁33による流量制御を行う。具体的には、凝縮器3から流量調整弁33を経由して電池用蒸発器6に流れる冷媒流量を増やし、凝縮器3から流量調整弁33を経由して空調用蒸発器7に流れる冷媒流量が増えることを抑制する。これにより、第8実施形態も、第7実施形態と同様に、車両側の電池急冷要求に応じて電池を急冷可能であると共に、車室内の空調能力を維持することが可能である。
また、第8実施形態の冷凍サイクル装置1は、第7実施形態の構成に比べて、流量調整弁の数を減らし、冷凍サイクル装置1の構成を簡素にすることで、製造上のコストをより低減することができる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(1)上記実施形態では、凝縮器3と電池用蒸発器6と空調用蒸発器7とが第2〜第4配管14および第1分岐部18によって接続されるものとして説明したが、これに限らない。例えば、第2配管12および第1分岐部18を廃止し、第3配管13と第4配管14がそれぞれ凝縮器3の冷媒出口に直接接続される構成としてもよい。
(2)上記実施形態では、電池用蒸発器6と空調用蒸発器7と圧縮機2とが第5〜第7配管15〜17および第2分岐部19によって接続されるものとして説明したが、これに限らない。例えば、第7配管17および第2分岐部19を廃止し、第5配管15と第6配管16がそれぞれ圧縮機2の冷媒吸入口に直接接続される構成としてもよい。
(3)上記実施形態の構成において、必要に応じて、第6配管16に逆止弁を設けてもよい。その場合、逆止弁は、空調用蒸発器7の冷媒出口から第2分岐部19への冷媒の流れを許容し、第2分岐部19から空調用蒸発器7の冷媒出口への冷媒の流れを遮断するように設けられる。
(まとめ)
上述の実施形態の一部または全部で示された第1の観点によれば、車室内空調と電池冷却とを同時に行うことの可能な冷凍サイクル装置は、圧縮機、凝縮器、第1減圧機構、第2減圧機構、電池用蒸発器、空調用蒸発器および蒸発圧力調整弁を備える。圧縮機は、冷媒を吸入し、圧縮して吐き出す。凝縮器は、圧縮機から吐き出された冷媒と外気との熱交換により冷媒を凝縮させる。第1減圧機構は、凝縮器から流出した冷媒を減圧膨張させる。第2減圧機構は、第1減圧機構と並列に設けられ、凝縮器から流出した冷媒を減圧膨張させる。電池用蒸発器は、第1減圧機構から流出した冷媒の蒸発熱により電池を冷却する。空調用蒸発器は、第2減圧機構から流出した冷媒の蒸発熱により車室内空調のための空調風を生成する。蒸発圧力調整弁は、電池用蒸発器の冷媒出口と圧縮機の冷媒吸入口とを接続する配管の途中に設けられ、電池用蒸発器を流れる冷媒の蒸発圧力を、空調用蒸発器を流れる冷媒の蒸発圧力より高く維持する。
第2の観点によれば、第1減圧機構は、凝縮器の冷媒出口と電池用蒸発器の冷媒入口とを接続する配管に設けられる温度式膨張弁である。
これによれば、この冷凍サイクル装置は、電池用蒸発器の下流側に蒸発圧力調整弁を設けたことで、電池用蒸発器の上流側に配置される第1減圧機構に関し、温度式膨張弁を用いることが可能である。そのため、この冷凍サイクル装置は、第1減圧機構に関し、電気制御式膨張弁を用いることなく、温度式膨張弁といった簡素な構成のものを用いることで、製造上のコストを低減することができる。
第3の観点によれば、第1減圧機構は、凝縮器の冷媒出口と電池用蒸発器の冷媒入口とを接続する配管に設けられる固定絞りである。
これによれば、この冷凍サイクル装置は、電池用蒸発器の上流側に配置される第1減圧機構に関し、固定絞りといったより簡素な構成のものを用いることが可能である。したがって、この冷凍サイクル装置は、製造上のコストをより低減することができる。
第4の観点によれば、第2減圧機構は、凝縮器の冷媒出口と空調用蒸発器の冷媒入口とを接続する配管に設けられる固定絞りである。
これによれば、この冷凍サイクル装置は、空調用蒸発器の上流側に配置される第2減圧機構に関しても、固定絞りといったより簡素な構成のものを用いることが可能である。
ところで、空調用蒸発器の上流側に配置される第2減圧機構に固定絞りを用いると、空調用蒸発器に対する冷房負荷が小さい条件のとき、その空調用蒸発器の出口から流出する冷媒に液相冷媒が含まれることがある。
そこで、第5の観点によれば、冷凍サイクル装置は、空調用蒸発器の冷媒出口と圧縮機の冷媒入口とを接続する配管に設けられるアキュムレータをさらに備える。これにより、アキュムレータにより気液を分離して圧縮機に気相冷媒のみを供給し、圧縮機に液相冷媒が吸入されることを防ぐことができる。言い換えれば、この冷凍サイクル装置は、空調用蒸発器の下流側にアキュムレータを設けることで、第1減圧機構と第2減圧機構の両方に固定絞りを用いることが可能となるので、冷凍サイクル装置をより簡素な構成として製造上のコストをより低減することができる。
ところで、車両に搭載される電池には、車両の走行状態に応じて電池の発熱量が大きくなる場合など、車両側から電池急冷要求が生じることがある。
そこで、第6の観点では、蒸発圧力調整弁として、電池用蒸発器を流れる冷媒の蒸発圧力の設定を調整可能に構成された電気制御式の蒸発圧力調整弁を採用する。車両側から電池急冷要求が生じた場合、その電気制御式の蒸発圧力調整弁は、電池用蒸発器の冷媒の蒸発圧力の設定を下げるように制御される。これにより、電池用蒸発器の冷媒の蒸発圧力が下がり、それに伴って電池用蒸発器の冷媒温度が低下する。そのため、電池用蒸発器と電池との温度差が大きくなり、電池用蒸発器による電池の冷却能力が向上する。したがって、この冷凍サイクル装置は、車両側の電池急冷要求に応じて、電池用蒸発器を流れる冷媒の温度を低くし、電池を急冷することができる。
第7の観点によれば、冷凍サイクル装置は、三方弁と迂回通路をさらに備える。三方弁は、電池用蒸発器の冷媒出口と蒸発圧力調整弁の冷媒入口とを接続する配管の途中に設けられる。迂回通路は、蒸発圧力調整弁の冷媒出口と圧縮機の冷媒吸入口とを接続する配管の途中と、三方弁とを接続する。
これにより、車両側から電池急冷要求が生じた場合、三方弁を駆動し、電池用蒸発器から流出する冷媒が迂回通路を経由して圧縮機へ流れるように流路を切り替えることが可能である。その際、電池用蒸発器から流出する冷媒は、蒸発圧力調整弁を迂回して圧縮機側へ流れる。そのため、電池用蒸発器の冷媒の蒸発圧力は、空調用蒸発器の冷媒の蒸発圧力と同程度まで低下する。したがって、この冷凍サイクル装置は、車両側の電池急冷要求に応じて電池用蒸発器を流れる冷媒の温度を低下させ、電池を急冷することができる。
第8の観点によれば、冷凍サイクル装置は、三方弁と連絡通路をさらに備える。三方弁は、電池用蒸発器の冷媒出口と蒸発圧力調整弁の冷媒入口とを接続する配管の途中に設けられる。連絡通路は、空調用蒸発器の冷媒出口と圧縮機の冷媒吸入口とを接続する配管の途中と、三方弁とを接続する。
これによれば、車両側から電池急冷要求が生じた場合、三方弁を駆動し、電池用蒸発器から流出する冷媒が連絡通路を経由して圧縮機へ流れるように流路を切り替えることが可能である。これにより、第8の観点においても、第7の観点と同様に、電池を急冷することができる。なお、第8の観点では、電池用蒸発器と圧縮機とを接続する配管と、空調用蒸発器と圧縮機とを接続する配管とが近い位置にある場合、連絡通路を迂回通路よりも短い配管で構成することができる。
ところで、車両側から電池急冷要求が生じた場合、圧縮機の回転数を上げることで、冷凍サイクル装置を循環する冷媒の流量を増加し、電池を急冷することが考えられる。しかし、圧縮機の回転数を上げる場合、電池用蒸発器による電池冷却能力が増大することに伴って、空調用蒸発器による車室内空調能力も増大すると、車室内空調に変化が生じることが懸念される。
そこで、第9の観点では、冷凍サイクル装置は、第1流量調整弁と第2流量調整弁をさらに備える。第1流量調整弁は、凝縮器の冷媒出口と第1減圧機構の冷媒入口とを接続する配管の途中に設けられる。第2流量調整弁は、凝縮器の冷媒出口と第2減圧機構の冷媒入口とを接続する配管の途中に設けられる。
これにより、第1流量調整弁と第2流量調整弁の制御により、電池用蒸発器を流れる冷媒流量と、空調用蒸発器を流れる冷媒流量を調整することが可能である。そのため、圧縮機の回転数を上げて、電池用蒸発器による電池冷却能力を増大させた場合、空調用蒸発器による車室内空調能力の変化を抑制することができる。したがって、この冷凍サイクル装置は、電池冷却と車室内空調のそれぞれの要求に対応可能な構成であると共に、構成を簡素化して製造上のコストを低減することができる。
第10の観点によれば、冷凍サイクル装置は、凝縮器の冷媒出口と第1減圧機構の冷媒入口と第2減圧機構の冷媒入口とを接続する配管の分岐点に設けられる流量調整弁をさらに備える。
これによれば、上述した第9の観点の構成に比べて、流量調整弁の数を減らし、冷凍サイクル装置の構成を簡素にすることで、製造上のコストをより低減することができる。
1 冷凍サイクル装置
2 圧縮機
3 凝縮器
4 第1減圧機構
5 第2減圧機構
6 電池用蒸発器
7 空調用蒸発器
8 蒸発圧力調整弁

Claims (10)

  1. 車室内空調と電池冷却とを同時に行うことの可能な冷凍サイクル装置において、
    冷媒を吸入し、圧縮して吐き出す圧縮機(2)と、
    前記圧縮機から吐き出された冷媒と外気との熱交換により冷媒を凝縮させる凝縮器(3)と、
    前記凝縮器から流出した冷媒を減圧膨張させる第1減圧機構(4)と、
    前記第1減圧機構と並列に設けられ、前記凝縮器から流出した冷媒を減圧膨張させる第2減圧機構(5)と、
    前記第1減圧機構から流出した冷媒の蒸発熱により電池を冷却する電池用蒸発器(6)と、
    前記第2減圧機構から流出した冷媒の蒸発熱により車室内空調のための空調風を生成する空調用蒸発器(7)と、
    前記電池用蒸発器の冷媒出口と前記圧縮機の冷媒吸入口とを接続する配管の途中に設けられ、前記電池用蒸発器を流れる冷媒の蒸発圧力を、前記空調用蒸発器を流れる冷媒の蒸発圧力より高く維持する蒸発圧力調整弁(8)と、を備える冷凍サイクル装置。
  2. 前記第1減圧機構は、前記凝縮器の冷媒出口と前記電池用蒸発器の冷媒入口とを接続する配管に設けられる温度式膨張弁(41)である、請求項1に記載の冷凍サイクル装置。
  3. 前記第1減圧機構は、前記凝縮器の冷媒出口と前記電池用蒸発器の冷媒入口とを接続する配管に設けられる固定絞り(42)である、請求項1に記載の冷凍サイクル装置。
  4. 前記第2減圧機構は、前記凝縮器の冷媒出口と前記空調用蒸発器の冷媒入口とを接続する配管に設けられる固定絞り(52)である、請求項3に記載の冷凍サイクル装置。
  5. 前記空調用蒸発器の冷媒出口と前記圧縮機の冷媒吸入口とを接続する配管に設けられるアキュムレータ(9)をさらに備える、請求項4に記載の冷凍サイクル装置。
  6. 前記蒸発圧力調整弁は、前記電池用蒸発器を流れる冷媒の蒸発圧力の設定を調整可能に構成された電気制御式の蒸発圧力調整弁(81)であり、
    車両側から前記電池を急冷する要求がある場合、前記電気制御式の蒸発圧力調整弁は、前記電池用蒸発器の冷媒の蒸発圧力の設定を下げるように制御される、請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。
  7. 前記電池用蒸発器の冷媒出口と前記蒸発圧力調整弁の冷媒入口とを接続する配管の途中に設けられる三方弁(20)と、
    前記蒸発圧力調整弁の冷媒出口と前記圧縮機の冷媒吸入口とを接続する配管の途中と前記三方弁とを接続する迂回通路(21)をさらに備える、請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
  8. 前記電池用蒸発器の冷媒出口と前記蒸発圧力調整弁の冷媒入口とを接続する配管の途中に設けられる三方弁(20)と、
    前記空調用蒸発器の冷媒出口と前記圧縮機の冷媒吸入口とを接続する配管の途中と前記三方弁とを接続する連絡通路(22)をさらに備える、請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
  9. 前記凝縮器の冷媒出口と前記第1減圧機構の冷媒入口とを接続する配管の途中に設けられる第1流量調整弁(31)と、
    前記凝縮器の冷媒出口と前記第2減圧機構の冷媒入口とを接続する配管の途中に設けられる第2流量調整弁(32)をさらに備える、請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。
  10. 前記凝縮器の冷媒出口と前記第1減圧機構の冷媒入口と前記第2減圧機構の冷媒入口とを接続する配管の分岐点に設けられる流量調整弁(33)をさらに備える、請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。
JP2018222783A 2018-11-28 2018-11-28 冷凍サイクル装置 Pending JP2020085382A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222783A JP2020085382A (ja) 2018-11-28 2018-11-28 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222783A JP2020085382A (ja) 2018-11-28 2018-11-28 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2020085382A true JP2020085382A (ja) 2020-06-04

Family

ID=70907465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222783A Pending JP2020085382A (ja) 2018-11-28 2018-11-28 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2020085382A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114475146A (zh) * 2021-12-09 2022-05-13 重庆金康赛力斯新能源汽车设计院有限公司 一种制冷量分配方法及系统
WO2022220056A1 (ja) * 2021-04-16 2022-10-20 株式会社デンソー 冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139827A (ja) * 1993-11-18 1995-06-02 Nippondenso Co Ltd 冷房冷凍装置
US20100287961A1 (en) * 2007-11-05 2010-11-18 Gye Young Song Refrigerator and control method for the same
JP2013060066A (ja) * 2011-09-12 2013-04-04 Daikin Industries Ltd 自動車用温調システム
JP2014095484A (ja) * 2012-11-07 2014-05-22 Denso Corp 冷却装置
JP2018185104A (ja) * 2017-04-26 2018-11-22 株式会社デンソー 冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139827A (ja) * 1993-11-18 1995-06-02 Nippondenso Co Ltd 冷房冷凍装置
US20100287961A1 (en) * 2007-11-05 2010-11-18 Gye Young Song Refrigerator and control method for the same
JP2013060066A (ja) * 2011-09-12 2013-04-04 Daikin Industries Ltd 自動車用温調システム
JP2014095484A (ja) * 2012-11-07 2014-05-22 Denso Corp 冷却装置
JP2018185104A (ja) * 2017-04-26 2018-11-22 株式会社デンソー 冷凍サイクル装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220056A1 (ja) * 2021-04-16 2022-10-20 株式会社デンソー 冷凍サイクル装置
CN114475146A (zh) * 2021-12-09 2022-05-13 重庆金康赛力斯新能源汽车设计院有限公司 一种制冷量分配方法及系统

Similar Documents

Publication Publication Date Title
JP6794964B2 (ja) 冷凍サイクル装置
JP4600212B2 (ja) 超臨界冷凍サイクル装置
US20220032732A1 (en) Battery heating device for vehicle
JP5799924B2 (ja) 冷凍サイクル装置
JP4923838B2 (ja) エジェクタ式冷凍サイクル
JP6087744B2 (ja) 冷凍機
JP4096824B2 (ja) 蒸気圧縮式冷凍機
JP2018185104A (ja) 冷凍サイクル装置
JP4006782B2 (ja) 発熱機器の冷却器を有する空調装置
WO2008032645A1 (fr) dispositif de réfrigération
JP2007163074A (ja) 冷凍サイクル
JP7380199B2 (ja) 冷凍サイクル装置
JP2019217947A (ja) 空調装置
JP2007225169A (ja) 空調装置
JP2020085382A (ja) 冷凍サイクル装置
JP2014156143A (ja) 車両用空調装置
JP2000283577A (ja) 冷凍装置用冷凍サイクル
JP4661710B2 (ja) 蒸気圧縮式冷凍サイクル
JP4631721B2 (ja) 蒸気圧縮式冷凍サイクル
JP2007107860A (ja) 空気調和装置
WO2019065039A1 (ja) 冷凍サイクル装置
JP2019027691A (ja) 冷凍サイクル装置
JP2004175232A (ja) 車両用空調装置
JP6507453B2 (ja) 車両用空調装置
JP2005262958A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115