WO2017139982A1 - Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote - Google Patents
Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote Download PDFInfo
- Publication number
- WO2017139982A1 WO2017139982A1 PCT/CN2016/074171 CN2016074171W WO2017139982A1 WO 2017139982 A1 WO2017139982 A1 WO 2017139982A1 CN 2016074171 W CN2016074171 W CN 2016074171W WO 2017139982 A1 WO2017139982 A1 WO 2017139982A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suspension
- sulfur
- boron
- nitrogen
- graphene
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
- the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
- Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
- problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
- Elemental sulfur is an electron and ionic insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it acts as a positive electrode.
- Lithium polysulfide Li 2 S n (8>n ⁇ 4) produced during the electrode reaction is easily soluble in the electrolyte, forming a concentration difference between the positive and negative electrodes. The gradient migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
- the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide. This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
- insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery; (3) the final product of the reaction, Li 2 S, is also an electronic insulator, which is deposited on the sulfur electrode, and lithium slow ion mobility in the solid state lithium sulfide, the slow electrochemical reaction kinetics; different density (4) sulfur and Li 2 S final product when sulfur is expanded to about 79% of the volume of lithium, Li 2 easily lead The powdering of S causes safety problems in lithium-sulfur batteries.
- the above-mentioned shortcomings restrict the development of lithium-sulfur batteries, which is also the key issue that needs to be solved in the research of lithium-sulfur batteries.
- the technical problem to be solved by the present invention is to provide a three-dimensional structure lithium-sulfur battery cathode material, and a three-dimensional structure of boron-nitroco-doped graphene, nano-sulfur particles and Ketjen black deposited on boron-nitroco-doped graphene are prepared by the method.
- the design can improve the electrical conductivity of the sulfur motor and prevent the dissolution of the polysulfide of the discharge product.
- the invention provides a preparation process of a three-dimensional lithium-sulfur battery cathode material as follows:
- step (3) taking the three-dimensional boron-nitrogen co-doped graphene obtained in step (2) and adding Ketjen black to N-methylpyrrolidone to form a suspension;
- the ultrasonic reaction time in the step (1) is 10-60 minutes, and the concentration of the graphene oxide suspension is 1-10 g/L;
- the temperature of the hydrothermal reaction in the step (2) is 160-200 ° C, the reaction time is 1-6 hours, the ratio of graphite oxide to ammonia water is 1 g: 10-50 mL, and the mass ratio of graphite oxide to sodium borohydride is 1:10. -30;
- the mass ratio of the three-dimensional boron-nitroco-doped graphene to the Ketjen black in the step (3) is 1:0.05-0.5, and the concentration of the suspension is 1-5 g/L;
- step (4) the mass-to-mass ratio of elemental sulfur to three-dimensional boron-nitrogen co-doped graphene and Ketjen black is 10-20:1, the ultrasonic reaction temperature is 40-50 ° C, and the ultrasonic time is until sulfur is completely dissolved.
- the concentration of the sulfur suspension is 10-15 g/L;
- the invention has the following beneficial effects: (1) the preparation method reduces the graphite oxide and the boron-nitrogen co-doping with the hydrothermal reaction in one step to improve the reaction efficiency; (2) the high conductivity Ketchen black and graphene materials can be effective.
- the three-dimensional structure is conducive to the lithium ion and electrons in the multi-dimensional conduction path to improve the ion and electron conductivity;
- the Ketjen black further shortens the conduction distance between the nano-sulfur particles and the nano-sulfur and graphene sheets, which is beneficial to the improvement of electrical conductivity;
- the nitrogen and boron atoms in the boron-nitrogen co-doped graphene The synergistic effect on the adsorption of sulfur can effectively reduce the shuttle effect and improve the cycle life of the lithium-sulfur battery.
- 1 is an SEM image of a three-dimensional boron-nitrogen co-doped graphene sulfur composite prepared by the present invention.
- Electrode preparation and performance test electrode material, acetylene black and PVDF were mixed in NMP at a mass ratio of 80:10:10, coated on aluminum foil as electrode film, lithium metal plate as counter electrode, CELGARD 2400 as separator, 1 mol /L LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte, 1 mol/L LiNO 3 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge is performed using a Land battery test system. test. The charge and discharge voltage range is 1 to 3 V, and the current density is 0.01 C. The performance is shown in Table 1.
- FIG. 1 is an SEM image of a positive electrode material prepared by the present invention. It can be seen from the figure that the positive electrode material has a large number of open three-dimensional pore-like structures, which can provide an ion transport channel and improve the electrochemical performance of the material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
L'invention concerne un procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote, comprenant les différentes étapes suivantes : étape (1) : ajouter du graphite oxydé dans de l'eau pour un ultrason, former une suspension de graphène oxydé ; étape (2) : ajouter de l'ammoniaque aqueux dans la suspension de graphène oxydé, puis ajouter du borohydrure de sodium pour produire du graphène codopé au bore et à l'azote tridimensionnel ; étape (3) : ajouter le graphène codopé au bore et à l'azote tridimensionnel produit dans l'étape (2) et du noir de Ketjen dans de la N-méthyl-pyrrolidone pour une réaction ultrasonore afin de former une suspension ; étape (4) : ajouter du soufre dans la N-méthyl-pyrrolidone pour un ultrason jusqu'à ce que du soufre élémentaire soit dissous complètement pour former une suspension ; et étape (5) : mélanger les deux suspensions produites dans l'étape (4) et l'étape (3), puis ajouter de l'eau distillée pour produire le matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle. Les atomes d'azote et les atomes de bore dans le graphène codopé au bore et à l'azote effectuent de manière synergique l'adsorption de soufre, réduisent un effet de mélange, et augmentent le cycle de vie d'une batterie au lithium-soufre.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/074171 WO2017139982A1 (fr) | 2016-02-19 | 2016-02-19 | Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/074171 WO2017139982A1 (fr) | 2016-02-19 | 2016-02-19 | Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017139982A1 true WO2017139982A1 (fr) | 2017-08-24 |
Family
ID=59624712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/074171 WO2017139982A1 (fr) | 2016-02-19 | 2016-02-19 | Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017139982A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109148861A (zh) * | 2018-08-30 | 2019-01-04 | 广东工业大学 | 硫/氧化铁/石墨烯电池正极材料、制备方法及锂硫电池 |
CN109485129A (zh) * | 2018-12-16 | 2019-03-19 | 北京化工大学 | 一种pvc废旧塑料制备的多孔碳材料电吸附金属离子的方法 |
CN112934132A (zh) * | 2021-03-10 | 2021-06-11 | 瓮福(集团)有限责任公司 | 一种硼氮共掺杂还原氧化石墨烯气凝胶及其制备方法和应用 |
CN114497602A (zh) * | 2020-10-26 | 2022-05-13 | 中国石油化工股份有限公司 | 碳材料、铂碳催化剂及其制备方法和应用 |
CN115548339A (zh) * | 2022-09-26 | 2022-12-30 | 陕西科技大学 | 一种锂硫电池夹层及其制备方法和锂硫电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185139A (zh) * | 2011-03-31 | 2011-09-14 | 中国科学院过程工程研究所 | 一种纳米金属氧化物/石墨烯掺杂磷酸铁锂电极材料的制备方法 |
CN102760866A (zh) * | 2011-04-26 | 2012-10-31 | 海洋王照明科技股份有限公司 | 氮掺杂石墨烯的制备方法 |
CN103515609A (zh) * | 2012-06-27 | 2014-01-15 | 海洋王照明科技股份有限公司 | Thaq/石墨烯复合材料、其制备方法、电池正极和锂离子电池 |
US9203084B2 (en) * | 2013-08-08 | 2015-12-01 | Nanotek Instrurments, Inc. | Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same |
CN105304882A (zh) * | 2014-07-25 | 2016-02-03 | 中国科学院物理研究所 | 锂硫电池正极材料的制备方法、锂硫电池正极材料和电池 |
CN105609733A (zh) * | 2016-02-19 | 2016-05-25 | 钟玲珑 | 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法 |
-
2016
- 2016-02-19 WO PCT/CN2016/074171 patent/WO2017139982A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185139A (zh) * | 2011-03-31 | 2011-09-14 | 中国科学院过程工程研究所 | 一种纳米金属氧化物/石墨烯掺杂磷酸铁锂电极材料的制备方法 |
CN102760866A (zh) * | 2011-04-26 | 2012-10-31 | 海洋王照明科技股份有限公司 | 氮掺杂石墨烯的制备方法 |
CN103515609A (zh) * | 2012-06-27 | 2014-01-15 | 海洋王照明科技股份有限公司 | Thaq/石墨烯复合材料、其制备方法、电池正极和锂离子电池 |
US9203084B2 (en) * | 2013-08-08 | 2015-12-01 | Nanotek Instrurments, Inc. | Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same |
CN105304882A (zh) * | 2014-07-25 | 2016-02-03 | 中国科学院物理研究所 | 锂硫电池正极材料的制备方法、锂硫电池正极材料和电池 |
CN105609733A (zh) * | 2016-02-19 | 2016-05-25 | 钟玲珑 | 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
XIE YANG ET AL.: "Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium Sulfur Battery", APPLIED MATERAILS & INTERFACES, 2 November 2015 (2015-11-02), XP055573449, ISSN: 1944-8244, DOI: doi:10.1021/acsami.5b08129 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109148861A (zh) * | 2018-08-30 | 2019-01-04 | 广东工业大学 | 硫/氧化铁/石墨烯电池正极材料、制备方法及锂硫电池 |
CN109485129A (zh) * | 2018-12-16 | 2019-03-19 | 北京化工大学 | 一种pvc废旧塑料制备的多孔碳材料电吸附金属离子的方法 |
CN114497602A (zh) * | 2020-10-26 | 2022-05-13 | 中国石油化工股份有限公司 | 碳材料、铂碳催化剂及其制备方法和应用 |
CN114497602B (zh) * | 2020-10-26 | 2024-05-17 | 中国石油化工股份有限公司 | 碳材料、铂碳催化剂及其制备方法和应用 |
CN112934132A (zh) * | 2021-03-10 | 2021-06-11 | 瓮福(集团)有限责任公司 | 一种硼氮共掺杂还原氧化石墨烯气凝胶及其制备方法和应用 |
CN115548339A (zh) * | 2022-09-26 | 2022-12-30 | 陕西科技大学 | 一种锂硫电池夹层及其制备方法和锂硫电池 |
CN115548339B (zh) * | 2022-09-26 | 2023-10-20 | 陕西科技大学 | 一种锂硫电池夹层及其制备方法和锂硫电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017139983A1 (fr) | Procédé pour préparer un matériau d'électrode positive ayant une structure dopée à l'azote tridimensionnelle destiné à être utilisé dans une batterie au lithium-soufre | |
WO2017139984A1 (fr) | Procédé de préparation d'un matériau de cathode de batterie lithium-soufre dopé au soufre ayant une structure tridimensionnelle | |
WO2019091067A1 (fr) | Matériau composite de disulfure d'étain/de molybdène revêtu de carbone co-dopé à l'azote-soufre pour batterie au lithium-ion et son procédé de préparation | |
WO2017139982A1 (fr) | Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote | |
CN108269978B (zh) | 量子点/碳管载硫复合正极材料及其制备方法与应用 | |
WO2017139938A1 (fr) | Procédé de préparation de matériau d'électrode positive composite graphène/polypyrrole/soufre | |
Wan et al. | Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? | |
WO2017139986A1 (fr) | Procédé de préparation d'un matériau d'anode de batterie lithium-soufre dopé au phosphore ayant une structure tridimensionnelle | |
CN111129489B (zh) | 一种石墨烯基硫化锑负极材料及其制备方法和应用 | |
CN106920936B (zh) | 一种高性能有机锂离子电池正极材料及其制备方法 | |
WO2017139939A1 (fr) | Procédé de préparation d'un matériau d'électrode positive composite graphène/polyaniline/soufre | |
WO2022199505A1 (fr) | Électrode négative, son procédé de préparation et son application | |
WO2017139991A1 (fr) | Procédé de préparation de matériau d'électrode positive de batterie lithium-soufre à sphères creuses de dioxyde de manganèse | |
WO2017139985A1 (fr) | Procédé de préparation d'un matériau d'anode de batterie au lithium-soufre dopé au fluor ayant une structure tridimensionnelle | |
WO2017139941A1 (fr) | Procédé de préparation d'un matériau d'anode composite de graphène/polyanthraquinone thioéther/sulfure | |
CN111517374A (zh) | 一种Fe7S8/C复合材料的制备方法 | |
CN105609734A (zh) | 一种三维氮掺杂结构锂硫电池正极材料的制备方法 | |
CN105047861A (zh) | 一种硫碳复合材料及其制备方法 | |
CN105609733A (zh) | 一种硼氮共掺杂三维结构锂硫电池正极材料的制备方法 | |
Lu et al. | Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook | |
WO2017139997A1 (fr) | Procédé de fabrication de matériau anodique dopé avec une structure de noyau-enveloppe de sulfure de lithium-carbone | |
WO2017143549A1 (fr) | Composite soufre-carbone et procédé de préparation associé, matériau d'électrode et batterie au lithium-soufre contenant ce composite soufre-carbone | |
CN110467170B (zh) | 一种钾离子电池高电位正极材料及其制备方法 | |
WO2017139990A1 (fr) | Procédé de préparation d'un matériau de cathode à sphères creuses d'alumine pour batterie lithium-soufre | |
WO2020034875A1 (fr) | Matériau actif d'électrode positive à base de soufre destiné à être utilisé dans une pile à électrolyte solide, préparation du matériau et ses applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16890215 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16890215 Country of ref document: EP Kind code of ref document: A1 |