WO2017141667A1 - 作業機械の識別システム - Google Patents

作業機械の識別システム Download PDF

Info

Publication number
WO2017141667A1
WO2017141667A1 PCT/JP2017/003002 JP2017003002W WO2017141667A1 WO 2017141667 A1 WO2017141667 A1 WO 2017141667A1 JP 2017003002 W JP2017003002 W JP 2017003002W WO 2017141667 A1 WO2017141667 A1 WO 2017141667A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcu
work machine
state
control device
gate
Prior art date
Application number
PCT/JP2017/003002
Other languages
English (en)
French (fr)
Inventor
柴田 浩一
守田 雄一朗
大輝 相澤
克将 宇治
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201780002865.3A priority Critical patent/CN107923150B/zh
Priority to EP17752930.2A priority patent/EP3418454B1/en
Priority to US15/757,901 priority patent/US10876274B2/en
Priority to KR1020187004913A priority patent/KR102041858B1/ko
Publication of WO2017141667A1 publication Critical patent/WO2017141667A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/125Locking devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]

Definitions

  • the present invention relates to a work machine identification system.
  • a work machine identification system includes a first control device that controls the entire work machine, and a plurality of second control devices that control components of the work machine.
  • the first control device acquires information relating to the entire vehicle body of the work machine, and the second control device is provided at a site where the second control device is mounted on the work machine. Based on this, information on the state of the component different from the other second control device is acquired, and the function of the second control device is set based on the information on the state and the information on the entire vehicle body.
  • the function of the control unit can be set based on the part where the control unit is mounted on the work machine, erroneous setting can be prevented.
  • 1 is a block diagram showing a configuration example of a hydraulic excavator 100 to which an identification system 10 according to a first embodiment is applied.
  • the block diagram which shows the structural example of PCU103 which concerns on 1st Embodiment.
  • 5A is a flowchart illustrating an example of processing in the MCU 101.
  • FIG. FIG. 6B is a flowchart illustrating an example of processing in the PCU 103.
  • the flowchart which shows an example of the determination process in PCU103 which concerns on 1st Embodiment.
  • the flowchart which shows an example of the determination process in PCU103 which concerns on 2nd Embodiment.
  • FIG. 1 is a side view of a hydraulic excavator 100 that is an example of a work machine.
  • the excavator 100 includes a traveling body 11 and a revolving body 12 provided on the traveling body 11 so as to be able to swivel.
  • a front working device 13 is provided at the front of the revolving structure 12.
  • the front working device 13 includes a boom 14, an arm 15, and a bucket 16.
  • the boom 14 is attached to the frame of the revolving structure 12 so as to be rotatable in the vertical direction with respect to the revolving structure 12.
  • the boom 14 is driven up and down by the boom cylinder 14a.
  • the arm 15 is attached at the tip of the boom 14 so as to be pivotable in the vertical direction with respect to the boom 14.
  • the arm 15 is driven up and down by the arm cylinder 15a.
  • the bucket 16 is attached at the tip of the arm 15 so as to be rotatable in the vertical direction with respect to the arm 15.
  • the bucket 16 is driven by a bucket cylinder 16a.
  • the swivel body 12 is provided with a cab 17 where an operator is boarded and a counterweight 19.
  • the cab 17 is provided with an operation lever.
  • the operation lever commands driving of the front working device 13 and the revolving structure 12.
  • the operation amount of the operation lever is detected by a pilot pressure sensor.
  • the pilot pressure sensor generates an operation signal corresponding to the operation amount of the operation lever.
  • FIG. 2 is a block diagram showing a configuration example of the excavator 100 to which the identification system 10 according to the first embodiment is applied.
  • the hydraulic excavator 100 includes a main control unit (hereinafter referred to as MCU 101), an engine 105 that is an internal combustion engine, an engine control unit (hereinafter referred to as ECU 102) that controls the engine 105, a hydraulic pump 106, and a rotation sensor unit. 110A, an assist power generation motor 108 that assists and generates electric power for the engine 105, a turning hydraulic motor (hereinafter referred to as a turning hydraulic motor 112), a rotation sensor unit 110B, and a turning electric motor (hereinafter referred to as a turning electric motor). And a power supply unit 107, a gate lock lever 114, and a gate lock switch 115.
  • MCU 101 main control unit
  • ECU 102 engine control unit
  • ECU 102 engine control unit
  • 110A an assist power generation motor 108 that assists and generates electric power for the engine
  • the hydraulic excavator 100 further includes two power control units (hereinafter referred to as PCU 103), that is, a power control unit (hereinafter referred to as PCU 103A) for controlling the assist power generation motor 108 and a power control unit for controlling the swing electric motor 109. (Hereinafter referred to as PCU 103B).
  • PCU 103A a power control unit
  • PCU 103B a power control unit for controlling the swing electric motor 109.
  • the identification system 10 of the excavator 100 includes an MCU 101, a PCU 103A, and a PCU 103B.
  • the PCU 103A is mounted on the mounting portion 20A
  • the PCU 103B is mounted on the mounting portion 20B.
  • the MCU 101 includes an arithmetic processing unit having a CPU and a storage device such as ROM and RAM, and other peripheral circuits.
  • the MCU 101 controls the entire system of the excavator 100.
  • the MCU 101 is connected to components such as the ECU 102, the PCU 103A, the PCU 103B, and the gate lock switch 115 via a communication network.
  • the MCU 101 performs data communication with each component of the excavator 100 via a communication network.
  • a communication method such as CAN (Controller-Area-Network) is used.
  • Each component of the excavator 100 performs data communication using a serial signal, for example.
  • the MCU 101 generates a control signal for the PCU 103A and the PCU 103B based on an operation signal corresponding to the operation amount of the operation lever.
  • the MCU 101 further acquires information related to the entire vehicle body of the excavator 100 based on signals input from each component.
  • the MCU 101 outputs to the PCU 103A and the PCU 103B the entire vehicle body information that is information relating to the acquired entire vehicle body.
  • the MCU 101 generates a gate OFF control signal for controlling a switching element constituting the PCU 103A described later, and outputs the gate OFF control signal to the PCU 103A.
  • the ECU 102 has a rotation speed detection unit that detects the rotation speed of the engine 105.
  • the rotation speed detection unit generates a detection signal corresponding to the rotation speed of the engine 105.
  • ECU102 outputs the detection signal acquired by the rotational speed detection part to MCU101.
  • the gate lock lever 114 is selectively operated to a lock position where the command of the operation lever of the excavator 100 is invalidated and a lock release position where the command of the operation lever is valid.
  • the gate lock switch 115 outputs a gate lock lever state signal corresponding to the operation position of the gate lock lever 114 to the MCU 101 and the PCU 103B.
  • the power supply unit 107 includes, for example, a chargeable / dischargeable capacitor.
  • the capacitor is charged and discharged according to the driving state of the assist power generation motor 108 and the swing electric motor 109.
  • the power supply unit 107 may include a secondary battery such as a lithium ion battery.
  • the assist power generation motor 108 generates power by being rotationally driven by the engine 105, generates rotational torque to assist the engine 105, and drives the hydraulic pump 106 in cooperation with the engine 105.
  • the rotation sensor unit 110A includes a rotation angle sensor such as a resolver.
  • 110 A of rotation sensor parts acquire the position signal according to the magnetic pole position of the assist electric power generation motor 108, and calculate the rotational speed of the assist electric power generation motor 108 based on a position signal.
  • 110 A of rotation sensor parts output the motor state signal according to the rotational speed of the assist electric power generation motor 108 to PCU103A.
  • the hydraulic pump 106 is driven by the engine 105 and the assist power generation motor 108 to discharge the pressure oil.
  • Pressure oil discharged from the hydraulic pump 106 is supplied to each hydraulic actuator such as a hydraulic cylinder (boom cylinder 14a, arm cylinder 15a, bucket cylinder 16a) by a control valve.
  • the drive shaft of the hydraulic pump 106 is provided coaxially with the drive shafts of the engine 105 and the assist generator motor 108.
  • the swing electric motor 109 generates rotational torque and drives the swing body 12 in cooperation with the swing hydraulic motor 112 or generates electric power by being rotationally driven by the swing body 12.
  • the swing electric motor 109 generates power by, for example, regeneration when the swing body 12 is decelerated (braking).
  • the rotation sensor unit 110B includes a rotation angle sensor such as a resolver.
  • the rotation sensor unit 110B acquires a position signal corresponding to the magnetic pole position of the swing electric motor 109, and calculates the rotation speed of the swing electric motor 109 based on the position signal.
  • the rotation sensor unit 110B outputs a motor state signal corresponding to the rotation speed of the swing electric motor 109 to the PCU 103B.
  • the swing hydraulic motor 112 drives the swing body 12 based on the pressure oil supplied from the hydraulic pump 106 via the control valve.
  • the drive shafts of the swing hydraulic motor 112 and the swing electric motor 109 are provided coaxially.
  • the PCU 103A controls the assist power generation motor 108 based on the control signal output from the MCU 101.
  • the PCU 103B controls the swing electric motor 109 based on a control signal output from the MCU 101.
  • FIG. 3 is a block diagram illustrating a configuration example of the PCU 103 according to the first embodiment.
  • Each of the PCU 103A and the PCU 103B has the configuration shown in FIG.
  • the PCU 103B includes an inverter unit 401, a gate drive unit 402, a calculation unit 403, and a capacitor 404.
  • the PCU 103 ⁇ / b> B converts the DC power from the power supply unit 107 into AC power and outputs it to the swing electric motor 109, or converts the AC power from the swing electric motor 109 into DC power and outputs it to the power supply unit 107.
  • the PCU 103B acquires the gate lock lever state signal generated by the gate lock switch 115 input from the terminal 405 as it is or after performing signal processing as a gate forced OFF signal.
  • the signal processing is, for example, processing that removes a noise component of a signal.
  • the arithmetic unit 403 includes an arithmetic processing unit having a CPU and a storage device such as ROM and RAM, and other peripheral circuits.
  • the arithmetic unit 403 is connected to the MCU 101, the ECU 102, and the PCU 103A via a terminal 406, and performs data communication using an identification ID.
  • the arithmetic unit 403 outputs a control signal to the gate driving unit 402 in accordance with a command from the MCU 101 to control the gate driving unit 402.
  • a gate forced OFF signal based on the gate lock lever state signal is input to the arithmetic unit 403, and a motor state signal corresponding to the rotation speed of the swing electric motor 109 is input from the rotation sensor unit 110 ⁇ / b> B via the terminal 407.
  • the gate drive unit 402 includes a pre-driver circuit that drives the switching element of the inverter unit 401.
  • the gate drive unit 402 generates a gate drive signal that controls the switching element of the inverter unit 401 based on the control signal output from the calculation unit 403.
  • the gate driving unit 402 outputs the generated gate driving signal to the inverter unit 401.
  • the gate drive unit 402 outputs, for example, a PWM signal as a gate drive signal, and performs on / off control of the switching element of the inverter unit 401.
  • a gate forced OFF signal based on the gate lock lever state signal is input to the gate driving unit 402.
  • the inverter unit 401 includes a plurality of switching elements and a diode connected in parallel to each switching element.
  • the switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor: insulated gate bipolar transistor).
  • Bus 408A and bus 408B are connected to a capacitor of power supply unit 107 via a chopper or the like.
  • the chopper boosts the DC voltage supplied from the capacitor of the power supply unit 107 and supplies it to the buses 408A and 408B, or steps down the DC voltage supplied from the buses 408A and 408B and supplies it to the capacitor of the power supply unit 107.
  • a voltage smoothing capacitor 404 is connected between the bus 408A and the bus 408B.
  • the inverter unit 401 is driven by a gate drive signal output from the gate drive unit 402.
  • the inverter unit 401 When the swing electric motor 109 is driven, the inverter unit 401 generates AC power from the DC power of the bus 408A and the bus 408B and outputs the AC power to the swing electric motor 109 via the terminal 409A, the terminal 409B, and the terminal 409C.
  • Inverter unit 401 converts AC power from swing electric motor 109 into DC power when power is generated by swing electric motor 109, and outputs it to bus 408A and bus 408B.
  • the gate driving unit 402 controls the inverter unit 401 to turn off the switching element when the gate forced OFF signal is in an enabled state (for example, the voltage level of the signal is high). Stop power supply.
  • the gate lock switch 115 enables the gate forced OFF signal by outputting a high level gate lock lever state signal when the gate lock lever 114 is in the locked position.
  • the gate drive unit 402 forcibly stops power supply to the swing electric motor 109 to prevent malfunction of the swing body 12 due to erroneous operation of the operation lever. To do.
  • the PCU 103A includes an inverter unit 401, a gate drive unit 402, a calculation unit 403, and a capacitor 404, like the PCU 103B.
  • the PCU 103A converts the DC power from the power supply unit 107 into AC power and outputs it to the assist power generation motor 108, or converts the AC power from the assist power generation motor 108 into DC power and outputs it to the power supply unit 107.
  • a motor state signal corresponding to the rotation speed of the assist power generation motor 108 is input to the calculation unit 403 from the rotation sensor unit 110 ⁇ / b> A via the terminal 407.
  • the PCU 103A acquires the gate OFF control signal generated by the MCU 101 input from the terminal 405 as it is or performs signal processing and acquires it as a gate forced OFF signal.
  • a gate forced OFF signal is input to the gate driving unit 402 and the calculation unit 403.
  • the gate driving unit 402 controls the inverter unit 401 to turn off the switching element when the gate OFF control signal is at a high level, that is, when the gate forced OFF signal is enabled.
  • the PCU 103 is mounted on the mounting part 20A for the PCU 103A or the mounting part 20B for the PCU 103B.
  • the PCU 103 has a plurality of functions corresponding to each of the mounting part 20A or the mounting part 20B.
  • the calculation unit 403 is connected to a component of the hydraulic excavator 100 different from the calculation unit 403 of the other PCU 103 based on the mounted part, so that the state of the component of the hydraulic excavator 100 different from the other PCU 103 Get information about.
  • the calculation unit 403 determines the function of the PCU 103 based on the acquired information on the state of the components of the excavator 100 and the information on the entire vehicle body of the excavator 100 acquired by the MCU 101 (whole vehicle information).
  • the arithmetic unit 403 stores a program for executing processing corresponding to each of the plurality of mounting parts in a ROM or the like.
  • the calculation unit 403 sets a function corresponding to the mounting part by executing a program stored in the ROM based on the determination result.
  • the function set in the PCU 103 is, for example, a control function related to output characteristics of a motor to be controlled, and includes a control program, a control parameter, and the like.
  • the PCU 103 functions as the PCU 103A by making settings necessary for controlling the assist power generation motor 108, and functions as the PCU 103B by making settings necessary for controlling the swing electric motor 109.
  • the PCU 103 further sets a communication function based on the function determination result.
  • the PCU 103 is assigned an ID that does not overlap with other PCUs 103 by setting an ID corresponding to the mounting part in the communication function setting.
  • the PCU 103 sets, for example, IDs based on communication priorities of the PCU 103A and the PCU 103B as IDs corresponding to the mounting parts.
  • the MCU 101 acquires the entire vehicle body information of the excavator 100 based on the gate lock lever state signal.
  • the PCU 103 mounted on the mounting portion 20 ⁇ / b> B for the PCU 103 ⁇ / b> B acquires a gate forced OFF signal based on the gate lock lever state signal as information regarding the state of the components of the excavator 100.
  • the PCU 103 mounted on the mounting part 20 ⁇ / b> A for the PCU 103 ⁇ / b> A acquires a gate forced OFF signal based on the gate OFF control signal as information regarding the state of the components of the excavator 100.
  • the PCU 103 functions as the PCU 103B when the gate forced OFF signal in the enabled state is acquired in the gate locked state, and functions as the PCU 103A when the gate forced OFF signal in the disabled state is acquired in the gate locked state.
  • FIG. 4A is a flowchart illustrating an example of processing in the MCU 101
  • FIG. 4B is a flowchart illustrating an example of processing in the PCU 103.
  • the process shown in the flowchart of FIG. 4B is performed in each of the two PCUs 103.
  • the process shown in the flowchart of FIG. 4 is started, for example, by turning on a key switch (not shown).
  • step S100 the MCU 101 transmits an initial setting request to the PCU 103 mounted on the mounting part 20A for the PCU 103A and the PCU 103 mounted on the mounting part 20B for the PCU 103B, and the process proceeds to step S110.
  • step S200 the PCU 103 receives the initial setting request and proceeds to step S210.
  • step S210 the PCU 103 enables the determination function for determining the function of the PCU 103 based on the information related to the state of the component and the entire vehicle body information, and proceeds to step S220.
  • step S110 the MCU 101 acquires information indicating the gate lock state as the entire vehicle body information of the excavator 100 based on the gate lock lever state signal corresponding to the lock position.
  • the MCU 101 transmits the entire vehicle body information corresponding to the acquisition result to the two PCUs 103.
  • step S220 the PCU 103 receives the entire vehicle body information and proceeds to step S230.
  • step S ⁇ b> 230 the PCU 103 acquires information regarding the state of the components of the excavator 100.
  • the PCU 103 determines the function of the PCU 103 based on the information on the state of the component and the entire vehicle body information.
  • the PCU 103 ends the process shown in FIG.
  • FIG. 5 is a flowchart showing an example of determination processing in the PCU 103 according to the first embodiment.
  • FIG. 5 is a diagram for explaining the details of the process shown in FIG. The process shown in the flowchart of FIG. 5 is started in each of the two PCUs 103 by turning on a key switch (not shown), for example.
  • step S300 the PCU 103 determines whether an initial setting request is received from the MCU 101. If a positive determination is made in step S300, the process proceeds to step S310. If a negative determination is made in step S300, the process illustrated in FIG.
  • step S310 the PCU 103 enables the determination function for determining the function of the PCU 103, and proceeds to step S320.
  • step S320 the PCU 103 determines whether the excavator 100 is in the gate lock state based on the entire vehicle body information input from the MCU 101. If a positive determination is made in step S320, the process proceeds to step S330. If a negative determination is made in step S320, the process illustrated in FIG.
  • step S330 the PCU 103 determines whether or not it is in the gate forced OFF state based on the gate forced OFF signal.
  • the PCU 103 mounted on the mounting portion 20B for the PCU 103B acquires a gate forced OFF signal based on the gate lock lever state signal as information related to the state of the excavator 100.
  • the PCU 103 mounted on the mounting portion 20 ⁇ / b> A for the PCU 103 ⁇ / b> A acquires a gate forced OFF signal based on the gate OFF control signal as information related to the state of the excavator 100.
  • the gate lock lever state signal becomes high level.
  • the PCU 103 mounted on the mounting portion 20B for the PCU 103B acquires the gate forced OFF signal in the enabled state, determines that it is in the gate forced OFF state, and proceeds to step S350.
  • the gate OFF control signal generated by the MCU 101 is set to a low level.
  • the PCU 103 mounted on the mounting portion 20A for the PCU 103A acquires the gate forced OFF signal in the disabled state, determines that it is not in the gate forced OFF state, and proceeds to step S340.
  • step S340 the PCU 103 mounted on the mounting portion 20A for the PCU 103A stores the setting of the PCU 103A for controlling the assist power generation motor 108, and ends the process shown in FIG.
  • step S350 the PCU 103 mounted on the mounting portion 20B for the PCU 103B stores the setting of the PCU 103B that controls the swing electric motor 109, and ends the process shown in FIG.
  • Two PCUs 103 are mounted on the hydraulic excavator 100 at the manufacturing plant or the maintenance plant.
  • the excavator 100 is activated.
  • the operator requests the MCU 101 to start setting by operating the service tool.
  • the MCU 101 transmits an initial setting request to the two PCUs 103.
  • the MCU 101 acquires information related to the gate lock state of the excavator 100 and transmits the information to the two PCUs 103 when the gate lock lever 114 is in the locked position.
  • the PCU 103 enables the determination function for determining the function of the PCU 103 when an initial setting request is received from the MCU 101.
  • the PCU 103 determines the function of the PCU 103 based on the gate forced OFF signal.
  • the PCU 103 stores the setting for the PCU 103B when the gate forced OFF signal is enabled, and stores the setting for the PCU 103A when the gate forced OFF signal is disabled.
  • the identification system 10 of the excavator 100 includes an MCU 101 (first control device) that controls the entire excavator 100, and a plurality of PCUs 103 (second control devices) that control components of the excavator 100. .
  • the MCU 101 acquires information related to the entire vehicle body of the excavator 100.
  • the PCU 103 acquires information on the state of the constituent elements different from the other PCUs 103 based on the mounting part of the PCU 103 on the hydraulic excavator 100, and determines the function of the PCU 103 based on the information on the state and the information on the entire vehicle body.
  • the function of the PCU 103 is determined based on the mounting part on the excavator 100, and the function corresponding to the determination result is set. Since the function corresponding to the mounting part can be set, erroneous setting can be prevented.
  • the PCU 103 has a plurality of functions corresponding to each of the mounting part 20A and the mounting part 20B, and sets a function corresponding to the mounting part 20A or the mounting part 20B based on the determination result. Since it did in this way, it can set to the function corresponding to an installation part after mounting to excavator 100.
  • the PCU 103 has only one function, the function cannot be switched after mounting on the excavator 100.
  • the PCU 103 has functions for assisting power generation motor control and turning electric motor control, and is set to a function corresponding to the mounting site after being mounted on the hydraulic excavator 100. Can be prevented. As a result, parts inventory for maintenance management can be reduced.
  • the PCU 103 acquires information related to a state different from that of the other PCU 103 by being connected to a component different from that of the other PCU 103 based on the mounting portion of the PCU 103 on the excavator 100.
  • the PCU 103 mounted on the mounting portion 20B for the PCU 103B acquires a gate forced OFF signal based on the gate lock lever state signal as information related to the state of the excavator 100.
  • the PCU 103 mounted on the mounting portion 20 ⁇ / b> A for the PCU 103 ⁇ / b> A acquires a gate forced OFF signal based on the gate OFF control signal as information related to the state of the excavator 100.
  • the information regarding the state of the excavator 100 acquired by the PCU 103 includes the lock position that invalidates the command of the operation lever of the excavator 100 and the lock that validates the command of the operation lever.
  • This is information regarding the operation position of the gate lock lever 114 operated to the release position.
  • the information on the entire vehicle body acquired by the MCU 101 is a gate lock state in which the gate lock lever 114 is operated to the lock position. Since it did in this way, the function of PCU103 can be set based on the information regarding the operation position of a gate lock lever.
  • the excavator 100 and the PCU 103 according to the second embodiment have the same configuration as the excavator 100 and the PCU 103 according to the first embodiment (see FIGS. 2 and 3).
  • the MCU 101 acquires overall vehicle body information of the excavator 100 based on the gate lock lever state signal, and the PCU 103 transmits a signal related to the operation position of the gate lock lever 114 regarding the state of the components of the excavator 100.
  • the example used as information has been described.
  • the MCU 101 acquires the entire vehicle body information of the excavator 100 based on the detection signal corresponding to the rotation speed of the engine 105, and the PCU 103 acquires the assist power generation motor 108 and the swing electric motor 109.
  • a signal relating to the rotational speed of the hydraulic excavator 100 is used as information relating to the state of components of the excavator 100.
  • the MCU 101 acquires information indicating the engine driving state as whole body information of the excavator 100 based on a detection signal generated by the ECU 102 according to the rotation speed of the engine 105. For example, the MCU 101 determines that the engine is driven when the rotational speed of the engine 105 is equal to or higher than a predetermined value (for example, 200 rpm). The MCU 101 transmits the entire vehicle body information corresponding to the determination result to the two PCUs 103.
  • the PCU 103 functions as the PCU 103A when it acquires a motor state signal in which the rotation speed of the motor is equal to or higher than a predetermined value when the engine is driven, and the motor state in which the rotation speed of the motor does not exceed the predetermined value when the engine is driven. When the signal is acquired, it functions as the PCU 103B.
  • FIG. 6 is a flowchart illustrating an example of determination processing in the PCU 103 according to the second embodiment. The process shown in the flowchart of FIG. 6 is started in each of the two PCUs 103 by turning on a key switch (not shown), for example.
  • step S400 the PCU 103 determines whether an initial setting request is received from the MCU 101. If a positive determination is made in step S400, the process proceeds to step S410. If a negative determination is made in step S400, the process illustrated in FIG.
  • step S410 the PCU 103 enables the determination function for determining the function of the PCU 103, and proceeds to step S420.
  • step S420 the PCU 103 determines whether or not the excavator 100 is in the engine driving state based on the entire vehicle body information input from the MCU 101. If a positive determination is made in step S420, the process proceeds to step S430. If a negative determination is made in step S420, the process illustrated in FIG.
  • step S430 the PCU 103 mounted on the mounting portion 20A for the PCU 103A determines whether or not the rotational speed of the motor is equal to or higher than a predetermined value based on the motor state signal corresponding to the rotational speed of the assist power generation motor 108. .
  • the PCU 103 mounted on the mounting portion 20 ⁇ / b> B for the PCU 103 ⁇ / b> B determines whether the rotational speed of the motor is equal to or higher than a predetermined value based on the motor state signal corresponding to the rotational speed of the swing electric motor 109.
  • the predetermined value used for the determination is a threshold value for determining whether or not the motor is in a stopped state, and is set to 200 rpm, for example.
  • the assist power generation motor 108 is in the driving state.
  • the PCU 103 mounted on the mounting portion 20A for the PCU 103A determines that the rotational speed of the motor is equal to or higher than a predetermined value, and proceeds to step S450.
  • the swing electric motor 109 is stopped.
  • the PCU 103 mounted on the mounting part 20B for the PCU 103B determines that the rotational speed of the motor is not equal to or higher than the predetermined value, and proceeds to step S440.
  • step S440 the PCU 103 mounted on the mounting portion 20B for the PCU 103B stores the setting of the PCU 103B that controls the swing electric motor 109, and ends the process shown in FIG.
  • step S450 the PCU 103 mounted on the mounting portion 20A for the PCU 103A stores the setting of the PCU 103A that controls the assist power generation motor 108, and ends the process shown in FIG.
  • the information related to the state of the hydraulic excavator 100 acquired by the PCU 103A and the PCU 103B is information related to the rotational speed of the motor of the hydraulic excavator 100.
  • Information on the entire vehicle body acquired by the MCU 101 is an engine driving state in which the rotation speed of the engine 105 is equal to or higher than a predetermined value. Since it did in this way, the function of PCU103 can be determined based on the rotational speed of the assist electric power generation motor 108 and the turning electric motor 109 in an engine drive state.
  • Modification 1 In the above-described first embodiment, the example in which the function of the PCU 103 is determined using the signal related to the operation position of the gate lock lever has been described. However, the function of the PCU 103 may be determined using a signal relating to the operation position of another operation lever for stopping the operation of a part of the vehicle body. For example, a signal related to the operation position of a stop lever for stopping the engine 105 or the swing body 12 can be used in the present invention.
  • Modification 2 In the above-described embodiment, the example in which the function of the PCU 103 is determined in each of the two PCUs 103 has been described. However, one of the two PCUs 103 determines the function. The other PCU 103 may set the function based on the determination result of one PCU 103.
  • the hydraulic excavator 100 has been described as an example of the working machine.
  • the present invention is not limited to this, and other examples such as a wheel loader, a forklift, a telehandler, a lift truck, a dump truck, and a crane are available.
  • the present invention can also be applied to a work machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Operation Control Of Excavators (AREA)
  • Small-Scale Networks (AREA)

Abstract

誤設定を防止することができる作業機械の識別システムを提供するために、作業機械の識別システムは、作業機械の全体を制御する第1の制御装置と、前記作業機械の構成要素を制御する複数の第2の制御装置と、を備えた作業機械の識別システムであって、前記第1の制御装置は、前記作業機械の車体全体に関する情報を取得し、前記第2の制御装置は、前記第2の制御装置の前記作業機械への搭載部位に基づいて他の前記第2の制御装置とは異なる前記構成要素の状態に関する情報を取得し、前記状態に関する情報と前記車体全体に関する情報とに基づいて前記第2の制御装置の機能を設定する。

Description

作業機械の識別システム
 本発明は、作業機械の識別システムに関する。
 従来、複数のコントロールユニットが共通に有するID(Identifier:識別子)テーブルを用いて、IDテーブルに登録されているIDの範囲で重複しないIDを、各コントロールユニットに設定する車載ネットワークシステムが知られている(特許文献1)。
特開2012-222527号公報
 しかし、特許文献1に記載の車載ネットワークシステムは、IDテーブルから無作為に決定したIDを設定するため、IDの誤設定が生じるおそれがある。
 本発明の一態様による作業機械の識別システムは、作業機械の全体を制御する第1の制御装置と、前記作業機械の構成要素を制御する複数の第2の制御装置と、を備えた作業機械の識別システムであって、前記第1の制御装置は、前記作業機械の車体全体に関する情報を取得し、前記第2の制御装置は、前記第2の制御装置の前記作業機械への搭載部位に基づいて他の前記第2の制御装置とは異なる前記構成要素の状態に関する情報を取得し、前記状態に関する情報と前記車体全体に関する情報とに基づいて前記第2の制御装置の機能を設定する。
 本発明によれば、コントロールユニットの作業機械への搭載部位に基づいて、コントロールユニットの機能を設定することができるので、誤設定を防止することができる。
作業機械の一例である油圧ショベル100の側面図。 第1の実施の形態に係る識別システム10が適用される油圧ショベル100の構成例を示すブロック図。 第1の実施の形態に係るPCU103の構成例を示すブロック図。 (a)はMCU101における処理の一例を示すフローチャート。(b)はPCU103における処理の一例を示すフローチャート。 第1の実施の形態に係るPCU103における判定処理の一例を示すフローチャート。 第2の実施の形態に係るPCU103における判定処理の一例を示すフローチャート。
(第1の実施の形態)
 図1は、作業機械の一例である油圧ショベル100の側面図である。なお、説明の便宜上、図1に示すように油圧ショベル100の前後および上下方向を規定する。油圧ショベル100は、走行体11と、走行体11上に旋回可能に設けられた旋回体12とを備える。旋回体12の前部には、フロント作業装置13が設けられている。
 フロント作業装置13は、ブーム14、アーム15、および、バケット16を備える。ブーム14は、旋回体12のフレームにおいて、旋回体12に対して上下方向に回動可能に取り付けられている。ブーム14は、ブームシリンダ14aによって駆動されて起伏する。
 アーム15は、ブーム14の先端において、ブーム14に対して上下方向に回動可能に取り付けられている。アーム15は、アームシリンダ15aによって駆動されて起伏する。バケット16は、アーム15の先端において、アーム15に対して上下方向に回動可能に取り付けられている。バケット16は、バケットシリンダ16aによって駆動される。
 旋回体12には、オペレータが搭乗する運転室17と、カウンタウエイト19とが備えられている。運転室17には、操作レバーが設けられている。操作レバーは、フロント作業装置13や旋回体12の駆動を指令する。操作レバーの操作量は、パイロット圧センサにより検出される。パイロット圧センサは、操作レバーの操作量に応じた操作信号を生成する。
 図2は、第1の実施の形態に係る識別システム10が適用される油圧ショベル100の構成例を示すブロック図である。油圧ショベル100は、メインコントロールユニット(以下、MCU101と記す)と、内燃機関であるエンジン105と、エンジン105を制御するエンジンコントロールユニット(以下、ECU102と記す)と、油圧ポンプ106と、回転センサ部110Aと、エンジン105の動力の補助および発電を行うアシスト発電モータ108と、旋回用の油圧モータ(以下、旋回油圧モータ112と記す)と、回転センサ部110Bと、旋回用の電動モータ(以下、旋回電動モータ109と記す)と、電源部107と、ゲートロックレバー114と、ゲートロックスイッチ115とを備える。
 油圧ショベル100は、さらに、パワーコントロールユニット(以下、PCU103と記す)を2つ、すなわちアシスト発電モータ108を制御するパワーコントロールユニット(以下、PCU103Aと記す)および旋回電動モータ109を制御するパワーコントロールユニット(以下、PCU103Bと記す)を備える。油圧ショベル100の識別システム10は、MCU101と、PCU103Aと、PCU103Bとを含んで構成される。PCU103Aは搭載部位20Aに搭載され、PCU103Bは搭載部位20Bに搭載されている。
 MCU101は、CPUや記憶装置であるROMおよびRAM、その他の周辺回路などを有する演算処理装置を含んで構成されている。MCU101は、油圧ショベル100のシステム全体の制御を行う。MCU101は、ECU102、PCU103A、PCU103Bおよびゲートロックスイッチ115などの構成要素と通信ネットワークを介して接続されている。MCU101は、通信ネットワークを介して、油圧ショベル100の各構成要素とデータ通信を行う。データ通信には、CAN(Controller Area Network)などの通信方式が用いられる。油圧ショベル100の各構成要素は、たとえば、シリアル信号を用いてデータ通信を行う。
 MCU101は、操作レバーの操作量に応じた操作信号などに基づいて、PCU103A、PCU103Bに対する制御信号を生成する。MCU101は、さらに、各構成要素から入力される信号に基づいて、油圧ショベル100の車体全体に関する情報を取得する。MCU101は、取得した車体全体に関する情報である車体全体情報を、PCU103AおよびPCU103Bに出力する。MCU101は、後述するPCU103Aを構成するスイッチング素子を制御するゲートOFF制御信号を生成し、PCU103Aに出力する。
 ECU102は、エンジン105の回転速度を検出する回転速度検出部を有する。回転速度検出部は、エンジン105の回転速度に応じた検出信号を生成する。ECU102は、回転速度検出部で取得された検出信号をMCU101に出力する。
 ゲートロックレバー114は、油圧ショベル100の操作レバーの指令を無効とするロック位置と、操作レバーの指令を有効とするロック解除位置とに選択的に操作される。ゲートロックスイッチ115は、ゲートロックレバー114の操作位置に応じたゲートロックレバー状態信号を、MCU101およびPCU103Bに出力する。
 電源部107は、たとえば、充放電可能なキャパシタを含んで構成される。キャパシタは、アシスト発電モータ108および旋回電動モータ109の駆動状態に応じて充放電される。なお、電源部107は、リチウムイオンバッテリなどの二次電池を含んで構成してもよい。
 アシスト発電モータ108は、エンジン105によって回転駆動されることにより発電したり、エンジン105をアシストする回転トルクを生成して、エンジン105と協働して油圧ポンプ106を駆動させたりする。
 回転センサ部110Aは、レゾルバなどの回転角センサを有する。回転センサ部110Aは、アシスト発電モータ108の磁極位置に応じた位置信号を取得し、位置信号に基づいてアシスト発電モータ108の回転速度を算出する。回転センサ部110Aは、アシスト発電モータ108の回転速度に応じたモータ状態信号をPCU103Aに出力する。
 油圧ポンプ106は、エンジン105およびアシスト発電モータ108によって駆動され、圧油を吐出する。油圧ポンプ106から吐出される圧油は、コントロールバルブにより油圧シリンダ(ブームシリンダ14a、アームシリンダ15a、バケットシリンダ16a)などの各油圧アクチュエータに供給される。油圧ポンプ106の駆動軸は、エンジン105およびアシスト発電モータ108の駆動軸と同軸上に設けられている。
 旋回電動モータ109は、回転トルクを生成して旋回油圧モータ112と協働して旋回体12を駆動させたり、旋回体12によって回転駆動されることにより発電したりする。旋回電動モータ109は、たとえば、旋回体12の減速時(制動時)の回生によって発電する。
 回転センサ部110Bは、レゾルバなどの回転角センサを有する。回転センサ部110Bは、旋回電動モータ109の磁極位置に応じた位置信号を取得し、位置信号に基づいて旋回電動モータ109の回転速度を算出する。回転センサ部110Bは、旋回電動モータ109の回転速度に応じたモータ状態信号をPCU103Bに出力する。
 旋回油圧モータ112は、油圧ポンプ106からコントロールバルブを介して供給される圧油に基づいて、旋回体12を駆動させる。旋回油圧モータ112と旋回電動モータ109の駆動軸は、同軸上に設けられている。
 PCU103Aは、MCU101から出力される制御信号に基づいて、アシスト発電モータ108を制御する。PCU103Bは、MCU101から出力される制御信号に基づいて、旋回電動モータ109を制御する。
 図3は、第1の実施の形態に係るPCU103の構成例を示すブロック図である。PCU103AおよびPCU103Bは、それぞれが図3に示す構成を有している。
 PCU103Bは、インバータ部401と、ゲート駆動部402と、演算部403と、コンデンサ404とを含んで構成される。PCU103Bは、電源部107からの直流電力を交流電力に変換して旋回電動モータ109に出力する、または、旋回電動モータ109からの交流電力を直流電力に変換して電源部107に出力する。PCU103Bは、端子405から入力されるゲートロックスイッチ115で生成されたゲートロックレバー状態信号を、そのまま又は信号処理して、ゲート強制OFF信号として取得する。信号処理は、たとえば、信号のノイズ成分を除去する処理である。
 演算部403は、CPUや記憶装置であるROMおよびRAM、その他の周辺回路などを有する演算処理装置を含んで構成されている。演算部403は、端子406を介してMCU101と、ECU102と、PCU103Aと接続され、識別用のIDを用いてデータ通信を行う。演算部403は、MCU101からの指令に応じて、ゲート駆動部402に制御信号を出力して、ゲート駆動部402の制御を行う。演算部403には、ゲートロックレバー状態信号に基づくゲート強制OFF信号が入力され、端子407を介して回転センサ部110Bから旋回電動モータ109の回転速度に応じたモータ状態信号が入力される。
 ゲート駆動部402は、インバータ部401のスイッチング素子を駆動するプリドライバ回路を含んで構成される。ゲート駆動部402は、演算部403により出力された制御信号に基づき、インバータ部401のスイッチング素子を制御するゲート駆動信号を生成する。ゲート駆動部402は、生成したゲート駆動信号をインバータ部401に出力する。ゲート駆動部402は、たとえば、ゲート駆動信号としてPWM信号を出力し、インバータ部401のスイッチング素子をオンオフ制御する。ゲート駆動部402には、ゲートロックレバー状態信号に基づくゲート強制OFF信号が入力される。
 インバータ部401は、複数のスイッチング素子、各スイッチング素子に並列接続されるダイオードを含んで構成される。スイッチング素子は、たとえば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)である。母線408Aおよび母線408Bは、チョッパなどを介して電源部107のキャパシタと接続される。チョッパは、電源部107のキャパシタから供給される直流電圧を昇圧して母線408Aおよび母線408Bに供給したり、母線408Aおよび母線408Bから供給される直流電圧を降圧して電源部107のキャパシタに供給したりする。母線408Aと母線408Bとの間には、電圧平滑用のコンデンサ404が接続されている。
 インバータ部401は、ゲート駆動部402により出力されるゲート駆動信号によって駆動される。インバータ部401は、旋回電動モータ109のモータ駆動時は、母線408Aおよび母線408Bの直流電力から交流電力を生成し、端子409A、端子409B、および端子409Cを介して、旋回電動モータ109に出力する。インバータ部401は、旋回電動モータ109の発電時には、旋回電動モータ109からの交流電力を直流電力に変換して、母線408Aおよび母線408Bに出力する。
 ゲート駆動部402は、ゲート強制OFF信号がイネーブル状態(たとえば、信号の電圧レベルがハイレベル)の場合に、スイッチング素子をオフさせるようにインバータ部401を制御することで、旋回電動モータ109への電力供給を停止させる。ゲートロックスイッチ115は、ゲートロックレバー114がロック位置にある場合に、ハイレベルのゲートロックレバー状態信号を出力することにより、ゲート強制OFF信号をイネーブル状態とする。ゲート駆動部402は、ゲートロックレバー114がロック位置に操作された場合に、旋回電動モータ109への電力供給を強制的に停止することで、操作レバーの誤操作などによる旋回体12の誤動作を防止する。
 PCU103Aは、PCU103Bと同様に、インバータ部401と、ゲート駆動部402と、演算部403と、コンデンサ404とを含んで構成される。PCU103Aは、電源部107からの直流電力を交流電力に変換してアシスト発電モータ108に出力する、または、アシスト発電モータ108からの交流電力を直流電力に変換して電源部107に出力する。演算部403には、端子407を介して、回転センサ部110Aからアシスト発電モータ108の回転速度に応じたモータ状態信号が入力される。
 PCU103Aは、端子405から入力されるMCU101で生成されたゲートOFF制御信号を、そのまま又は信号処理して、ゲート強制OFF信号として取得する。ゲート駆動部402および演算部403には、ゲート強制OFF信号が入力される。ゲート駆動部402は、ゲートOFF制御信号がハイレベル、すなわちゲート強制OFF信号がイネーブル状態の場合に、スイッチング素子をオフさせるようにインバータ部401を制御する。
 PCU103AおよびPCU103Bには、共通のハードウェア構成の2つのPCU103が用いられる。PCU103は、PCU103A用の搭載部位20AまたはPCU103B用の搭載部位20Bに搭載される。PCU103は、搭載部位20Aまたは搭載部位20Bのそれぞれに対応する複数の機能を有している。
 演算部403は、搭載された部位に基づいて、他のPCU103の演算部403とは異なる油圧ショベル100の構成要素と接続されることにより、他のPCU103とは異なる油圧ショベル100の構成要素の状態に関する情報を取得する。演算部403は、取得した油圧ショベル100の構成要素の状態に関する情報と、MCU101で取得される油圧ショベル100の車体全体に関する情報(車体全体情報)とに基づいて、PCU103の機能を判定する。演算部403は、複数の搭載部位のそれぞれに対応する処理を実行するためのプログラムを、ROMなどに記憶している。演算部403は、判定結果に基づいて、ROMに記憶されたプログラムを実行することにより、搭載部位に対応する機能を設定する。
 PCU103において設定される機能は、たとえば、制御対象となるモータの出力特性に関する制御機能であり、制御プログラムや制御パラメータなどが含まれる。PCU103は、アシスト発電モータ108の制御に必要な設定をすることでPCU103Aとして機能し、旋回電動モータ109の制御に必要な設定をすることでPCU103Bとして機能する。
 PCU103は、さらに、機能の判定結果に基づいて、通信機能を設定する。PCU103は、通信機能の設定において、搭載部位に対応するIDを設定することにより、他のPCU103とは重複しないIDが割り当てられる。PCU103は、搭載部位に対応するIDとして、たとえば、PCU103AおよびPCU103Bのそれぞれの通信の優先順位に基づくIDを設定する。
 第1の実施の形態では、MCU101は、ゲートロックレバー状態信号に基づいて、油圧ショベル100の車体全体情報を取得する。PCU103B用の搭載部位20Bに搭載されたPCU103は、ゲートロックレバー状態信号に基づくゲート強制OFF信号を油圧ショベル100の構成要素の状態に関する情報として取得する。PCU103A用の搭載部位20Aに搭載されたPCU103は、ゲートOFF制御信号に基づくゲート強制OFF信号を油圧ショベル100の構成要素の状態に関する情報として取得する。PCU103は、ゲートロック状態のときにイネーブル状態のゲート強制OFF信号を取得した場合はPCU103Bとして機能し、ゲートロック状態のときにディセーブル状態のゲート強制OFF信号を取得した場合はPCU103Aとして機能する。
 図4(a)はMCU101における処理の一例を示すフローチャートであり、図4(b)はPCU103における処理の一例を示すフローチャートである。図4(b)のフローチャートに示す処理は、2つのPCU103のそれぞれにおいて行われる。図4のフローチャートに示す処理は、たとえば、図示しないキースイッチのオンにより開始される。
 ステップS100において、MCU101は、PCU103A用の搭載部位20Aに搭載されたPCU103と、PCU103B用の搭載部位20Bに搭載されたPCU103とに対して、初期設定要求を送信して、ステップS110へ進む。
 ステップS200において、PCU103は、初期設定要求を受信して、ステップS210へ進む。ステップS210において、PCU103は、構成要素の状態に関する情報と車体全体情報とに基づいてPCU103の機能を判定する判定機能を有効にして、ステップS220へ進む。
 ステップS110において、MCU101は、ロック位置に対応するゲートロックレバー状態信号に基づいて、油圧ショベル100の車体全体情報としてゲートロック状態を示す情報を取得する。MCU101は、2つのPCU103に対して、取得結果に応じた車体全体情報を送信する。
 ステップS220において、PCU103は、車体全体情報を受信して、ステップS230へ進む。ステップS230において、PCU103は、油圧ショベル100の構成要素の状態に関する情報を取得する。PCU103は、構成要素の状態に関する情報と車体全体情報とに基づいて、PCU103の機能を判定する。PCU103は、判定結果に基づいて機能を設定すると、図4に示す処理を終了する。
 図5は、第1の実施の形態に係るPCU103における判定処理の一例を示すフローチャートである。図5は、図4(b)に示す処理の詳細を説明する図である。図5のフローチャートに示す処理は、たとえば、図示しないキースイッチのオンにより、2つのPCU103のそれぞれにおいて開始される。
 ステップS300において、PCU103は、MCU101から初期設定の要求がされているか否かを判定する。ステップS300で肯定判定されると、ステップS310へ進み、ステップS300で否定判定されると、図5に示す処理を終了する。
 ステップS310において、PCU103は、PCU103の機能を判定する判定機能を有効にして、ステップS320へ進む。
 ステップS320において、PCU103は、MCU101から入力される車体全体情報に基づいて、油圧ショベル100がゲートロック状態であるか否かを判定する。ステップS320で肯定判定されると、ステップS330へ進み、ステップS320で否定判定されると、図5に示す処理を終了する。
 ステップS330において、PCU103は、ゲート強制OFF信号に基づいて、ゲート強制OFF状態であるか否かを判定する。PCU103B用の搭載部位20Bに搭載されたPCU103は、ゲートロックレバー状態信号に基づくゲート強制OFF信号を油圧ショベル100の状態に関する情報として取得する。PCU103A用の搭載部位20Aに搭載されたPCU103は、ゲートOFF制御信号に基づくゲート強制OFF信号を油圧ショベル100の状態に関する情報として取得する。
 油圧ショベル100がゲートロック状態である場合、すなわちゲートロックレバー114の操作位置がロック位置である場合は、ゲートロックレバー状態信号はハイレベルとなる。PCU103B用の搭載部位20Bに搭載されたPCU103は、イネーブル状態のゲート強制OFF信号を取得し、ゲート強制OFF状態であると判定して、ステップS350へ進む。これに対して、PCU103の初期設定時にゲートロックレバー114の操作位置がロック位置である場合、MCU101により生成されるゲートOFF制御信号は、ローレベルにされる。PCU103A用の搭載部位20Aに搭載されたPCU103は、ディセーブル状態のゲート強制OFF信号を取得し、ゲート強制OFF状態ではないと判定して、ステップS340へ進む。
 ステップS340において、PCU103A用の搭載部位20Aに搭載されたPCU103は、アシスト発電モータ108の制御を行うPCU103Aの設定を保存し、図5に示す処理を終了する。ステップS350において、PCU103B用の搭載部位20Bに搭載されたPCU103は、旋回電動モータ109の制御を行うPCU103Bの設定を保存し、図5に示す処理を終了する。
 本実施の形態の動作をまとめると次のようになる。製造工場または整備工場において、2つのPCU103が油圧ショベル100に搭載される。オペレータが、キースイッチをオンすると、油圧ショベル100が起動する。オペレータは、サービスツールの操作を行うことにより、MCU101に設定開始の要求を行う。MCU101は、2つのPCU103に対して、初期設定要求を送信する。MCU101は、ゲートロックレバー114がロック位置である場合に、油圧ショベル100のゲートロック状態に関する情報を取得し、2つのPCU103に送信する。
 PCU103は、MCU101から初期設定の要求がされると、PCU103の機能を判定する判定機能を有効にする。PCU103は、MCU101からゲートロック状態であることを示す情報を受信すると、ゲート強制OFF信号に基づいて、PCU103の機能の判定を行う。
 PCU103は、ゲート強制OFF信号がイネーブル状態である場合はPCU103B用の設定を保存し、ゲート強制OFF信号がディセーブル状態である場合はPCU103A用の設定を保存する。
 上述した実施の形態によれば、次の作用効果が得られる。
(1)油圧ショベル100の識別システム10は、油圧ショベル100の全体を制御するMCU101(第1の制御装置)と、油圧ショベル100の構成要素を制御する複数のPCU103(第2の制御装置)と、を備える。MCU101は、油圧ショベル100の車体全体に関する情報を取得する。PCU103は、PCU103の油圧ショベル100への搭載部位に基づいて他のPCU103とは異なる構成要素の状態に関する情報を取得し、状態に関する情報と車体全体に関する情報とに基づいてPCU103の機能を判定する。本実施の形態では、油圧ショベル100への搭載部位に基づいてPCU103の機能を判定し、判定結果に応じた機能を設定するようにした。搭載部位に対応する機能を設定することができるので、誤設定を防止することができる。
(2)PCU103は、搭載部位20Aおよび搭載部位20Bのそれぞれに対応する複数の機能を有し、判定の結果に基づいて、搭載部位20Aまたは搭載部位20Bに対応する機能を設定する。このようにしたので、油圧ショベル100への搭載後に、搭載部位に対応する機能に設定することができる。
(3)PCU103が1つの機能のみを有する場合は、油圧ショベル100への搭載後に機能を切り替えることができない。そのため、共通のハードウェア構成の2つのPCU103を用いる場合に、誤組み付けが生じるおそれがある。これに対して、本実施の形態では、PCU103はアシスト発電モータ制御用および旋回電動モータ制御用の機能を有し、油圧ショベル100への搭載後に搭載部位に対応する機能に設定するので、誤組み付けを防止することができる。その結果、保守管理のための部品在庫を低減することができる。
(4)PCU103は、PCU103の油圧ショベル100への搭載部位に基づいて他のPCU103とは異なる構成要素と接続されることにより、他のPCU103とは異なる状態に関する情報を取得する。本実施の形態では、PCU103B用の搭載部位20Bに搭載されたPCU103は、ゲートロックレバー状態信号に基づくゲート強制OFF信号を油圧ショベル100の状態に関する情報として取得する。PCU103A用の搭載部位20Aに搭載されたPCU103は、ゲートOFF制御信号に基づくゲート強制OFF信号を油圧ショベル100の状態に関する情報として取得する。このようにしたので、複数のPCU103に対して、それぞれの搭載部位に適合する機能を判定することができる。
(5)油圧ショベル100への搭載後にPCU103の機能を設定する方法として、機械的スイッチを設けて、スイッチのオンオフにより各PCU103の機能の設定を行う方法が考えられる。これに対して、本実施の形態では、既存の端子および信号線を用いてPCU103の機能の設定を行うため、機械的スイッチの追加などのハードウェアの改造を必要としない。
(6)第1の実施の形態では、PCU103により取得される油圧ショベル100の状態に関する情報は、油圧ショベル100の操作レバーの指令を無効とするロック位置と、操作レバーの指令を有効とするロック解除位置とに操作されるゲートロックレバー114の操作位置に関する情報である。MCU101により取得される車体全体に関する情報は、ゲートロックレバー114がロック位置に操作されているゲートロック状態である。このようにしたので、ゲートロックレバーの操作位置に関する情報に基づいて、PCU103の機能を設定することができる。
(第2の実施の形態)
 第2の実施の形態に係る油圧ショベル100およびPCU103は、第1の実施の形態に係る油圧ショベル100およびPCU103と同様の構成を有している(図2、図3参照)。第1の実施の形態では、MCU101はゲートロックレバー状態信号に基づいて油圧ショベル100の車体全体情報を取得し、PCU103はゲートロックレバー114の操作位置に関する信号を油圧ショベル100の構成要素の状態に関する情報として用いる例について説明した。これに対して、第2の実施の形態では、MCU101はエンジン105の回転速度に応じた検出信号に基づいて油圧ショベル100の車体全体情報を取得し、PCU103はアシスト発電モータ108および旋回電動モータ109の回転速度に関する信号を油圧ショベル100の構成要素の状態に関する情報として用いる。
 MCU101は、ECU102で生成されるエンジン105の回転速度に応じた検出信号に基づいて、油圧ショベル100の車体全体情報としてエンジン駆動状態を示す情報を取得する。MCU101は、たとえば、エンジン105の回転速度が所定値(たとえば、200rpm)以上である場合に、エンジン駆動状態と判定する。MCU101は、2つのPCU103に対して、判定結果に応じた車体全体情報を送信する。PCU103は、エンジン駆動状態のときにモータの回転速度が所定値以上となるモータ状態信号を取得した場合はPCU103Aとして機能し、エンジン駆動状態のときにモータの回転速度が所定値以上とならないモータ状態信号を取得した場合はPCU103Bとして機能する。
 図6は、第2の実施の形態に係るPCU103における判定処理の一例を示すフローチャートである。図6のフローチャートに示す処理は、たとえば、図示しないキースイッチのオンにより、2つのPCU103のそれぞれにおいて開始される。
 ステップS400において、PCU103は、MCU101から初期設定の要求がされているか否かを判定する。ステップS400で肯定判定されると、ステップS410へ進み、ステップS400で否定判定されると、図6に示す処理を終了する。
 ステップS410において、PCU103は、PCU103の機能を判定する判定機能を有効にして、ステップS420へ進む。
 ステップS420において、PCU103は、MCU101から入力される車体全体情報に基づいて、油圧ショベル100がエンジン駆動状態であるか否かを判定する。ステップS420で肯定判定されると、ステップS430へ進み、ステップS420で否定判定されると、図6に示す処理を終了する。
 ステップS430において、PCU103A用の搭載部位20Aに搭載されたPCU103は、アシスト発電モータ108の回転速度に応じたモータ状態信号に基づいて、モータの回転速度が所定値以上であるか否かを判定する。PCU103B用の搭載部位20Bに搭載されたPCU103は、旋回電動モータ109の回転速度に応じたモータ状態信号に基づいて、モータの回転速度が所定値以上であるか否かを判定する。判定に用いられる所定値は、モータが停止状態であるか否かを判定するための閾値であり、たとえば、200rpmに設定される。
 油圧ショベル100がエンジン駆動状態である場合は、アシスト発電モータ108は駆動状態となる。PCU103A用の搭載部位20Aに搭載されたPCU103は、モータの回転速度が所定値以上であると判定して、ステップS450へ進む。これに対して、PCU103の初期設定時は、旋回電動モータ109は停止状態とされる。PCU103B用の搭載部位20Bに搭載されたPCU103は、モータの回転速度が所定値以上ではないと判定して、ステップS440へ進む。
 ステップS440において、PCU103B用の搭載部位20Bに搭載されたPCU103は、旋回電動モータ109の制御を行うPCU103Bの設定を保存し、図6に示す処理を終了する。ステップS450において、PCU103A用の搭載部位20Aに搭載されたPCU103は、アシスト発電モータ108の制御を行うPCU103Aの設定を保存し、図6に示す処理を終了する。
 上述した実施の形態によれば、第1の実施の形態で説明した(1)~(5)と同様の作用効果に加えて、次の作用効果が得られる。
(7)第2の実施の形態では、PCU103AおよびPCU103Bによりそれぞれ取得される油圧ショベル100の状態に関する情報は、油圧ショベル100のモータの回転速度に関する情報である。MCU101により取得される車体全体に関する情報は、エンジン105の回転速度が所定値以上となるエンジン駆動状態である。このようにしたので、エンジン駆動状態でのアシスト発電モータ108および旋回電動モータ109の回転速度に基づいて、PCU103の機能を判定することができる。
 次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
 上述した第1の実施の形態では、ゲートロックレバーの操作位置に関する信号を用いてPCU103の機能の判定を行う例について説明した。しかし、車体の一部の動作を停止させるための他の操作レバーの操作位置に関する信号を用いて、PCU103の機能の判定ができるようにしてもよい。たとえば、エンジン105または旋回体12を停止させるための停止レバーの操作位置に関する信号を本発明に用いることができる。
(変形例2)
 上述した実施の形態では、2つのPCU103それぞれにおいて、PCU103の機能の判定を行う例について説明した。しかし、2つのPCU103のうちの一方のPCU103が機能の判定を行い。他方のPCU103は一方のPCU103の判定結果に基づいて機能の設定を行うようにしてもよい。
(変形例3)
 上述した実施の形態では、作業機械として油圧ショベル100を例に説明したが、本発明はこれに限定されず、たとえば、ホイールローダ、フォークリフト、テレハンドラー、リフトトラック、ダンプトラック、クレーン等、他の作業機械に本発明を適用することもできる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
10 識別システム、20A 搭載部位、20B 搭載部位、101 MCU(第1の制御装置)、103 PCU(第2の制御装置)、105 エンジン、108 アシスト発電モータ(モータ)、109 旋回電動モータ(モータ)、114 ゲートロックレバー、100 油圧ショベル(作業機械)

Claims (5)

  1.  作業機械の全体を制御する第1の制御装置と、前記作業機械の構成要素を制御する複数の第2の制御装置と、を備えた作業機械の識別システムであって、
     前記第1の制御装置は、前記作業機械の車体全体に関する情報を取得し、
     前記第2の制御装置は、前記第2の制御装置の前記作業機械への搭載部位に基づいて他の前記第2の制御装置とは異なる前記構成要素の状態に関する情報を取得し、前記状態に関する情報と前記車体全体に関する情報とに基づいて前記第2の制御装置の機能を設定することを特徴とする作業機械の識別システム。
  2.  請求項1に記載の作業機械の識別システムにおいて、
     前記第2の制御装置は、複数の前記搭載部位のそれぞれに対応する複数の機能を有し、前記搭載部位に対応する機能を設定することを特徴とする作業機械の識別システム。
  3.  請求項1に記載の作業機械の識別システムにおいて、
     前記第2の制御装置は、前記第2の制御装置の前記作業機械への搭載部位に基づいて他の前記第2の制御装置とは異なる前記構成要素と接続されることにより、他の前記第2の制御装置とは異なる前記状態に関する情報を取得することを特徴とする作業機械の識別システム。
  4.  請求項1に記載の作業機械の識別システムにおいて、
     前記状態に関する情報は、前記作業機械の操作レバーの指令を無効とするロック位置と、前記操作レバーの指令を有効とするロック解除位置とに操作されるゲートロックレバーの操作位置に関する情報であり、
     前記車体全体に関する情報は、前記ゲートロックレバーがロック位置に操作されているゲートロック状態であることを特徴とする作業機械の識別システム。
  5.  請求項1に記載の作業機械の識別システムにおいて、
     前記状態に関する情報は、前記作業機械のモータの回転速度に関する情報であり、
     前記車体全体に関する情報は、前記作業機械のエンジンの回転速度が所定値以上となるエンジン駆動状態であることを特徴とする作業機械の識別システム。
PCT/JP2017/003002 2016-02-17 2017-01-27 作業機械の識別システム WO2017141667A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780002865.3A CN107923150B (zh) 2016-02-17 2017-01-27 作业机械的识别系统
EP17752930.2A EP3418454B1 (en) 2016-02-17 2017-01-27 Work machine
US15/757,901 US10876274B2 (en) 2016-02-17 2017-01-27 Identification system for work machine
KR1020187004913A KR102041858B1 (ko) 2016-02-17 2017-01-27 작업 기계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016028414A JP6437937B2 (ja) 2016-02-17 2016-02-17 作業機械
JP2016-028414 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017141667A1 true WO2017141667A1 (ja) 2017-08-24

Family

ID=59625805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003002 WO2017141667A1 (ja) 2016-02-17 2017-01-27 作業機械の識別システム

Country Status (6)

Country Link
US (1) US10876274B2 (ja)
EP (1) EP3418454B1 (ja)
JP (1) JP6437937B2 (ja)
KR (1) KR102041858B1 (ja)
CN (1) CN107923150B (ja)
WO (1) WO2017141667A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307522B2 (ja) * 2019-06-14 2023-07-12 キャタピラー エス エー アール エル 建設機械におけるセンサ自動特定システム及び特定方法
US20210127563A1 (en) * 2019-10-31 2021-05-06 Deere & Company Volumetric metering system with improved roller detection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173298A (ja) * 1992-12-02 1994-06-21 Hitachi Constr Mach Co Ltd 車載用コントローラ
JPH10289009A (ja) * 1997-04-17 1998-10-27 Hitachi Ltd 電気機器の機種設定装置
JP2003213730A (ja) * 2002-01-16 2003-07-30 Hitachi Constr Mach Co Ltd 建設機械の電子制御システム
JP2010202135A (ja) * 2009-03-05 2010-09-16 Sumitomo Heavy Ind Ltd 作業機械
US20130195595A1 (en) * 2012-01-31 2013-08-01 Troy Hottmann System and method for limiting secondary tipping moment of an industrial machine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540265B2 (ja) * 2001-07-26 2010-09-08 株式会社小松製作所 建設機械の制御装置および建設機械の管理装置
JP2003131885A (ja) * 2001-10-24 2003-05-09 Denso Corp 車載電子制御装置のプログラム書込システム
JP2005196568A (ja) * 2004-01-08 2005-07-21 Denso Corp 車両の部品管理方法及び装置、車両の部品管理データ更新方法及び装置、並びに車両部品管理センタ
US7274977B2 (en) * 2004-05-19 2007-09-25 Bendix Commercial Vehicle Systems Llc Feature enabling unit
JP2007129823A (ja) 2005-11-02 2007-05-24 Toyota Motor Corp モータジェネレータ用の電源システムの試験に適した電源試験システム
WO2010058768A1 (ja) 2008-11-18 2010-05-27 住友重機械工業株式会社 作業機械
JP5271758B2 (ja) * 2009-03-11 2013-08-21 日立建機株式会社 作業機械の油圧駆動装置
JP5287705B2 (ja) * 2009-08-28 2013-09-11 トヨタ自動車株式会社 車両用の駆動装置およびその制御方法
JP5363407B2 (ja) * 2010-04-26 2013-12-11 日立建機株式会社 建設機械の表示装置
JP5204150B2 (ja) * 2010-05-21 2013-06-05 日立建機株式会社 ハイブリッド式建設機械
US20130253749A1 (en) 2010-12-27 2013-09-26 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP5429197B2 (ja) 2011-01-11 2014-02-26 トヨタ自動車株式会社 車両制御装置
US8725337B2 (en) 2011-02-03 2014-05-13 Toyota Jidosha Kabushiki Kaisha Electric powered vehicle and control method thereof
JP2012222527A (ja) 2011-04-06 2012-11-12 Toyota Motor Corp 車載ネットワーク、管理ノード、番号付与方法
JP6084613B2 (ja) * 2012-07-19 2017-02-22 住友建機株式会社 ショベル
AU2015200233B2 (en) 2014-01-21 2019-01-31 Joy Global Surface Mining Inc Controlling the operation of an industrial machine based on wire rope dead wraps

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173298A (ja) * 1992-12-02 1994-06-21 Hitachi Constr Mach Co Ltd 車載用コントローラ
JPH10289009A (ja) * 1997-04-17 1998-10-27 Hitachi Ltd 電気機器の機種設定装置
JP2003213730A (ja) * 2002-01-16 2003-07-30 Hitachi Constr Mach Co Ltd 建設機械の電子制御システム
JP2010202135A (ja) * 2009-03-05 2010-09-16 Sumitomo Heavy Ind Ltd 作業機械
US20130195595A1 (en) * 2012-01-31 2013-08-01 Troy Hottmann System and method for limiting secondary tipping moment of an industrial machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418454A4 *

Also Published As

Publication number Publication date
CN107923150B (zh) 2020-10-23
EP3418454A4 (en) 2019-10-02
KR102041858B1 (ko) 2019-11-08
EP3418454A1 (en) 2018-12-26
JP2017145625A (ja) 2017-08-24
CN107923150A (zh) 2018-04-17
JP6437937B2 (ja) 2018-12-12
KR20180030686A (ko) 2018-03-23
US20200224386A1 (en) 2020-07-16
EP3418454B1 (en) 2023-12-20
US10876274B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP5149826B2 (ja) ハイブリッド式作業機械及びサーボ制御システム
EP2463137B1 (en) Hybrid working machine
EP2228491A1 (en) Hybrid construction machine and control method of hybrid construction machine
WO2015156357A1 (ja) ハイブリッド型作業機
KR20140025548A (ko) 선회 구동장치
JP2010222815A (ja) ハイブリッド型建設機械
JP5674086B2 (ja) ハイブリッド型建設機械
JP2014163155A (ja) 電動旋回式作業機械
US9382691B2 (en) Hybrid work machine and method of controlling same
JP5274978B2 (ja) ハイブリッド型建設機械
WO2017141667A1 (ja) 作業機械の識別システム
JP6243857B2 (ja) ハイブリッド建設機械
JP2013253436A (ja) ショベルの制御方法
JP2010116708A (ja) ハイブリッド型建設機械
JP4949457B2 (ja) ハイブリッド型建設機械
JP5307692B2 (ja) リフティングマグネット式自走機械
JP5122548B2 (ja) ハイブリッド型建設機械
JP2020117897A (ja) 作業機械
JP2015194007A (ja) ショベル用電動旋回装置
JP2015155606A (ja) 建設機械
JP6278785B2 (ja) 産業車両用電源装置
JP7321711B2 (ja) 作業機械
JP6410447B2 (ja) 産業車両用電源装置
JP2020112235A (ja) 作業機械
JP2016014264A (ja) ハイブリッド式作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187004913

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE