WO2017138423A1 - エンジンシステム及びその制御方法 - Google Patents

エンジンシステム及びその制御方法 Download PDF

Info

Publication number
WO2017138423A1
WO2017138423A1 PCT/JP2017/003728 JP2017003728W WO2017138423A1 WO 2017138423 A1 WO2017138423 A1 WO 2017138423A1 JP 2017003728 W JP2017003728 W JP 2017003728W WO 2017138423 A1 WO2017138423 A1 WO 2017138423A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
bypass valve
intake
opening
exhaust
Prior art date
Application number
PCT/JP2017/003728
Other languages
English (en)
French (fr)
Inventor
元基 三津山
博文 橋本
穂高 齋藤
仁志 瀧川
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201780010931.1A priority Critical patent/CN108699953B/zh
Priority to EP17750147.5A priority patent/EP3415738B1/en
Priority to US16/077,408 priority patent/US10648401B2/en
Publication of WO2017138423A1 publication Critical patent/WO2017138423A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an engine system and a control method thereof, and more specifically, in an engine system in which a plurality of turbochargers are arranged in series, an engine that avoids the generation of abnormal noise when the turbocharger supercharging state is switched.
  • the present invention relates to a system and a control method thereof.
  • both the exhaust bypass valve and the intake bypass valve are closed to supercharge the high-pressure stage turbocharger disposed downstream of the intake passage among the plurality of turbochargers. I am letting.
  • the supercharging of the high-pressure stage turbocharger is stopped by opening both the exhaust bypass valve and the intake bypass valve, and the remaining turbocharger is used.
  • the inventor has generated the noise by opening the intake bypass valve when the supercharging pressure of the compressor of the high-pressure turbocharger is high and the pressure difference across the compressor is large. I found out.
  • the intake bypass valve and the exhaust bypass valve are substantially closed. That is, the intake bypass passage is divided into two sections by the intake bypass valve. Therefore, a pressure difference is generated between the two compartments.
  • the intake bypass valve is opened in such a state where the pressure difference is generated and the higher pressure is released to the lower side, abnormal noise is generated.
  • the present disclosure provides an engine system capable of avoiding abnormal noise due to a pressure difference when switching a turbocharger supercharging state in an engine system in which a plurality of turbochargers are arranged in series, and a control method thereof. To do.
  • a plurality of turbochargers arranged in series, and an intake air that bypasses a high-pressure compressor of a high-pressure turbocharger that is arranged on the downstream side of the intake passage of the plurality of turbochargers.
  • An exhaust gas bypass valve that controls the opening and closing of the intake bypass valve and the exhaust bypass valve.
  • the control device includes both the intake bypass valve and the exhaust bypass valve.
  • the high pressure turbocharger is supercharged When switching from a state to a state where both the intake bypass valve and the exhaust bypass valve are opened to stop the supercharging of the high-pressure stage turbocharger, after opening only the exhaust bypass valve, the intake bypass valve is Control is performed to open the exhaust bypass valve later than the opening timing.
  • a control method for an engine system in which a plurality of turbochargers are arranged in series, wherein an intake bypass valve is closed and an intake passage of the plurality of turbochargers is connected.
  • the intake bypass passage that bypasses the high-pressure stage compressor of the high-pressure turbocharger disposed downstream is shut off, and the exhaust bypass valve is closed to shut off the exhaust bypass passage that bypasses the high-pressure turbine of the high-pressure turbocharger.
  • the intake bypass valve is opened, the intake bypass passage is opened, the exhaust bypass valve is opened, the exhaust bypass passage is opened, and the high-pressure turbocharger is opened.
  • the exhaust A step of opening only the bypass valve, after opening only the exhaust bypass valve, the method comprising the step of opening the intake bypass valve is delayed than the timing in which the exhaust bypass valve is opened.
  • the timing of opening the intake bypass valve may be when the pressure difference between the upstream pressure and the downstream pressure of the high-pressure compressor in the intake passage is equal to or lower than a threshold value, or the pressure difference is When the pressure becomes zero, that is, when the pressure on the upstream side becomes equal to the pressure on the downstream side.
  • the engine system may include a pressure difference acquisition device that directly or indirectly acquires the pressure difference between the upstream pressure and the downstream pressure of the high-pressure compressor in the intake passage.
  • a pressure difference acquisition device two pressure sensors that acquire the pressure of the intake air upstream of the high-pressure compressor in the intake passage and the pressure of the intake air downstream are exemplified as the pressure difference acquisition device.
  • the valve opening state acquisition apparatus which acquires the valve opening state of an exhaust bypass valve is illustrated as what indirectly acquires a pressure difference.
  • valve opening state of the exhaust bypass valve previously opened through the valve opening state acquisition device is acquired and the valve opening state is acquired.
  • the control of opening the intake bypass valve by predicting the pressure difference is exemplified.
  • the valve open state is a state of the exhaust bypass valve that changes according to a control signal of the control device, and indicates an opening degree of the exhaust bypass valve, an open time thereof, and the like.
  • a maintenance time in which the opening degree of the exhaust bypass valve is maintained at a predetermined opening degree or more is acquired, and the maintenance time is set in advance. This is the control to open the intake bypass valve when the time is reached.
  • the exhaust bypass valve by opening the exhaust bypass valve first, the exhaust gas bypasses the high-pressure stage turbine and reduces the rotation speed of the high-pressure stage turbocharger, so that the supercharging pressure of the high-pressure stage compressor can be lowered. Then, it is possible to avoid the generation of abnormal noise by opening the intake bypass valve in a state where the pressure difference before and after the high-pressure compressor becomes small or zero.
  • FIG. 1 is a configuration diagram illustrating a state during multi-stage supercharging of an engine system according to an embodiment of the present disclosure.
  • FIG. 2 is a configuration diagram illustrating a state at the time of single-stage supercharging of the engine system according to the embodiment of the present disclosure.
  • FIG. 3 is a characteristic diagram illustrating a region where multistage supercharging is performed and a region where single stage supercharging is performed in the operating state of the engine system of FIG. 1.
  • 4 (a) and 4 (b) are correlation diagrams illustrating the relationship between the pressure difference over time and the opening of each valve.
  • FIG. 4 (a) shows the correlation between the background arts and
  • FIG. (B) has shown the correlation in the control method of the engine system which consists of embodiment of this indication.
  • FIG. 5 is a configuration diagram illustrating an engine system according to the first embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating a method for controlling the engine system according to the first embodiment of the present disclosure.
  • FIG. 7 is a configuration diagram illustrating an engine system according to the second embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating an engine system control method according to the second embodiment of the present disclosure.
  • FIG. 1 and 2 illustrate the configuration of an embodiment of the engine system 10 of the present disclosure.
  • FIG. 5 illustrates the configuration of the first embodiment
  • FIG. 7 illustrates the configuration of the second embodiment.
  • the engine system 10 includes a plurality of turbochargers, that is, a high-pressure stage turbocharger 11 and a low-pressure stage turbocharger 12 arranged in series.
  • the high-pressure turbocharger 11 is disposed on the downstream side in the intake passage 13 and on the upstream side in the exhaust passage 14, and is configured by connecting a high-pressure compressor 15 and a high-pressure turbine 16 via a rotating shaft.
  • the low-pressure stage turbocharger 12 is disposed upstream of the intake passage 13 and downstream of the exhaust passage 14, and is configured by connecting a low-pressure compressor 17 and a low-pressure turbine 18 via a rotating shaft.
  • the engine system 10 also includes an intake bypass passage 20 that bypasses the high-pressure compressor 15, an intake bypass valve 21 that adjusts the flow rate of the intake air A ⁇ b> 1 that passes through the intake bypass passage 20, and an exhaust that bypasses the high-pressure turbine 16.
  • a bypass passage 22 and an exhaust bypass valve 23 for adjusting the flow rate of the exhaust gas G1 passing through the exhaust bypass passage 22 are provided.
  • both the intake bypass valve 21 and the exhaust bypass valve 23 are closed, both the intake bypass passage 20 and the exhaust bypass passage 22 are blocked.
  • supercharging is performed by a plurality of turbochargers, that is, in addition to the low-pressure stage turbocharger 12, the high-stage turbocharger 11 is switched to the multistage supercharging Cm.
  • both the intake bypass valve 21 and the exhaust bypass valve 23 are opened, both the intake bypass passage 20 and the exhaust bypass passage 22 are opened.
  • the high-pressure stage turbocharger 11 is bypassed and the state is switched to the single-stage supercharging Cs in which the supercharging is performed only by the low-pressure stage turbocharger 12, that is, the supercharging of the high-pressure stage turbocharger 11 is stopped.
  • the intake bypass valve 21, the exhaust bypass valve 23, and the wastegate valve 25 are operated by supplying a working fluid (compressed air or oil) by an air cylinder, a hydraulic cylinder, or an electric motor by a control signal, The opening degree is adjusted by the flow rate of the working fluid.
  • These valves may be electromagnetic valves that actuate the valve body with the magnetic force of an electromagnet.
  • the exhaust gas G1 exhausted to the exhaust passage 14 passes through the high-pressure turbine 16 and the low-pressure turbine 18 in this order and drives them.
  • the intake air A1 is sucked into the intake passage 13 from the outside, passes through the low-pressure compressor 17 and the high-pressure compressor 15 in this order, is compressed by them, becomes high temperature, and is cooled by the intercooler 27.
  • the exhaust gas G1 exhausted to the exhaust passage 14 bypasses the high-pressure turbine 16 via the exhaust bypass passage 22. Thereby, the drive of the high pressure turbine 16 is stopped. A portion of the exhaust gas G1 that bypasses the high-pressure turbine 16 drives the low-pressure turbine 18 by the wastegate valve 25. The rest bypasses the low pressure turbine 18 via the wastegate passage 24.
  • the intake air A1 is sucked into the intake passage 13 from the outside, is compressed by the low-pressure compressor 17 and becomes high temperature, bypasses the high-pressure compressor 15 through the intake bypass passage 20, and then passes through the intercooler 27. To be cooled.
  • the intake air A1 compressed by either the multi-stage supercharging Cm or the single-stage supercharging Cs is supplied from the intake manifold 28 to the cylinder 30 of the engine body 29.
  • the intake air A1 supplied to the cylinder 30 is mixed with the fuel injected from the injector 31 and combusted to generate thermal energy, and then becomes exhaust gas G1 and is discharged from the exhaust manifold 32 to the exhaust passage 14. . Further, the heat energy generated at this time rotates the crankshaft 33, and the rotational power is transmitted to the drive wheels by a power transmission mechanism (not shown).
  • Such an engine system 10 includes a control device 40 that controls opening and closing of the intake bypass valve 21 and the exhaust bypass valve 23.
  • a control device 40 that controls opening and closing of the intake bypass valve 21 and the exhaust bypass valve 23.
  • the engine system 10 further directly or indirectly determines the pressure difference ⁇ Px (P2 ⁇ P1) between the upstream side pressure P1 and the downstream side pressure P2 of the high pressure compressor 15 in the intake passage 13. And a pressure difference acquisition device 50 for acquisition. Then, the control device 40 is configured to perform control to open the intake bypass valve 21 when only the exhaust bypass valve 23 is opened first and the acquired pressure difference ⁇ Px becomes zero.
  • the control device 40 includes a CPU that performs various processes, an internal storage device that can read and write programs and processing results used to perform the various processes, and various interfaces.
  • the control device 40 is connected to the intake bypass valve 21, the exhaust bypass valve 23, the wastegate valve 25, and the injector 31 via signal lines, and inputs and outputs control signals therebetween.
  • the control device 40 is connected to various sensors such as an accelerator opening sensor 41, an engine speed sensor 42, and a MAP sensor 43 through signal lines, and acquires detection values of these sensors.
  • the control device 40 is connected to the pressure difference acquisition device 50 via a signal line, and acquires the pressure difference ⁇ Px.
  • the pressure difference acquisition device 50 is a device that acquires the pressure difference ⁇ Px directly or indirectly. Note that indirectly acquiring the pressure difference ⁇ Px means predicting the pressure difference ⁇ Px without detecting the pressure.
  • the pressure difference acquisition device 50 is not particularly limited as long as the pressure difference ⁇ Px can be acquired.
  • pressure sensors 52 and 53 of the second embodiment illustrated in FIG. 7 are preferably exemplified.
  • the pressure P ⁇ b> 1 is the pressure of the intake air A ⁇ b> 1 upstream of the high-pressure compressor 15 in the intake passage 13 and downstream of the low-pressure compressor 17, and is the outlet pressure of the low-pressure compressor 17.
  • the pressure P ⁇ b> 2 is a pressure on the downstream side of the high pressure compressor 15 in the intake passage 13 and is an outlet pressure of the high pressure compressor 15.
  • the pressure P1 may be a pressure on the upstream side of the intake bypass valve 21 in the intake bypass passage 20
  • the pressure P2 may be a pressure on the downstream side of the intake bypass valve 21 in the intake bypass passage 20.
  • a supercharging control program is exemplified.
  • This supercharging control program is an intake bypass valve 21, an exhaust bypass valve 23, and a wastegate valve by open loop control based on the operating state of the engine system 10 and closed loop control based on the target boost pressure and the actual boost pressure.
  • 25 is a program for adjusting the respective opening degrees.
  • the supercharging control program is also a program for switching between the multistage supercharging Cm and the single stage supercharging Cs.
  • FIG. 3 illustrates a multi-stage supercharging region Rm in which supercharging is performed by the multistage supercharging Cm in the operating state of the engine system 10 and a single-stage supercharging region Rs in which supercharging is performed by the single-stage supercharging Cs.
  • the control device 40 is a closed loop based on the accelerator opening Ap detected by the accelerator opening sensor 41, that is, the output torque Te corresponding to the depression amount of the accelerator pedal 47, and the engine speed Ne detected by the engine speed sensor 42.
  • the opening of each valve is adjusted by control. Specifically, map data as shown in FIG. 3 prepared in advance by experiments and tests is stored in the internal storage device, and the opening degree of each valve is adjusted by referring to the map data, so that the multi-stage excess Supply Cm and single-stage supercharging Cs are switched.
  • the accelerator opening Ap, the fuel injection amount calculated based on the accelerator opening Ap, and the target boost pressure may be used instead of the output torque Te.
  • the control device 40 calculates a target supercharging pressure in the operating state of the engine system 10, compares the target supercharging pressure with the estimated supercharging pressure at the time of single-stage supercharging Cs, and performs each valve by closed loop control. The degree of opening may be adjusted. In addition, the control device 40 may adjust the opening degree of each valve by open loop control by comparing the target supercharging pressure and the actual supercharging pressure detected by the MAP sensor 43.
  • control method of the engine system 10 that is, a control method when switching from the multi-stage supercharging Cm to the single-stage supercharging Cs will be described below as functions of the control device 40 with reference to FIG.
  • This control is performed when the multistage supercharging Cm is switched to the single stage supercharging Cs, and the switching is used as a trigger.
  • 4 (a) and 4 (b) show the elapsed time Tx, the switching instruction from the multistage supercharging Cm to the single stage supercharging Cs, the pressure P1 and the pressure P2, and the intake bypass valve 21 in this control method.
  • the correlation between the opening ⁇ y of the exhaust gas and the opening ⁇ x of the exhaust bypass valve 23 is illustrated.
  • 4A illustrates the correlation in the prior art
  • FIG. 4B illustrates the correlation in the control of this embodiment.
  • the operating region of the engine system 10 changes from the multistage supercharging region Rm to the single stage supercharging region Rs, and the control device 40 operates from the multistage supercharging Cm to the single stage. Switching to supercharging Cs is started.
  • the control device 40 starts opening the intake bypass valve 21 and the exhaust bypass valve 23 simultaneously. That is, since the intake bypass valve 21 is opened in a state where the pressure difference ⁇ Px is generated, the pressure P2 is released toward the low-pressure compressor 17 due to the pressure difference ⁇ Px at time T5. This is the mechanism by which abnormal noise occurs.
  • the operating region of the engine system 10 changes from the multi-stage supercharging region Rm to the single-stage supercharging region Rs.
  • the control device 40 starts switching from the multistage supercharging Cm to the single stage supercharging Cs.
  • the control device 40 starts to open only the exhaust bypass valve 23.
  • the exhaust bypass valve 23 may be gradually opened to the full open side according to the elapsed time in order to avoid a sudden change in the rotational speed of the high-pressure turbocharger 11. preferable.
  • the control device 40 finally sets the exhaust bypass valve 23 to the fully open position (100%).
  • the exhaust bypass valve 23 When the exhaust bypass valve 23 is opened, the exhaust gas G1 bypasses the high-pressure turbine 16 of the high-pressure turbocharger 11, so that the rotational speed of the high-pressure turbocharger 11 is reduced.
  • the supercharging pressure of the high-pressure compressor 15, that is, the pressure P ⁇ b> 2 is reduced by reducing the rotational speed of the high-pressure turbocharger 11. As a result, the pressure P2 approaches the pressure P1.
  • the control device 40 opens the intake bypass valve 21. Then, at time T4, the control device 40 finally opens the intake bypass valve 21 to the fully open position. This is the end of this control method.
  • the opening degree ⁇ x of the exhaust bypass valve 23 is preferably a fully opened opening degree until the pressure difference ⁇ Px becomes zero, but may not necessarily be a fully opened opening degree.
  • the opening degree ⁇ x until the pressure difference ⁇ Px becomes zero may be equal to or larger than the permitted opening degree ⁇ a set before the fully opened opening degree at which the rotation speed of the high-pressure turbine 16 can be sufficiently reduced.
  • the intake bypass valve 21 is preferably opened when the pressure difference ⁇ Px becomes zero, but is not necessarily limited to when the pressure difference ⁇ Px becomes zero. For example, it may be opened when the pressure difference ⁇ Px becomes equal to or smaller than a preset threshold value ⁇ Pa.
  • the threshold value ⁇ Pa is set to a value at which it is possible to determine that the pressure difference is such that no abnormal noise is generated when the intake bypass valve 21 is opened.
  • the threshold value ⁇ Pa is a value set smaller than the pressure difference ⁇ P1 before the exhaust bypass valve 23 is opened.
  • this period ⁇ Tx a time shorter than the shortest time of the time from switching to single-stage supercharging Cs to switching to multi-stage supercharging Cm in the engine system 10 is exemplified.
  • the shortest time may be obtained in advance by experiments or tests.
  • the intake bypass valve is operated in a state where the operation state of the engine system 10 frequently switches between the multistage supercharging Cm and the single stage supercharging Cs within a short time.
  • the response delay of 21 can be avoided.
  • the single-stage supercharging Cs switches to the multi-stage supercharging Cm before the intake bypass valve 21 is completely opened. Is avoided.
  • the pressure difference ⁇ P1 before opening the exhaust bypass valve 23 and the opening ⁇ x of the exhaust bypass valve 23 are set.
  • the pressure difference ⁇ P1 changes based on the rotation state between the high-pressure turbine 16 and the low-pressure turbine 18, that is, the exhaust flow rate of the exhaust gas G1 discharged from the engine system 10.
  • the period ⁇ Tx has a positive correlation with the pressure difference ⁇ P1, and if the pressure difference ⁇ P1 is large, the period ⁇ Tx is expanded, whereas if the pressure difference ⁇ P1 is small, the period ⁇ Tx is shortened. Further, this period ⁇ Tx has a negative correlation with the opening ⁇ x of the exhaust bypass valve 23, and the period ⁇ Tx is shortened when the opening ⁇ x is large, while the period ⁇ Tx is expanded when the opening ⁇ x is small. .
  • the maximum value of the period ⁇ Tx is set to the allowable opening degree when the opening degree ⁇ x of the exhaust bypass valve 23 is switched in the state of the maximum value ⁇ Pmax of the pressure difference ⁇ Px between the pressure P1 and the pressure P2 at the multistage supercharging Cm. This is the value when maintained at ⁇ a.
  • the pressure difference acquisition device includes a valve opening state acquisition device 51 including an opening sensor 45 and a timer 46. Then, the control device 40 acquires the valve opening state of the exhaust bypass valve 23 opened before opening the intake bypass valve 21 via the valve opening state acquisition device 51, and intake air based on the valve opening state. It is comprised so that the control which adjusts the timing which opens the bypass valve 21 may be performed.
  • control device 40 acquires a maintenance time tx in which the opening degree ⁇ x of the exhaust bypass valve 23 is maintained at a preset opening degree ⁇ a or more in the valve open state, and the maintenance time tx Is configured to perform control for opening the intake bypass valve 21 when the preset permission time ta is reached.
  • the valve opening state acquisition device 51 is a device that acquires the opening degree ⁇ x and the maintenance time tx after opening as the valve opening state of the exhaust bypass valve 23 opened earlier.
  • the valve opening state acquisition device 51 is not particularly limited as long as the valve opening state of the exhaust bypass valve 23 can be acquired, but a configuration including an opening sensor 45 and a timer 46 is preferably exemplified.
  • the opening degree sensor 45 is a sensor that acquires the opening degree ⁇ x of the exhaust bypass valve 23.
  • the opening sensor 45 is a sensor necessary for opening and closing the intake bypass valve 21 and the exhaust bypass valve 23, similarly to the opening sensor 44 that acquires the opening ⁇ y of the intake bypass valve 21. That is, it is always provided when the opening and closing of the intake bypass valve 21 and the exhaust bypass valve 23 are controlled.
  • the opening sensor 45 in addition to a sensor that can directly acquire the opening ⁇ x, the supply amount of working fluid to the air cylinder and hydraulic cylinder (opening of the inflow control valve) and the operating length of these cylinders Alternatively, a sensor that is indirectly acquired from the indicated current from the control device 40 is also exemplified.
  • the timer 46 is a timer that is built in the control device 40 and counts the time tx when the exhaust bypass valve 23 is opened.
  • the timer 46 is also used for controlling the engine system 10.
  • control method of the engine system 10 in the first embodiment will be described as a function of the control device 40 with reference to the flowchart of FIG.
  • the control device 40 opens only the exhaust bypass valve 23 (S10).
  • the control device 40 acquires the opening degree ⁇ x of the exhaust bypass valve 23 via the opening degree sensor 45 (S20). Next, the control device 40 determines whether or not the acquired opening degree ⁇ x is equal to or greater than a preset opening degree ⁇ a (S30). If it is determined in this step that the opening degree ⁇ x is greater than or equal to the permitted opening degree ⁇ a, the process proceeds to the next. On the other hand, if it is determined that the opening ⁇ x is less than the permitted opening ⁇ a, the opening ⁇ x is acquired again (S20).
  • the control device 40 acquires the maintenance time tx after the opening degree ⁇ x becomes equal to or larger than the permitted opening degree ⁇ a by the timer 46. Specifically, the time when the opening degree ⁇ x becomes equal to or larger than the permitted opening degree ⁇ a is set to zero, and the timer 46 adds the unit time t to the time every unit time t, and counts the maintenance time tx. (S40).
  • the control device 40 determines whether or not the maintenance time tx after the opening degree ⁇ x becomes equal to or larger than the permitted opening degree ⁇ a is equal to or longer than a preset permitted time ta (S50). In this step, if it is determined that the maintenance time tx is equal to or longer than the permission time ta, the process proceeds to the next. On the other hand, when it determines with the maintenance time tx being less than the permission time ta, opening degree (theta) x is acquired again (S20).
  • the permission time ta is set to a time required for the pressure P2 to approach the pressure P1 when the rotation speeds of the high-pressure turbine 16 and the high-pressure compressor 15 are reduced. More preferably, it is set to a time required for the pressure P1 and the pressure P2 to be equal, that is, the pressure difference ⁇ Px becomes zero.
  • the time required for the pressure difference ⁇ Px to become zero has a positive correlation with the pressure difference ⁇ P1 before the exhaust bypass valve 23 is opened, and increases if the pressure difference ⁇ P1 is large, but decreases if the pressure difference ⁇ P1 is small. To do. Further, the time required for the pressure difference ⁇ Px to become zero has a negative correlation with the opening degree ⁇ x of the exhaust bypass valve 23, and is shortened when the opening degree ⁇ x is large, while it increases when the opening degree ⁇ x is small. . In addition, in a time later than the time required for the pressure P1 and the pressure P2 to be equal, the difference between the pressure P1 and the pressure P2 does not occur.
  • the maximum value ⁇ Pmax of the pressure difference ⁇ Px between the pressure P1 and the pressure P2 at the time of the multistage supercharging Cm is set as the pressure difference when the exhaust bypass valve 23 is opened by experiments and tests in advance, and the permitted opening ⁇ a is set as the opening ⁇ x.
  • the permission time ta may be measured in a set situation.
  • the permission time ta has a maximum value obtained by subtracting the time from when the intake bypass valve 21 and the exhaust bypass valve 23 are fully closed to fully opened from the period ⁇ Tx.
  • the operating state of the engine system 10 changes in a short time by adding the time until the intake bypass valve 21 and the exhaust bypass valve 23 are fully closed to fully open with respect to the permission time ta. Even so, a delay in response of the intake bypass valve 21 can be avoided.
  • map data in which the permitted time ta is set is obtained using the pressure difference ⁇ P1 and the opening ⁇ x as parameters, stored in the internal storage device, and the permitted time ta is calculated from the map data. Good. In this case, it is advantageous for avoiding a response delay that occurs until the intake bypass valve 21 is opened.
  • control device 40 opens the intake bypass valve 21 (S60).
  • the control method is completed.
  • the open state of the exhaust bypass valve 23 opened before the intake bypass valve 21 is opened is acquired, and the permission time Ta is set based on the acquired open state. Then, the intake bypass valve 21 is opened after the permission time Ta has elapsed. Thereby, it can be predicted that the pressure difference ⁇ Px has become zero indirectly without directly acquiring the pressure P1 and the pressure P2. As a result, it is possible to open the intake bypass valve 21 when the pressure difference actually becomes small, and it is possible to avoid the generation of noise when switching the supercharging of the high-pressure stage turbocharger 11.
  • valve opening state acquisition device 51 can be configured from devices that are provided as standard in the engine system 10 such as the opening degree sensor 45 and the timer 46, so there is no need to provide a special sensor, and the cost It is possible to go down.
  • the pressure difference acquisition device includes pressure sensors 52 and 53. Then, the control device 40 audits the pressure difference ⁇ Px via the pressure sensors 52 and 53, and when the pressure difference ⁇ Px falls below a preset threshold value ⁇ Pa, preferably when it becomes zero The control is performed to open the intake bypass valve 21.
  • the pressure sensor 52 is a sensor that is disposed in the intake passage 13 between the outlet of the low-pressure compressor 17 and the inlet of the high-pressure compressor 15 and acquires the pressure P1.
  • the pressure sensor 52 may be disposed in the intake bypass passage 20 from the branch portion of the intake passage 13 and the intake bypass passage 20 to the intake bypass valve 21.
  • the pressure sensor 53 is a sensor that is disposed in the intake passage 13 between the outlet of the high-pressure compressor 15 and the intercooler 27 and acquires the pressure P2.
  • the pressure sensor 53 may be disposed in the intake bypass passage 20 from the intake bypass valve 21 to the junction of the intake passage 13 and the intake bypass passage 20.
  • a MAP sensor 43 disposed in the intake passage 13 on the downstream side of the intercooler 27 may be configured to detect the pressure P2.
  • control method of the engine system 10 in the second embodiment will be described as a function of the control device 40 with reference to the flowchart of FIG.
  • the control device 40 opens only the exhaust bypass valve 23 (S10).
  • the control device 40 acquires the pressure difference ⁇ Px via the pressure sensors 52 and 53 (S70). Next, the control device 40 determines whether or not the pressure difference ⁇ Px has become zero (S80). If it is determined in this step that the pressure difference ⁇ Px has become zero, the process proceeds to the next. On the other hand, when it is determined that the pressure difference ⁇ Px is not zero, that is, a value exceeding zero, the pressure difference ⁇ Px is acquired again (S70).
  • control device 40 opens the intake bypass valve 21 (S60).
  • the control method is completed.
  • the intake bypass valve 21 is opened when the acquired pressure difference ⁇ Px becomes zero, it is reliably avoided that the intake bypass valve 21 is opened in a state where the pressure difference ⁇ Px exceeds zero. The generation of abnormal noise when switching the supercharging of the high-pressure turbocharger 11 can be avoided more reliably.

Abstract

高圧段ターボチャージャ11及び低圧段ターボチャージャ12が直列に配置されてなるエンジンシステム10において、制御装置40が、多段過給Cmから単段過給Csに切り替えるときに、先に排気バイパスバルブ23のみを開いた後に、吸気バイパスバルブ21を排気バイパスバルブ23が開いたタイミングよりも遅らせて開く制御を行うように構成される。

Description

エンジンシステム及びその制御方法
 本開示は、エンジンシステム及びその制御方法に関し、より詳細には、複数のターボチャージャが直列に配置されてなるエンジンシステムにおいて、ターボチャージャの過給状態を切り替えるときの異音の発生を回避するエンジンシステム及びその制御方法に関する。
 複数のターボチャージャが直列に配置されて、複数のターボチャージャによる多段過給と、一つのターボチャージャによる単段過給とを切り替えるエンジンシステムが提案されている(例えば、特許文献1参照)。
日本国特開2010-151038号公報
 上記のエンジンシステムにおいては、多段過給では、排気バイパスバルブ及び吸気バイパスバルブの両方を閉じることで、複数のターボチャージャのうちの吸気通路における下流側に配置される高圧段ターボチャージャにも過給させている。一方で、単段過給では、排気バイパスバルブ及び吸気バイパスバルブの両方を開くことで、高圧段ターボチャージャの過給を停止して、残りのターボチャージャで過給させている。
 しかし、多段過給から単段過給に切り替えるときに、つまり、高圧段ターボチャージャが過給している状態からその過給を減少させる状態に切り替えるときに、異音が生じるという問題があった。
 これに関して、発明者は、その異音が、高圧段ターボチャージャのコンプレッサの過給圧力が高い状態にあり、そのコンプレッサの前後の圧力差が大きいときに、吸気バイパスバルブを開くことによって発生していることを見出した。
 多段過給時は、吸気バイパスバルブと排気バイパスバルブとは略閉じた状態になる。つまり、吸気バイパスバルブによって吸気バイパス通路は二つの区画に区分けされた状態となっている。そのために、その二つの区画には、圧力差が生じている。このように圧力差が生じている状態で吸気バイパスバルブを開き、高い方の圧力が低い方へ抜けると異音が生じるのである。
 本開示は、複数のターボチャージャが直列に配置されてなるエンジンシステムにおいて、ターボチャージャの過給状態を切り替えるときの圧力差による異音の発生を回避することができるエンジンシステム及びその制御方法を提供する。
 本開示の一の態様によれば、直列に配置される複数のターボチャージャと、前記複数のターボチャージャのうちの吸気通路における下流側に配置される高圧段ターボチャージャの高圧段コンプレッサをバイパスする吸気バイパス通路と、前記吸気バイパス通路を通過する吸気の流量を調節する吸気バイパスバルブと、前記高圧段ターボチャージャの高圧段タービンをバイパスする排気バイパス通路と、前記排気バイパス通路を通過する排気ガスの流量を調節する排気バイパスバルブ、を備えるエンジンシステムであって、前記吸気バイパスバルブ及び前記排気バイパスバルブの開閉を制御する制御装置を備え、前記制御装置が、前記吸気バイパスバルブ及び前記排気バイパスバルブの両方を閉じて前記高圧段ターボチャージャが過給している状態から、前記吸気バイパスバルブ及び前記排気バイパスバルブの両方を開いて前記高圧段ターボチャージャの過給が停止する状態に切り替えるときに、前記排気バイパスバルブのみを開いた後に、前記吸気バイパスバルブを前記排気バイパスバルブが開いたタイミングよりも遅らせて開く制御を行うように構成される。
 また、本開示の一の態様によれば、複数のターボチャージャが直列に配置されてなるエンジンシステムの制御方法であって、吸気バイパスバルブを閉じて、前記複数のターボチャージャのうちの吸気通路における下流側に配置される高圧段ターボチャージャの高圧段コンプレッサをバイパスする吸気バイパス通路を遮断すると共に、排気バイパスバルブを閉じて、前記高圧段ターボチャージャの高圧段タービンをバイパスする排気バイパス通路を遮断して、前記高圧段ターボチャージャに過給させる状態から、前記吸気バイパスバルブを開いて、前記吸気バイパス通路を開放すると共に、前記排気バイパスバルブを開いて、前記排気バイパス通路を開放して、前記高圧段ターボチャージャの過給を停止する状態に切り替えるときに、前記排気バイパスバルブのみを開くステップと、前記排気バイパスバルブのみを開いた後に、前記吸気バイパスバルブを前記排気バイパスバルブが開いたタイミングよりも遅らせて開くステップを含む方法である。
 より具体的な吸気バイパスバルブを開くタイミングとしては、吸気通路における高圧段コンプレッサの上流側の圧力と下流側の圧力との圧力差が閾値以下になったときがでもよく、もしくは、その圧力差がゼロになったとき、つまり、上流側の圧力と下流側の圧力とが等しくなったときでもよい。
 そこで、上記のエンジンシステムにおいては、吸気通路における高圧段コンプレッサの上流側の圧力と下流側の圧力との圧力差を直接的にあるいは間接的に取得する圧力差取得装置を備えてもよい。この圧力差取得装置としては、直接的に圧力差を取得するものとして、吸気通路における高圧段コンプレッサの上流側の吸気の圧力と下流側の吸気の圧力とを取得する二つの圧力センサが例示される。また、間接的に圧力差を取得するものとして、排気バイパスバルブの開弁状態を取得する開弁状態取得装置が例示される。
 二つの圧力センサを用いて吸気バイパスバルブを開くタイミングを図る制御としては、二つの圧力センサを介して取得した圧力差が予め設定した閾値以下になったときに、もしくは、ゼロになったときに、吸気バイパスバルブを開く制御が例示される。
 また、開弁状態取得装置を用いて吸気バイパスバルブを開くタイミングを図る制御としては、開弁状態取得装置を介して先に開いた排気バイパスバルブの開弁状態を取得して、その開弁状態からその圧力差を予測して、吸気バイパスバルブを開く制御が例示される。なお、ここでいう開弁状態とは、制御装置の制御信号により変化する排気バイパスバルブの状態であり、排気バイパスバルブの開いた開度、その開いている時間などを示す。
 より具体的には、排気バイパスバルブの開弁状態として、排気バイパスバルブの開度が予め設定された許可開度以上に維持された維持時間を取得して、その維持時間が予め設定された許可時間に達したときに、吸気バイパスバルブを開く制御である。
 上記のエンジンシステム及びその制御方法によれば、高圧段ターボチャージャが過給している状態からその過給が停止する状態に切り替えるときに、先に排気バイパスバルブのみを開き、その後に吸気バイパスバルブを排気バイパスバルブが開いたタイミングよりも遅らせて開くようにした。
 つまり、先に排気バイパスバルブを開くことで、排気ガスが高圧段タービンを迂回して、高圧段ターボチャージャの回転数を低減するので、高圧段コンプレッサの過給圧を下げることが可能になる。そして、その高圧段コンプレッサの前後の圧力差が小さくなった状態で、もしくは、ゼロになった状態で吸気バイパスバルブを開くことで、異音の発生を回避することができる。
 なお、圧力差を直接的に監査して、圧力差が閾値以下に、もしくは、ゼロなったときに吸気バイパスバルブを開くようにすることで、異音の発生を確実に回避することが可能になる。
 一方で、圧力差を直接的に監査せずに、排気バイパスバルブの開弁状態から間接的に予測して吸気バイパスバルブを開くようにすることで、その圧力差をセンシングするセンサが必要なくなる。これにより、コストダウンを図ることが可能になる。
図1は、本開示の実施形態からなるエンジンシステムの多段過給時の状態を例示する構成図である。 図2は、本開示の実施形態からなるエンジンシステムの単段過給時の状態を例示する構成図である。 図3は、図1のエンジンシステムの運転状態における多段過給を行う領域と、単段過給を行う領域を例示する特性図である。 図4(a)と図4(b)は、時間の経過における圧力差と各バルブの開度との関係を例示する相関図であり、図4(a)は背景技術の相関を、図4(b)は本開示の実施形態からなるエンジンシステムの制御方法における相関を示している。 図5は、本開示の第一実施例からなるエンジンシステムを例示する構成図である。 図6は、本開示の第一実施例からなるエンジンシステムの制御方法を例示するフロー図である。 図7は、本開示の第二実施例からなるエンジンシステムを例示する構成図である。 図8は、本開示の第二実施例からなるエンジンシステムの制御方法を例示するフロー図である。
 以下に、本開示の実施形態とその実施形態に基づいた実施例について、図面を参照して説明する。図1、2は、本開示のエンジンシステム10の実施形態の構成を例示している。図5は第一実施例の構成を、図7は第二実施例の構成をそれぞれ例示している。
 図1、2に示すように、実施形態のエンジンシステム10は、複数のターボチャージャ、つまり、高圧段ターボチャージャ11及び低圧段ターボチャージャ12が直列に配置されてなるものである。
 高圧段ターボチャージャ11は、吸気通路13における下流側、且つ排気通路14における上流側に配置されており、高圧段コンプレッサ15と高圧段タービン16とが回転軸を介して連結されて構成される。低圧段ターボチャージャ12は、吸気通路13における上流側、且つ排気通路14における下流側に配置されており、低圧段コンプレッサ17と低圧段タービン18とが回転軸を介して連結されて構成される。
 また、このエンジンシステム10は、高圧段コンプレッサ15をバイパスする吸気バイパス通路20と、この吸気バイパス通路20を通過する吸気A1の流量を調節する吸気バイパスバルブ21と、高圧段タービン16をバイパスする排気バイパス通路22と、この排気バイパス通路22を通過する排気ガスG1の流量を調節する排気バイパスバルブ23と、を備えて構成される。
 このエンジンシステム10においては、吸気バイパスバルブ21及び排気バイパスバルブ23の両方が閉じると、吸気バイパス通路20及び排気バイパス通路22の両方が遮断される。これにより、複数のターボチャージャで過給する、つまり、低圧段ターボチャージャ12に加えて、高圧段ターボチャージャ11が過給する状態の多段過給Cmに切り替えられる。一方で、吸気バイパスバルブ21及び排気バイパスバルブ23の両方が開くと、吸気バイパス通路20及び排気バイパス通路22の両方が開放される。これにより、高圧段ターボチャージャ11がバイパスされ、低圧段ターボチャージャ12のみで過給する状態、つまり、高圧段ターボチャージャ11の過給を停止した状態の単段過給Csに切り替えられる。
 また、このエンジンシステム10においては、特に単段過給Csにより吸気A1を過給する場合に、低圧段タービン18に流入する排気ガスG1を分流するウエストゲート通路24に配置されたウエストゲートバルブ25により、低圧段タービン18に流入する排気ガスG1の流量が調節される。
 なお、吸気バイパスバルブ21、排気バイパスバルブ23、及びウエストゲートバルブ25は、エアシリンダや油圧シリンダ、電気モータが制御信号により作動流体(圧縮空気やオイル)が供給されることで作動しており、その作動流体の流量で、開度が調節される。なお、これらのバルブとしては、電磁石の磁力で弁体を作動させる電磁式バルブでもよい。
 より具体的に説明すると、図1に示すように、多段過給Cm時において、排気通路14へ排気された排気ガスG1は、高圧段タービン16及び低圧段タービン18の順に通過し、それらを駆動させる。一方、吸気A1は、外部から吸気通路13へ吸入されて、低圧段コンプレッサ17及び高圧段コンプレッサ15の順に通過し、それらにより圧縮されて高温になり、インタークーラ27で冷却される。
 一方、図2に示すように、単段過給Cs時において、排気通路14へ排気された排気ガスG1は、排気バイパス通路22を経由して高圧段タービン16をバイパスする。これにより、高圧段タービン16の駆動が停止される。高圧段タービン16をバイパスした排気ガスG1は、ウエストゲートバルブ25により、その一部が低圧段タービン18を駆動させる。その残りは、ウエストゲート通路24を経由して、低圧段タービン18をバイパスする。一方、吸気A1は、外部から吸気通路13へ吸入されて、低圧段コンプレッサ17により圧縮されて高温になり、吸気バイパス通路20を経由することで高圧段コンプレッサ15をバイパスした後に、インタークーラ27で冷却される。
 そして、このエンジンシステム10においては、多段過給Cm又は単段過給Csのどちらかにより圧縮された吸気A1が、インテークマニホールド28からエンジン本体29の気筒30に供給される。気筒30に供給された吸気A1は、インジェクタ31から噴射された燃料と混合されて燃焼して熱エネルギーを発生させた後に、排気ガスG1となって、エキゾーストマニホールド32から排気通路14へ排出される。また、このときに発生した熱エネルギーが、クランクシャフト33を回転させ、その回転動力が、図示しない動力伝達機構により駆動輪に伝達される。
 このようなエンジンシステム10は、吸気バイパスバルブ21及び排気バイパスバルブ23の開閉を制御する制御装置40を備える。そして、この制御装置40は、多段過給Cmから単段過給Csに切り替えるときに、先に排気バイパスバルブ23のみを開き、吸気バイパスバルブ21を排気バイパスバルブ23が開いたタイミングよりも遅らせて開く制御を行う。
 より具体的には、エンジンシステム10は、更に、吸気通路13における高圧段コンプレッサ15の上流側の圧力P1と下流側の圧力P2との圧力差ΔPx(P2-P1)を直接的にあるいは間接的に取得する圧力差取得装置50を備えて構成される。そして、制御装置40が、先に排気バイパスバルブ23のみを開いて、取得した圧力差ΔPxがゼロになったときに、吸気バイパスバルブ21を開く制御を行うように構成される。
 制御装置40は、各種処理を行うCPU、その各種処理を行うために用いられるプログラムや処理結果などを読み書き可能な内部記憶装置、及び各種インターフェースなどから構成される。この制御装置40は、信号線を介して吸気バイパスバルブ21、排気バイパスバルブ23、ウエストゲートバルブ25、及びインジェクタ31に接続されて、それらとの間で制御信号を入出力する。また、この制御装置40は、信号線を介してアクセル開度センサ41、エンジン回転数センサ42、及びMAPセンサ43などの各種センサに接続されており、これらのセンサの検出値を取得する。加えて、この制御装置40は、信号線を介して圧力差取得装置50に接続されており、圧力差ΔPxを取得する。
 圧力差取得装置50は、圧力差ΔPxを直接的に、あるいは、間接的に取得する装置である。なお、圧力差ΔPxを間接的に取得するとは圧力を検知することなく圧力差ΔPxを予測することである。この圧力差取得装置50としては、圧力差ΔPxが取得できれば特に限定されるものではないが、図5で説明される第一実施例の開度センサ45及びタイマー46からなる開弁状態取得装置51や、図7で説明される第二実施例の圧力センサ52、53が好ましく例示される。
 圧力P1は、吸気通路13における高圧段コンプレッサ15の上流側で、且つ低圧段コンプレッサ17の下流側の吸気A1の圧力であって、低圧段コンプレッサ17の出口圧力である。圧力P2は、吸気通路13における高圧段コンプレッサ15の下流側の圧力であって、高圧段コンプレッサ15の出口圧力である。なお、圧力P1を吸気バイパス通路20における吸気バイパスバルブ21の上流側の圧力とし、圧力P2を吸気バイパス通路20における吸気バイパスバルブ21の下流側の圧力としてもよい。
 制御装置40の実行プログラムとしては、過給制御プログラムが例示される。この過給制御プログラムは、エンジンシステム10の運転状態に基づく開ループ制御や、目標過給圧と実過給圧とに基づく閉ループ制御により、吸気バイパスバルブ21、排気バイパスバルブ23、及びウエストゲートバルブ25のそれぞれの開度を調節するプログラムである。また、この過給制御プログラムは、多段過給Cmと単段過給Csとを切り替えるプログラムでもある。
 図3は、エンジンシステム10の運転状態における多段過給Cmにより過給を行う多段過給領域Rmと、単段過給Csにより過給を行う単段過給領域Rsとを例示している。
 制御装置40は、アクセル開度センサ41の検出したアクセル開度Ap、つまりアクセルペダル47の踏み込み量に応じた出力トルクTeと、エンジン回転数センサ42の検出したエンジン回転数Neとに基づいた閉ループ制御により各バルブの開度を調節する。具体的には、予め実験や試験により作成した図3に示すようなマップデータを内部記憶装置に記憶させておき、そのマップデータを参照することで各バルブの開度を調節して、多段過給Cmと単段過給Csとを切り替えている。なお、マップデータにおいては、出力トルクTeの代わりに、アクセル開度Apや、そのアクセル開度Apに基づいて算出される燃料噴射量や目標過給圧を用いてもよい。
 なお、制御装置40は、そのエンジンシステム10の運転状態における目標過給圧を算出し、この目標過給圧と単段過給Cs時の推定過給圧とを比較して閉ループ制御により各バルブの開度を調節してもよい。加えて、制御装置40は、その目標過給圧とMAPセンサ43の検出した実過給圧とを比較して開ループ制御により各バルブの開度を調節してもよい。
 以下、このエンジンシステム10の制御方法、つまり多段過給Cmから単段過給Csへの切り替える際の制御方法を、図4を参照しながら制御装置40の機能として以下に説明する。なお、この制御は、多段過給Cmから単段過給Csに切り替えるときに行われるものであり、その切り替えをトリガーとしている。
 図4(a)と図4(b)はこの制御方法における経過時間Txと、多段過給Cmから単段過給Csへの切り替え指令、並びに、圧力P1及び圧力P2、並びに、吸気バイパスバルブ21の開度θy及び排気バイパスバルブ23の開度θxとの相関を例示している。なお、図4(a)は従来技術における相関を例示しており、図4(b)はこの実施形態の制御における相関を例示している。
 図4(a)の従来技術においては、まず、時間T1で、エンジンシステム10の運転領域が多段過給領域Rmから単段過給領域Rsになり、制御装置40が多段過給Cmから単段過給Csへの切り替えを開始する。この時間T1で、制御装置40が、吸気バイパスバルブ21及び排気バイパスバルブ23を同時に開き始める。つまり、圧力差ΔPxが生じている状態で吸気バイパスバルブ21を開くことになるので、時間T5で、圧力差ΔPxに起因して圧力P2が低圧段コンプレッサ17の方に抜ける。これが、異音が発生するメカニズムである。
 一方、上記のエンジンシステム10の制御方法では、図4(b)に示すように、まず、時間T1で、エンジンシステム10の運転領域が多段過給領域Rmから単段過給領域Rsになり、制御装置40が、多段過給Cmから単段過給Csへの切り替えを開始する。この時間T1で、制御装置40が、排気バイパスバルブ23のみを開き始める。なお、排気バイパスバルブ23を開く際には、高圧段ターボチャージャ11の回転数が急激に変化することを回避するために、排気バイパスバルブ23を経過時間に応じて徐々に全開側に開くことが好ましい。そして、時間T2で、制御装置40が、排気バイパスバルブ23を、最終的に全開の開度(100%)にする。
 排気バイパスバルブ23が開くと、排気ガスG1が高圧段ターボチャージャ11の高圧段タービン16を迂回するので、高圧段ターボチャージャ11の回転数が低減する。そして、この高圧段ターボチャージャ11の回転数の低減により、高圧段コンプレッサ15の過給圧、つまり圧力P2が低下する。その結果として、圧力P2が圧力P1に近づくことになる。
 次いで、時間T3で、圧力P1と圧力P2とが等しくなり、圧力差取得装置50を介して取得した圧力差ΔPxがゼロになったときに、制御装置40が、吸気バイパスバルブ21を開く。そして、時間T4で、制御装置40が、吸気バイパスバルブ21を、最終的に全開の開度にする。以上でこの制御方法は完了する。
 なお、排気バイパスバルブ23の開度θxは、圧力差ΔPxがゼロになるまでに全開の開度になることが好ましいが、必ずしも全開の開度にならなくてもよい。圧力差ΔPxがゼロになるまでの開度θxとしては、高圧段タービン16の回転数が十分に低減可能な全開の開度の手前に設定された許可開度θa以上であればよい。
 また、吸気バイパスバルブ21は、圧力差ΔPxがゼロになったときに開くことが好ましいが、必ずしも圧力差ΔPxがゼロになったときに限定されない。例えば、圧力差ΔPxが予め設定された閾値ΔPa以下になったときに開いてもよい。閾値ΔPaは、吸気バイパスバルブ21を開いたときに異音が生じない圧力差になったことを判定可能な値に設定される。この閾値ΔPaとしては、排気バイパスバルブ23を開く前の圧力差ΔP1よりも小さく設定された値である。
 更に、多段過給Cmから単段過給Csへの切り替えの指令が発せられて排気バイパスバルブ23を開き始めてから吸気バイパスバルブ21が開き終わるまでの期間ΔTxは、排気バイパスバルブ23が開いてから圧力P2が圧力P1に近づくために要する許可時間taを含む期間である。
 この期間ΔTxとしては、このエンジンシステム10における単段過給Csに切り替えてから多段過給Cmに切り替えるまでの時間のうちの最短時間よりも短い時間が例示される。なお、最短時間は、予め実験や試験により求めておくとよい。このように、この期間ΔTxがその最短時間よりも短くなると、エンジンシステム10の運転状態が多段過給Cmと単段過給Csとの切り替えが短時間のうちに頻発する状態で、吸気バイパスバルブ21の応答遅れを回避可能になる。つまり、多段過給Cm、単段過給Cs、及び多段過給Cmの順に切り替えが生じた場合に、単段過給Csで吸気バイパスバルブ21が開き終わらないうちに多段過給Cmに切り替わることが回避される。
 この期間ΔTxにおいては、排気バイパスバルブ23を開く前の圧力差ΔP1と排気バイパスバルブ23の開度θxとに応じて設定されることが好ましい。圧力差ΔP1は、高圧段タービン16と低圧段タービン18との回転状況、すなわち、エンジンシステム10から排出される排気ガスG1の排気流量に基づいて変化するものである。
 期間ΔTxは、圧力差ΔP1に対して正の相関になり、圧力差ΔP1が大きければ期間ΔTxは拡大される一方、圧力差ΔP1が小さければ期間ΔTxは短縮される。また、この期間ΔTxは、排気バイパスバルブ23の開度θxに対して負の相関になり、開度θxが大きければ期間ΔTxは短縮される一方、開度θxが小さければ期間ΔTxは拡大される。
 つまり、この期間ΔTxの最大値は、多段過給Cm時における圧力P1と圧力P2との圧力差ΔPxの最大値ΔPmaxの状態で切り替えする場合に、排気バイパスバルブ23の開度θxを許可開度θaに維持したときの値である。
 以上のように、実施形態のエンジンシステム10においては、時間T1で、吸気バイパスバルブ21よりも先に排気バイパスバルブ23のみが開き始めて、時間T3で、圧力P1と圧力P2とが等しくなったときに、吸気バイパスバルブ21が開き始めるような制御を行うようにした。
 このように、吸気バイパスバルブ21よりも先に排気バイパスバルブ23のみが開き、そして、圧力P1と圧力P2との圧力差ΔPxが小さくなった状態で吸気バイパスバルブ21を開くことで、多段過給Cmから単段過給Csへの切り替え時の圧力差ΔPxに起因する異音の発生を回避することができる。
 次に、上記の実施形態をより詳しく、図5及び図6に示す第一実施例、並びに図7及び図8に示す第二実施例を参照しながら以下に説明する。
 図5に示すように、第一実施例においては、圧力差取得装置として、開度センサ45とタイマー46とからなる開弁状態取得装置51を備えて構成される。そして、制御装置40が、その開弁状態取得装置51を介して吸気バイパスバルブ21を開くよりも前に開いた排気バイパスバルブ23の開弁状態を取得して、その開弁状態に基づいて吸気バイパスバルブ21を開くタイミングを調節する制御を行うように構成される。
 より具体的には、制御装置40が、開弁状態として、排気バイパスバルブ23の開度θxが予め設定された許可開度θa以上に維持された維持時間txを取得して、その維持時間txが予め設定された許可時間taに達したときに、吸気バイパスバルブ21を開く制御を行うように構成される。
 開弁状態取得装置51は、先に開いた排気バイパスバルブ23の開弁状態として、開度θxや開いてからの維持時間txを取得する装置である。この開弁状態取得装置51は、排気バイパスバルブ23の開弁状態を取得できれば特に限定されないが、開度センサ45とタイマー46とから構成されるものが好ましく例示される。
 開度センサ45は、排気バイパスバルブ23の開度θxを取得するセンサである。この開度センサ45は、吸気バイパスバルブ21の開度θyを取得する開度センサ44と同様に、吸気バイパスバルブ21及び排気バイパスバルブ23を開閉するためには必要なセンサである。つまり、吸気バイパスバルブ21及び排気バイパスバルブ23の開閉を制御する場合には、必ず設けられているものである。この開度センサ45としては、開度θxを直接的に取得可能なセンサの他に、エアシリンダや油圧シリンダへの作動流体の供給量(流入調節弁の開度)やそれらのシリンダの作動長、あるいは、制御装置40からの指示電流から間接的に取得するセンサも例示される。
 タイマー46は、制御装置40に内蔵されていて、排気バイパスバルブ23の開いた時間txをカウントするタイマーである。なお、このタイマー46は、この他にもエンジンシステム10の制御に使用されている。
 以下、この第一実施例におけるエンジンシステム10の制御方法について、図6のフロー図を参照しながら制御装置40の機能として以下に説明する。
 エンジンシステム10の運転状態が単段過給領域Rsになり、多段過給Cmから単段過給Csに切り替える場合に、まず、制御装置40が、排気バイパスバルブ23のみを開く(S10)。
 次いで、制御装置40が、開度センサ45を介して排気バイパスバルブ23の開度θxを取得する(S20)。次いで、制御装置40が、取得した開度θxが予め設定された許可開度θa以上になったか否かを判定する(S30)。このステップで、開度θxが許可開度θa以上と判定した場合は、次へ進む。一方で、開度θxが許可開度θaを下回ると判定した場合は、再度、開度θxを取得する(S20)。
 次いで、制御装置40が、タイマー46により開度θxが許可開度θa以上になってからの維持時間txを取得する。具体的には、開度θxが許可開度θa以上になった時間をゼロとして、タイマー46が、その時間に単位時間tごとにその単位時間tを加算していき、維持時間txをカウントする(S40)。
 次いで、制御装置40が、開度θxが許可開度θa以上になってからの維持時間txが予め設定された許可時間ta以上になったか否かを判定する(S50)。このステップで、維持時間txが許可時間ta以上と判定した場合は、次へ進む。一方、維持時間txが許可時間taを下回ると判定した場合は、再度、開度θxを取得する(S20)。
 許可時間taは、高圧段タービン16と高圧段コンプレッサ15の回転数が低下して、圧力P2が圧力P1に近づくために要する時間に設定される。より好ましくは、圧力P1と圧力P2とが等しくなる、つまり圧力差ΔPxがゼロになるために要する時間に設定される。
 圧力差ΔPxがゼロになるために要する時間は、排気バイパスバルブ23が開く前の圧力差ΔP1に対して正の相関になり、圧力差ΔP1が大きければ拡大する一方、圧力差ΔP1が小さければ短縮する。また、圧力差ΔPxがゼロになるために要する時間は、排気バイパスバルブ23の開度θxに対して負の相関になり、開度θxが大きければ短縮する一方、開度θxが小さければ拡大する。加えて、圧力P1と圧力P2とが等しくなるために要する時間よりも遅い時間では、圧力P1と圧力P2との乖離が生じることがない。
 そこで、予め実験や試験により、排気バイパスバルブ23が開くときの圧力差として多段過給Cm時における圧力P1と圧力P2との圧力差ΔPxの最大値ΔPmaxが、開度θxとして許可開度θaが設定された状況においてこの許可時間taを測定しておくとよい。このように許可時間taを多段過給Cmから単段過給Csに切り替える際の最大値に設定しておくことで、確実に圧力差ΔPxがゼロになったことを判定可能になる。
 但し、この許可時間taを長くすると、期間ΔTxが長くなり、吸気バイパスバルブ21を開くまでに応答遅れが生じるおそれがある。そこで、この許可時間taは期間ΔTxから吸気バイパスバルブ21及び排気バイパスバルブ23が全閉から全開になるまでの時間をそれぞれ減算した時間を最大値とすることが好ましい。このように、この許可時間taに対して、吸気バイパスバルブ21及び排気バイパスバルブ23が全閉から全開になるまでの時間を加味することで、エンジンシステム10の運転状態が短時間のうちに変化しても、吸気バイパスバルブ21の応答遅れを回避可能になる。
 なお、圧力差ΔP1と開度θxとをパラメータとして、この許可時間taが設定されたマップデータを求めて、内部記憶装置に記憶させておき、そのマップデータからこの許可時間taを算出してもよい。この場合には、吸気バイパスバルブ21を開くまでに生じる応答遅れの回避に有利になる。
 次いで、制御装置40が、吸気バイパスバルブ21を開く(S60)。このステップが完了するとこの制御方法は完了する。
 以上のように、この第一実施例では、吸気バイパスバルブ21を開くよりも前に開いた排気バイパスバルブ23の開弁状態を取得し、取得したその開弁状態に基づいて許可時間Taを設定してこの許可時間Taの経過後に吸気バイパスバルブ21を開くようした。これにより、直接的に圧力P1及び圧力P2を取得せずに、間接的に圧力差ΔPxがゼロになったこと予測できる。その結果として、実際にその圧力差が小さくなったときに吸気バイパスバルブ21を開くことが可能になり、高圧段ターボチャージャ11の過給を切り替えるときの異音の発生を回避することができる。
 また、開弁状態取得装置51は、開度センサ45及びタイマー46というエンジンシステム10に標準的に設けられている装置から構成することが可能であるので、特別なセンサを設ける必要がなく、コストダウンを図ることが可能になる。
 図7に示すように、第二実施例においては、圧力差取得装置として、圧力センサ52、53を備えて構成される。そして、制御装置40が、それらの圧力センサ52、53を介して圧力差ΔPxを監査し、その圧力差ΔPxが予め設定された閾値ΔPa以下になったときに、好ましくはゼロになったときに、吸気バイパスバルブ21を開く制御を行うように構成される。
 圧力センサ52は、低圧段コンプレッサ17の出口から高圧段コンプレッサ15の入口までの間の吸気通路13に配置され、圧力P1を取得するセンサである。なお、この圧力センサ52は、吸気通路13と吸気バイパス通路20との分岐部から吸気バイパスバルブ21までの吸気バイパス通路20に配置されてもよい。
 圧力センサ53は、高圧段コンプレッサ15の出口からインタークーラ27までの間の吸気通路13に配置され、圧力P2を取得するセンサである。なお、この圧力センサ53は、吸気バイパスバルブ21から吸気通路13と吸気バイパス通路20との合流部までの吸気バイパス通路20に配置されてもよい。また、この圧力センサ53に代えて、インタークーラ27の下流側の吸気通路13に配置されたMAPセンサ43が圧力P2を検出するように構成してもよい。但し、インタークーラ27を経由することによる温度変化や圧損などによる変化を考慮すると、インタークーラ27よりも上流側に配置されることが望ましい。
 以下、この第二実施例におけるエンジンシステム10の制御方法について、図8のフロー図を参照しながら制御装置40の機能として以下に説明する。
 エンジンシステム10の運転状態が単段過給領域Rsになり、多段過給Cmから単段過給Csに切り替える場合に、まず、制御装置40が、排気バイパスバルブ23のみを開く(S10)。
 次いで、制御装置40が、圧力センサ52、53を介して圧力差ΔPxを取得する(S70)。次いで、制御装置40が、圧力差ΔPxがゼロになったか否かを判定する(S80)。このステップで、圧力差ΔPxがゼロになったと判定した場合は、次に進む。一方、圧力差ΔPxがゼロになっていない、つまりゼロを超えた値と判定した場合は、再度、圧力差ΔPxを取得する(S70)。
 次いで、制御装置40が、吸気バイパスバルブ21を開く(S60)。このステップが完了するとこの制御方法は完了する。
 以上のように、この第二実施例では、圧力差取得装置50として圧力センサ52、53を別途設ける必要があるが、直接的に圧力差ΔPxを取得することが可能になる。そして、取得したその圧力差ΔPxがゼロになったときに吸気バイパスバルブ21を開くことで、圧力差ΔPxがゼロを超えるような状態で、吸気バイパスバルブ21を開くことが確実に回避されるので、高圧段ターボチャージャ11の過給を切り替えるときの異音の発生をより確実に回避することができる。
 本出願は、2016年2月12日付で出願された日本国特許出願(特願2016-024481)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示のエンジンシステム及びその制御方法によれば、複数のターボチャージャが直列に配置されてなるエンジンシステムにおいて、ターボチャージャの過給状態を切り替えるときの圧力差による異音の発生を回避することができる。
 10 エンジンシステム
 11 高圧段ターボチャージャ
 12 低圧段ターボチャージャ
 20 吸気バイパス通路
 21 吸気バイパスバルブ
 22 排気バイパス通路
 23 排気バイパスバルブ
 40 制御装置
 50 圧力差取得装置

Claims (9)

  1.  直列に配置される複数のターボチャージャと、前記複数のターボチャージャのうちの吸気通路における下流側に配置される高圧段ターボチャージャの高圧段コンプレッサをバイパスする吸気バイパス通路と、前記吸気バイパス通路を通過する吸気の流量を調節する吸気バイパスバルブと、前記高圧段ターボチャージャの高圧段タービンをバイパスする排気バイパス通路と、前記排気バイパス通路を通過する排気ガスの流量を調節する排気バイパスバルブと、を備えるエンジンシステムであって、
     前記吸気バイパスバルブ及び前記排気バイパスバルブの開閉を制御する制御装置を備え、
     前記制御装置が、前記吸気バイパスバルブ及び前記排気バイパスバルブの両方を閉じて前記高圧段ターボチャージャが過給している状態から、前記吸気バイパスバルブ及び前記排気バイパスバルブの両方を開いて前記高圧段ターボチャージャの過給が停止する状態に切り替えるときに、前記排気バイパスバルブのみを開いた後に、前記吸気バイパスバルブを前記排気バイパスバルブが開いたタイミングよりも遅らせて開く制御を行うエンジンシステム。
  2.  前記吸気通路における前記高圧段コンプレッサの上流側の圧力と下流側の圧力との圧力差を直接的にあるいは間接的に取得する圧力差取得装置を備え、
     前記制御装置が、前記排気バイパスバルブのみを開いた後で、前記圧力差取得装置を介して取得した圧力差が予め設定された閾値以下になったときに、前記吸気バイパスバルブを開く制御を行うように構成される請求項1に記載のエンジンシステム。
  3.  前記制御装置が、前記圧力差がゼロになったときに、前記吸気バイパスバルブを開く制御を行うように構成される請求項2に記載のエンジンシステム。
  4.  前記圧力差取得装置として、前記吸気バイパスバルブを開くよりも前に開いた前記排気バイパスバルブの開弁状態を取得する開弁状態取得装置を備え、
     前記制御装置が、前記開弁状態取得装置を介して取得した開弁状態に基づいて前記吸気バイパスバルブを開くタイミングを調節する制御を行うように構成される請求項2又は3に記載のエンジンシステム。
  5.  前記制御装置が、前記開弁状態取得装置を介して、前記開弁状態として前記排気バイパスバルブの開度が予め設定された許可開度以上に維持された維持時間を取得して、その維持時間が予め設定された許可時間に達したときに、前記吸気バイパスバルブを開く制御を行うように構成される請求項4に記載のエンジンシステム。
  6.  前記許可時間が、前記吸気通路における前記高圧段コンプレッサの下流側の吸気の圧力と上流側の吸気の圧力とが等しくなるために要する時間に設定される請求項5に記載のエンジンシステム。
  7.  前記圧力差取得装置として、前記吸気通路における前記高圧段コンプレッサの上流側の吸気の圧力と下流側の吸気の圧力とを取得する二つの圧力センサを備え、
     前記制御装置が、それらの圧力センサを介して取得した前記圧力差が前記閾値以下になったときに、前記吸気バイパスバルブを開く制御を行うように構成される請求項2又は3に記載のエンジンシステム。
  8.  複数のターボチャージャが直列に配置されてなるエンジンシステムの制御方法において、
     吸気バイパスバルブを閉じて、これらの複数のターボチャージャのうちの吸気通路における下流側に配置される高圧段ターボチャージャの高圧段コンプレッサをバイパスする吸気バイパス通路を遮断すると共に、排気バイパスバルブを閉じて、その高圧段ターボチャージャの高圧段タービンをバイパスする排気バイパス通路を遮断して、その高圧段ターボチャージャに過給させる状態から、前記吸気バイパスバルブを開いて、前記吸気バイパス通路を開放すると共に、前記排気バイパスバルブを開いて、前記排気バイパス通路を開放して、前記高圧段ターボチャージャの過給を停止する状態に切り替えるときに、
     前記排気バイパスバルブのみを開くステップと、
     前記排気バイパスバルブのみを開いた後に、前記吸気バイパスバルブを前記排気バイパスバルブが開いたタイミングよりも遅らせて開くステップを含むエンジンシステムの制御方法。
  9.  前記高圧段ターボチャージャに過給させる状態からその高圧段ターボチャージャの過給を停止する状態に切り替えるときに、
     前記排気バイパスバルブのみを開くステップと、
     前記排気バイパスバルブのみを開いた後に、前記吸気通路における前記高圧段コンプレッサの上流側の圧力と下流側の圧力との圧力差を直接的に、あるいは間接的に取得するステップと、
     前記圧力差が予め設定された閾値以下になったか否かを判定するステップと、
     前記圧力差が前記閾値以下になったときに、前記吸気バイパスバルブを開くステップと、を含む請求項8に記載のエンジンシステムの制御方法。
PCT/JP2017/003728 2016-02-12 2017-02-02 エンジンシステム及びその制御方法 WO2017138423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780010931.1A CN108699953B (zh) 2016-02-12 2017-02-02 引擎系统及其控制方法
EP17750147.5A EP3415738B1 (en) 2016-02-12 2017-02-02 Engine system and method for controlling same
US16/077,408 US10648401B2 (en) 2016-02-12 2017-02-02 Engine system and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024481 2016-02-12
JP2016024481A JP6746936B2 (ja) 2016-02-12 2016-02-12 エンジン及びその制御方法

Publications (1)

Publication Number Publication Date
WO2017138423A1 true WO2017138423A1 (ja) 2017-08-17

Family

ID=59564021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003728 WO2017138423A1 (ja) 2016-02-12 2017-02-02 エンジンシステム及びその制御方法

Country Status (5)

Country Link
US (1) US10648401B2 (ja)
EP (1) EP3415738B1 (ja)
JP (1) JP6746936B2 (ja)
CN (1) CN108699953B (ja)
WO (1) WO2017138423A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530918B1 (en) * 2018-02-21 2021-09-22 Innio Jenbacher GmbH & Co OG Compressor bypass during start-up

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199626A (ja) * 1989-12-27 1991-08-30 Toyota Motor Corp 過給機付エンジンの過給制御方法
JPH03275937A (ja) * 1990-03-26 1991-12-06 Toyota Motor Corp 直列2段過給内燃機関の過給制御装置
JP2008280861A (ja) * 2007-05-08 2008-11-20 Isuzu Motors Ltd 2ステージターボシステム
JP2010151038A (ja) 2008-12-25 2010-07-08 Toyota Motor Corp 内燃機関の制御装置
JP2015059490A (ja) * 2013-09-18 2015-03-30 本田技研工業株式会社 内燃機関の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063744A (en) * 1988-10-06 1991-11-12 Toyota Jidosha Kabushiki Kaisha Actuator for controlling intake pressure in sequential turbo-system
JPH0450433A (ja) * 1990-06-20 1992-02-19 Toyota Motor Corp 直列2段過給内燃機関の排気ガス再循環装置
DE102004051486A1 (de) 2004-10-22 2006-01-26 Audi Ag Verfahren zum Betreiben einer Mehrzylinder-Brennkraftmaschine und Mehrzylinder-Brennkraftmaschine
JP4962403B2 (ja) 2008-05-07 2012-06-27 トヨタ自動車株式会社 多段式ターボ過給システム
JP4883221B2 (ja) 2009-07-16 2012-02-22 トヨタ自動車株式会社 内燃機関の制御弁異常判定装置
WO2011052086A1 (ja) * 2009-10-26 2011-05-05 トヨタ自動車株式会社 過給機付き内燃機関の制御装置
EP2602451B1 (en) * 2010-08-04 2017-03-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US9574489B2 (en) * 2012-06-07 2017-02-21 Boise State University Multi-stage turbo with continuous feedback control
JPWO2016129036A1 (ja) * 2015-02-09 2017-07-06 三菱重工業株式会社 内燃機関の過給システム及び過給システムの制御方法
US9879593B2 (en) * 2015-12-03 2018-01-30 GM Global Technology Operations LLC System and method for adaptively learning values and controlling a turbocharger of an engine based on the values
US10107297B2 (en) * 2016-02-04 2018-10-23 General Electric Company Methods and system for a turbocharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199626A (ja) * 1989-12-27 1991-08-30 Toyota Motor Corp 過給機付エンジンの過給制御方法
JPH03275937A (ja) * 1990-03-26 1991-12-06 Toyota Motor Corp 直列2段過給内燃機関の過給制御装置
JP2008280861A (ja) * 2007-05-08 2008-11-20 Isuzu Motors Ltd 2ステージターボシステム
JP2010151038A (ja) 2008-12-25 2010-07-08 Toyota Motor Corp 内燃機関の制御装置
JP2015059490A (ja) * 2013-09-18 2015-03-30 本田技研工業株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP3415738B1 (en) 2021-04-21
JP2017141760A (ja) 2017-08-17
JP6746936B2 (ja) 2020-08-26
CN108699953A (zh) 2018-10-23
US20190048788A1 (en) 2019-02-14
EP3415738A4 (en) 2018-12-19
EP3415738A1 (en) 2018-12-19
CN108699953B (zh) 2021-12-28
US10648401B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
EP3133273B1 (en) Control device for a supercharged internal combustion engine
US10208685B2 (en) Method for charge pressure control of an internal combustion engine with turbines arranged in parallel, and internal combustion engine for carrying out such a method
US6418719B2 (en) Control of a variable geometry turbocharger by sensing exhaust pressure
KR101490959B1 (ko) 터보 차저 제어 방법
JP5506567B2 (ja) 内燃機関
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
EP3190280B1 (en) Control device for internal combustion engine and control method thereof
US8109091B2 (en) Exhaust gas recirculation control systems and methods
US8573181B2 (en) Throttle control systems and methods for internal combustion engines to reduce throttle oscillations
JP2010180781A (ja) 過給機付き内燃機関の制御装置
WO2013078061A1 (en) Anti-sticking and diagnostic strategy for exhaust system valves
CN105697169B (zh) 用于压缩机再循环阀的诊断方法
US9228538B2 (en) Internal combustion engine control apparatus
CN107587947B (zh) 控制车辆增压器的方法和系统
JP4906848B2 (ja) 内燃機関の制御方法
JP4501730B2 (ja) 可変気筒内燃機関
WO2017138423A1 (ja) エンジンシステム及びその制御方法
JP2006207382A (ja) ターボチャージャのサージング防止装置
JP4536783B2 (ja) 内燃機関の制御装置
JP2014231821A (ja) 過給機付き内燃機関の制御装置
JP2010169012A (ja) 過給機付き内燃機関の制御装置
JP5067268B2 (ja) 過給機付きエンジンの過給圧制御装置
JP2007009924A (ja) 過給機付き内燃機関のウエストゲートバルブ制御装置
JP2017137778A (ja) エンジンシステム
JP2012097714A (ja) 過給機付き内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750147

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750147

Country of ref document: EP

Effective date: 20180912