WO2017141329A1 - プロトコル変換装置 - Google Patents

プロトコル変換装置 Download PDF

Info

Publication number
WO2017141329A1
WO2017141329A1 PCT/JP2016/054333 JP2016054333W WO2017141329A1 WO 2017141329 A1 WO2017141329 A1 WO 2017141329A1 JP 2016054333 W JP2016054333 W JP 2016054333W WO 2017141329 A1 WO2017141329 A1 WO 2017141329A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
communication
charging
protocol
control circuit
Prior art date
Application number
PCT/JP2016/054333
Other languages
English (en)
French (fr)
Inventor
小西 隆夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017567591A priority Critical patent/JP6532551B2/ja
Priority to PCT/JP2016/054333 priority patent/WO2017141329A1/ja
Priority to US16/062,035 priority patent/US10668820B2/en
Priority to CN201680080874.XA priority patent/CN108604804A/zh
Publication of WO2017141329A1 publication Critical patent/WO2017141329A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a protocol conversion device for enabling charging of a battery mounted on an electric vehicle in which the charging device for charging the battery mounted on the electric vehicle is compatible with a charging protocol different from that of the own device.
  • Power condition that can convert power from AC power to DC power and power from DC power to AC power as a charging device for charging a storage battery (drive battery) that stores power supplied to the electric motor of an electric vehicle Na may be used.
  • the power conditioner converts AC power supplied from a system power source such as a commercial system into DC power, and uses the power stored in the drive battery for household devices. The DC power discharged from the driving battery is converted into AC power.
  • the electric vehicle and a charging device such as a power conditioner may communicate with each other, and this communication is performed according to a charging protocol.
  • a charging protocol There are a plurality of charging protocols, and there are mainly a CHAdeMO method (CHAdeMO protocol) adopted in Japan and an SAE J1772 method (hereinafter referred to as a COMBO protocol) adopted in Europe and the United States.
  • Patent Document 1 discloses a system capable of charging a plurality of types of electric vehicles having different charging protocols.
  • the charging unit of the rapid charging system for an electric vehicle described in Patent Document 1 includes a cable corresponding to the CHAdeMO protocol and a cable corresponding to the COMBO protocol.
  • the user connects a cable of a protocol supported by the electric vehicle to be charged to the electric vehicle, and further operates a selection switch provided on the charging unit. Select the charging protocol to use.
  • the invention described in Patent Document 1 includes a selection switch for selecting a charging protocol to be used, and the user needs to operate the selection switch to select the correct charging protocol in order to charge the electric vehicle. is there.
  • the invention described in Patent Document 1 includes a plurality of charging cables, that is, charging cables corresponding to the respective charging protocols, and the user selects a charging cable corresponding to the charging protocol employed in the electric vehicle. There is a need to. As described above, the invention described in Patent Document 1 has a problem in that the configuration is complicated and the operation for charging is complicated.
  • the present invention has been made in view of the above, and it is possible to obtain a protocol conversion device that realizes a charging system capable of supporting a plurality of charging protocols with a simple configuration and simplifies an operation performed by a user. Objective.
  • a protocol conversion device includes a first communication unit that communicates with a charging device corresponding to a first charging protocol, and a second charging protocol.
  • a second communication unit that communicates with a corresponding electric vehicle.
  • the protocol conversion device is provided between the first communication unit and the second communication unit.
  • communication according to the second charging protocol is performed.
  • the communication signal received from the electric vehicle is received from the second communication unit, the first communication unit is converted into a communication signal according to the first charging protocol.
  • the conversion part which outputs to is provided.
  • the protocol conversion device of the present invention it is possible to realize a charging system capable of supporting a plurality of charging protocols with a simple configuration and to simplify the operations performed by the user.
  • FIG. 1 The figure which shows the usage type of the charging system of the electric vehicle before applying the protocol converter concerning this invention
  • FIG. The figure which shows the internal structural example of the charging system of the electric vehicle shown in FIG.
  • FIG. The figure which shows the internal structural example of the charging system of the electric vehicle concerning Embodiment 2.
  • FIG. The figure which shows an example of the charge sequence in the charging system of the electric vehicle concerning Embodiment 2.
  • FIG. The figure which shows the hardware structural example for implement
  • Embodiment 1 FIG. First, a charging system for an electric vehicle before applying the protocol conversion device according to the present invention will be described.
  • FIG. 1 is a diagram showing a usage form of a charging system for an electric vehicle before applying a protocol conversion device according to the present invention.
  • the charging system for an electric vehicle before applying the protocol conversion device according to the present invention includes a power conditioner 2 for the electric vehicle, and a charge / discharge cable 24 is connected to the power conditioner 2.
  • a charge / discharge cable connector 25 is provided at the tip of the charge / discharge cable 24.
  • the charge / discharge cable connector 25 is connected to the charge / discharge cable receptacle 34 of the electric vehicle 3.
  • the power conditioner 2 performs a power conversion operation in a state where the charge / discharge cable connector 25 and the charge / discharge cable receptacle 34 of the electric vehicle 3 are connected, thereby charging or discharging a driving battery mounted on the electric vehicle 3. Is done.
  • the power conditioner 2 converts the AC power supplied from the system side into DC power when charging the driving battery, and converts the DC power discharged from the driving battery into AC power when discharging the driving battery. Convert.
  • FIG. 2 is a diagram showing an example of the internal configuration of the electric vehicle charging system shown in FIG.
  • the power conditioner 2 includes a control circuit 20 and a converter 23 inside.
  • the charge / discharge cable connector 25 connected to the power conditioner 2 via the charge / discharge cable 24 includes a solenoid 26, a lever 27, and a connection portion 28.
  • the charge / discharge cable connector 25 is connected to the charge / discharge cable receptacle 34 on the electric vehicle 3 side.
  • the electric vehicle 3 includes a control circuit 30 and a battery 33 that is a driving battery.
  • the power conditioner 2 and the electric vehicle 3 are electrically connected by a connection portion 28 and a connection portion 36 that are connectors.
  • the control circuit 20 of the power conditioner 2 and the control circuit 30 of the electric vehicle 3 are connected via a communication line 29-1 and a control line 29-2.
  • the converter 23 of the power conditioner 2 and the battery 33 of the electric vehicle 3 are connected via a power supply line 60.
  • the control circuit 20 of the power conditioner 2 is for exchanging control signals and communication signals with the control circuit 30 of the electric vehicle 3, and includes a control unit 21 and a communication unit 22.
  • the control circuit 30 of the electric vehicle 3 includes a control unit 31 and a communication unit 32.
  • the communication unit 22 of the control circuit 20 and the communication unit 32 of the control circuit 30 can be realized by a communication driver IC (Integrated Circuit).
  • the control circuit 20 causes the current to flow through the solenoid 26 to move the lever 27, and the lever 27 is inserted into the cutout portion 35 of the charge / discharge cable receptacle 34 to charge / discharge the charge / discharge cable connector 25. Lock the connection of the cable receptacle 34.
  • FIG. 3 is a diagram showing an example of a charging sequence in an electric vehicle charging system before applying the protocol conversion device according to the present invention.
  • FIG. 3 shows a communication sequence performed by the control circuit 20 of the power conditioner 2 and the control circuit 30 of the electric vehicle 3 before starting charging of the battery 33 of the electric vehicle 3. Note that the power conditioner 2 and the electric vehicle 3 correspond to the same charging sequence.
  • the control circuit 20 of the power conditioner 2 When charging is started, first, the control circuit 20 of the power conditioner 2 notifies the control circuit 30 of the electric vehicle 3 via the control line 29-2 from the control unit 21 (step S21). When it is detected that the control circuit 30 of the electric vehicle 3 has received a charge start notification from the control circuit 20 (step S31), the control circuit 30 and the control circuit 20 start communication via the communication line 29-1. S32, S22). At this time, a communication signal transmitted from the control circuit 30 to the control circuit 20 is transmitted to the control unit 21 via the communication unit 22 of the control circuit 20 of the power conditioner 2. After starting communication (steps S23 and S33), the control circuit 30 of the electric vehicle 3 notifies the charging permission to the control circuit 20 of the power conditioner 2 via the communication line 29-1 (step S34).
  • the notification reaches the control unit 21 via the communication unit 22 of the control circuit 20, and the control unit 21 of the control circuit 20 that has received the notification sends a current to the solenoid 26 in the charge / discharge cable connector 25 to send a lever 27.
  • the lever 27 is inserted into the cutout portion 35 in the charging / discharging cable receptacle 34 of the electric vehicle 3 to lock the connection between the charging / discharging cable connector 25 and the charging / discharging cable receptacle 34 (step S24).
  • the power conditioner 2 and the electric vehicle 3 are reliably connected.
  • a direct current for charging is output from the converter 23 of the power conditioner 2 to the battery 33 of the electric vehicle 3, and charging is started (step S25).
  • the charging sequence shown in FIG. 3 is a sequence when the CHAdeMO method is used.
  • FIG. 3 only the part related to the invention is described, and the control contents and communication contents not directly related to the invention are omitted.
  • the case of charging the battery 33 of the electric vehicle 3 from the converter 23 of the power conditioner 2 has been described, but the sequence in the case of discharging from the battery 33 of the electric vehicle 3 to the converter 23 of the power conditioner 2 is also the same. It is.
  • CAN Controller Area Network
  • FIG. 4 is a diagram illustrating a usage pattern of the electric vehicle charging system when the protocol conversion device according to the first embodiment is applied.
  • the protocol conversion device 1 according to the present invention is used by being inserted between the charge / discharge cable connector 25 on the power conditioner 2 side and the charge / discharge cable receptacle 34 on the electric vehicle 3 side shown in FIGS. 1 and 2.
  • the power conditioner 2, the charge / discharge cable 24, the charge / discharge cable connector 25, the electric vehicle 3 and the charge / discharge cable receptacle 34 other than the protocol converter 1 are the same as those denoted by the same reference numerals in FIGS. 1 and 2. .
  • FIG. 5 is a diagram illustrating an internal configuration example of the electric vehicle charging system according to the first embodiment.
  • description of the internal configuration of the power conditioner 2 and the electric vehicle 3 that have already been described will be omitted, and the protocol converter 1 will be described.
  • the protocol conversion device 1 includes a control circuit 10, a solenoid 14, a lever 15, a switch 17, and connection portions 18 and 19.
  • the control circuit 10 relays communication signals (control information and data) between the power conditioner 2 and the electric vehicle 3 and controls the solenoid 14.
  • the control circuit 10 includes a control unit 11, and when the received communication signal is relayed, the control unit 11 follows the charging protocol to which the relay destination device (power conditioner or electric vehicle) supports the received communication signal. Converted to a communication signal of the specified format.
  • the control unit 11 operates as a conversion unit.
  • the control unit 21 of the power conditioner 2 and the control unit 11 of the protocol conversion device 1 are connected by a control line 52, and the control line 30 is connected between the control circuit 30 of the electric vehicle 3 and the control unit 11 of the protocol conversion device 1. 53 is connected.
  • the control circuit 10 includes a first communication unit 12 for performing communication according to the charging protocol with the control unit 21 and a second for performing communication with the control unit 31 according to the charging protocol. And a communication unit 13.
  • the first communication unit 12 is connected to the communication unit 22 of the power conditioner 2 through the communication line 50, and the second communication unit 13 is connected to the communication unit 32 of the electric vehicle 3 through the communication line 51. .
  • control unit 11 and the control unit 21 use the control line 52 when transmitting / receiving control information and the like without following the charging protocol, such as when notifying the start of communication according to the charging protocol.
  • control unit 11 and the control unit 31 use the control line 53 when transmitting / receiving control information or the like without following the charging protocol.
  • the first communication unit 12 and the second communication unit 13 can be realized by a communication driver IC.
  • the 1st communication part 12 transmits / receives the communication signal of the format according to the charging protocol which the power conditioner 2 employ
  • the second communication unit 13 transmits and receives a communication signal in a format according to the charging protocol adopted by the electric vehicle 3 to and from the communication unit 32 of the electric vehicle 3.
  • a first charging protocol that is a charging protocol supported by the inverter 2 is different from a second charging protocol that is a charging protocol supported by the electric vehicle 3.
  • the protocol conversion device 1 and the power conditioner 2 are electrically connected by a connecting portion 18 and a connecting portion 28 which are connectors.
  • the protocol conversion device 1 and the electric vehicle 3 are electrically connected by a connecting portion 19 and a connecting portion 36 that are connectors.
  • the control circuit 10 of the protocol converter 1 and the control circuit 20 of the power conditioner 2 are connected via a communication line 50 and a control line 52.
  • the control circuit 10 of the protocol converter 1 and the control circuit 30 of the electric vehicle 3 are connected via a communication line 51 and a control line 53.
  • the converter 23 of the power conditioner 2 and the battery 33 of the electric vehicle 3 are connected via a charge / discharge cable 60.
  • FIG. 6 is a diagram illustrating an example of a charging sequence in the charging system of the electric vehicle to which the protocol conversion device according to the first embodiment is applied.
  • FIG. 6 shows a sequence in which the control circuit 10 of the protocol converter 1 relays communication performed by the control circuit 20 of the power conditioner 2 and the control circuit 30 of the electric vehicle 3 before starting the charging of the battery 33 of the electric vehicle 3.
  • Steps S21 to 25 and S31 to S34 shown in FIG. 6 are the same processes as steps S21 to 25 and S31 to S34 shown in FIG.
  • the user When charging is started, the user first inserts the charge / discharge cable connector 25 into the protocol conversion device 1, and further inserts the protocol conversion device 1 into the charge / discharge cable receptacle 34 of the electric vehicle 3 to mechanically connect them. .
  • the control circuit 20 of the power conditioner 2 notifies the control unit 11 of the control circuit 10 of the protocol conversion device 1 via the control line 52 from the control unit 21 (step S21).
  • the control unit 11 of the control circuit 10 detects the start of charging (step S11).
  • the control unit 11 of the control circuit 10 notifies the start of charging to the control unit 31 of the control circuit 30 of the electric vehicle 3 via the control line 53 (step S12), and the control unit 31 of the control circuit 30 starts charging. It detects (step S31).
  • the control circuit 20 of the power conditioner 2 that has notified the start of charging notifies the control circuit 20 of the power conditioner 2 of the start of communication via the control circuit 10 of the protocol converter 1 (steps S32, S13, and S22).
  • the control circuit 20 of the conditioner 2 and the control circuit 30 of the electric vehicle 3 start communication via the control circuit 10 of the protocol converter 1 (steps S23, S14, S33).
  • the second communication unit 13 and the communication unit 32 are interposed.
  • the first communication unit 12 and the communication unit 22 are interposed in the communication between the control unit 11 of the control circuit 10 and the control unit 21 of the control circuit 20 of the power conditioner 2.
  • the control circuit 10 of the protocol conversion device 1 includes a first communication unit 12 between the control unit 11 and the control circuit 20 of the power conditioner 2, and the first communication unit 12 is provided between the control unit 11 and the control circuit 30 of the electric vehicle 3.
  • the reason why the two communication units 13 are provided is that the communication methods specified in each of the CHAdeMO protocol and the COMBO protocol are different. Since the protocol conversion apparatus 1 includes the first communication unit 12 and the second communication unit 13, communication using the communication method specified by the CHAdeMO protocol and communication using the communication method specified by the COMBO protocol. Both are possible.
  • the first communication unit 12 performs communication using a communication method specified by the CHAdeMO protocol or a communication method specified by the COMBO protocol, and the second communication unit 13 is different from the first communication unit 12. Communicate using the method.
  • the communication between the protocol converter 1 and the power conditioner 2 is CAN communication
  • the protocol converter 1 and the electric Communication with the automobile 3 is PLC (Power Line Communication) communication.
  • the first communication unit 12 is realized by a driver IC compatible with CAN communication
  • the second communication unit 13 is realized by a driver IC compatible with PLC communication.
  • the control unit 11 of the control circuit 10 of the protocol conversion apparatus 1 exchanges the communication signal of the communication method supported by the first communication unit 12 with the communication signal of the communication method supported by the second communication unit 13. Convert to Specifically, when receiving a communication signal corresponding to CAN communication, the control unit 11 converts it into a communication signal compatible with PLC communication, and when receiving a communication signal compatible with PLC communication, it corresponds to CAN communication. Convert to communication signal.
  • step S34 when the control circuit 30 of the electric vehicle 3 starts communication, the control circuit 10 of the protocol conversion device 1 is notified of charging permission (step S34), and the control circuit 10 detects charging permission ( Step S15).
  • the control circuit 10 that has detected the charging permission notifies the charging circuit 2 to the control circuit 20 of the power conditioner 2 (step S16).
  • the control circuit 20 of the power conditioner 2 detects permission of charging, the current is passed through the solenoid 26 of the charge / discharge cable connector 25 to move the lever 27 and the lever 27 is inserted into the cutout portion 16 of the protocol converter 1.
  • the connection between the charge / discharge cable connector 25 and the protocol converter 1 is locked (step S24).
  • step S41 When the lever 27 of the charge / discharge cable connector 25 is inserted into the cutout portion 16 of the protocol converter 1, the lever 27 pushes the switch 17 of the protocol converter 1 and the switch 17 is closed (step S41).
  • the control circuit 10 of the protocol conversion device 1 detects that the switch 17 is closed, it sends a current to the solenoid 14 to move the lever 15 and inserts the lever 15 into the cutout portion 35 of the charge / discharge cable receptacle 34.
  • the connection between the protocol converter 1 and the charge / discharge cable receptacle 34 is locked (step S17).
  • the switch 17 is a lock state detection unit that detects a state in which the connection between the protocol conversion device 1 and the power conditioner 2 is locked.
  • the solenoid 14 and the lever 15 are a connection lock unit that locks the connection with the electric vehicle 3 when the locked state of the connection between the protocol conversion device 1 and the power conditioner 2 is detected.
  • the control circuit 10 of the protocol converter 1 notifies the control circuit 20 of the power conditioner 2 that the connection has been locked (step S18).
  • the control circuit 20 detects that the connection between the protocol conversion device 1 and the electric vehicle 3 is locked (step S42). In this state, the power conditioner 2 and the protocol converter 1 are securely connected, and the protocol converter 1 and the electric vehicle 3 are securely connected, and the battery 23 of the electric vehicle 3 is charged from the converter 23 of the power conditioner 2. It becomes possible to do. Thereafter, the control unit 21 of the control circuit 20 instructs the converter 23 to start charging, and starts output of a charging current from the converter 23 (step S25).
  • control unit 11 of the protocol conversion device 1 first detects that the connection between the power conditioner 2 and the protocol conversion device 1 is locked by the switch 17, and further, the charge / discharge cable receptacle 34 of the electric vehicle 3. Since the connection between the protocol converter 1 and the protocol converter 1 is locked, the protocol converter 1 is securely connected to both the power conditioner 2 and the electric vehicle 3 and can be charged safely without disconnection during charging.
  • the protocol conversion device 1 is arranged between the power conditioner 2 and the electric vehicle 3 and can be connected to both the power conditioner 2 and the electric vehicle 3.
  • the protocol conversion device 1 is connected to the power conditioner 2 and the electric vehicle 3 when the charging protocol of the power conditioner is different from that of the electric vehicle, and the communication signal received from the power conditioner 2 corresponds to the charging protocol of the electric vehicle 3.
  • the communication signal is converted into a communication signal to be transmitted to the electric vehicle 3, and the communication signal received from the electric vehicle 3 is converted into a communication signal corresponding to the charging protocol of the power conditioner 2 and transmitted to the power conditioner 2.
  • the communication signal transmitted and received by the power conditioner 2 is a signal corresponding to the CHAdeMO protocol. is there. Even if the power conditioner 2 is connected to the electric vehicle 3 of the COMBO protocol as it is, the control circuit 10 in the protocol converter 1 understands the communication signal and communication procedure of the CHAdeMO protocol, and receives the communication received from the power conditioner 2. The signal is replaced with a COMBO protocol communication signal and transmitted to the electric vehicle 3.
  • the control circuit 10 understands the communication signal and communication procedure of the COMBO protocol, and transmits the communication signal received from the electric vehicle 3 to the communication of the CHAdeMO protocol.
  • the signal is replaced with a signal and transmitted to the inverter 2.
  • the protocol conversion device 1 of the present embodiment there is no need to provide a plurality of charging cables corresponding to each of a plurality of charging protocols, and it is not necessary to provide a switch for selecting a charging protocol to be used. Therefore, a charging system that can support a plurality of charging protocols can be realized with a simple configuration.
  • the protocol converter 1 need only be connected when the charging protocol of the inverter is different from the charging protocol of the electric vehicle, the user does not need to select the charging protocol to be used, and the operation performed by the user is simplified. Can be
  • the protocol conversion apparatus is also used in the opposite case, that is, when the power conditioner 2 is compatible with the COMBO method. 1 is applicable.
  • the protocol converter 1 converts the communication signal received from the power conditioner 2 from the COMBO method to the CHAdeMO method. That's fine. That is, in the protocol conversion device 1, the first communication unit 12 may communicate with the power conditioner 2 using the COMBO protocol, and the second communication unit 13 may communicate with the electric vehicle 3 using the CHAdeMO protocol.
  • FIG. FIG. 7 is a diagram illustrating an internal configuration example of the electric vehicle charging system according to the second embodiment.
  • the electric vehicle charging system according to the second embodiment is obtained by replacing the protocol converter 1 described in the first embodiment with a protocol converter 1a. In this embodiment, parts different from those in Embodiment 1 will be described.
  • the protocol conversion device 1a according to the second embodiment has a configuration in which the switch 17 is deleted from the protocol conversion device 1 according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a charging sequence in an electric vehicle charging system to which the protocol conversion device according to the second embodiment is applied.
  • FIG. 8 shows a sequence in which the control circuit 10 of the protocol converter 1a relays the communication performed by the control circuit 20 of the power conditioner 2 and the control circuit 30 of the electric vehicle 3 before starting the charging of the battery 33 of the electric vehicle 3. Show.
  • the charging sequence shown in FIG. 8 replaces the charging sequence described in the first embodiment, that is, step S17 of the charging sequence shown in FIG. 6 from steps S17A to S17C, and step S41 is replaced by steps S41A to S41B. It is.
  • steps S41A to S41B are different from the charging sequence shown in FIG. 6 will be described.
  • the control circuit 10 notifies the control circuit 20 of the power conditioner 2 that charging is permitted in step S16, and then completes the connector connection lock to the control circuit 20. That is, it is confirmed whether or not the insertion of the lever 27 into the cutout portion 16 is completed (step S17A).
  • the control circuit 20 of the inverter 2 receives an inquiry to confirm the completion of the connector connection lock, the control circuit 20 immediately completes the lock of the connector connection, and completes the lock if the connector connection lock is not completed. Later, the control circuit 10 is notified that the connector connection has been locked (steps S41A and S41B).
  • control circuit 10 When the control circuit 10 receives the notification from the control circuit 20 and detects that the connector connection has been locked, the control circuit 10 causes the current to flow through the solenoid 14 to move the lever 15, and the lever 15 is moved to the notch 35 of the charge / discharge cable receptacle 34. 15 is locked to lock the connection between the protocol converter 1 and the charge / discharge cable receptacle 34 (steps S17B and S17C).
  • control circuit 10 also has a function as a lock state detection unit that detects a state in which the connection between the protocol conversion device 1 and the power conditioner 2 is locked.
  • the control circuit 10 of the protocol conversion device 1a inquires of the control circuit 20 of the power conditioner 2 whether or not the connection lock with the power conditioner 2 is completed.
  • the protocol conversion device 1a eliminates the need for the switch 17 that the protocol conversion device 1 according to the first embodiment includes to detect that the connection lock with the power conditioner 2 has been completed, thereby reducing costs. it can.
  • the control unit 11 constituting the control circuit 10 of the protocol converters 1 and 1a described in the first and second embodiments, the control unit 21 constituting the control circuit 20 of the power conditioner 2, and the control circuit 30 of the electric vehicle 3 are constituted.
  • the control unit 31 can be realized by the processing circuit 100 shown in FIG.
  • the processing circuit 100 includes a processor 101 and a memory 102.
  • the processor 101 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP), system LSI (Large Scale Integration), or the like.
  • the memory 102 is a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory), magnetic disk, flexible disk, optical disk, etc. , Compact disc, mini disc, DVD (Digital Versatile Disc), etc.
  • the control units 11, 21, and 31 are realized when the processor 101 reads out and executes a program for operating as each control unit from the memory 102.
  • the battery 33 mounted on the electric vehicle 3 can be charged, and the battery 33 can be discharged and supplied to an in-house load or the like not shown in the figure.
  • the protocol conversion device that performs protocol conversion with the automobile 3 has been described, as a protocol conversion device that performs protocol conversion between the charging device that only charges the battery 33 mounted on the electric vehicle 3 and the electric vehicle 3. Also good. That is, the protocol converters 1 and 1a according to the present invention can be applied to an electric vehicle charging system in which the power conditioner 2 is replaced with a charging device that only charges the battery 33 of the electric vehicle 3. .
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明にかかるプロトコル変換装置(1)は、第1の充電プロトコルに対応したパワーコンディショナ(2)と通信を行う第1の通信部(12)と、第2の充電プロトコルに対応した電気自動車(3)と通信を行う第2の通信部(13)と、第1の通信部(12)と第2の通信部(13)との間に設けられ、パワーコンディショナ(2)から受信した通信信号を第1の通信部(12)から受け取ると第2の充電プロトコルに従った通信信号に変換して第2の通信部(13)へ出力し、電気自動車(3)から受信した通信信号を第2の通信部(13)から受け取ると第1の充電プロトコルに従った通信信号に変換して第1の通信部(12)へ出力する変換部である制御部(11)と、を備える。

Description

プロトコル変換装置
 本発明は、電気自動車に搭載された電池を充電する充電装置が自装置とは異なる充電プロトコルに対応している電気自動車に搭載された電池を充電可能にするためのプロトコル変換装置に関する。
 電気自動車の電気モーターに供給する電力を蓄える蓄電池(駆動用電池)を充電するための充電装置として、交流電力から直流電力への電力変換および直流電力から交流電力への電力変換が可能なパワーコンディショナが利用されることがある。パワーコンディショナは、駆動用電池を充電する場合、商用系統などの系統電源から供給された交流電力を直流電力に変換し、駆動用電池に蓄えられた電力を家庭内の機器などで使用する場合、駆動用電池から放電された直流電力を交流電力に変換する。
 電気自動車に搭載された駆動用電池を充電する際、電気自動車とパワーコンディショナ等の充電装置とが通信を行う場合があり、この通信は充電プロトコルに従って行われる。充電プロトコルには複数の方式が存在し、主に日本国内で採用されているCHAdeMO方式(CHAdeMOプロトコル)、欧米で採用されているSAE J1772方式(以下COMBOプロトコルと称す)などがある。
 ここで、充電プロトコルが異なる複数種類の電気自動車に対して充電できるシステムが特許文献1で開示されている。特許文献1に記載された電気自動車用の急速充電システムの充電ユニットは、CHAdeMOプロトコルに対応したケーブルとCOMBOプロトコルに対応したケーブルとを備えている。ユーザは、急速充電システムを使用して電気自動車を充電する場合、充電する電気自動車が対応しているプロトコルのケーブルを電気自動車に接続し、さらに、充電ユニットに設けられた選択スイッチを操作して使用する充電プロトコルを選択する。
特開2014-183739号公報
 特許文献1に記載の発明は、使用する充電プロトコルを選択するための選択スイッチを備えており、ユーザは、電気自動車を充電するためには選択スイッチを操作して正しい充電プロトコルを選択する必要がある。また、特許文献1に記載の発明は、複数の充電ケーブル、すなわち、それぞれの充電プロトコルに対応した充電ケーブルを備え、ユーザは電気自動車で採用されている充電プロトコルに対応している充電ケーブルを選択する必要がある。このように、特許文献1に記載の発明は、構成が複雑であり、また、充電を行うための操作が煩雑であるという問題があった。
 本発明は、上記に鑑みてなされたものであって、複数の充電プロトコルに対応可能な充電システムを簡易な構成で実現するとともにユーザが行う操作の単純化を実現するプロトコル変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるプロトコル変換装置は、第1の充電プロトコルに対応した充電装置と通信を行う第1の通信部と、第2の充電プロトコルに対応した電気自動車と通信を行う第2の通信部と、を備える。また、プロトコル変換装置は、第1の通信部と第2の通信部との間に設けられ、充電装置から受信した通信信号を第1の通信部から受け取ると第2の充電プロトコルに従った通信信号に変換して第2の通信部へ出力し、電気自動車から受信した通信信号を第2の通信部から受け取ると第1の充電プロトコルに従った通信信号に変換して前記第1の通信部へ出力する変換部を備える。
 本発明にかかるプロトコル変換装置によれば、複数の充電プロトコルに対応可能な充電システムを簡易な構成で実現できるとともにユーザが行う操作の単純化を実現できる、という効果を奏する。
本発明にかかるプロトコル変換装置を適用する前の電気自動車の充電システムの使用形態を示す図 図1に示した電気自動車の充電システムの内部構成例を示す図 本発明にかかるプロトコル変換装置を適用する前の電気自動車の充電システムにおける充電シーケンスの一例を示す図 実施の形態1にかかるプロトコル変換装置を適用した場合の電気自動車の充電システムの使用形態を示す図 実施の形態1にかかる電気自動車の充電システムの内部構成例を示す図 実施の形態1にかかる電気自動車の充電システムにおける充電シーケンスの一例を示す図 実施の形態2にかかる電気自動車の充電システムの内部構成例を示す図 実施の形態2にかかる電気自動車の充電システムにおける充電シーケンスの一例を示す図 制御部を実現するためのハードウェア構成例を示す図
 以下に、本発明の実施の形態にかかるプロトコル変換装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 まず、本発明にかかるプロトコル変換装置を適用する前の電気自動車の充電システムについて説明する。
 図1は、本発明にかかるプロトコル変換装置を適用する前の電気自動車の充電システムの使用形態を示す図である。本発明にかかるプロトコル変換装置を適用する前の電気自動車の充電システムは、電気自動車用のパワーコンディショナ2を備え、パワーコンディショナ2には充放電ケーブル24が接続されている。充放電ケーブル24の先端には充放電ケーブルコネクタ25が設けられている。充放電ケーブルコネクタ25は電気自動車3の充放電ケーブルレセプタクル34に接続される。充放電ケーブルコネクタ25と電気自動車3の充放電ケーブルレセプタクル34とが接続された状態でパワーコンディショナ2が電力変換動作を行うことにより、電気自動車3に搭載されている駆動用電池の充電または放電が行われる。パワーコンディショナ2は、駆動用電池を充電する場合は系統側から供給された交流電力を直流電力に変換し、駆動用電池を放電する場合は駆動用電池から放電された直流電力を交流電力に変換する。
 図2は、図1に示した電気自動車の充電システムの内部構成例を示す図である。図2に示した電気自動車の充電システムにおいて、パワーコンディショナ2は、制御回路20およびコンバータ23を内部に備える。充放電ケーブル24を介してパワーコンディショナ2に接続された充放電ケーブルコネクタ25は、ソレノイド26、レバー27および接続部28を備える。充放電ケーブルコネクタ25は、電気自動車3側の充放電ケーブルレセプタクル34に接続される。電気自動車3は、制御回路30および駆動用電池である電池33を備える。パワーコンディショナ2と電気自動車3は、コネクタである接続部28および接続部36により電気的に接続される。パワーコンディショナ2の制御回路20と電気自動車3の制御回路30は通信ライン29-1および制御ライン29-2を介して接続される。パワーコンディショナ2のコンバータ23と電気自動車3の電池33は電力供給ライン60を介して接続される。
 パワーコンディショナ2の制御回路20は電気自動車3の制御回路30と制御信号および通信信号をやりとりするためのものであり、制御部21および通信部22を備える。電気自動車3の制御回路30は、制御部31および通信部32を備える。制御回路20の通信部22および制御回路30の通信部32は通信用のドライバIC(Integrated Circuit)により実現することができる。パワーコンディショナ2は、制御回路20がソレノイド26に電流を流すことでレバー27を移動させ、レバー27を充放電ケーブルレセプタクル34の切り欠き部分35に挿入することにより充放電ケーブルコネクタ25と充放電ケーブルレセプタクル34の接続をロックする。
 図3は、本発明にかかるプロトコル変換装置を適用する前の電気自動車の充電システムにおける充電シーケンスの一例を示す図である。図3は、電気自動車3の電池33の充電を開始する前にパワーコンディショナ2の制御回路20と電気自動車3の制御回路30が行う通信のシーケンスを示している。なお、パワーコンディショナ2および電気自動車3は同じ充電シーケンスに対応しているものとする。
 充電を開始する場合、まず、パワーコンディショナ2の制御回路20は、充電の開始を制御部21から制御ライン29-2を介して電気自動車3の制御回路30に通知する(ステップS21)。電気自動車3の制御回路30が充電開始の通知を制御回路20から受けたことを検知すると(ステップS31)、制御回路30および制御回路20は通信ライン29-1を介した通信を開始する(ステップS32,S22)。このとき、制御回路30から制御回路20へ送信される通信信号は、パワーコンディショナ2の制御回路20の通信部22を介して制御部21に伝達される。通信を開始した後(ステップS23,S33)、電気自動車3の制御回路30は、通信ライン29-1を介してパワーコンディショナ2の制御回路20に充電許可を通知する(ステップS34)。この通知は制御回路20の通信部22を介して制御部21に到達し、通知を受け取った制御回路20の制御部21は、充放電ケーブルコネクタ25内にあるソレノイド26に電流を流してレバー27を移動させ、電気自動車3の充放電ケーブルレセプタクル34内にある切り欠き部分35にレバー27を挿入させることで充放電ケーブルコネクタ25と充放電ケーブルレセプタクル34との接続をロックさせる(ステップS24)。これにより、パワーコンディショナ2と電気自動車3とが確実に接続される。接続がロックされると、パワーコンディショナ2のコンバータ23から電気自動車3の電池33へ充電用の直流電流を出力し、充電を開始する(ステップS25)。
 図3に示した充電シーケンスは、CHAdeMO方式を使用する場合のシーケンスである。図3では発明に関係する部分のみを記載し、発明とは直接関係のない制御内容および通信内容については記載を省略している。上記の例ではパワーコンディショナ2のコンバータ23から電気自動車3の電池33へ充電する場合について述べたが、電気自動車3の電池33からパワーコンディショナ2のコンバータ23へ放電を行う場合のシーケンスも同様である。CHAdeMO方式の場合、制御回路同士の通信ではCAN(Controller Area Network)通信を使用する。
 図4は、実施の形態1にかかるプロトコル変換装置を適用した場合の電気自動車の充電システムの使用形態を示す図である。本発明にかかるプロトコル変換装置1は、図1および図2に示した、パワーコンディショナ2側の充放電ケーブルコネクタ25と電気自動車3側の充放電ケーブルレセプタクル34との間に挿入して使用される。プロトコル変換装置1以外のパワーコンディショナ2、充放電ケーブル24、充放電ケーブルコネクタ25、電気自動車3および充放電ケーブルレセプタクル34は、図1および図2において同じ符号が付された各部と同一である。
 図5は、実施の形態1にかかる電気自動車の充電システムの内部構成例を示す図である。ここでは、すでに説明済みのパワーコンディショナ2、電気自動車3などの内部構成については説明を省略し、プロトコル変換装置1について説明する。
 実施の形態1にかかるプロトコル変換装置1は、制御回路10、ソレノイド14、レバー15、スイッチ17および接続部18,19を備える。制御回路10は、パワーコンディショナ2と電気自動車3との間で通信信号(制御情報,データ)を中継するとともにソレノイド14を制御する。制御回路10は制御部11を備え、受信した通信信号を中継する場合、制御部11が、受信した通信信号を中継先の装置(パワーコンディショナまたは電気自動車)が対応している充電プロトコルに従った形式の通信信号に変換する。制御部11は変換部として動作する。
 パワーコンディショナ2の制御部21とプロトコル変換装置1の制御部11との間は制御ライン52で接続され、電気自動車3の制御回路30とプロトコル変換装置1の制御部11との間は制御ライン53で接続されている。制御回路10は、充電プロトコルに従った通信を制御部21との間で行うための第1の通信部12と、充電プロトコルに従った通信を制御部31との間で行うための第2の通信部13とを備えている。第1の通信部12は通信ライン50を介してパワーコンディショナ2の通信部22と接続され、第2の通信部13は通信ライン51を介して電気自動車3の通信部32と接続されている。制御部11および制御部21は、充電プロトコルに従った通信の開始を通知する場合など、充電プロトコルに従わずに制御情報などを送受信する場合、制御ライン52を使用する。同様に、制御部11および制御部31は、充電プロトコルに従わずに制御情報などを送受信する場合、制御ライン53を使用する。
 第1の通信部12および第2の通信部13は通信用のドライバICにより実現することができる。第1の通信部12は、パワーコンディショナ2の通信部22との間で、パワーコンディショナ2が採用している充電プロトコルに従った形式の通信信号を送受信する。また、第2の通信部13は、電気自動車3の通信部32との間で、電気自動車3が採用している充電プロトコルに従った形式の通信信号を送受信する。パワーコンディショナ2が対応している充電プロトコルである第1の充電プロトコルは電気自動車3が対応している充電プロトコルである第2の充電プロトコルとは異なる。
 プロトコル変換装置1とパワーコンディショナ2は、コネクタである接続部18および接続部28により電気的に接続される。プロトコル変換装置1と電気自動車3は、コネクタである接続部19および接続部36により電気的に接続される。プロトコル変換装置1の制御回路10とパワーコンディショナ2の制御回路20は通信ライン50および制御ライン52を介して接続される。プロトコル変換装置1の制御回路10と電気自動車3の制御回路30は通信ライン51および制御ライン53を介して接続される。パワーコンディショナ2のコンバータ23と電気自動車3の電池33は充放電ケーブル60を介して接続される。
 図6は、実施の形態1にかかるプロトコル変換装置を適用した電気自動車の充電システムにおける充電シーケンスの一例を示す図である。図6は、電気自動車3の電池33の充電を開始する前にパワーコンディショナ2の制御回路20と電気自動車3の制御回路30が行う通信をプロトコル変換装置1の制御回路10が中継するシーケンスを示している。図6に示したステップS21から25、S31からS34は、図3に示したステップS21から25、S31からS34と同様の処理である。
 充電を開始する場合、まず、ユーザが、充放電ケーブルコネクタ25をプロトコル変換装置1に挿入し、さらに、プロトコル変換装置1を電気自動車3の充放電ケーブルレセプタクル34に挿入して機構的に接続する。機構的な接続が完了後、パワーコンディショナ2の制御回路20は、充電の開始を制御部21から制御ライン52を介してプロトコル変換装置1の制御回路10の制御部11に通知し(ステップS21)、制御回路10の制御部11は充電開始を検知する(ステップS11)。次に、制御回路10の制御部11が制御ライン53を介して電気自動車3の制御回路30の制御部31に充電開始を通知し(ステップS12)、制御回路30の制御部31は充電開始を検知する(ステップS31)。
 充電開始を通知したパワーコンディショナ2の制御回路20は、通信開始をプロトコル変換装置1の制御回路10を介してパワーコンディショナ2の制御回路20に通知し(ステップS32,S13,S22)、パワーコンディショナ2の制御回路20および電気自動車3の制御回路30は、プロトコル変換装置1の制御回路10を介した通信を開始する(ステップS23,S14,S33)。
 ここで、プロトコル変換装置1の制御回路10の制御部11と電気自動車3の制御回路30の制御部31との間の通信には第2の通信部13および通信部32が介在する。また、制御回路10の制御部11とパワーコンディショナ2の制御回路20の制御部21との間の通信には第1の通信部12および通信部22が介在する。
 プロトコル変換装置1の制御回路10が制御部11とパワーコンディショナ2の制御回路20との間に第1の通信部12を備え、制御部11と電気自動車3の制御回路30との間に第2の通信部13を備えた構成としているのは、CHAdeMOプロトコルおよびCOMBOプロトコルの各々で指定されている通信方式が異なるためである。プロトコル変換装置1は、第1の通信部12および第2の通信部13を備えているため、CHAdeMOプロトコルで指定されている通信方式での通信およびCOMBOプロトコルで指定されている通信方式での通信の双方が可能である。第1の通信部12は、CHAdeMOプロトコルで指定されている通信方式またはCOMBOプロトコルで指定されている通信方式で通信を行い、第2の通信部13は、第1の通信部12とは異なる通信方式で通信を行う。例えば、パワーコンディショナ2がCHAdeMOプロトコルに対応し、電気自動車3がCOMBOプロトコルに対応している場合、プロトコル変換装置1とパワーコンディショナ2との間の通信はCAN通信、プロトコル変換装置1と電気自動車3との間の通信はPLC(Power Line Communication)通信となる。この場合、CAN通信対応のドライバICなどにより第1の通信部12を実現し、PLC通信対応のドライバICなどにより第2の通信部13を実現する。
 プロトコル変換装置1の制御回路10の制御部11は、第1の通信部12が対応している通信方式の通信信号と第2の通信部13が対応している通信方式の通信信号とを相互に変換する。具体的には、制御部11は、CAN通信に対応した通信信号を受信した場合はPLC通信に対応した通信信号に変換し、PLC通信に対応した通信信号を受信した場合はCAN通信に対応した通信信号に変換する。
 図6の説明に戻り、電気自動車3の制御回路30は、通信を開始すると、充電許可をプロトコル変換装置1の制御回路10に通知し(ステップS34)、制御回路10は充電許可を検知する(ステップS15)。充電許可を検知した制御回路10は、パワーコンディショナ2の制御回路20に充電許可を通知する(ステップS16)。パワーコンディショナ2の制御回路20は、充電許可を検知すると、充放電ケーブルコネクタ25のソレノイド26に電流を流してレバー27を移動させ、プロトコル変換装置1の切り欠き部分16にレバー27を挿入することにより充放電ケーブルコネクタ25とプロトコル変換装置1の接続をロックする(ステップS24)。プロトコル変換装置1の切り欠き部分16に充放電ケーブルコネクタ25のレバー27が挿入されるとレバー27がプロトコル変換装置1のスイッチ17を押してスイッチ17が閉じる(ステップS41)。プロトコル変換装置1の制御回路10は、スイッチ17が閉じたことを検知すると、ソレノイド14に電流を流してレバー15を移動させ、充放電ケーブルレセプタクル34の切り欠き部分35にレバー15を挿入することによりプロトコル変換装置1と充放電ケーブルレセプタクル34の接続をロックする(ステップS17)。スイッチ17は、プロトコル変換装置1とパワーコンディショナ2との接続がロックされた状態を検出するロック状態検出部である。ソレノイド14およびレバー15は、プロトコル変換装置1とパワーコンディショナ2の接続がロックされた状態が検出された場合に電気自動車3との接続をロックする接続ロック部である。
 プロトコル変換装置1と充放電ケーブルレセプタクル34の接続がロックされると、プロトコル変換装置1の制御回路10は、接続がロックされたことをパワーコンディショナ2の制御回路20に通知し(ステップS18)、制御回路20は、プロトコル変換装置1と電気自動車3の接続がロックされたことを検知する(ステップS42)。この状態でパワーコンディショナ2とプロトコル変換装置1が確実に接続されるとともに、プロトコル変換装置1と電気自動車3が確実に接続され、パワーコンディショナ2のコンバータ23から電気自動車3の電池33へ充電することが可能となる。その後、制御回路20の制御部21がコンバータ23に対して充電開始を指示し、コンバータ23から充電電流の出力を開始させる(ステップS25)。
 上述したように、プロトコル変換装置1の制御部11は、まずパワーコンディショナ2とプロトコル変換装置1の接続がロックされたことをスイッチ17で検知して、さらに電気自動車3の充放電ケーブルレセプタクル34とプロトコル変換装置1の接続をロックするため、プロトコル変換装置1がパワーコンディショナ2と電気自動車3の両者と確実に接続され、充電時に接続が外れることなく安全に充電を行うことができる。
 このように、本実施の形態のプロトコル変換装置1は、パワーコンディショナ2と電気自動車3との間に配置されてパワーコンディショナ2および電気自動車3の双方に接続可能な構成である。プロトコル変換装置1は、パワーコンディショナと電気自動車の充電プロトコルが異なる場合に、パワーコンディショナ2および電気自動車3に接続され、パワーコンディショナ2から受信した通信信号を電気自動車3の充電プロトコルに対応する通信信号に変換して電気自動車3へ送信し、電気自動車3から受信した通信信号をパワーコンディショナ2の充電プロトコルに対応する通信信号に変換してパワーコンディショナ2へ送信する。例えば、パワーコンディショナ2がCHAdeMO方式の充電プロトコルに対応しており、電気自動車がCOMBO方式の充電プロトコルに対応している場合、パワーコンディショナ2が送受信する通信信号はCHAdeMOプロトコルに対応した信号である。パワーコンディショナ2をそのままCOMBOプロトコルの電気自動車3につないでも動作しないため、プロトコル変換装置1において、制御回路10は、CHAdeMOプロトコルの通信信号、通信手順を理解し、パワーコンディショナ2から受信した通信信号をCOMBOプロトコルの通信信号に置き換え、電気自動車3へ送信する。逆方向の通信すなわち電気自動車3からパワーコンディショナ2への通信でも同様に、制御回路10は、COMBOプロトコルの通信信号、通信手順を理解し、電気自動車3から受信した通信信号をCHAdeMOプロトコルの通信信号に置き換え、パワーコンディショナ2へ送信する。プロトコル変換装置1の動作により、CHAdeMOプロトコル対応のパワーコンディショナ2とCOMBOプロトコル対応の電気自動車3が通信を確立することができ、電気自動車3の駆動用電池である電池33の充放電を行うことが可能になる。
 本実施の形態のプロトコル変換装置1によれば、複数の充電プロトコルのそれぞれに対応した複数の充電ケーブルを備える必要が無く、また、使用する充電プロトコルを選択するためのスイッチなどを備える必要が無いため、複数の充電プロトコルに対応可能な充電システムを簡易な構成で実現できる。また、パワーコンディショナの充電プロトコルと電気自動車の充電プロトコルが異なる場合にのみプロトコル変換装置1を接続ればよいため、使用する充電プロトコルをユーザが選択する操作が不要となり、ユーザが行う操作を単純化できる。
 本実施の形態では、パワーコンディショナ2がCHAdeMO方式に対応している場合の例について説明したが、逆の場合、すなわち、パワーコンディショナ2がCOMBO方式に対応している場合にもプロトコル変換装置1を適用可能である。パワーコンディショナ2がCOMBO方式に対応し、電気自動車3がCHAdeMO方式に対応している場合、プロトコル変換装置1がパワーコンディショナ2から受信した通信信号をCOMBO方式からCHAdeMO方式に変換する構成とすればよい。すなわち、プロトコル変換装置1において、第1の通信部12がCOMBOプロトコルでパワーコンディショナ2と通信し、第2の通信部13がCHAdeMOプロトコルで電気自動車3と通信する構成とすればよい。
実施の形態2.
 図7は、実施の形態2にかかる電気自動車の充電システムの内部構成例を示す図である。実施の形態2にかかる電気自動車の充電システムは、実施の形態1で説明したプロトコル変換装置1をプロトコル変換装置1aに置き換えたものである。本実施の形態では実施の形態1と異なる部分について説明する。
 実施の形態2にかかるプロトコル変換装置1aは、実施の形態1にかかるプロトコル変換装置1からスイッチ17が削除された構成である。
 図8は、実施の形態2にかかるプロトコル変換装置を適用した電気自動車の充電システムにおける充電シーケンスの一例を示す図である。図8は、電気自動車3の電池33の充電を開始する前にパワーコンディショナ2の制御回路20と電気自動車3の制御回路30が行う通信をプロトコル変換装置1aの制御回路10が中継するシーケンスを示している。図8に示した充電シーケンスは、実施の形態1で説明した充電シーケンス、すなわち図6に示した充電シーケンスのステップS17をステップS17AからS17Cに置き換えるとともに、ステップS41をステップS41AからS41Bに置き換えたものである。本実施の形態では、図6に示した充電シーケンスと異なる部分について説明を行う。
 実施の形態2にかかるプロトコル変換装置1aにおいて、制御回路10は、ステップS16においてパワーコンディショナ2の制御回路20に充電許可を通知した後、制御回路20に対して、コネクタ接続のロックが完了したか、すなわちレバー27の切り欠き部分16への挿入が完了したかを確認する(ステップS17A)。パワーコンディショナ2の制御回路20は、コネクタ接続のロックの完了を確認する問い合わせを受けると、コネクタ接続のロックが完了していれば直ちに、コネクタ接続のロックが完了していなければロックが完了した後に、コネクタ接続のロックが完了したことを制御回路10に通知する(ステップS41A,S41B)。制御回路10は、制御回路20から通知を受けてコネクタ接続のロックが完了したことを検知すると、ソレノイド14に電流を流してレバー15を移動させ、充放電ケーブルレセプタクル34の切り欠き部分35にレバー15を挿入することによりプロトコル変換装置1と充放電ケーブルレセプタクル34の接続をロックする(ステップS17B,S17C)。
 このように、本実施の形態にかかる制御回路10は、プロトコル変換装置1とパワーコンディショナ2との接続がロックされた状態を検出するロック状態検出部としての機能も有する。
 以上のように、実施の形態2にかかるプロトコル変換装置1aの制御回路10は、パワーコンディショナ2との接続ロックが完了したか否かをパワーコンディショナ2の制御回路20に問い合わせることとした。これにより、プロトコル変換装置1aは、実施の形態1にかかるプロトコル変換装置1が備えていた、パワーコンディショナ2との接続ロックが完了したことを検知するためのスイッチ17が不要となり、コストを削減できる。
 実施の形態1および2で説明したプロトコル変換装置1,1aの制御回路10を構成する制御部11、パワーコンディショナ2の制御回路20を構成する制御部21、電気自動車3の制御回路30を構成する制御部31は、図9に示した処理回路100により実現できる。処理回路100は、プロセッサ101およびメモリ102を含んで構成されている。プロセッサ101は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)、システムLSI(Large Scale Integration)などである。メモリ102は、RAM、ROM、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)等である。制御部11,21,31は、それぞれの制御部として動作するためのプログラムをプロセッサ101がメモリ102から読み出して実行することにより実現される。
 なお、各実施の形態では、電気自動車3に搭載された電池33の充電が可能であるとともに電池33を放電させて図示を省略した宅内負荷などへ供給することが可能なパワーコンディショナ2と電気自動車3との間でプロトコル変換を行うプロトコル変換装置について説明したが、電気自動車3に搭載された電池33の充電のみを行う充電装置と電気自動車3との間でプロトコル変換を行うプロトコル変換装置としてもよい。すなわち、パワーコンディショナ2を電気自動車3の電池33の充電のみを行う充電装置に置き換えた構成の電気自動車の充電システムに対しても、本発明にかかるプロトコル変換装置1,1aを適用可能である。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1a プロトコル変換装置、2 パワーコンディショナ、3 電気自動車、10,20,30 制御回路、11,21,31 制御部、12 第1の通信部、13 第2の通信部、14,26 ソレノイド、15,27 レバー、17 スイッチ、18,19,28,36 接続部、22,32 通信部、23 コンバータ、24 充放電ケーブル、25 充放電ケーブルコネクタ、33 電池、34 充放電ケーブルレセプタクル、29-1,50,51 通信ライン、29-2,52,53 制御ライン、60 電力供給ライン。

Claims (5)

  1.  第1の充電プロトコルに対応した充電装置と通信を行う第1の通信部と、
     第2の充電プロトコルに対応した電気自動車と通信を行う第2の通信部と、
     前記第1の通信部と前記第2の通信部との間に設けられ、前記充電装置から受信した通信信号を前記第1の通信部から受け取ると前記第2の充電プロトコルに従った通信信号に変換して前記第2の通信部へ出力し、前記電気自動車から受信した通信信号を前記第2の通信部から受け取ると前記第1の充電プロトコルに従った通信信号に変換して前記第1の通信部へ出力する変換部と、
     を備えることを特徴とするプロトコル変換装置。
  2.  前記充電装置と前記電気自動車が通信を開始した後に自装置と前記充電装置の接続がロックされた状態を検出するロック状態検出部と、
     前記ロック状態検出部で前記状態が検出された場合に自装置と前記電気自動車の接続をロックする接続ロック部と、
     を備えることを特徴とする請求項1に記載のプロトコル変換装置。
  3.  前記ロック状態検出部は、前記充電装置が備えている接続固定用のレバーの動作を検出するスイッチであることを特徴とする請求項2に記載のプロトコル変換装置。
  4.  前記ロック状態検出部は、前記第1の通信部が前記充電装置から受信した通信信号に基づいて自装置と前記充電装置の接続がロックされた状態を検出することを特徴とする請求項2に記載のプロトコル変換装置。
  5.  前記接続ロック部は、
     前記電気自動車との接続を固定するためのレバーと、
     前記ロック状態検出部で前記状態が検出された場合に前記レバーを移動させて前記電気自動車との接続を固定させるソレノイドと、
     を備えることを特徴とする請求項2、3または4に記載のプロトコル変換装置。
     
PCT/JP2016/054333 2016-02-15 2016-02-15 プロトコル変換装置 WO2017141329A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017567591A JP6532551B2 (ja) 2016-02-15 2016-02-15 プロトコル変換装置
PCT/JP2016/054333 WO2017141329A1 (ja) 2016-02-15 2016-02-15 プロトコル変換装置
US16/062,035 US10668820B2 (en) 2016-02-15 2016-02-15 Protocol conversion apparatus for electric vehicle
CN201680080874.XA CN108604804A (zh) 2016-02-15 2016-02-15 协议转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054333 WO2017141329A1 (ja) 2016-02-15 2016-02-15 プロトコル変換装置

Publications (1)

Publication Number Publication Date
WO2017141329A1 true WO2017141329A1 (ja) 2017-08-24

Family

ID=59624859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054333 WO2017141329A1 (ja) 2016-02-15 2016-02-15 プロトコル変換装置

Country Status (4)

Country Link
US (1) US10668820B2 (ja)
JP (1) JP6532551B2 (ja)
CN (1) CN108604804A (ja)
WO (1) WO2017141329A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521645A (ja) * 2019-02-28 2022-04-11 アーベーベー・シュバイツ・アーゲー 電動車両給電機器及び電動車両間の基本インターフェース上のイーサネット
JP2022524252A (ja) * 2020-02-18 2022-05-02 エンビジョン エナジー カンパニー リミテッド 電動車両向け充電アダプタ及び充電保護方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211335A1 (de) * 2016-06-24 2017-12-28 Volkswagen Aktiengesellschaft Elektrisches Aufladen von Elektrofahrzeugen mittels Adapter zur Signalwandlung
DE102017119705A1 (de) * 2017-08-28 2019-02-28 Robert Bosch Gmbh Energiespeichersystem mit einem in einen passiven Zustand schaltbaren Energiespeicher
JP6981237B2 (ja) * 2017-12-22 2021-12-15 トヨタ自動車株式会社 車両の充電システム
KR102603886B1 (ko) * 2018-02-13 2023-11-21 엘지이노텍 주식회사 전기 자동차의 충전 제어 장치
WO2020123337A1 (en) * 2018-12-11 2020-06-18 Metro Mobility, Llc Electric vehicle fastening and charging system with wireless control
JP7172676B2 (ja) * 2019-02-05 2022-11-16 トヨタ自動車株式会社 車両の制御装置およびそれを備えた車両ならびに車両の制御方法
CN117318197A (zh) * 2022-06-21 2023-12-29 创科无线普通合伙 适配器装置、电池装置和电子设备系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169226A1 (en) * 2011-12-30 2013-07-04 Electric Transportation Engineering Corporation d/b/a ECOtality North America Electricity transfer system for modifying an electric vehicle charging station and method of providing, using, and supporting the same
JP2014124033A (ja) * 2012-12-20 2014-07-03 Sumitomo Electric Ind Ltd 中継機、コネクタ装置、充電ケーブル及び給電システム
WO2014163618A1 (en) * 2013-04-02 2014-10-09 Tesla Motors, Inc. Inter-protocol charging adapter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493441B2 (ja) * 2009-04-15 2014-05-14 日産自動車株式会社 車車間充電方法、車車間充電用ケーブルおよび電動車両
US20130110340A1 (en) * 2010-07-09 2013-05-02 V-Ens Co. Ltd Electric vehicle, charging stand, and method for charging the electric vehicle
US20140266042A1 (en) 2013-03-15 2014-09-18 Contour Hardening, Inc. Quick charge system for electric vehicles
JP6245494B2 (ja) * 2013-03-28 2017-12-13 パナソニックIpマネジメント株式会社 車両用電力装置
JP2015023747A (ja) * 2013-07-23 2015-02-02 トヨタ自動車株式会社 車両および車両の充電システム、ならびに個人用の充電ケーブル
KR101524166B1 (ko) * 2014-02-11 2015-06-10 현대자동차주식회사 커넥터 변환기 및 이를 이용한 차량 충전 시스템 및 차량 충전 방법
CN203911538U (zh) * 2014-06-03 2014-10-29 国家电网公司 充电枪防拉弧锁定装置
CN104578291B (zh) * 2014-12-30 2017-02-08 安科智慧城市技术(中国)有限公司 一种用于电动汽车的充电方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169226A1 (en) * 2011-12-30 2013-07-04 Electric Transportation Engineering Corporation d/b/a ECOtality North America Electricity transfer system for modifying an electric vehicle charging station and method of providing, using, and supporting the same
JP2014124033A (ja) * 2012-12-20 2014-07-03 Sumitomo Electric Ind Ltd 中継機、コネクタ装置、充電ケーブル及び給電システム
WO2014163618A1 (en) * 2013-04-02 2014-10-09 Tesla Motors, Inc. Inter-protocol charging adapter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022521645A (ja) * 2019-02-28 2022-04-11 アーベーベー・シュバイツ・アーゲー 電動車両給電機器及び電動車両間の基本インターフェース上のイーサネット
JP7263532B2 (ja) 2019-02-28 2023-04-24 アーベーベー・シュバイツ・アーゲー 電動車両給電機器及び電動車両間の基本インターフェース上のイーサネット
JP2022524252A (ja) * 2020-02-18 2022-05-02 エンビジョン エナジー カンパニー リミテッド 電動車両向け充電アダプタ及び充電保護方法
JP7142161B2 (ja) 2020-02-18 2022-09-26 エンビジョン エナジー カンパニー リミテッド 電動車両向け充電アダプタ及び充電保護方法

Also Published As

Publication number Publication date
JP6532551B2 (ja) 2019-06-19
CN108604804A (zh) 2018-09-28
US10668820B2 (en) 2020-06-02
US20180370378A1 (en) 2018-12-27
JPWO2017141329A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2017141329A1 (ja) プロトコル変換装置
US20190263279A1 (en) On-board control device
JP4736862B2 (ja) 車両、電力授受方法および電気装置
US9649949B2 (en) Connector converter and vehicle charging system and method using the same
JP5840615B2 (ja) ハイブリッド車両および電気車両のための電気接続装置、ならびにハイブリッド車両および電気車両のための充電方法
JP6308105B2 (ja) 中継機
US20130026988A1 (en) Vehicle charging device and vehicle charging system using same
JP2014183739A (ja) 電気自動車用の急速充電システム
CA2850454C (en) Power supply system, vehicle equipped with the same, and control method for power supply system
JP7087983B2 (ja) 車両の充電システム
JP2011114962A (ja) 充電システム、充電器、電動移動体、および電動移動体用バッテリの充電方法
PH12017500242B1 (en) Charging device for electric moving body
JP2011083156A (ja) 充電器および車両用充電制御システム
JP2024022677A (ja) 電池制御装置
CN114056139A (zh) 模块化电动车辆供电设备系统
JP6127286B2 (ja) 車両用充電装置
WO2020084689A1 (ja) 充電制御装置
JP5398866B2 (ja) 充放電制御装置
JPH06343203A (ja) 電気自動車の充電装置
JP7010198B2 (ja) 車両
CN110014982B (zh) 用于为机动车提供电能的能量提供装置和其运行方法
JP6775721B1 (ja) 充放電装置
US11912152B2 (en) Control device for vehicle, vehicle, and control method of vehicle
JP2017135794A (ja) 充放電システム
JP2020127306A (ja) 車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890472

Country of ref document: EP

Kind code of ref document: A1