WO2017138187A1 - 撮像装置、立体内視鏡および立体内視鏡システム - Google Patents

撮像装置、立体内視鏡および立体内視鏡システム Download PDF

Info

Publication number
WO2017138187A1
WO2017138187A1 PCT/JP2016/078634 JP2016078634W WO2017138187A1 WO 2017138187 A1 WO2017138187 A1 WO 2017138187A1 JP 2016078634 W JP2016078634 W JP 2016078634W WO 2017138187 A1 WO2017138187 A1 WO 2017138187A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
moving lens
stereoscopic endoscope
unit
image
Prior art date
Application number
PCT/JP2016/078634
Other languages
English (en)
French (fr)
Inventor
青野 進
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201680079278.XA priority Critical patent/CN108471931A/zh
Priority to JP2017535116A priority patent/JP6253857B1/ja
Publication of WO2017138187A1 publication Critical patent/WO2017138187A1/ja
Priority to US16/038,233 priority patent/US20180332271A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/005Photographing internal surfaces, e.g. of pipe
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Definitions

  • the present invention relates to a stereoscopic endoscope and a stereoscopic endoscope system including an imaging device that captures a stereoscopic image.
  • An optical unit such as an imaging unit for capturing an optical image can be introduced from the outside of the living body or structure to observe a difficult part such as the inside of the living body or the inside of the structure.
  • the provided endoscope is used in the medical field or the industrial field, for example.
  • a binocular 3D endoscope that can generate a 3D image by combining two observation images and stereoscopically view a subject has appeared.
  • Japanese Patent Laid-Open No. 8-94965 proposes an imaging apparatus for an endoscope that can easily change the convergence angle of an imaging unit that captures a stereoscopic image on the imaging side.
  • the stereoscopic effect of the 3D image acquired by the imaging device is defined by the distance between the central axes of the two imaging optical systems, the user can adjust or change it as desired. There was a problem that could not be done.
  • a stereoscopic endoscope can reduce the stereoscopic effect of the subject when the distal end of the insertion portion provided with an observation window is moved away from the observation target, but the observation image displayed on the monitor becomes small. Practicality is reduced.
  • the stereoscopic endoscope can increase the stereoscopic effect of the subject when the distal end portion of the insertion portion provided with the observation window is brought close to the observation target. There is a feeling of pressure on the treatment instrument shown above.
  • the stereoscopic endoscope is capable of observing the subject displayed on the monitor with a certain size, and the workability of the examination and treatment on the subject is improved.
  • the present invention has been made in view of the above-described circumstances, and an endoscope in which a user can adjust and change a 3D image to a desired three-dimensional effect and improve workability such as examination and treatment on a subject. It is an object to provide an imaging apparatus, a stereoscopic endoscope, and a stereoscopic endoscope system.
  • An imaging apparatus includes an objective optical system, at least one imaging element that captures two subject images, at least one moving lens unit that changes optical characteristics of the two subject images, And at least one actuator for driving the moving lens unit.
  • a stereoscopic endoscope includes an objective optical system, at least one image sensor that captures two subject images, and at least one moving lens unit that changes optical characteristics of the two subject images. And an at least one actuator for driving the moving lens unit, and an insertion unit having a distal end portion in which the imaging device is incorporated.
  • a stereoscopic endoscope system includes an objective optical system, at least one image sensor that captures two subject images, and two moving lens units that change optical characteristics of the two subject images.
  • An imaging device including at least two actuators for driving the moving lens unit, a stereoscopic endoscope including an insertion unit having a distal end portion in which the imaging device is incorporated, and the two moving lens units.
  • the position detection unit for detecting the position and the detection signal of the position detection unit are input, the difference between the positions of the two moving lens units is calculated, and the position of the two moving lens units is corrected.
  • a control unit for driving and controlling one actuator.
  • a stereoscopic endoscope system includes an objective optical system, at least one image sensor that captures two subject images, and two moving lens units that change optical characteristics of the two subject images. And an imaging device including at least two actuators for driving the moving lens unit, a stereoscopic endoscope including an insertion unit having a distal end portion in which the imaging device is incorporated, and the imaging element.
  • a control unit that calculates a difference between the images of the two subject images and drives and controls the two actuators; and a control unit that drives and controls the two actuators so as to correct the positions of the two moving lens units; Are provided.
  • Sectional drawing which shows the structure of the imaging device incorporated in the tip part Sectional drawing which shows the structure of the imaging device incorporated in a front-end
  • the block diagram which mainly shows the control structure of a stereoscopic endoscope and a video processor in the stereoscopic endoscope system which concerns on 2nd Embodiment.
  • the block diagram which mainly shows the control structure of a stereoscopic endoscope and a video processor in the stereoscopic endoscope system of a modification, same as the above.
  • FIG. 1 is a perspective view showing the overall configuration of the stereoscopic endoscope system
  • FIG. 2 is a cross-sectional view showing the configuration of an imaging device built in the distal end portion. .
  • the stereoscopic endoscope system 1 includes a stereoscopic endoscope 2 and a video system center 3 as shown in FIG.
  • the stereoscopic endoscope 2 here is a binocular stereoscopic endoscope (also referred to as a 3D endoscope) that can generate a 3D image by combining two observation images and stereoscopically view the subject. .
  • the stereoscopic endoscope 2 includes an insertion portion 11, an operation portion 12 connected to the proximal end of the insertion portion, and a universal cord 13 extending from the operation portion 12.
  • the insertion portion 11 includes a distal end portion 14, a bending portion 15, and a hard tube portion 16 that are connected in order from the distal end.
  • the stereoscopic endoscope 2 is illustrated as a so-called rigid stereoscopic endoscope used for surgery in which the insertion portion 11 has the hard tube portion 16, but the insertion portion is not limited thereto.
  • 11 may be a so-called soft stereoscopic endoscope having flexibility.
  • the distal end portion 14 is provided with two observation windows and an illumination window on the distal end surface, and two observation lights entering from the two observation windows are provided in the imaging device via a plurality of objective optical systems, such as a CCD and a CMOS. (Not shown).
  • the operation unit 12 receives an operation of an operator who is a doctor, and the bending portion 15 of the insertion unit 11 is different from the vertical direction (UD direction) and the first direction in the observation image as the first direction.
  • the operation unit 12 is provided with buttons 18 for operating the observation image such as tele / wide switching and release switch.
  • the video system center 3 has a video processor 21 as a control device that controls the functions of various stereoscopic endoscopes 2 mounted on the trolley 20 and an illumination window at the distal end portion 14 of the stereoscopic endoscope 2 toward the subject. It mainly includes a light source device 22 having a built-in light source of illumination light to be irradiated, a keyboard 23, and a monitor 24.
  • the video processor 21 serving as a control device controls the lighting of the light source device 22 and processes the image of the subject imaged through the stereoscopic endoscope 2 to display it on the monitor 24.
  • a light source connector 25 that is detachably connected to the light source device 22 is provided at the extended end of the universal cord 13 of the stereoscopic endoscope 2.
  • two electrical cables 26 are extended from the light source connector 25, and electrical connectors 27 that are detachably connected to the video processor 21 are provided at the extended ends of the electrical cables 26. .
  • the imaging device 10 includes a first imaging unit 30 and a second imaging unit 50 that are two imaging units having the same configuration.
  • the first imaging unit 30 is disposed behind the first observation window 31 disposed on the distal end surface of the distal end portion 14.
  • the second imaging unit 50 is disposed behind the second observation window 51 disposed on the distal end surface of the distal end portion 14.
  • the stereoscopic endoscope 2 is a stereoscopic endoscope including two first imaging units 30 and a second imaging unit 50.
  • the first imaging unit 30 constitutes a right-eye observation image forming unit
  • the second imaging unit 50 constitutes a left-eye observation image forming unit.
  • Each of the first imaging unit 30 and the second imaging unit 50 is a front group lens frame 32, 52 that is a first fixed lens frame, and an objective optical system held by the front group lens frame 32, 52.
  • Each of the first imaging unit 30 and the second imaging unit 50 is provided with moving lens frames 36 and 56 that are moving lens units that move back and forth within the rear group lens frames 34 and 54, respectively.
  • Moving lenses 37 and 57 which are objective optical systems, are held on the lens frames 36 and 56, respectively.
  • Each of the first imaging unit 30 and the second imaging unit 50 varies the optical characteristics by moving the moving lens frames 36 and 56 holding the moving lenses 37 and 57 back and forth.
  • the tele / wide angle of view can be changed.
  • image sensor holding frames 38 and 58 are fitted behind the rear group lens frames 34 and 54, and image sensors such as a CCD and a CMOS are mounted on the transparent glasses 39 and 59 held by the image sensor holding frames 38 and 58.
  • 40 and 60 are fixed via cover glasses 41 and 61.
  • Image pickup devices 40 and 60 are electrically connected to image pickup device substrates 42 and 62 on which electronic components and the like are mounted. A plurality of wirings are connected to the image pickup device substrates 42 and 62, and a plurality of wires are collected. 43 and 63 are extended back.
  • the imaging cables 43 and 63 are disposed in the insertion unit 11, the operation unit 12, the universal cord 13, and the light source connector 25, and are connected to electrical connectors 27 provided on the two electrical cables 26.
  • Reinforcing frames 44 and 64 are fitted behind the image sensor holding frames 38 and 58, and heat shrink tubes 45 and 65 are provided so as to cover the distal ends of the imaging cables 43 and 63 together with the reinforcing frame 44. ing.
  • fillers such as an adhesive for protecting the image pickup devices 40 and 60, the image pickup device substrates 42 and 62, and the like are disposed.
  • each of the first imaging unit 30 and the second imaging unit 50 of the present embodiment is provided with actuators 71 and 72 that are angle-of-view changing units that drive the moving lens frames 36 and 56 forward and backward. ing.
  • the actuators 71 and 72 here drive the moving lens frames 36 and 56 using shape memory alloy (SMA) wires 46 and 66 and spring members 47 and 67, respectively.
  • SMA shape memory alloy
  • the tips of the shape memory alloy (SMA) wires 46, 66 are connected to block bodies 48, 68 provided at the tips of rod-like connecting bodies 36a, 56a extending from the moving lens frames 36, 56 in the outer diameter direction. Yes.
  • SMA shape memory alloy
  • the rear group lens frames 34 and 54 are formed with slits 34a and 54a for guiding the connecting bodies 36a and 56a in a straight line and extending them in the outer diameter direction.
  • the shape memory alloy (SMA) wires 46 and 66 extend rearward and are inserted into spring receivers 49 and 69 provided in the image sensor holding frames 38 and 58. Insulating tubes 49a and 69a are connected to the spring receivers 49 and 69, and shape memory alloy (SMA) wires 46 and 66 are disposed in the insulating tubes 49a and 69a.
  • the spring members 47 and 67 are disposed between the block bodies 48 and 68 and the spring receivers 49 and 69 by extrapolating the shape memory alloy (SMA) wires 46 and 66.
  • the spring members 47 and 67 urge the block bodies 48 and 68 forward.
  • the shape memory alloy (SMA) wires 46 and 66 are fixed at the base ends of the insulating tubes 49a and 69a (not shown here).
  • the shape memory alloy (SMA) wires 46 and 66 are set so as to be shrunk when heated, for example, and stretched when cooled, and are held in a stretchable state in the insulating tubes 49a and 69a. .
  • shape memory alloy (SMA) wires 46 and 66 are provided with a heat source such as a Peltier element (not shown). This heat source can heat or cool the shape memory alloy (SMA) wires 46 and 66 in accordance with the operation of a common angle-of-view change switch among the buttons 18 provided on the operation unit 12. Yes.
  • a heat source such as a Peltier element (not shown). This heat source can heat or cool the shape memory alloy (SMA) wires 46 and 66 in accordance with the operation of a common angle-of-view change switch among the buttons 18 provided on the operation unit 12. Yes.
  • the two actuators 71 and 72 of the imaging device 10 are driven in synchronization according to the common angle-of-view change switch operation of the buttons 18, and the first imaging unit 30 and the second imaging unit.
  • Two moving lens frames 36 and 56 provided in each of 50 are configured to move forward and backward in synchronization.
  • the shape memory alloy (SMA) wires 46 and 66 are not limited to those that expand and contract by heating or cooling using a heat source such as a Peltier element.
  • a heat source such as a Peltier element.
  • the shape memory alloy is heated and contracted by energization. It is also possible to adopt a method of making them.
  • the first imaging unit 30 and the second imaging unit 50 are attached to the spring members 47 and 67 by the shape memory alloy (SMA) wires 46 and 66 of the actuators 71 and 72 being heated and contracted.
  • SMA shape memory alloy
  • the shape memory alloy (SMA) wires 46 and 66 of the actuators 71 and 72 are cooled and extended, so that the biasing force of the spring members 47 and 67 is increased.
  • the received block bodies 48 and 68 are pushed forward.
  • the first imaging unit 30 and the second imaging unit 50 have the moving lens frames 36 and 56 connected to the respective block bodies 48 and 68 through the connecting bodies 36a and 56a move back and forth.
  • the angle of view can be changed to tele and wide.
  • the front and rear positions of the moving lens frames 36 and 56 that change the tele / wide angle of view are determined by the lens design of the first imaging unit 30 and the second imaging unit 50 of the imaging apparatus 10, and are particularly important. It is not limited.
  • the stereoscopic endoscope 2 that is the stereoscopic endoscope of the present embodiment is acquired by the imaging apparatus 10 including the two imaging units of the first imaging unit 30 and the second imaging unit 50.
  • the user can adjust or change the angle of view of the image as desired.
  • the user can adjust the subject displayed on the monitor 24 to a desired size by moving the distal end portion 14 of the stereoscopic endoscope 2 away from the subject, and the stereoscopic effect of the 3D image is small.
  • the stereoscopic effect of the 3D image is small.
  • the user can adjust the subject displayed on the monitor 24 to a desired size by moving the tip of the stereoscopic endoscope 2 closer to the subject, and the stereoscopic effect of the 3D image is large (strongly strong).
  • the distance between the distal end portion 14 of the stereoscopic endoscope 2 and the subject is relatively long, it is easier to perform examination treatment when the subject is displayed on the monitor 24 in a three-dimensional manner. Workability is improved.
  • the stereoscopic endoscope 2 includes the two imaging units of the first imaging unit 30 and the second imaging unit 50 that can change the angle of view of the acquired subject image.
  • the imaging device 10 the user can adjust and change the 3D image to a desired stereoscopic effect, and can improve workability such as examination and treatment on the subject.
  • the imaging apparatus 10 is configured such that the two moving lens frames 36 and 56 are moved forward and backward in synchronization by the two actuators 71 and 72 of the first imaging unit 30 and the second imaging unit 50, thereby moving the image.
  • the optical characteristics for focus adjustment may be variable.
  • FIG. 3 is a cross-sectional view illustrating a configuration of an imaging apparatus built in the distal end portion according to the first modification.
  • the imaging apparatus 10 may be configured to move the moving lens frames 36 and 56 of the first imaging unit 30 and the second imaging unit 50 forward and backward by one actuator 71.
  • the imaging apparatus 10 includes a rod-shaped connecting member 73 that connects the moving lens frame 36 of the first imaging unit 30 and the moving lens frame 56 of the second imaging unit 50.
  • a slit 34 b is formed in the rear lens group frame 34 of the first imaging unit 30 to guide the connecting member 73 straight and to extend in the outer diameter direction.
  • the connecting member 73 is connected to the moving lens frame 56 of the second imaging unit 50, extends in the outer diameter direction through the slit 54a of the rear lens group frame 54 of the second imaging unit 50, and is connected to the first imaging unit 50.
  • the rear unit lens frame 34 of the imaging unit 30 is connected.
  • the imaging apparatus 10 of this modification configured as described above moves the moving lens frame 36 of the first imaging unit 30 and the moving lens frame 56 of the second imaging unit 50 forward and backward by one actuator 71. Can do.
  • the imaging apparatus 10 always has a constant displacement amount before and after the moving lens frame 36 of the first imaging unit 30 and the moving lens frame 56 of the second imaging unit 50, so that the image of the subject image to be acquired is acquired.
  • the configuration is such that the angle can be changed stably.
  • FIG. 4 is a cross-sectional view illustrating a configuration of an imaging device built in the distal end portion according to the second modification.
  • the imaging apparatus 10 includes moving lenses 37 and 57 that are two moving optical systems, and one imaging element holding frame 38 is fitted to the rear group lens frames 34 and 54, and 1 It is good also as a structure which acquires two images by the one image pick-up element 40.
  • FIG. 4 is a cross-sectional view illustrating a configuration of an imaging device built in the distal end portion according to the second modification.
  • the imaging apparatus 10 includes moving lenses 37 and 57 that are two moving optical systems, and one imaging element holding frame 38 is fitted to the rear group lens frames 34 and 54, and 1 It is good also as a structure which acquires two images by the one image pick-up element 40.
  • FIG. 4 shows a configuration in which the two moving lens frames 36 and 56 are moved forward and backward by the two actuators 71 and 72, but the present invention is not limited to this, and the first modified example is shown. As exemplified in the above, the two moving lens frames 36 and 56 may be moved forward and backward by one actuator 71.
  • FIG. 5 is a cross-sectional view illustrating a configuration of an imaging device built in the distal end portion according to a third modification.
  • the imaging apparatus 10 may include only the moving lens 37 that is one moving optical system, and may acquire two images by the two imaging elements 40 and 60.
  • a prism unit 75 is provided behind the transparent glass 39 of the imaging element holding frame 38, and two object images are incident on the two imaging elements 40 and 60 by the prism unit 75. Is configured to do.
  • the imaging apparatus 10 of the present modification changes the angle of view of the subject image acquired by the single moving lens frame 36, the subject image for the right eye and the subject image for the left eye to be acquired are acquired.
  • the angle of view can be prevented from shifting.
  • FIG. 6 is a cross-sectional view illustrating a configuration of an imaging device built in the distal end portion according to a fourth modification.
  • the imaging apparatus 10 may include only a moving lens 37 that is one moving optical system, and may acquire two images by one imaging element 40.
  • the imaging apparatus 10 also includes a prism unit 75 behind the transparent glass 39 of the imaging element holding frame 38 so that two object images are incident on one imaging element 40 by the prism unit 75. It is configured.
  • the imaging apparatus 10 of the present modified example also changes the angle of view of the subject image acquired by one moving lens frame 36, and thus the acquired right-eye subject image and left eye Misalignment of the angle of view of the subject image can be prevented.
  • FIG. 7 is a block diagram showing a control configuration mainly of the stereoscopic endoscope and the video processor in the stereoscopic endoscope system.
  • the imaging device 10 built in the distal end portion 14 of the stereoscopic endoscope 2 includes a moving lens 37 in each of the first imaging unit 30 and the second imaging unit 50. , 57 are provided with position detection sensors 76, 77 as position detection units for detecting the positions of the moving lens frames 36, 56.
  • the position detection sensors 76 and 77 are provided in the vicinity of the moving lens frames 36 and 56, and are moving lens frame position detection units such as a potentiometer, an encoder, and a longitudinal position detection sensor.
  • a control unit 80 that drives and controls the first imaging unit 30 and the second imaging unit 50 of the imaging apparatus 10 is provided in the video processor 21 to which the stereoscopic endoscope 2 is connected. .
  • the video processor 21 receives a first driving circuit 81 that drives the actuator 71 of the first imaging unit 30 and an imaging signal from the imaging element 40 of the first imaging unit 30.
  • a generation circuit 82 and a first position detection circuit 83 to which a detection signal from the position detection sensor 76 of the first imaging unit 30 is input are provided.
  • the video processor 21 receives a second drive circuit 91 that drives the actuator 72 of the second imaging unit 50 and a second image to which an imaging signal from the imaging element 60 of the second imaging unit 50 is input.
  • a generation circuit 92 and a second position detection circuit 93 to which a detection signal from the position detection sensor 77 of the second imaging unit 50 is input are provided.
  • the video processor 21 includes a 3D image generation circuit 85 that receives two images from the first image generation circuit 82 and the second image generation circuit 92 and combines the two images to generate a 3D image.
  • a 3D image video signal is output from the 3D image generation circuit 85 to the monitor 24 via the control unit 80. In this way, a 3D image of the subject imaged by the imaging device 10 is displayed on the monitor 24.
  • Position information of the moving lens frame 36 of the first imaging unit 30 and the moving lens frame 56 of the second imaging unit 50 is input from the first position detection circuit 83 and the second position detection circuit 93 to the control unit 80. Is done.
  • control unit 80 controls the first drive circuit 81 and the second drive circuit 91 based on the position information of the movable lens frames 36 and 56 to drive the actuators 71 and 72.
  • a signal is input to the control unit 80 from an angle-of-view change switch provided in the operation unit 12, and a control signal based on the signal is transmitted to the first drive circuit 81 and the second drive. Output to the circuit 91.
  • the control unit 80 of the video processor 21 drives and controls the actuators 71 and 72 to move the moving lens frame 36 of the first imaging unit 30 and the moving lens frame 56 of the second imaging unit 50 forward and backward.
  • the respective positions are detected.
  • the first driving circuit 81 and the first driving circuit 81 and the second driving circuit 81 are corrected so that the moving positions of the moving lens frames 36 and 56 (front and rear positions in the direction along the photographing optical axis) coincide with each other.
  • the control signal is output to the second drive circuit 91.
  • the first drive circuit 81 and the second drive circuit 91 drive the actuator lens 71 and 72 to drive the movable lens frames 36 and 56 based on the control signal from the control unit 80.
  • the video processor 21 moves the moving lens frame 36 and the second imaging unit 50 of the first imaging unit 30 for the left eye or the right eye. Control is performed to calculate the difference between the positions from the position information of the lens frame 56 and correct the movement positions of the movable lens frames 36 and 56 to coincide with each other.
  • the stereoscopic endoscope system 1 displays the image of the subject image acquired by the first imaging unit 30 and the second imaging unit 50 of the imaging apparatus 10. A 3D image with consistent corners can be generated.
  • the imaging apparatus 10 having the two imaging elements 40 and 60 is illustrated, but a stereoscopic endoscope that acquires two subject images by one imaging element and generates a 3D image It can be applied to the system 1 as well.
  • FIG. 8 is a block diagram mainly showing a control configuration of the stereoscopic endoscope and the video processor in the modified stereoscopic endoscope system.
  • the stereoscopic endoscope system 1 includes the first imaging unit 30 in the video processor 21 without providing the position detection sensors 76 and 77 on the imaging device 10 side of the stereoscopic endoscope 2.
  • a plurality of feature points of the two subject images acquired by the second imaging unit 50 may be detected and control for correcting the movement positions of the moving lens frames 36 and 56 may be performed.
  • the video processor 21 is provided with an image shift detection circuit 86 as an image shift detection unit to which the image signal from the 3D image generation circuit 85 is input, and the correction signal from the image shift detection circuit 86 is controlled. Input to the unit 80.
  • the image misalignment detection circuit 86 calculates, for example, the difference in size or position between the images of two subjects acquired by the first imaging unit 30 and the second imaging unit 50 from the 3D image from the 3D image generation circuit 85.
  • a position correction instruction signal is output to the control unit 80 so that the movement positions (front and rear positions in the direction along the photographing optical axis) of the respective moving lens frames 36 and 56 that have been calculated and corrected for the difference are matched.
  • the controller 80 moves the front and rear movement positions (front and rear positions in the direction along the photographing optical axis) of the movable lens frames 36 and 56 to coincide with each other. Control signals are output to the first drive circuit 81 and the second drive circuit 91.
  • the first drive circuit 81 and the second drive circuit 91 drive the actuator lens 71 and 72 to drive the movable lens frames 36 and 56 based on the control signal from the control unit 80.
  • the stereoscopic endoscope system 1 uses the video processor 21 from the subject images acquired by the first imaging unit 30 and the second imaging unit 50 for the left eye or the right eye. Then, control is performed to calculate the difference between the positions of the movable lens frames 36 and 56 and correct the movement positions of the movable lens frames 36 and 56 to coincide with each other.
  • the stereoscopic endoscope system 1 generates a 3D image in which the angles of view of the subject images acquired by the first imaging unit 30 and the second imaging unit 50 of the imaging device 10 are always consistent. be able to.
  • imaging apparatus 10 including the two imaging elements 40 and 60 is also illustrated in the present modification, but a stereoscopic endoscope that generates a 3D image by acquiring two subject images with one imaging element. It can be applied to the system 1 as well.
  • the described requirements can be deleted if the stated problem can be solved and the stated effect can be obtained.
  • the configuration can be extracted as an invention.
  • a user can adjust and change a 3D image to a desired stereoscopic effect, and an imaging apparatus for an endoscope, a stereoscopic endoscope, and a stereoscopic endoscope that improve workability such as examination and treatment on a subject.
  • a mirror system can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Astronomy & Astrophysics (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Lens Barrels (AREA)
  • Cameras In General (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

撮像装置10は、対物光学系33,35と、2つの被検体像を撮像する少なくとも1つの撮像素子40,60と、2つ被写体像の光学特性を変更する少なくとも1つの移動レンズ部36,56と、移動レンズ部36,56を駆動する少なくとも1つのアクチュエータ71,72と、を具備する。

Description

撮像装置、立体内視鏡および立体内視鏡システム
 本発明は、立体画像を撮像する撮像装置を備えた立体内視鏡および立体内視鏡システムに関する。
 生体の体内、構造物の内部などの観察が困難な箇所を観察するために、生体または構造物の外部から内部に導入可能であって、光学像を撮像するための撮像ユニットなどの光学ユニットを具備した内視鏡が、例えば医療分野または工業分野において利用されている。
 このような内視鏡の中には、2つの観察画像を組み合わせて3D画像を生成して、被検体を立体視できる2眼式の3D内視鏡が登場している。
 例えば、日本国特開平8-94965号公報には、立体画像を撮像する撮像部の輻輳角を撮像側で簡単に変更できる内視鏡用の撮像装置が提案されている。
 しかしながら、従来の立体内視鏡においては、撮像装置によって取得する3D画像の立体感が2つの撮像光学系の中心軸の離間距離によって規定されるため、ユーザが所望に調整したり、変更したりすることができないという課題があった。
 例えば、立体内視鏡は、観察対象に対して観察窓が設けられた挿入部の先端部を遠ざけると、被検体の立体感を小さくできるが、モニタに表示される観察画像が小さくなってしまい実用性が低下する。
 その一方、立体内視鏡は、観察対象に対して観察窓が設けられた挿入部の先端部を近づけると、被検体の立体感を大きくできるが、被検体を処置するときに立体的にモニタ上に映る処置具などに圧迫感が生じる。
 さらに、立体内視鏡は、モニタ上に映し出される被検体を一定の大きさで観察できるほうが好ましく、被検体に対する検査、処置などの作業性が向上する。
 そこで、本発明は、上述した事情に鑑みてなされたものであって、ユーザが3D画像を所望の立体感に調整および変更でき、被検体に対する検査、処置などの作業性が向上する内視鏡用の撮像装置、立体内視鏡および立体内視鏡システムを提供することを目的とする。
 本発明の一態様の撮像装置は、対物光学系と、2つの被検体像を撮像する少なくとも1つの撮像素子と、前記2つ被写体像の光学特性を変更する少なくとも1つの移動レンズ部と、前記移動レンズ部を駆動する少なくとも1つのアクチュエータと、を具備する。
 本発明の一態様の立体内視鏡は、対物光学系と、2つの被検体像を撮像する少なくとも1つの撮像素子と、前記2つ被写体像の光学特性を変更する少なくとも1つの移動レンズ部と、前記移動レンズ部を駆動する少なくとも1つのアクチュエータと、を備えた撮像装置と、前記撮像装置が内蔵される先端部を有する挿入部と、を具備する。
 本発明の一態様の立体内視鏡システムは、対物光学系と、2つの被検体像を撮像する少なくとも1つの撮像素子と、前記2つ被写体像の光学特性を変更する2つの移動レンズ部と、前記移動レンズ部を駆動する少なくとも2つのアクチュエータと、を備えた撮像装置と、前記撮像装置が内蔵される先端部を有する挿入部を備えた立体内視鏡と、前記2つの移動レンズ部の位置を検出する位置検出部と、前記位置検出部の検出信号が入力されて、前記2つの移動レンズ部の位置の差分を算出し、前記2つの移動レンズ部の位置を補正するように前記2つのアクチュエータを駆動制御する制御部と、を具備する。
 本発明の他の態様の立体内視鏡システムは、対物光学系と、2つの被検体像を撮像する少なくとも1つの撮像素子と、前記2つ被写体像の光学特性を変更する2つの移動レンズ部と、前記移動レンズ部を駆動する少なくとも2つのアクチュエータと、を備えた撮像装置と、前記撮像装置が内蔵される先端部を有する挿入部を備えた立体内視鏡と、前記撮像素子によって取得した前記2つの被検体像の画像の差分を算出し、前記2つのアクチュエータを駆動制御する制御部と、前記2つの移動レンズ部の位置を補正するように前記2つのアクチュエータを駆動制御する制御部と、を具備する。
第1の実施の形態に係る立体内視鏡システムの構成を示す斜視図 同、先端部に内蔵される撮像装置の構成を示す断面図 同、第1の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図 同、第2の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図 同、第3の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図 同、第4の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図 第2の実施の形態に係る立体内視鏡システムにおける主に立体内視鏡およびビデオプロセッサの制御構成を示すブロック図 同、変形例の立体内視鏡システムにおける主に立体内視鏡およびビデオプロセッサの制御構成を示すブロック図
 以下、本発明について説明する。なお、以下の説明において、各実施の形態に基づく図面は、模式的なものであり、各部分の厚みと幅との関係、夫々の部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。 
(第1の実施の形態)
 先ず、本発明の第1の実施の形態について説明する。 
 図面は、本発明の第1の実施の形態に係わり、図1は立体内視鏡システムの全体構成を示す斜視図、図2は先端部に内蔵される撮像装置の構成を示す断面図である。
 立体内視鏡システム1は、図1に示すように、立体内視鏡2と、ビデオシステムセンタ3と、を有して構成されている。なお、ここでの立体内視鏡2は、2つの観察画像を組み合わせて3D画像を生成して、被検体を立体視できる2眼式の立体内視鏡(3D内視鏡ともいう)である。
 立体内視鏡2は、挿入部11と、挿入部の基端に連設された操作部12と、操作部12から延出するユニバーサルコード13と、を有して構成されている。
 挿入部11は、先端から順に、先端部14、湾曲部15および硬質管部16が連設されている。なお、ここでの立体内視鏡2は、挿入部11が硬質管部16を有する外科用に用いられる所謂硬性立体内視鏡として例示しているが、これに限定されることなく、挿入部11が可撓性を備えた所謂軟性立体内視鏡としてもよい。
 先端部14は、先端面に2つの観察窓および照明窓が設けられ、2つの観察窓から入光する2つの観察光が複数の対物光学系を介して撮像装置に設けられたCCD、CMOSなどのイメージセンサによって検出される(何れも不図示)。
 操作部12には、医師である操作者の操作を受けて挿入部11の湾曲部15を第1の方向としての観察像における上下方向(UD方向)および第1の方向とは異なる、ここでは略直交する第2の方向としての観察像における左右方向(RL方向)に操作する2つの湾曲操作レバー17を有している。
 さらに、操作部12には、テレ/ワイドの切替え、レリーズスイッチなどの観察画像を操作するためのボタン類18が設けられている。
 ビデオシステムセンタ3は、トロリー20に搭載された各種立体内視鏡2の機能を制御する制御装置としてのビデオプロセッサ21と、立体内視鏡2の先端部14の照明窓から被検体に向けて照射する照明光の光源が内蔵された光源装置22と、キーボード23と、モニタ24と、を主に有して構成されている。
 制御装置であるビデオプロセッサ21は、光源装置22を点灯制御すると共に、立体内視鏡2を通して撮影された被検体の画像を画像処理してモニタ24に表示する。
 なお、立体内視鏡2のユニバーサルコード13の延出端には、光源装置22と着脱自在に接続される光源コネクタ25が設けられている。
 この光源コネクタ25からは、ここでは2本の電気ケーブル26が延設され、これら電気ケーブル26の延出端のそれぞれに、ビデオプロセッサ21と着脱自在に接続される電気コネクタ27が設けられている。
 なお、立体内視鏡である立体内視鏡2の内部構成要素については、従来と同様であるため、それら構成要素についての詳細な説明を省略する。
 次に、本実施の形態の撮像装置10の構成について、以下に詳しく説明する。 
 図2に示すように、撮像装置10は、同一構成の2つの撮像部である第1の撮像ユニット30および第2の撮像ユニット50を備えている。
 第1の撮像ユニット30は、先端部14の先端面に配設された第1の観察窓31の後方に配設されている。また、第2の撮像ユニット50は、先端部14の先端面に配設された第2の観察窓51の後方に配設されている。
 即ち、本実施の形態の立体内視鏡2は、2つの第1の撮像ユニット30および第2の撮像ユニット50を備えた立体内視鏡である。なお、ここでは、第1の撮像ユニット30が右眼用観察像形成部を構成しており、第2の撮像ユニット50が左眼用観察像形成部を構成している。
 第1の撮像ユニット30および第2の撮像ユニット50のそれぞれは、第1の固定レンズ枠である前群レンズ枠32,52と、前群レンズ枠32,52に保持された対物光学系である前群レンズ33,53と、前群レンズ枠32,52に嵌合される第2の固定レンズ枠である後群レンズ枠34,54と、後群レンズ枠34,54に保持された対物光学系である前群レンズ35,55と、を備えている。
 そして、第1の撮像ユニット30および第2の撮像ユニット50のそれぞれには、後群レンズ枠34,54内で前後に進退移動する移動レンズ部である移動レンズ枠36,56が設けられ、移動レンズ枠36,56に対物光学系である移動レンズ37,57が保持されている。
 なお、第1の撮像ユニット30および第2の撮像ユニット50のそれぞれは、移動レンズ37,57を保持する移動レンズ枠36,56が前後に移動することで、光学特性を可変する、ここでは、テレ/ワイドの画角変更が行える構成となっている。
 また、後群レンズ枠34,54の後方には、撮像素子保持枠38,58が嵌合され、撮像素子保持枠38,58に保持された透明ガラス39,59にCCD,CMOSなどの撮像素子40,60がカバーガラス41,61を介して固着されている。
 撮像素子40,60には、電子部品などを搭載した撮像素子基板42,62が電気的に接続され、撮像素子基板42,62に複数の配線が接続され、複数の配線が纏められた撮像ケーブル43,63が後方に延設されている。
 なお、撮像ケーブル43,63は、挿入部11、操作部12、ユニバーサルコード13および光源コネクタ25内に配設され、2本の電気ケーブル26に設けられた電気コネクタ27に接続されている。
 また、撮像素子保持枠38,58の後方には、補強枠44,64が嵌合され、補強枠44と共に撮像ケーブル43,63の先端部分を被覆するように熱収縮チューブ45,65が設けられている。
 なお、補強枠44,64内には、撮像素子40,60、撮像素子基板42,62などを保護するための接着剤などの充填剤が配設される。
 ところで、本実施の形態の第1の撮像ユニット30および第2の撮像ユニット50のそれぞれには、移動レンズ枠36,56を前後に進退駆動する画角変更部であるアクチュエータ71,72が設けられている。
 ここでのアクチュエータ71,72は、形状記憶合金(SMA)ワイヤ46,66およびバネ部材47,67を用いて、移動レンズ枠36,56を駆動する。
 形状記憶合金(SMA)ワイヤ46,66の先端は、移動レンズ枠36,56から外径方向に延出する棒状の接続体36a,56aの先端に設けられたブロック体48,68に接続されている。
 なお、後群レンズ枠34,54には、接続体36a,56aを直進ガイドすると共に、外径方向に延出させるためのスリット34a,54aが形成されている。
 そして、形状記憶合金(SMA)ワイヤ46,66は、後方に延設されて、撮像素子保持枠38,58に設けられたバネ受49,69に挿通される。バネ受49,69には、絶縁チューブ49a,69aが接続されており、形状記憶合金(SMA)ワイヤ46,66が絶縁チューブ49a,69a内に配設される。
 また、バネ部材47,67は、形状記憶合金(SMA)ワイヤ46,66を外挿して、ブロック体48,68とバネ受49,69の間に配設されている。そして、バネ部材47,67は、ブロック体48,68を前方に付勢している。
 なお、形状記憶合金(SMA)ワイヤ46,66は、ここでは図示しないが絶縁チューブ49a,69aの基端で固定されている。
 そして、形状記憶合金(SMA)ワイヤ46,66は、例えば、加熱時に収縮され、且つ、冷却時に伸張するよう設定されており、絶縁チューブ49a,69a内において伸縮可能な状態にて保持されている。
 また、形状記憶合金(SMA)ワイヤ46,66には、図示しないペルチェ素子等の熱源が併設されている。この熱源は、操作部12に設けられたボタン類18のうちの共通の画角変更スイッチの操作に応じて、形状記憶合金(SMA)ワイヤ46,66を加熱或いは冷却することが可能となっている。
 即ち、撮像装置10の2つのアクチュエータ71,72は、ボタン類18のうちの共通の画角変更スイッチ操作に応じて、同期して駆動して、第1の撮像ユニット30および第2の撮像ユニット50のそれぞれに設けられる2つの移動レンズ枠36,56が同期して前後に進退移動する構成となっている。
 なお、形状記憶合金(SMA)ワイヤ46,66は、ペルチェ素子等の熱源を用いた加熱或いは冷却によって伸縮させる方式のものに限定されることなく、例えば、通電によって形状記憶合金を加熱し、収縮させる方式などを採用することも可能である。
 即ち、第1の撮像ユニット30および第2の撮像ユニット50は、それぞれのアクチュエータ71,72の形状記憶合金(SMA)ワイヤ46,66が加熱されて収縮することで、バネ部材47,67の付勢力に抗して、ブロック体48,68が後方に引っ張られる。
 第1の撮像ユニット30および第2の撮像ユニット50は、それぞれのアクチュエータ71,72の形状記憶合金(SMA)ワイヤ46,66が冷却して伸長することで、バネ部材47,67の付勢力を受けたブロック体48,68が前方に押し出される。
 これにより、第1の撮像ユニット30および第2の撮像ユニット50は、それぞれのブロック体48,68に接続体36a,56aを介して接続された移動レンズ枠36,56が前後に移動することで、テレおよびワイドに画角を変更することができる。
 なお、テレ/ワイドの画角を変更する移動レンズ枠36,56の前後の位置は、撮像装置10の第1の撮像ユニット30および第2の撮像ユニット50のレンズ設計により決定されるもので特に限定されるものではない。
 このように、本実施の形態の立体内視鏡である立体内視鏡2は、第1の撮像ユニット30および第2の撮像ユニット50の2つ撮像部を備えた撮像装置10によって取得する3D画像の画角をユーザが所望に調整したり、変更したりすることができる。
 例えば、被検体の立体感を小さく(弱く)したい場合には、画角を小さくしてモニタ24に映し出される被写体を大きく表示するテレ側で観察することができる。
 このとき、ユーザは、被検体から立体内視鏡2の先端部14を遠ざけるなどして、モニタ24に映し出される被検体を所望の大きさに調整することができ、3D画像の立体感が小さくなることで、被検体を処置する処置具などの圧迫感を低減することができ作業性が向上する。
 一方、例えば、被検体の立体感を大きく(強く)したい場合には、画角を大きくしてモニタ24に映し出される被写体を小さく表示するワイド側で観察することもできる。
 このとき、ユーザは被検体から立体内視鏡2の先端部を近づけるなどして、モニタ24に映し出される被検体を所望の大きさに調整することができ、3D画像の立体感が大きく(強く)なることで、特に、立体内視鏡2の先端部14と被検体の距離が比較的遠いときに、被検体がより立体的にモニタ24に映し出されたほうが、検査治療が行い易くなり、作業性が向上する。
 以上に説明したように、本実施の形態の立体内視鏡2は、取得する被検体像の画角変更が行える第1の撮像ユニット30および第2の撮像ユニット50の2つ撮像部を有する撮像装置10を備えることで、ユーザが3D画像を所望の立体感に調整および変更でき、被検体に対する検査、処置などの作業性を向上させることができる構成となる。
 なお、撮像装置10は、第1の撮像ユニット30および第2の撮像ユニット50の2つのアクチュエータ71,72によって、2つの移動レンズ枠36,56が同期して前後に進退移動することで、画角変更だけでなくピント調整の光学特性を可変する構成としてもよい。
(第1の変形例)
 図3は、第1の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図である。 
 撮像装置10は、図3に示すように、第1の撮像ユニット30および第2の撮像ユニット50の移動レンズ枠36,56を1つのアクチュエータ71によって前後に進退移動する構成としてもよい。
 具体的には、本変形例の撮像装置10は、第1の撮像ユニット30の移動レンズ枠36と、第2の撮像ユニット50の移動レンズ枠56と、を連結する棒状の連結部材73を設け、この連結部材73を直進ガイドすると共に、外径方向に延出させるためのスリット34bが第1の撮像ユニット30の後群レンズ枠34に形成されている。
 なお、連結部材73は、第2の撮像ユニット50の移動レンズ枠56に接続され、第2の撮像ユニット50の後群レンズ枠54のスリット54aを介して外径方向に延出し、第1の撮像ユニット30の後群レンズ枠34と接続される。
 このように構成された本変形例の撮像装置10は、1つのアクチュエータ71によって第1の撮像ユニット30の移動レンズ枠36および第2の撮像ユニット50の移動レンズ枠56を前後に進退移動させることができる。
 これにより、撮像装置10は、第1の撮像ユニット30の移動レンズ枠36および第2の撮像ユニット50の移動レンズ枠56の前後の変位量が常に一定となるため、取得する被検体像の画角変更が安定して行える構成となる。
(第2の変形例)
 図4は、第2の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図である。 
 撮像装置10は、図4に示すように、2つの移動光学系である移動レンズ37,57を備えて、後群レンズ枠34,54に1つの撮像素子保持枠38が嵌合して、1つの撮像素子40によって、2つの画像を取得する構成としてもよい。
 なお、図4においては、2つのアクチュエータ71,72によって、2つの移動レンズ枠36,56を前後に進退移動する構成を図示しているが、これに限定されることなく、第1の変形例に例示したように、1つのアクチュエータ71によって2つの移動レンズ枠36,56を前後に進退移動させる構成としてもよい。
(第3の変形例)
 図5は、第3の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図である。 
 撮像装置10は、図5に示すように、1つの移動光学系である移動レンズ37のみを備えて、2つの撮像素子40,60によって、2つの画像を取得する構成としてもよい。
 なお、本変形例の撮像装置10は、撮像素子保持枠38の透明ガラス39の後方にプリズムユニット75を設けて、このプリズムユニット75によって2つの被検体像が2つの撮像素子40,60に入射するように構成されている。
 このように、本変形例の撮像装置10は、1つの移動レンズ枠36によって取得する被検体像の画角変更を行うため、取得する右眼用の被検体像と左眼用の被検体像の画角ズレを防止できる。
(第4の変形例)
 図6は、第4の変形例に係り、先端部に内蔵される撮像装置の構成を示す断面図である。 
 撮像装置10は、図6に示すように、1つの移動光学系である移動レンズ37のみを備えて、1つの撮像素子40によって、2つの画像を取得する構成としてもよい。
 なお、本変形例の撮像装置10も、撮像素子保持枠38の透明ガラス39の後方にプリズムユニット75を設けて、このプリズムユニット75によって2つの被検体像を1つの撮像素子40に入射するように構成されている。
 本変形例の撮像装置10も、第3の変形例と同様に、1つの移動レンズ枠36によって取得する被検体像の画角変更を行うため、取得する右眼用の被検体像と左眼用の被検体像の画角ズレを防止できる。
(第2の実施の形態)
 次に、本発明の第2の実施の形態について説明する。図7は、立体内視鏡システムにおける主に立体内視鏡およびビデオプロセッサの制御構成を示すブロック図である。
 なお、本実施の形態では、上述の第1の実施の形態に記載した各構成要素について、同一の符号を用いて、それらの構成要素の詳細な説明を省略する。
 本実施の形態の立体内視鏡2の先端部14に内蔵される撮像装置10は、図7に示すように、第1の撮像ユニット30および第2の撮像ユニット50のそれぞれに、移動レンズ37,57を保持する移動レンズ枠36,56の位置を検出する位置検出部としての位置検出センサ76,77が配設されている。
 なお、位置検出センサ76,77は、移動レンズ枠36,56の近傍に設けられ、ポテンショメータ、エンコーダ、長手位置検出センサなどの移動レンズ枠位置検出部である。
 立体内視鏡システム1は、立体内視鏡2が接続されるビデオプロセッサ21に撮像装置10の第1の撮像ユニット30および第2の撮像ユニット50を駆動制御する制御部80が設けられている。
 また、ビデオプロセッサ21には、第1の撮像ユニット30のアクチュエータ71を駆動する第1の駆動回路81と、第1の撮像ユニット30の撮像素子40からの撮像信号が入力される第1の画像生成回路82と、第1の撮像ユニット30の位置検出センサ76からの検出信号が入力される第1の位置検出回路83と、が設けられている。
 さらに、ビデオプロセッサ21には、第2の撮像ユニット50のアクチュエータ72を駆動する第2の駆動回路91と、第2の撮像ユニット50の撮像素子60からの撮像信号が入力される第2の画像生成回路92と、第2の撮像ユニット50の位置検出センサ77からの検出信号が入力される第2の位置検出回路93と、が設けられている。
 そして、ビデオプロセッサ21は、第1の画像生成回路82および第2の画像生成回路92から2つの画像が入力されて、これら2つの画像を合成して3D画像を生成する3D画像生成回路85が内蔵されており、この3D画像生成回路85から3D画像の映像信号が制御部80を介してモニタ24に出力される。こうして、撮像装置10によって撮影された被検体の3D画像がモニタ24に表示される。
 制御部80には、第1の位置検出回路83および第2の位置検出回路93から第1の撮像ユニット30の移動レンズ枠36および第2の撮像ユニット50の移動レンズ枠56の位置情報が入力される。
 そして、制御部80は、各移動レンズ枠36,56の位置情報に基づいて、第1の駆動回路81および第2の駆動回路91を制御して、各アクチュエータ71,72を駆動させる。なお、ここでは図示しないが、制御部80には、操作部12に設けられた画角変更スイッチから信号が入力され、その信号に基いた制御信号を第1の駆動回路81および第2の駆動回路91に出力する。
 このように、ビデオプロセッサ21の制御部80は、各アクチュエータ71,72を駆動制御して、第1の撮像ユニット30の移動レンズ枠36および第2の撮像ユニット50の移動レンズ枠56を前後に移動させるとき、位置検出センサ76,77により検出された第1の位置検出回路83および第2の位置検出回路93から入力された各移動レンズ枠36,56の位置情報に基いて、それぞれの位置の差分を算出して、その差分を補正して各移動レンズ枠36,56の前後の移動位置(撮影光軸に沿った方向の前後位置)が一致するように第1の駆動回路81および第2の駆動回路91に制御信号を出力する。
 そして、第1の駆動回路81および第2の駆動回路91は、制御部80からの制御信号に基いて、各アクチュエータ71,72を駆動させて、各移動レンズ枠36,56を駆動する。
 このように、本実施の形態の立体内視鏡システム1は、ビデオプロセッサ21によって、左眼用または右眼用の第1の撮像ユニット30の移動レンズ枠36と第2の撮像ユニット50の移動レンズ枠56の位置情報からそれぞれの位置の差分を算出して、各移動レンズ枠36,56の移動位置が一致するように補正する制御を行う。
 これにより、立体内視鏡システム1は、第1の実施の形態に記載の作用効果に加え、撮像装置10の第1の撮像ユニット30および第2の撮像ユニット50によって取得する被検体像の画角が常に一致した3D画像を生成することができる。
 なお、本実施の形態では、2つの撮像素子40,60を有する撮像装置10を例示しているが、1つの撮像素子によって2つの被検体像を取得して3D画像を生成する立体内視鏡システム1にも適用することがきる。
(変形例)
 図8は、変形例の立体内視鏡システムにおける主に立体内視鏡およびビデオプロセッサの制御構成を示すブロック図である。
 なお、立体内視鏡システム1は、図8に示すように、立体内視鏡2の撮像装置10側に位置検出センサ76,77を設けなくても、ビデオプロセッサ21に第1の撮像ユニット30および第2の撮像ユニット50によって取得した2つの被検体像の複数の特徴点を検出して各移動レンズ枠36,56の移動位置を補正する制御を行うようにしてもよい。
 具体的には、ビデオプロセッサ21には、3D画像生成回路85からの画像信号が入力される画像ズレ検知部としての画像ズレ検知回路86が設けられ、画像ズレ検知回路86からの補正信号が制御部80に入力される。
 画像ズレ検知回路86は、例えば、3D画像生成回路85からの3D画像から第1の撮像ユニット30および第2の撮像ユニット50によって取得した2つの被検体の画像の大きさ、または位置の差分を算出して、その差分を補正した各移動レンズ枠36,56の前後の移動位置(撮影光軸に沿った方向の前後位置)が一致させるための位置補正指示信号を制御部80に出力する。
 そして、制御部80は、画像ズレ検知回路86からの位置補正指示信号に基づき、各移動レンズ枠36,56の前後の移動位置(撮影光軸に沿った方向の前後位置)が一致するように第1の駆動回路81および第2の駆動回路91に制御信号を出力する。
 そして、第1の駆動回路81および第2の駆動回路91は、制御部80からの制御信号に基いて、各アクチュエータ71,72を駆動させて、各移動レンズ枠36,56を駆動する。
 このように、本実施の形態の立体内視鏡システム1は、ビデオプロセッサ21によって、左眼用または右眼用の第1の撮像ユニット30と第2の撮像ユニット50が取得した被検体像から、各移動レンズ枠36,56の位置の差分を算出して、各移動レンズ枠36,56の移動位置が一致するように補正する制御を行う。
 このような構成としても、立体内視鏡システム1は、撮像装置10の第1の撮像ユニット30および第2の撮像ユニット50によって取得する被検体像の画角が常に一致した3D画像を生成することができる。
 なお、本変形例においても、2つの撮像素子40,60を有する撮像装置10を例示しているが、1つの撮像素子によって2つの被検体像を取得して3D画像を生成する立体内視鏡システム1にも適用することがきる。
 以上の各実施の形態に記載した発明は、それら実施の形態および変形例に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施の形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得るものである。
 例えば、実施の形態に示される全構成要件から幾つかの構成要件が削除されても、述べられている課題が解決でき、述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得るものである。
 本発明によれば、ユーザが3D画像を所望の立体感に調整および変更でき、被検体に対する検査、処置などの作業性が向上する内視鏡用の撮像装置、立体内視鏡および立体内視鏡システムを提供できる。
 本出願は、2016年2月12日に日本国に出願された特願2016-024842号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (12)

  1.  対物光学系と、
     2つの被検体像を撮像する少なくとも1つの撮像素子と、
     前記2つ被写体像の光学特性を変更する少なくとも1つの移動レンズ部と、
     前記移動レンズ部を駆動する少なくとも1つのアクチュエータと、
     を具備することを特徴とする撮像装置。
  2.  2つの前記撮像素子を備えたことを特徴とする請求項1に記載の撮像装置。
  3.  2つの前記移動レンズ部を備えたことを特徴とする請求項2に記載の撮像装置。
  4.  2つの前記アクチュエータを備えたことを特徴とする請求項3に記載の撮像装置。
  5.  1つの前記アクチュエータと、
     2つの前記移動レンズ部を連結する連結部と、
     を備えたことを特徴とする請求項3に記載の撮像装置。
  6.  1つの前記撮像素子と、
     2つの前記移動レンズ部と、
     を備えたことを特徴とする請求項1に記載の撮像装置。
  7.  2つの前記アクチュエータを備えたことを特徴とする請求項6に記載の撮像装置。
  8.  1つの前記アクチュエータと、
     2つの前記移動レンズ部を連結する連結部と、
     を備えたことを特徴とする請求項6に記載の撮像装置。
  9.  2つの前記撮像素子と、
     1つの前記移動レンズ部と、
     を備えたことを特徴とする請求項1に記載の撮像装置。
  10.  請求項1から請求項8のいずれか1項に記載の撮像装置と、
     前記撮像装置が内蔵される先端部を有する挿入部と、
     を具備することを特徴とする立体内視鏡。
  11.  対物光学系と、
     2つの被検体像を撮像する少なくとも1つの撮像素子と、
     前記2つ被写体像の光学特性を変更する2つの移動レンズ部と、
     前記移動レンズ部を駆動する少なくとも2つのアクチュエータと、
     を備えた撮像装置と、
     前記撮像装置が内蔵される先端部を有する挿入部を備えた立体内視鏡と、
     前記2つの移動レンズ部の位置を検出する位置検出部と、
     前記位置検出部の検出信号が入力されて、前記2つの移動レンズ部の位置の差分を算出し、前記2つの移動レンズ部の位置を補正するように前記2つのアクチュエータを駆動制御する制御部と、
     を具備することを特徴とする立体内視鏡システム。
  12.  対物光学系と、
     2つの被検体像を撮像する少なくとも1つの撮像素子と、
     前記2つ被写体像の光学特性を変更する2つの移動レンズ部と、
     前記移動レンズ部を駆動する少なくとも2つのアクチュエータと、
     を備えた撮像装置と、
     前記撮像装置が内蔵される先端部を有する挿入部を備えた立体内視鏡と、
     前記撮像素子によって取得した前記2つの被検体像の画像の差分を算出し、前記2つのアクチュエータを駆動制御する制御部と、前記2つの移動レンズ部の位置を補正するように前記2つのアクチュエータを駆動制御する制御部と、
     を具備することを特徴とする立体内視鏡システム。
PCT/JP2016/078634 2016-02-12 2016-09-28 撮像装置、立体内視鏡および立体内視鏡システム WO2017138187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680079278.XA CN108471931A (zh) 2016-02-12 2016-09-28 摄像装置、立体内窥镜以及立体内窥镜系统
JP2017535116A JP6253857B1 (ja) 2016-02-12 2016-09-28 立体内視鏡および立体内視鏡システム
US16/038,233 US20180332271A1 (en) 2016-02-12 2018-07-18 Image pickup apparatus, three-dimensional endoscope and three-dimensional endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016024842 2016-02-12
JP2016-024842 2016-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/038,233 Continuation US20180332271A1 (en) 2016-02-12 2018-07-18 Image pickup apparatus, three-dimensional endoscope and three-dimensional endoscope system

Publications (1)

Publication Number Publication Date
WO2017138187A1 true WO2017138187A1 (ja) 2017-08-17

Family

ID=59562987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078634 WO2017138187A1 (ja) 2016-02-12 2016-09-28 撮像装置、立体内視鏡および立体内視鏡システム

Country Status (4)

Country Link
US (1) US20180332271A1 (ja)
JP (1) JP6253857B1 (ja)
CN (1) CN108471931A (ja)
WO (1) WO2017138187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246030A1 (ja) * 2019-06-07 2020-12-10 オリンパス株式会社 ステレオ撮像装置及び内視鏡

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109222862B (zh) * 2018-09-20 2021-02-19 深圳市精锋医疗科技有限公司 内窥镜、操作臂、从操作设备及手术机器人
CN109222860B (zh) * 2018-09-20 2021-09-24 深圳市精锋医疗科技有限公司 可调节内窥镜、操作臂、从操作设备及手术机器人
CN114296230A (zh) * 2021-12-03 2022-04-08 青岛奥美克医疗科技有限公司 双镜头校准调焦方法、三维图像适配器及内窥镜系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085330A (ja) * 2000-09-12 2002-03-26 Olympus Optical Co Ltd 立体視内視鏡装置
JP2003005314A (ja) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd 立体画像撮影用アダプタレンズ、立体画像撮影システム、及び電子カメラ
JP2003005313A (ja) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd 立体画像撮影装置
JP2012182746A (ja) * 2011-03-02 2012-09-20 Olympus Imaging Corp 画像処理装置、表示装置、撮像装置および画像処理プログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542679Y2 (ja) * 1975-01-21 1979-02-05
JP2975367B2 (ja) * 1987-08-28 1999-11-10 アジャックス・マグネサ−ミック・コ−ポレ−ション レールの熱処理方法および装置
JP3266772B2 (ja) * 1995-11-10 2002-03-18 富士写真光機株式会社 ズームレンズの駆動装置
JP3303254B2 (ja) * 1995-12-28 2002-07-15 富士写真光機株式会社 ズームレンズの駆動装置
JP3303255B2 (ja) * 1995-12-28 2002-07-15 富士写真光機株式会社 ズームレンズの駆動装置
JPH1127702A (ja) * 1997-07-01 1999-01-29 Nikon Corp 3d撮像装置用のレンズ制御装置
JP2002267919A (ja) * 2001-03-13 2002-09-18 Asahi Optical Co Ltd 双眼レンズ鏡筒
JP2003172868A (ja) * 2001-09-28 2003-06-20 Pentax Corp 自動合焦機構を備えた撮影機能付観察光学装置
JP4334846B2 (ja) * 2002-10-21 2009-09-30 オリンパス株式会社 立体内視鏡用撮像装置
WO2005082226A1 (ja) * 2004-02-27 2005-09-09 Olympus Corporation 内視鏡
JP2006251683A (ja) * 2005-03-14 2006-09-21 Fujinon Corp 立体画像撮影システム
EP2039931B1 (en) * 2007-09-18 2012-06-06 Olympus Medical Systems Corp. Actuator and image pickup device
JP5289870B2 (ja) * 2008-09-08 2013-09-11 オリンパスメディカルシステムズ株式会社 内視鏡用撮像ユニット
JP5564456B2 (ja) * 2011-03-22 2014-07-30 富士フイルム株式会社 レンズ制御システム
KR20130011141A (ko) * 2011-07-20 2013-01-30 삼성전자주식회사 내시경 및 내시경 시스템
DE102012202552B3 (de) * 2012-02-20 2013-07-11 Olympus Winter & Ibe Gmbh Videoendoskop mit verstellbarer Blickrichtung
JP5766150B2 (ja) * 2012-05-29 2015-08-19 国立大学法人東京工業大学 内視鏡操作システム
EP2821002B1 (en) * 2013-02-06 2016-06-22 Olympus Corporation Stereoscopic endoscope
CN105228511A (zh) * 2014-01-23 2016-01-06 奥林巴斯株式会社 外科用设备
JPWO2016158184A1 (ja) * 2015-03-31 2018-02-01 ソニー株式会社 医療用観察装置、レンズ駆動制御装置、レンズ駆動制御方法、プログラム、及びビデオ顕微鏡装置
US10451863B2 (en) * 2016-08-05 2019-10-22 Verily Life Sciences Llc Interposer for integration of multiple image sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085330A (ja) * 2000-09-12 2002-03-26 Olympus Optical Co Ltd 立体視内視鏡装置
JP2003005314A (ja) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd 立体画像撮影用アダプタレンズ、立体画像撮影システム、及び電子カメラ
JP2003005313A (ja) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd 立体画像撮影装置
JP2012182746A (ja) * 2011-03-02 2012-09-20 Olympus Imaging Corp 画像処理装置、表示装置、撮像装置および画像処理プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246030A1 (ja) * 2019-06-07 2020-12-10 オリンパス株式会社 ステレオ撮像装置及び内視鏡

Also Published As

Publication number Publication date
CN108471931A (zh) 2018-08-31
US20180332271A1 (en) 2018-11-15
JPWO2017138187A1 (ja) 2018-02-15
JP6253857B1 (ja) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5730339B2 (ja) 立体内視鏡装置
US7671888B2 (en) Stereoscopic-endoscope display control apparatus and stereoscopic endoscope system
KR100556232B1 (ko) 이격조절이 가능한 양안구조 복강경
JP3220538B2 (ja) 立体視内視鏡及び立体視内視鏡装置
JP6253857B1 (ja) 立体内視鏡および立体内視鏡システム
JP2013521941A (ja) 立体的可視化システム
EP3520395A1 (en) Optical systems for surgical probes, systems and methods incorporating the same, and methods for performing surgical procedures
JP6210874B2 (ja) 立体観察装置の調整治具及び立体観察システム
JP2018032014A (ja) ステレオビデオ内視鏡の光学系と、ステレオビデオ内視鏡とステレオビデオ内視鏡の光学系を操作するための方法
JP5946777B2 (ja) 立体撮像装置
JP3816599B2 (ja) 体腔内処置観察システム
CN107405049B (zh) 立体内窥镜装置
JP2014175965A (ja) 手術用カメラ
JPH06261860A (ja) 内視鏡の映像表示装置
WO2015111260A1 (ja) 外科用デバイス
JP5989283B1 (ja) 撮像システム及び信号処理装置
WO2020246030A1 (ja) ステレオ撮像装置及び内視鏡
JP3802912B2 (ja) 撮像装置
JP4246510B2 (ja) 立体内視鏡システム
WO2021176717A1 (ja) 内視鏡装置、内視鏡画像用プロセッサ、内視鏡画像の生成方法
EP4205691A1 (en) Medical image processing device and medical observation system
JP7045482B2 (ja) 光学装置および内視鏡
JP2019050508A (ja) 立体視撮像装置および立体視内視鏡
WO2019107359A1 (ja) 撮像装置
JP2014106300A (ja) 医療用観察装置、そのフォーカス制御方法及びそのフォーカス制御プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017535116

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889888

Country of ref document: EP

Kind code of ref document: A1