WO2017135147A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017135147A1
WO2017135147A1 PCT/JP2017/002725 JP2017002725W WO2017135147A1 WO 2017135147 A1 WO2017135147 A1 WO 2017135147A1 JP 2017002725 W JP2017002725 W JP 2017002725W WO 2017135147 A1 WO2017135147 A1 WO 2017135147A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
arm
switch
command value
Prior art date
Application number
PCT/JP2017/002725
Other languages
English (en)
French (fr)
Inventor
隆太 長谷川
大地 鈴木
崇 藤田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP17747305.5A priority Critical patent/EP3413456B1/en
Publication of WO2017135147A1 publication Critical patent/WO2017135147A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • Embodiments of the present invention relate to a power conversion device that is installed between a DC power source and an AC power system and converts AC and DC to each other.
  • DC power transmission requires a power converter such as a converter that converts the generated AC power into DC for DC power transmission and an inverter that converts the transmitted DC power into city AC.
  • a power converter such as a converter that converts the generated AC power into DC for DC power transmission and an inverter that converts the transmitted DC power into city AC.
  • MMC Modular Multilevel Converter
  • the MMC is provided between the DC power supply and the AC power system, and has a three-phase arm.
  • the three-phase phase arm is formed by connecting chopper cells in series.
  • the three-phase phase arms are connected in parallel and are always connected to the DC power source.
  • Each phase arm is divided into an upper arm and a lower arm, that is, a group of chopper cells connected in series is divided into two groups, and an output terminal to an AC power system is provided between the upper arm and the lower arm. .
  • MMC needs to correct the voltage imbalance between the three-phase arm, upper arm and lower arm, and between each chopper cell, which is caused by variations in operating conditions and parts. Therefore, in the conventional MMC, many methods for correcting various voltage imbalances have been proposed. For example, a voltage imbalance between the upper arm and the lower arm can be corrected by supplying a circulating current to each of the three phases and manipulating these circulating currents.
  • the voltage difference between the upper arm and lower arm is broken down into zero phase, positive phase, and reverse phase, and each voltage difference is corrected by operating three types of circulating currents. Since the three phases of the MMC are always connected in parallel, three types of circulating currents can flow using these three types of paths, and the three types of circulating currents can be used to correct the zero-phase voltage difference and the positive phase voltage. If the roles are divided into the difference correction part and the negative phase voltage difference correction part, it becomes easy to correct the voltage difference between the upper arm and the lower arm.
  • NPC-MMC neutral-point-clamped modular multilevel converter
  • a self-excited switch such as an IGBT is connected in series with a chopper cell.
  • a switch is connected to both ends of a three-phase phase arm, and the three-phase phase arm is connected to a DC power source via the switch.
  • two switches are connected in series between the switches at both ends, and these two switches are connected in parallel with the phase arm.
  • a neutral point is provided between the two switches, and the neutral point of each phase is connected.
  • NPC-MMC the power converter called NPC-MMC can halve the number of chopper cells compared to the conventional MMC that had to balance the voltage of the arm of each phase with the voltage of the DC power supply, and the installation space of the equipment was reduced. The switching efficiency is reduced and the conversion efficiency is improved.
  • the power converter called NPC-MMC can create only one path of circulating current that passes through the positive and negative sides of the DC power supply.
  • the circulation current path has only a path that is input from one single phase and output from two parallel phases, or a path that is input from two parallel phases and output from one single phase. For this reason, the conventional MMC method that eliminates the voltage difference between the zero phase, the positive phase, and the reverse phase by three types of circulating currents cannot be taken. That is, a method for controlling various voltage balances has not been established in a power conversion device called NPC-MMC.
  • an object of the embodiment of the present invention is to provide a power conversion device capable of controlling the balance of the capacitor voltage of the chopper cell in a power conversion device called NPC-MMC.
  • a power conversion device is a power conversion device that is provided between a DC power supply and an AC power system and converts AC and DC to each other, and includes a plurality of chopper cells.
  • FIG. 1 is a configuration diagram of a power conversion apparatus according to the present embodiment.
  • FIG. 2 is a configuration diagram of a chopper cell included in the power conversion device.
  • the power converter 1 is a neutral-point clamped modular multilevel converter (NPC-MMC) included in a high-voltage DC power transmission system.
  • the power converter 1 is installed between the DC power supply 100 and the AC power system 200.
  • the power conversion device 1 converts an input DC voltage v_dc of the DC power supply 100 into a three-phase AC voltage v_ac, and outputs AC power to the AC power system 200 via a three-phase transformer 201.
  • the reference potential is defined at the midpoint of the input DC voltage v_dc.
  • the power conversion device 1 includes a phase arm 2 that generates AC voltages v_ac of U phase, V phase, and W phase.
  • Each phase arm 2 has both ends connected to the first switch 41 and the fourth switch 44, and is connected to the DC power supply 100 via the first switch 41 and the fourth switch 44.
  • Each phase arm 2 is formed by connecting a plurality of chopper cells 3 in series.
  • the chopper cell 3 is formed by connecting a leg in which a switch 31 and a switch 32 are connected in series, and a DC capacitor 33 in parallel.
  • the switches 31 and 32 are reverse conducting switches, and are configured by connecting feedback diodes 34 to the switching elements of the switches 31 and 32 in antiparallel.
  • the switching element is, for example, an IGBT or a MOSFET that allows a current to flow in one direction when turned on, and has a self-extinguishing capability.
  • each phase arm 2 the chopper cell 3 is separated into an upper arm 21 and a lower arm 22.
  • the upper arm 21 is a group of three chopper cells connected to the positive side when viewed from the DC power source 100.
  • the lower arm 22 is a group of chopper cells 3 connected to the negative side when viewed from the DC power supply 100.
  • the phase arm 2 includes an output terminal 23 between the upper arm 21 and the lower arm 22, and outputs AC power from the output terminal 23 to the AC power system 200 via the three-phase transformer 201.
  • the phase arm 2 composed of the upper arm 21 and the lower arm 22 converts the DC voltage into a stepped AC voltage v_ac using the chopper cell 3 as a unit converter, and outputs it to the AC power system 200 from the output terminal 23.
  • the number of chopper cells 3 in each phase arm 2 is determined by the input DC voltage v_dc and the capacitor voltage v_ch of the chopper cell, and is approximately (v_dc / 2) / v_ch. In the present embodiment, the number of chopper cells 3 is three.
  • the power conversion device 1 further includes a valve 4 having the first switch 41 and the fourth switch 44 as constituent elements in each phase.
  • the valve 4 includes a second switch 42 and a third switch 43 in addition to the first switch 41 and the fourth switch 44, and the first to fourth switches 41 to 44 are connected in series.
  • the second switch 42 and the third switch 43 are connected in series between the first switch 41 and the fourth switch 44, and are connected in parallel with the phase arm 2.
  • the valve 4 switches the connection relationship of the phase arms 2 for each voltage phase angle of 60 degrees by turning on and off the first to fourth switches 41 to 44.
  • 4th switch 41, 42, 43, and 44 are reverse conduction switches, and it is comprised by connecting a feedback diode to a switching element in antiparallel.
  • the switching element is, for example, an IGBT or a MOSFET that allows a current to flow in one direction when turned on, and has a self-extinguishing capability.
  • the withstand voltages of the first to fourth switches 41, 42, 43 and 44 are determined by the input DC voltage v_dc of the DC power supply 100.
  • An element to be used is determined in consideration of superposition of a surge voltage at the time of switching to a voltage of v_dc / 2 with respect to the input DC voltage v_dc.
  • the DC voltage reaches several tens of kV or more, it becomes difficult to provide a withstand voltage with one element, and it is necessary to connect a plurality of elements in series.
  • one element is included for one switch, but a plurality of elements may be connected in series in one switch.
  • the first switch 41 is connected to the positive side of the DC power supply 100 at the collector and connected to the collector of the upper arm 21 at the emitter.
  • the fourth switch 44 has an emitter connected to the negative side of the DC power supply 100 and a collector connected to the emitter of the lower arm 22.
  • the collector of the second switch 42 is connected to the emitter of the first switch 41 connected to the upper arm 21, and the emitter of the third switch 43 is connected to the lower arm 22.
  • the collector of the fourth switch 44 is connected.
  • a neutral point 5 is provided between the U-phase second switch 42 and the third switch 43, and a neutral point 5 is provided between the V-phase second switch 42 and the third switch 43.
  • a neutral point 5 is provided between the W-phase second switch 42 and the third switch 43, and the neutral points 5 of the U-phase, V-phase, and W-phase are connected to each other.
  • the power conversion device 1 connects one phase and the other two phases in series, and connects the other two phases in parallel for each voltage phase of 60 degrees in various combinations. And replace single phase with positive side or negative side.
  • the U-phase voltage phase is ⁇ / 3 to 2 ⁇ / 3
  • the V-phase and W-phase arm 2 are connected in parallel and connected in parallel.
  • Phase arm 2 and U-phase phase arm 2 are connected in series
  • V-phase and W-phase phase arm 2 are connected to the negative side of DC power supply 100
  • U-phase phase arm 2 is connected to the positive side of DC power supply 100 To do.
  • the circuit of this connection mode is realized by the following switch on / off in the valve 4. That is, the U-phase first switch 41 and the third switch 43 are turned on, the V-phase second switch 42 and the fourth switch 44 are turned on, and the W-phase second switch 42 and the fourth switch 44 are turned on. .
  • the phase arm 2 of V phase and W phase is connected in parallel with the DC power source 100.
  • the phase arm 2 and the U phase arm 2 connected in parallel are connected in series, the V and W phase arms 2 are connected to the positive side of the DC power supply 100, and the U phase arm 2 is connected to the DC power supply. Connect to the negative side of 100.
  • the circuit of this connection mode is realized by the following switch on / off in the valve 4. That is, the valve 4 turns on the V-phase first switch 41 and the third switch 43, turns on the W-phase first switch 41 and the third switch 43, and turns on the U-phase second switch 42 and the fourth switch 44. Turn on.
  • each phase arm 2 is connected via a buffer reactor 7 provided between the neutral points 5 of each other, and suppresses an increase in current during a short circuit.
  • a circulating current between PN flows between the DC power source 100 and the power converter 1, as shown in FIG.
  • the inter-PN circulating current is a current that passes through the circuit formed in the power converter 1 from the positive side to the negative side of the DC power supply 100.
  • an interphase circulating current flows between the two-phase phase arms 2 connected in parallel.
  • the interphase circulating DC current is a current circulating through the two-phase phase arms 2 connected in parallel.
  • the power conversion device 1 includes a control unit 6 that controls the chopper cell 3 of each phase arm 2 and the first to fourth switches 41, 42, 43, and 44 of each phase.
  • the control unit 6 is a so-called computer or a dedicated electric circuit that calculates and controls according to a program.
  • the CPU calculates in accordance with a program stored in the ROM, and a drive circuit for the chopper cell 3 of each phase arm 2 and the first to fourth switches 41, 42, 43 and 44 of each phase according to the calculation result.
  • the controller 6 receives the current and voltage values detected by the upper arm 21 and the lower arm 22 by a current detector and a voltage detector (not shown), calculates the current value and the voltage value as parameters, The calculation result is used for voltage control.
  • the control unit 6 includes an upper and lower arm balance control unit 61 and an interphase balance control unit 62.
  • the upper and lower arm balance control unit 61 applies a circulating current between PNs on which alternating currents of two types of frequencies are superimposed, and operates the circulating current between the PNs on which the alternating currents are superimposed. Are the same.
  • the alternating current superimposed on the circulating current between PNs is sufficiently small with respect to the direct current component, and the electric power based on this alternating current is Ipn ⁇ sin ( ⁇ t ⁇ e) ⁇ v_dc. Does not affect power.
  • the interphase balance control part 62 makes the voltage between phases the same by operating a direct current interphase circulating current.
  • the upper and lower arm balance control unit 61 sets the voltage imbalance between the upper arm 21 and the lower arm 22 as a pair for the positive phase and the reverse phase (hereinafter simply referred to as the positive phase portion). This is resolved by dividing each of the positive phase component and the zero phase component to zero by alternating currents of two types of frequencies. Further, the upper and lower arm balance control unit 61 that operates the inter-PN circulating current calculates the DC component command value i_pn0 * so that the DC component of the inter-PN circulating current is constant.
  • the upper and lower arm balance control unit 61 calculates a 1 ⁇ frequency component command value i_pn1 * for making the voltage difference positive phase component zero.
  • the 1-times frequency component command value i_pn1 * is a command value of the AC component of the circulating current between PN corresponding to a frequency that is 1 time the output AC voltage v_ac output to the AC power system 200.
  • the upper and lower arm balance control unit 61 calculates a triple frequency component command value i_pn3 * for making the voltage difference zero phase component zero.
  • the triple frequency component command value i_pn3 * is an alternating current component of the inter-PN circulating current corresponding to a frequency three times the output alternating voltage v_ac output to the alternating current power system 200.
  • the upper / lower arm balance control unit 61 calculates the inter-PN circulating current command value i_pn * by adding the DC component command value i_pn0 *, the 1 ⁇ frequency component command value i_pn1 *, and the 3 ⁇ frequency component i_pn3 *. Further, the upper and lower arm balance control unit 61 calculates the inter-PN circulating current i_pn and performs proportional-integral control that causes the inter-PN circulating current i_pn to follow the inter-PN circulating current command value i_pn *. Get v_pn *.
  • the inter-PN voltage command value v_pn * is a command value of a voltage from the positive side end to the negative side end of the power conversion device 1.
  • the upper and lower arm balance control unit 61 calculates the voltage difference positive phase component v_ch_y_a between the upper arm 21 and the lower arm 22 when calculating the 1 ⁇ frequency component command value i_pn1 * and the 3 ⁇ frequency component command value i_pn3 *.
  • v_ch_y_b and voltage difference zero phase component v_ch_y_z are used as parameters.
  • the upper and lower arm balance control unit 61 calculates the voltage difference between the upper arm 21 and the lower arm 22 by subtracting the average value of the capacitor voltage of the upper arm 21 from the average value of the capacitor voltage of the lower arm 22, and calculates the voltage of each phase.
  • the differences v_ch_y_u, v_ch_y_v, and v_ch_y_w are three-phase / abz transformed to obtain voltage difference positive phase components v_ch_y_a, v_ch_y_b between the upper arm 21 and the lower arm 22 and a voltage difference zero-phase component v_ch_y_z.
  • the voltage difference v_ch_y_u between the upper arm 21 and the lower arm 22 is obtained by subtracting the average value v_ch_up of the capacitor voltage of the upper arm 21 from the average value v_ch_un of the capacitor voltage of the lower arm 22.
  • FIG. 6 is a control block diagram of voltage control in which the positive phase difference of the voltage difference between the upper arm 21 and the lower arm 22 is made zero after the three-phase / abz conversion.
  • the upper and lower arm balance control unit 61 passes the voltage difference positive phase components v_ch_y_a and v_ch_y_b between the upper arm 21 and the lower arm 22 through a low-pass filter.
  • the low-pass filter removes the ripple of the output AC voltage frequency, that is, the ripple voltage component superimposed in principle on the voltage difference positive phase components v_ch_y_a and v_ch_y_b between the upper arm 21 and the lower arm 22.
  • the low-pass filter for example, a moving average filter or a first-order lag filter can be applied, but it is preferable that the time constant is designed so that the AC voltage frequency component becomes sufficiently small.
  • the upper and lower arm balance control unit 61 performs PI control so that the voltage difference positive phase components v_ch_y_a and v_ch_y_b after passing through the low-pass filter become zero, so that the amplitude command value i_amp_pn_a * of the a-phase circulating current between PN and The amplitude command value i_amp_pn_b * of the circulating current between b-phase PN is obtained.
  • the upper and lower arm balance control unit 61 multiplies the amplitude command value i_amp_pn_a * of the a-phase PN circulating current and the amplitude command value i_amp_pn_b * of the b-phase PN circulating current by a sine function of the output AC voltage,
  • the command value i_pn1_a * for the a-phase PN circulating current and the command value i_pn1_b * for the b-phase PN circulating current are obtained.
  • the sine function is sin ⁇ t for the amplitude command value i_amp_pn_a * of the a-phase PN circulating current, sin ( ⁇ t ⁇ / 2) for the amplitude command value i_amp_pn_b * of the b-phase PN circulating current, and the a phase and b
  • the phase of the phase is determined.
  • the sine function is exemplified by 1 times the output AC voltage frequency, but may be 6N ⁇ 1 (N is a natural number) times. In other words, in order to make the positive phase voltage difference zero, it is only necessary to operate the AC 6N ⁇ 1 times frequency component i_pn1 of the circulating current between PNs.
  • the upper and lower arm balance control unit 61 adds the command value i_pn1_a * of the a-phase circulating current between PN and the command value i_pn1_b * of the b-phase circulating current between PN, and multiplies the gain Gp to circulate between PNs.
  • a command value i_pn1 * of a current frequency component of 1 is calculated.
  • the gain Gp is a coefficient for adjusting control responsiveness.
  • the gain Gp take into account the modulation factor M so that the control response does not change even if the modulation factor M of the output AC voltage v_ac changes.
  • the modulation factor M of the output AC voltage v_ac is a ratio of the amplitude value v_amp of the output AC voltage v_ac to the DC voltage v_dc. This gain Gp is calculated by the following equation (1).
  • the gain Gp does not need to be changed according to the modulation factor M, but the sign of the gain Gp follows the sign of the right-hand side denominator of the above equation (1). That is, the gain Gp needs to be expressed by the following formula (2).
  • FIG. 7 is a control block diagram of voltage control for setting the zero phase difference between the upper arm 21 and the lower arm 22 to zero after the three-phase / abz conversion.
  • the upper and lower arm balance control unit 61 performs PI control so that the voltage difference zero-phase component v_ch_y_z of the upper arm 21 and the lower arm 22 becomes zero, so that the zero-phase circulating current between PNs Amplitude command value i_amp_pn_z * is obtained.
  • the upper and lower arm balance control unit 61 multiplies the amplitude command value i_amp_pn_z * of the zero-phase PN circulating current by a sine function having a frequency three times the output AC voltage frequency to thereby obtain the zero-phase PN circulating current.
  • Command value i_pn1_z * is obtained.
  • the sine function is 3 times the output AC voltage frequency as an example, but may be 3 ⁇ (2N ⁇ 1) (N is a natural number) times. That is, in order to make the zero-phase voltage difference zero, it is only necessary to operate the AC 3 ⁇ (2N ⁇ 1) times frequency component i_pn3 of the circulating current between PNs.
  • the upper / lower arm balance control unit 61 calculates the command value i_pn3 * of the triple frequency component of the inter-PN circulating current by multiplying the command value i_pn1_z * of the zero-phase inter-PN circulating current by the gain Gz.
  • the gain Gz preferably includes the modulation factor M so that the control response does not change even if the modulation factor M of the output AC voltage changes. This gain Gz is calculated by the following equation (3).
  • FIG. 8 is a detailed control block diagram for the DC component of the circulating current between PNs.
  • the upper and lower arm balance control unit 61 performs the PI control so that the difference between the DC voltage command value v_dc * and the DC voltage v_dc becomes zero, so that the DC component command of the circulating current between PNs. Calculate the value i_pn0 *.
  • the upper and lower arm balance controller 61 adds the DC component command value i_pn0 *, the AC 1-fold frequency component command value i_pn1 *, and the AC 3-fold frequency component command value i_pn3 * of the circulating current between PNs, The command value i_pn * is calculated. Then, the upper and lower arm balance control unit 61 calculates the inter-PN circulating current i_pn, and implements PI control so that the inter-PN circulating current i_pn follows the command value i_pn * of the inter-PN circulating current, whereby the inter-PN voltage A command value v_pn * is obtained.
  • the inter-PN circulating current i_pn is calculated by adding the currents i_dc_u, i_dc_v and i_dc_w of each phase arm 2 and further multiplying by 0.5.
  • the current i_dc_u of the U-phase arm 2 is calculated by adding the current i_u_n of the lower arm 22 and the current i_u_p of the upper arm 21 and multiplying by 0.5.
  • the current i_dc_v of the V-phase arm 2 is calculated by adding the current i_v_n of the lower arm 22 and the current i_v_p of the upper arm 21 and further multiplying by 0.5.
  • the current i_dc_w of the W-phase arm 2 is calculated by adding the current i_w_n of the lower arm 22 and the current i_w_p of the upper arm 21 and multiplying by 0.5. This is because the inter-PN circulating current flows to the phase arm 2 through the upper arm 21 and the lower arm 22.
  • the interphase balance control unit 62 suppresses a specific two-phase voltage difference every 60 degrees of voltage phase.
  • the specific two-phase is a pair that is connected in parallel and has the same polarity of the voltage command value. Since the two phases connected in parallel change every voltage phase of 60 degrees, the voltage balance between the three phases is achieved through a plurality of changes in the connection relationship.
  • This interphase balance control unit 62 suppresses the voltage difference by manipulating the interphase circulating DC current flowing between the specific two phases.
  • a first voltage control example by the interphase balance control unit 62 is shown in FIG. As shown in FIG. 10, the interphase balance control unit 62 calculates a circulating current command value between two phases that makes the voltage difference between two phases having the same polarity of the voltage command value zero, and the actual circulating current between the two phases is calculated.
  • the two-phase DC voltage command values for following the command value are derived.
  • the interphase balance control unit 62 subtracts 0.5 by averaging the average capacitor voltage v_ch_w of all the chopper cells 3 in the W phase and the average capacitor voltage v_ch_v of all the chopper cells 3 in the V phase. By multiplying and performing PI control so that the multiplication result becomes zero, the inter-phase circulating current command value i_dc_wv * between the WV phases is calculated.
  • the interphase balance control unit 62 calculates the interphase circulating current i_dc_wv between the WV phases by multiplying 0.5 by subtracting the interphase circulating current i_dc_w detected in the W phase and the interphase circulating current i_dc_v detected in the V phase. calculate.
  • the interphase balance control unit 62 performs the PI control so that the interphase circulating current i_dc_wv between the WV phases follows the interphase circulating current command value i_dc_wv * between the WV phases, thereby obtaining the DC voltage command value v_dc_w0 * of the W phase. calculate. Furthermore, the interphase balance control unit 62 calculates the V-phase DC voltage command value v_dc_v0 * by inverting the polarity of the W-phase DC voltage command value v_dc_w0 *.
  • the interphase balance control unit 62 sets the capacitor voltage difference between the V phase and the U phase to zero when the polarities of the voltage command values of the V phase and the U phase are the same.
  • the inter-phase circulating current command value i_dc_vu * between the two phases is calculated, and the two-phase DC voltage command values v_dc_u0 * and v_dc_v0 * for allowing the V-phase and U-phase circulating current i_dc_vu to follow the command value i_dc_vu * are PI Guide by control.
  • the interphase balance control unit 62 sets the capacitor voltage difference between the U phase and the W phase to zero when the polarities of the voltage command values of the U phase and the W phase are the same.
  • the interphase circulating current command value i_dc_uw * is calculated, and the two-phase DC voltage command values v_dc_u0 * and v_dc_w0 * for the actual U-phase and W-phase circulating current i_dc_uw to follow the command value i_dc_uw * are calculated. Guided by PI control.
  • FIG. 11 shows a second voltage control example by the interphase balance control unit 62.
  • the interphase balance control unit 62 may perform control to make the two-phase voltages connected in series in the circuit the same.
  • the input power to one can be increased and the input power to the other can be decreased, and the voltage difference is corrected in a direction in which the voltage difference between the two is balanced.
  • the total of the increased voltage and the decreased voltage is zero, the overall voltage between the positive side and the negative side of the power conversion device 1 does not change and does not affect the inter-PN circulating current.
  • the interphase balance control unit 62 performs proportional integration so that the difference between the U-phase capacitor voltage average value v_ch_u and the V-phase and W-phase capacitor voltage average values becomes zero.
  • the DC voltage command values v_dc_u0 *, v_dc_v0 *, and v_dc_w0 * of each phase that eliminate the voltage difference between the U phase and the V phase and the voltage difference between the U phase and the W phase are calculated.
  • the interphase balance control unit 62 adds the V-phase capacitor voltage average value V_ch_v and the W-phase capacitor voltage average value V_ch_w and multiplies them by 0.5 to obtain the V-phase and W capacitor voltage averages. Calculate the value. Then, the interphase balance control unit 62 subtracts the average voltage value of the V-phase and W-phase capacitors from the U-phase capacitor voltage average value V_ch_u, and multiplies the difference by 0.5, so that the multiplication result becomes zero. Proportional integral control is performed. The interphase balance control unit 62 further multiplies the result of proportional integral control by the gain Gpz.
  • the gain Gpz is a coefficient for adjusting control responsiveness.
  • the gain Gph is preferably designed so that the control response does not change due to the circulating current between the PNs.
  • the gain Gpz is the reciprocal of the absolute value of the current i_dc_u flowing through the U phase, as shown in the following formula (5).
  • the interphase balance control unit 62 calculates the DC voltage command value v_dc_u0 * of the U phase by multiplying the opposite polarity of the current i_dc_u of the U phase.
  • the interphase balance control unit 62 calculates the V-phase DC voltage command value v_dc_v_0 * and the W-phase DC voltage command value v_dc_w0 * by reversing the polarity of the U-phase DC voltage command value v_dc_u0 *.
  • the interphase balance control unit 62 is proportional so that the difference between the W-phase capacitor voltage average value v_ch_w and the U-phase and V-phase capacitor voltage average values is zero.
  • the DC voltage command values v_dc_u0 *, v_dc_v0 *, and v_dc_w0 * of each phase that eliminate the voltage difference between the W phase and the U phase and the voltage difference between the W phase and V are calculated.
  • the interphase balance control unit 62 performs proportional integration so that the difference between the V-phase capacitor voltage average value v_ch_v and the U-phase and W-phase capacitor voltage average values is zero.
  • the DC voltage command values v_dc_u0 *, v_dc_v0 *, and v_dc_w0 * of each phase that eliminate the voltage difference between the V phase and the U phase and the voltage difference between the V phase and the W phase are calculated.
  • the control unit 6 determines the inter-PN voltage command value v_pn * calculated by the upper and lower arm balance control unit 61 and the interphase balance control unit 62, and the DC voltage command values v_dc_u0 *, v_dc_v0 *, and v_dc_w0 * of each phase.
  • the voltage command values v_up *, v_un *, v_vp *, v_vn *, v_wp *, and v_wn * of the upper and lower arms of each phase In this calculation, voltage command values v_u *, v_v *, v_w * for making the average of the capacitor voltages of all the three-phase chopper cells 3 constant may be taken into consideration.
  • the control unit 6 controls the average value of the capacitor voltages of all the chopper cells 3 to a predetermined value by the effective amount i_d of the alternating current flowing into the chopper cells 3. To do. First, an average value v_ch of the capacitor voltages of all the chopper cells 3 is calculated, and a D-axis current command value i_d * for following the command value v_ch * is calculated.
  • the control unit 6 calculates the average value v_ch of the capacitor voltage of all the chopper cells 3, takes the difference between the command value v_ch * and the average value v_ch, and performs the PI control so that this difference becomes zero. By carrying out, the D-axis current command value i_d * is calculated.
  • control unit 6 calculates the D-axis current i_d and the Q-axis current i_q from the output AC currents i_u, i_v, i_w of each phase.
  • the output AC current i_u receives the current i_up of the U-phase upper arm and the current i_un of the U-phase lower arm from the current detector. It is estimated by taking the difference of the arm current i_un. Then, the D-axis current i_d and the Q-axis current i_q are calculated by performing three-phase / DQ conversion on the estimated output AC currents i_u, i_v, i_w of each phase.
  • control unit 6 performs PI control so that the D-axis current i_d and the Q-axis current i_q follow the D-axis current command value i_d * and the Q-axis current command value i_q *, so that the D-axis voltage command value v_d * and Q-axis voltage command value v_q * are calculated, D-axis voltage command value v_d * and Q-axis voltage command value v_q * are DQ / three-phase converted, and voltage command values v_u *, v_v *, v_w * Get.
  • the control unit 6 sets the U-phase voltage command value v_u * to the DC voltage v_dc / 2 with respect to the DC voltage command value v_dc_u * for balancing the phases and the upper and lower arms 21 and 22.
  • the value multiplied by the polarity is added, multiplied by 0.5, and the U-phase voltage command value v_u * is subtracted.
  • the voltage command value v_up * of the upper arm 21 of the U phase is calculated.
  • control unit 6 is obtained by multiplying the DC voltage command value v_dc_u * for balancing the phases and the upper and lower arms 21 and 22 by the polarity of the DC voltage v_dc / 2 and the U-phase voltage command value v_u *. Is subtracted, 0.5 is multiplied, and the U-phase voltage command value v_u * is subtracted. By this calculation, the voltage command value v_un * for the lower arm of the U phase is calculated.
  • FIG. 14 is a control block diagram for making the capacitor voltage of the chopper cell 3 the same. Further, when the control unit 6 outputs the voltage to the upper and lower arms 21 and 22 for each phase, the control unit 6 makes the capacitor voltage of all the chopper cells 3 in the upper arm 21 the same, and sets the capacitor voltage of all the chopper cells 3 in the lower arm 21. Take the same measures.
  • the control unit 6 increases the output voltage of the chopper cell 3 having a small capacitor voltage, and the chopper cell 3 having a large capacitor voltage is Reduce the output voltage. Since the capacitor 33 is discharged when the polarity of the current flowing through the chopper cell 3 is negative, the output voltage of the chopper cell 3 having a small capacitor voltage is reduced, and the output voltage of the chopper cell 3 having a large capacitor voltage is increased.
  • the chopper cell 3 provided in the upper arm 21 of the U phase is taken as an example.
  • the capacitor voltage average value v_ch_up of all the chopper cells 3 of the upper arm 21 is subtracted from the capacitor voltage v_ch_up1 of the chopper cell 3, and this is multiplied by a proportional integral gain.
  • the multiplication result is further multiplied by a value obtained by inverting the polarity of the current i_ip of the U-phase upper arm 21, and the voltage command value v_up * for the chopper cell 3 of the U-phase upper arm 21 is added.
  • the voltage command value v_up1 * of the first chopper cell 3 of the upper arm 21 is calculated.
  • the voltage command value v_up2 * for the second chopper cell 3 in the upper arm 21 * the voltage command value v_up3 * for the third chopper cell 3 is calculated.
  • control part 6 controls each chopper cell 3 according to voltage command value v_up1 * of each chopper cell 3, v_up2 *, and v_up3 * ....
  • the control unit 6 turns on the first switch 41 and the third switch 43 to turn on the second switch. 42 and the fourth switch 44 are turned off.
  • the U-phase upper arm 21 as a whole changes the output voltage continuously from decreasing to increasing according to the voltage command value v_up *, and the difference between v_dc / 2 of the DC power supply 100 and the voltage command value v_u *.
  • the lower arm 22 of the U-phase as a whole outputs the difference voltage between the voltage command value v_u * and the reference potential by continuously changing the output voltage from increasing to decreasing according to the voltage command value v_un *.
  • the control unit 6 turns on the second switch 42 and the fourth switch 44 to turn on the first switch 41. And the third switch 43 is turned off.
  • the U-phase upper arm 21 as a whole outputs a voltage difference between the reference potential and the voltage command value v_u * according to the voltage command value v_up *
  • the U-phase lower arm 22 as a whole outputs the voltage command value v_un.
  • the output voltage is continuously changed from increase to decrease, and a difference voltage between the voltage command value v_u * and ⁇ v_dc / 2 of the DC power supply 100 is output.
  • the control unit 6 compares the carrier triangular wave car_up1 and v_up1 *.
  • the control unit 6 turns on the switch 31 and turns off the switch 32 to charge / discharge the capacitor 33.
  • the control unit 6 turns off the switch 31 and turns on the switch 32 to stop the output of the capacitor.
  • the equivalent carrier frequency can be increased to n times the carrier triangular wave frequency by shifting the phase of the carrier triangular wave by 360 degrees / n, and the output AC voltage Harmonic voltage can be reduced.
  • the harmonic voltage of the output AC voltage can be further reduced by shifting the carrier triangular wave phase used for the lower arm 22 by 180 degrees with respect to the upper arm 21.
  • the power conversion device 1 is an NPC-MMC, and an AC current is superimposed on a circulating current between PNs, and a voltage difference between the upper arm 21 and the lower arm 22 is suppressed by the AC current. Therefore, even if there is only one path through which the circulating current between PN flows, the voltage difference between the upper arm 21 and the lower arm 22 can be suppressed. Moreover, since the electric power based on an alternating current is zero in the unit of 1 period, the voltage difference of the upper arm 21 and the lower arm 22 can be suppressed, without affecting transmission power. Therefore, the power conversion device 1 which is an NPC-MMC can stabilize the voltage without the output voltages of the upper arm 21 and the lower arm 22 interfering with each other.
  • the alternating current to be superimposed is of two types having different frequencies
  • the positive phase portion and the reverse phase portion of the imbalance in the voltage difference between the upper arm 21 and the lower arm 22 are suppressed by one alternating current, and the zero phase Minutes can be suppressed by the other alternating current.
  • the alternating current for the positive phase component and the reverse phase component is set to one time the output AC frequency of the output terminal, if the frequency is 6N ⁇ 1 (N is a natural number) times, the voltage difference can be easily Can be suppressed.
  • the AC current for the zero phase is three times the output AC frequency of the output terminal. However, if the frequency is 3 ⁇ (2N ⁇ 1) (N is a natural number), the voltage difference can be easily reduced. Can be suppressed.
  • proportional integral control in which the positive phase component and the negative phase component follow zero is performed, and the control gain Gp of the proportional integral control is changed according to the modulation rate of the output AC voltage at the output terminal.
  • Proportional integral control in which the zero phase component follows zero is performed, and the control gain Gz of the proportional integral control is changed according to the modulation factor of the output AC voltage at the output terminal.
  • the normal phase component and the reverse phase component of the voltage imbalance between the upper arm 21 and the lower arm 22 are detected by a low-pass filter. Thereby, the ripple of the output AC voltage frequency, that is, the ripple voltage component can be removed.
  • this power converter device 1 flows the interphase circulating current which flows between the phase arms 2 connected in parallel, and controls the interphase circulating current, and suppresses the imbalance of the voltage difference between the phase arms 2 connected in parallel. I did it.
  • the power conversion device 1 operates a voltage command value for the two-phase phase arms 2 connected in series to suppress an imbalance in the voltage difference between the two-phase phase arms 2 connected in series. . Therefore, the power conversion device 1 that is an NPC-MMC can stabilize the voltage without interfering with the output voltage between the phases.
  • the method illustrated in FIG. 10 which flows the interphase circulating current between the phase arms 2 connected in parallel, operates the interphase circulating current to suppress the voltage difference imbalance between the phase arms connected in parallel, and Either one of the methods illustrated in FIG. 11 that controls the voltage command value for the two-phase phase arms 2 connected in series to suppress the voltage difference imbalance between the two-phase phase arms 2 connected in series. You may employ
  • the two phases in parallel balance the voltage by the circulating current between the phases, and the two phases in series balance the voltage by providing an output voltage difference.
  • the three-phase balance can be achieved quickly and accurately.
  • balancing between phases can be achieved even in a power transmission stop state, immediately after startup, and in a standby state.
  • the two-phase phase arm connected in series 2 In order to control the voltage command value for the two-phase phase arm 2 connected in series to suppress the voltage difference imbalance of the two-phase phase arm 2 connected in series, the two-phase phase arm connected in series 2, the voltage command value of one phase arm 2 is increased, the voltage command value of the other phase arm 2 is decreased, the voltage command value increase of one phase arm 2 and the voltage command value decrease of the other phase arm 2 The total with minutes should be zero.

Abstract

チョッパセルのコンデンサ電圧のバランスを制御することのできる電力変換装置を提供する。チョッパセル3を直列接続して成り、上下アーム21、22に分かれた各相アーム2は、両端の第1及び第4スイッチ41、44を介して直流電源に接続される。第1及び第4スイッチ41、44の間に、相アーム2と並列の第2及び第3スイッチ42、43が直列接続される。上下アーム21、22の間に出力端子23を有し、第2及び第3スイッチ42、43との間に中性点5を有し、各相の中性点5は結線される。制御部6は、二相を並列接続し、並列接続の相アーム2に他の一相の相アーム2を直列接続した回路を電圧位相毎に形成する。制御部6は、この回路を流れるPN間循環電流に交流電流を重畳し、交流電流の操作により上下アーム21、22の不均衡を抑制する。

Description

電力変換装置
 本発明の実施形態は、直流電源と交流電力系統との間に設置され、交流と直流を相互に変換する電力変換装置に関する。
 近年、風力発電や太陽光発電、太陽熱発電などの再生可能エネルギーの普及が促進されているが、より大電力を再生可能エネルギーでまかなうために、洋上風力発電や、砂漠地帯での太陽光、太陽熱発電が検討され始めている。洋上風力発電においては、発電された電力を消費地である都市まで海底ケーブルで大電力送電したり、アフリカや中国奥部の砂漠地帯から、ヨーロッパや沿岸地帯の大都市まで大電力を長距離にわたって高効率に送電したりすることが必要になる。このような要求には、従来の三相交流による電力送電よりも直流送電のほうが高効率であり、コストを抑えながら設置することが可能になるため、直流送電網の構築が検討され始めている。
 直流送電においては、発電された交流電力を直流送電用の直流に変換するコンバータや、送電されてきた直流を都市内の交流に変換するインバータなどの電力変換装置が必要になる。現在、交流系統にコンバータ、インバータのスイッチングに伴う高調波が流出しないように、正弦波に近い電圧波形を出力することができ、出力フィルタを削減できる電力変換装置が実用化されている。この電力変換装置は、MMC(Modular Multilevel Converter)と呼ばれる。
 MMCは、直流電源と交流電力系統との間に設けられ、三相の相アームを有する。三相の相アームは、チョッパセルを直列接続して成る。三相の相アームは並列接続され、直流電源と各々が常時接続されている。各相アームは上アームと下アームに分別され、すなわち直列接続されたチョッパセル群は2つの群に分けられ、上アームと下アームとの間に、交流電力系統への出力端子が設けられている。
 MMCは、運転状態や部品のバラつきによって生じる三相のアーム、上アームと下アーム、また各チョッパセル間等の電圧不均衡が是正される必要がある。そこで、従来のMMCにおいては、各種の電圧不均衡を是正する手法が多数提唱されている。例えば、三相の各々に循環電流を流し、これら循環電流を操作することで、上アームと下アームとの電圧不均衡が是正できる。
 詳細には、上アームと下アームの電圧差を零相分、正相分、逆相分に分解し、各々の電圧差を3種類の循環電流を操作して是正している。MMCは、三相が常時並列接続されているため、この3種類の経路を利用して3種類の循環電流を流すことができ、3種類の循環電流を零相電圧差是正分、正相電圧差是正分、逆相電圧差是正分に役割分担させれば、上アームと下アームの電圧差是正が容易となる。
 但し、MMCは、チョッパセルのコンデンサに出力交流周波数と同等の電力脈動が原理的に生じる。コンデンサ電圧の変動を一定の値以下に抑制するには、コンデンサの容量を大きくする必要がある。直流電圧が数十kV~数百kVに及ぶ直流送電の場合、チョッパセルの数が多く、それに比例してコンデンサ体積が大きくなってしまう。
 そこで、近年、IGBT等の自励式のスイッチを多直列接続したバルブと、チョッパセルを組み合わせた中性点クランプ形モジュラー・マルチレベル・コンバータ(NPC-MMC)が提案されている。この電力変換装置は、三相の相アームの両端にスイッチを接続し、三相の相アームをスイッチを介して直流電源と各々接続している。また、両端のスイッチの間に直列に2つのスイッチを接続し、この2つのスイッチを相アームと並列に接続している。更に、2つのスイッチの間に中性点を設け、各相の中性点を結線している。
 この電力変換装置では、各スイッチのオンオフ操作によって、一相を他の二相と直列に接続し、他の二相を並列接続し、この接続関係を有する三相のアームを直流電源と接続するようにしている。この電力変換装置では、直流電源の電圧に対して二相のアームの合計電圧で均衡させればよい。従って、各相のアームの電圧を直流電源の電圧と均衡させねばならなかった従来のMMCと比べて、NPC-MMCと呼ばれる電力変換装置は、チョッパセルの数を半分にでき、装置の設置スペースが低減し、スイッチング損失が低減して変換効率が向上する。
特表2010-512134号公報 平成26年電気学会産業応用部門大会プログラム, I-155:中性点クランプ形モジュラー・マルチレベル・コンバータ
 NPC-MMCと呼ばれる電力変換装置は、直流電源の正側と負側を通る循環電流の経路を一本しか作出し得ない。循環電流の経路は、単独一相から入力して並列二相から出力される経路、または並列二相から入力されて単独一相から出力される経路しかない。そのため、3種類の循環電流によって、零相分と正相分と逆相分の電圧差を各々解消する従来のMMCの手法が取り得ない。すなわち、NPC-MMCと呼ばれる電力変換装置において、各種の電圧バランスを制御する手法が確立させていない。
 そこで、本発明の実施形態は、NPC-MMCと呼ばれる電力変換装置において、チョッパセルのコンデンサ電圧のバランスを制御することのできる電力変換装置を提供することを目的とする。
 上記の目的を達成するために、本実施形態の電力変換装置は、直流電源と交流電力系統との間に設けられ、交流と直流を相互に変換する電力変換装置であって、複数のチョッパセルを直列接続して成る三相の各相アームと、前記相アーム内の前記チョッパセルを2つに分けて成る上アーム及び下アームと、前記上アームと前記下アームとの間に設けられ、前記交流電力系統と接続される出力端子と、前記相アームの両端に設けられ、前記相アームと前記直流電源との間に介在する第1のスイッチ及び第4のスイッチと、前記第1のスイッチと前記第4のスイッチとの間に直列接続され、前記相アームと並列接続される第2のスイッチ及び第3のスイッチと、前記第2のスイッチと前記第3のスイッチとの間に設けられ、互いに結線される三相の各中性点と、前記チョッパセルと前記第1乃至第4のスイッチを制御する制御部と、を備え、前記制御部は、前記第1乃至第4のスイッチを制御することで、二相の前記各相アームを並列接続され、当該並列接続された前記相アームに他の一相の相アームを直列接続した各組み合わせの回路を、電圧位相ごとに形成し、前記チョッパセルを制御することで、前記回路を介して前記直流電源の正側と負側とを循環するPN間循環電流に、交流電流を重畳し、前記交流電流を操作して、前記上アームと前記下アームの電圧差の不均衡を抑制すること、を特徴とする。
本実施形態の電力変換装置の構成図である。 電力変換装置が備えるチョッパセルの構成図である。 電力変換装置において各相の接続関係の一例と流れる電流を示す模式図である。 電力位相ごとの各相の接続関係を示す表である。 電力変換装置の制御ブロック図である。 上アームと下アームとの間の電圧差正相分をゼロにする電圧制御の制御ブロック図である。 上アームと下アームとの間の電圧差零相分をゼロにする電圧制御の制御ブロック図である。 PN間循環電流の直流成分に対する制御ブロック図である。 PN間循環電流の算出過程を示す制御ブロック図である。 相間バランス制御の第1例を示す制御ブロック図である。 相間バランス制御の他の例を示す制御ブロック図である。 全チョッパセルのコンデンサ電圧の平均値を一定にするための制御ブロック図である。 各相の上下アームの電圧指令値を算出するための制御ブロック図である。 各チョッパセルの電圧指令値を算出するための制御ブロック図である。 チョッパセルの出力電圧の指令値を計算する方法を示すグラフである。 チョッパセルの電圧出力方法を説明するグラフである。
 (構成)
 以下、本実施形態の電力変換装置について図面を参照しつつ詳細に説明する。図1は、本実施形態の電力変換装置の構成図である。図2は、電力変換装置が備えるチョッパセルの構成図である。電力変換装置1は、高圧直流送電システムが備える中性点クランプ形モジュラー・マルチレベル・コンバータ(NPC-MMC)である。この電力変換装置1は、直流電源100と交流電力系統200との間に設置される。この電力変換装置1は、直流電源100の入力直流電圧v_dcを三相の交流電圧v_acに変換し、三相トランス201を介して交流電力を交流電力系統200に出力する。本実施形態では、基準電位を入力直流電圧v_dcの中点に定義している。
 この電力変換装置1は、U相、V相及びW相の各交流電圧v_acを生成する相アーム2を備えている。各相アーム2は、両端が第1スイッチ41と第4スイッチ44と接続し、第1スイッチ41及び第4スイッチ44を介して直流電源100と接続される。この各相アーム2は複数のチョッパセル3を直列接続して成る。
 チョッパセル3は、図2に示すように、スイッチ31とスイッチ32を直列接続したレグと、直流コンデンサ33とを並列接続してなる。スイッチ31及び32は逆導通スイッチであり、各スイッチ31及び32のスイッチング素子に各々帰還ダイオード34を逆並列に接続して構成される。スイッチング素子は、例えば、オン時には電流を一方向に流すIGBTやMOSFET等であり、自己消弧能力を有する。
 各相アーム2では、チョッパセル3が上アーム21と下アーム22に分別されている。上アーム21は、直流電源100から見て正側に接続されたチョッパセル3群である。下アーム22は、直流電源100から見て負側に接続されたチョッパセル3群である。相アーム2は、上アーム21と下アーム22との間に出力端子23を備え、出力端子23から三相トランス201を介して交流電力系統200へ交流電力を出力する。
 上アーム21と下アーム22から成る相アーム2は、チョッパセル3を単位変換器として直流電圧を階段状の交流電圧v_acに変換し、出力端子23から交流電力系統200へ出力する。各相アーム2内のチョッパセル3の数は、入力直流電圧v_dcと、チョッパセルのコンデンサ電圧v_chによって決定され、概ね(v_dc/2)/v_chである。本実施形態では、チョッパセル3の数を3としている。
 また、電力変換装置1は、第1スイッチ41及び第4スイッチ44を構成要素とするバルブ4を各相に更に備える。バルブ4は、第1スイッチ41及び第4スイッチ44の他、第2スイッチ42及び第3スイッチ43を備え、これら第1乃至第4スイッチ41~44を直列接続して成る。第2スイッチ42と第3スイッチ43は、第1スイッチ41と第4スイッチ44との間に直列接続され、相アーム2と並列接続されている。このバルブ4は、第1乃至第4スイッチ41~44のオンオフにより、60度の電圧位相角毎に各相アーム2の接続関係を切り替える。
 第1乃至第4スイッチ41、42、43及び44は逆導通スイッチであり、スイッチング素子に帰還ダイオードを逆並列に接続して構成される。スイッチング素子は、例えば、オン時には電流を一方向に流すIGBTやMOSFET等であり、自己消弧能力を有する。
 第1乃至第4スイッチ41、42、43及び44は、直流電源100の入力直流電圧v_dcにより耐電圧が決定される。入力直流電圧v_dcに対して、v_dc/2の電圧にスイッチング時のサージ電圧の重畳を考慮し、使用する素子が決定される。直流電圧が数十kV以上に及ぶと、1素子で耐電圧を持たせることは困難になり、複数の素子を直列にする必要がある。本実施形態では1つのスイッチに対し1素子を含むが、1つのスイッチに複数の素子が直列接続して含まれていてもよい。
 第1スイッチ41及び第4スイッチ44の方向に関し、第1スイッチ41は、コレクタで直流電源100の正側と接続され、エミッタで上アーム21のコレクタと接続される。第4スイッチ44は、エミッタで直流電源100の負側と接続され、コレクタで下アーム22のエミッタと接続される。第2スイッチ42及び第3スイッチ43の方向に関し、第2スイッチ42のコレクタが、上アーム21と接続する第1スイッチ41のエミッタと接続され、第3スイッチ43のエミッタが、下アーム22と接続した第4スイッチ44のコレクタと接続されている。
 そして、U相の第2スイッチ42と第3スイッチ43の間には中性点5が設けられ、V相の第2スイッチ42と第3スイッチ43の間には中性点5が設けられ、W相の第2スイッチ42と第3スイッチ43の間には中性点5が設けられており、U相、V相及びW相の各相の中性点5は、互いに結線されている。
 (制御)
 この電力変換装置1は、図3に示すように、60度の電圧位相ごとに、各種組み合わせで、一相と他二相とを直列接続し、他二相を並列接続し、また並列二相と単独一相を正側又は負側に入れ替える。例えば、図3の(a)及び図4に示すように、U相の電圧位相がπ/3~2π/3のとき、V相とW相の相アーム2を並列接続し、並列接続された相アーム2とU相の相アーム2を直列接続し、V相とW相の相アーム2を直流電源100の負側に接続し、U相の相アーム2を直流電源100の正側に接続する。
 この接続態様の回路は、バルブ4において次のようなスイッチオンオフにより実現する。すなわち、U相の第1スイッチ41と第3スイッチ43をオンにし、V相の第2スイッチ42と第4スイッチ44をオンにし、W相の第2スイッチ42と第4スイッチ44をオンにする。
 また、例えば、図3の(b)及び図4に示すように、U相の電圧位相が4π/3~5π/3のとき、V相とW相の相アーム2を直流電源100の並列接続し、並列接続された相アーム2とU相の相アーム2を直列接続し、V相とW相の相アーム2を直流電源100の正側に接続し、U相の相アーム2を直流電源100の負側に接続する。
 この接続態様の回路は、バルブ4において次のようなスイッチオンオフにより実現する。すなわち、バルブ4は、V相の第1スイッチ41と第3スイッチ43をオンにし、W相の第1スイッチ41と第3スイッチ43をオンにし、U相の第2スイッチ42と第4スイッチ44をオンにする。
 このように、電力変換装置1を動作させると、例えば、U相の出力交流電圧v_ac_uが正でV相の出力交流電圧v_ac_vが負のとき、U相の相アーム2のコンデンサ電圧v_up+v_unとV相の相アーム2のコンデンサ電圧v_vp+v_vnとを合計した電圧が、U相の第1スイッチ41、第3スイッチ43、V相の第2スイッチ42及び第4スイッチ44を通して、入力直流電圧v_dcと短絡される。そのため、各相アーム2は、互いの中性点5間に設けられたバッファリアクトル7を介して接続され、短絡の際の電流増大を抑制している。
 この電力変換装置1では、図3に示すように、直流電源100と電力変換装置1との間に、PN間循環電流が流れる。PN間循環電流は、電力変換装置1に形成された回路を直流電源100の正側から負側へ抜ける電流である。また、並列接続された二相の相アーム2間に、相間循環電流が流れる。相間循環直流電流は、並列接続された二相の相アーム2を循環する電流である。
 (電圧制御)
 この電力変換装置1の制御方法について説明する。図5に示すように、電力変換装置1は、各相アーム2のチョッパセル3と各相の第1乃至第4スイッチ41、42、43及び44を制御する制御部6を備えている。制御部6は、プログラムに従って演算及び制御する所謂コンピュータ又は専用の電気回路である。
 例えば、制御部6では、ROMに記憶されたプログラムに従ってCPUが演算し、演算結果に従って各相アーム2のチョッパセル3と各相の第1乃至第4スイッチ41、42、43及び44に対する駆動回路がゲート信号を送信する。この制御部6には、不図示の電流検出器及び電圧検出器によって各上アーム21及び下アーム22で検出された電流及び電圧の値が入力され、電流値及び電圧値をパラメータとして演算し、演算結果を電圧制御に利用する。
 この制御部6は、上下アームバランス制御部61と相間バランス制御部62を備えている。上下アームバランス制御部61は、2種類の周波数の交流電流を重畳したPN間循環電流を流し、この交流電流を重畳したPN間循環電流を操作することで、上アーム21と下アーム22の電圧を同一にする。PN間循環電流に重畳させる交流電流は、直流成分に対して十分に小さく、この交流電流に基づく電力がIpn・sin(ωt-e)×v_dcであるため、一周期単位ではゼロであり、送電電力に影響しない。また、相間バランス制御部62は、直流の相間循環電流を操作することで、相間の電圧を同一にする。
 (上下アームバランス制御)
 図5に示すように、この上下アームバランス制御部61は、上アーム21と下アーム22の電圧不均衡を、正相分と逆相分の組(以下、単に代表して正相分という)と零相分に分け、2種類の周波数の交流電流で正相分と零相分の各々をゼロにすることで解消される。更に、PN間循環電流を操作する上下アームバランス制御部61は、PN間循環電流の直流成分が一定となるように、直流成分指令値i_pn0*を計算する。
 この上下アームバランス制御部61は、電圧差正相分をゼロにするための1倍周波数成分指令値i_pn1*を計算する。1倍周波数成分指令値i_pn1*は、交流電力系統200に出力する出力交流電圧v_acの1倍の周波数に該当するPN間循環電流の交流成分の指令値である。
 また、上下アームバランス制御部61は、電圧差零相分をゼロにするための3倍周波数成分指令値i_pn3*を計算する。3倍周波数成分指令値i_pn3*は、交流電力系統200に出力する出力交流電圧v_acの3倍の周波数に該当するPN間循環電流の交流成分である。
 上下アームバランス制御部61は、直流成分指令値i_pn0*と1倍周波数成分指令値i_pn1*と3倍周波数成分i_pn3*とを加算することで、PN間循環電流指令値i_pn*を計算する。また、上下アームバランス制御部61は、PN間循環電流i_pnを計算し、PN間循環電流i_pnをPN間循環電流指令値i_pn*に追従させる比例積分制御を実施することで、PN間電圧指令値v_pn*を得る。PN間電圧指令値v_pn*は、電力変換装置1の正側端部から負側端部までの電圧の指令値である。
 ここで、上下アームバランス制御部61は、1倍周波数成分指令値i_pn1*と3倍周波数成分指令値i_pn3*の計算に際し、上アーム21と下アーム22との間の電圧差正相分v_ch_y_a及びv_ch_y_bと、電圧差零相分v_ch_y_zをパラメータとして用いる。
 この上下アームバランス制御部61は、下アーム22のコンデンサ電圧の平均値から上アーム21のコンデンサ電圧の平均値を差分し、上アーム21と下アーム22の電圧差を計算し、各相の電圧差v_ch_y_u,v_ch_y_v及びv_ch_y_wを三相/abz変換して、上アーム21と下アーム22との間の電圧差正相分v_ch_y_a,v_ch_y_bと、電圧差零相分v_ch_y_zを得る。U相を例にとると、上アーム21と下アーム22の電圧差v_ch_y_uは、下アーム22のコンデンサ電圧の平均値v_ch_unから上アーム21のコンデンサ電圧の平均値v_ch_upを差分する。
 図6は、三相/abz変換の後、上アーム21と下アーム22との間の電圧差正相分をゼロにする電圧制御の制御ブロック図である。図6に示すように、上下アームバランス制御部61は、上アーム21と下アーム22との間の電圧差正相分v_ch_y_a,v_ch_y_bをローパスフィルタに通す。ローパスフィルタは、上アーム21と下アーム22との間の電圧差正相分v_ch_y_a,v_ch_y_bに原理的に重畳される出力交流電圧周波数の脈動、すなわちリップル電圧分を除去する。ローパスフィルタは、例えば移動平均フィルタや一次遅れフィルタが適用できるが、交流電圧周波数成分が十分小さくなるように時定数が設計されるとよい。
 上下アームバランス制御部61は、ローパスフィルタ通過後の電圧差正相分v_ch_y_a,v_ch_y_bがゼロになるように各々PI制御を実施することで、a相のPN間循環電流の振幅指令値i_amp_pn_a*とb相PN間循環電流の振幅指令値i_amp_pn_b*を得る。そして、上下アームバランス制御部61は、a相のPN間循環電流の振幅指令値i_amp_pn_a*とb相PN間循環電流の振幅指令値i_amp_pn_b*に、出力交流電圧の正弦関数を乗算することで、a相のPN間循環電流の指令値i_pn1_a*とb相のPN間循環電流の指令値i_pn1_b*を得る。
 尚、正弦関数は、a相のPN間循環電流の振幅指令値i_amp_pn_a*に対するsinωtとし、b相PN間循環電流の振幅指令値i_amp_pn_b*に対するsin(ωt-π/2)とし、a相とb相の位相を決定している。また、正弦関数は、出力交流電圧周波数の1倍を例にしたが、6N±1(Nは自然数)倍としてもよい。すなわち、正相電圧差をゼロにするために、PN間循環電流の交流6N±1倍周波数成分i_pn1を操作できればよい。
 そして、上下アームバランス制御部61は、a相のPN間循環電流の指令値i_pn1_a*とb相のPN間循環電流の指令値i_pn1_b*を加算し、ゲインGpを乗算することで、PN間循環電流の1倍周波数成分の指令値i_pn1*を算出する。ゲインGpは制御の応答性を調整する係数である。
 例えば、このゲインGpは、出力交流電圧v_acの変調率Mが変化しても制御応答が変わらないように、変調率Mを加味しておくのが望ましい。出力交流電圧v_acの変調率Mは、直流電圧v_dcに対する出力交流電圧v_acの振幅値v_ampの割合である。このゲインGpは、以下式(1)で算出される。
Figure JPOXMLDOC01-appb-I000003
 尚、制御応答の変動を許容する場合はゲインGpを変調率Mに従って変更する必要はないが、ゲインGpの符号は上記式(1)の右辺分母の符号に従う。すなわち、ゲインGpは以下式(2)とする必要がある。
Figure JPOXMLDOC01-appb-I000004
 図7は、三相/abz変換の後、上アーム21と下アーム22との間の電圧差零相分をゼロにする電圧制御の制御ブロック図である。図7に示すように、上下アームバランス制御部61は、上アーム21と下アーム22の電圧差零相分v_ch_y_zがゼロになるようにPI制御を実施することで、零相のPN間循環電流の振幅指令値i_amp_pn_z*を得る。そして、上下アームバランス制御部61は、零相のPN間循環電流の振幅指令値i_amp_pn_z*に出力交流電圧周波数の3倍の周波数を有する正弦関数を乗算することで、零相のPN間循環電流の指令値i_pn1_z*を得る。
 正弦関数は、出力交流電圧周波数の3倍を例にしたが、3×(2N-1)(Nは自然数)倍としてもよい。すなわち、零相電圧差をゼロにするために、PN間循環電流の交流3×(2N-1)倍周波数成分i_pn3を操作できればよい。
 そして、上下アームバランス制御部61は、零相のPN間循環電流の指令値i_pn1_z*にゲインGzを乗算することで、PN間循環電流の3倍周波数成分の指令値i_pn3*を算出する。ゲインGzは、出力交流電圧の変調率Mが変化しても制御応答が変わらないように、変調率Mを加味しておくのが望ましい。このゲインGzは、以下式(3)で算出される。
Figure JPOXMLDOC01-appb-I000005
 制御応答の変動を許容する場合はゲインGzを変調率Mに従って変更する必要はないが、ゲインGzの符号は上記式(3)の右辺分母の符号に従う。すなわち、ゲインGzは以下式(4)とする必要がある。
Figure JPOXMLDOC01-appb-I000006
 図8は、PN間循環電流の直流成分に対する詳細な制御ブロック図である。図8に示すように、上下アームバランス制御部61は、直流電圧指令値v_dc*と直流電圧v_dcとの差分がゼロになるようにPI制御を実施することで、PN間循環電流の直流成分指令値i_pn0*を計算する。
 上下アームバランス制御部61は、PN間循環電流の直流成分指令値i_pn0*と交流1倍周波数成分指令値i_pn1*と交流3倍周波数成分指令値i_pn3*を合算することで、PN間循環電流の指令値i_pn*を算出する。そして、上下アームバランス制御部61は、PN間循環電流i_pnを算出し、PN間循環電流i_pnがPN間循環電流の指令値i_pn*に追従するようにPI制御を実施することで、PN間電圧指令値v_pn*を得る。
 PN間循環電流i_pnは、図9に示すように、各相アーム2の電流i_dc_u,i_dc_v及びi_dc_wを合算して、更に0.5を乗じることで算出される。U相の相アーム2の電流i_dc_uは下アーム22の電流i_u_nと上アーム21の電流i_u_pを合算し、更に0.5を乗じることで算出される。V相の相アーム2の電流i_dc_vは下アーム22の電流i_v_nと上アーム21の電流i_v_pを合算し、更に0.5を乗じることで算出される。W相の相アーム2の電流i_dc_wは下アーム22の電流i_w_nと上アーム21の電流i_w_pを合算し、更に0.5を乗じることで算出される。上アーム21と下アーム22とを通して相アーム2にPN間循環電流が流れるためである。
 (相間バランス制御1)
 相間バランス制御部62は、電圧位相が60度角毎に特定の二相の電圧差を抑制する。特定の二相とは、並列接続され、電圧指令値の極性が同一となっている組である。60度の電圧位相毎に並列接続される二相は変わるため、複数回の接続関係の変化を経ることで、三相間の電圧バランスが図られる。この相間バランス制御部62は、この特定の二相の間に流れる相間循環直流電流を操作することで、電圧差を抑制する。
 相間バランス制御部62による第1の電圧制御例を図10に示す。図10に示すように、相間バランス制御部62は、電圧指令値の極性が同一の二相の電圧差をゼロにする二相間の循環電流指令値を算出し、実際の二相間の循環電流がこの指令値に追従するための二相の各直流電圧指令値を導く。
 W相とV相が同一極性の場合を例に採る。図10の(a)に示すように、相間バランス制御部62は、W相の全チョッパセル3の平均コンデンサ電圧v_ch_wとV相の全チョッパセル3の平均コンデンサ電圧v_ch_vとを差分して0.5を乗算し、乗算結果がゼロになるようにPI制御を実施することで、WV相間の相間循環電流指令値i_dc_wv*を計算する。また、相間バランス制御部62は、W相で検出した相間循環電流i_dc_wとV相で検出した相間循環電流i_dc_vとを差分して0.5を乗算することで、WV相間の相間循環電流i_dc_wvを計算する。
 そして、相間バランス制御部62は、WV相間の相間循環電流i_dc_wvがWV相間の相間循環電流指令値i_dc_wv*に追従するようにPI制御を実施することで、W相の直流電圧指令値v_dc_w0*を計算する。更に、相間バランス制御部62は、W相の直流電圧指令値v_dc_w0*の極性を反転することで、V相の直流電圧指令値v_dc_v0*を計算する。
 同様に、図10の(b)に示すように、相間バランス制御部62は、V相とU相の電圧指令値の極性が同一のとき、V相とU相のコンデンサ電圧差をゼロにする二相間の相間循環電流指令値i_dc_vu*を算出し、V相とU相の相間循環電流i_dc_vuがこの指令値i_dc_vu*に追従するための二相の各直流電圧指令値v_dc_u0*とv_dc_v0*をPI制御により導く。
 また、図10の(c)に示すように、相間バランス制御部62は、U相とW相の電圧指令値の極性が同一のとき、U相とW相のコンデンサ電圧差をゼロにする二相間の相間循環電流指令値i_dc_uw*を算出し、実際のU相とW相の相間循環電流i_dc_uwがこの指令値i_dc_uw*に追従するための二相の各直流電圧指令値v_dc_u0*とv_dc_w0*をPI制御により導く。
 (相間バランス制御2)
 図11は、相間バランス制御部62による第2の電圧制御例である。相間バランス制御部62は、回路内で直列接続された二相の電圧を同一にする制御を行うようにしてもよい。直列二相の出力電圧に差を設けることで、一方への入力電力を上げ、他方への入力電力を下げることができ、両者の電圧差が均衡する方向に電圧差が是正される。増加させた電圧と減少させた電圧の総計をゼロにすることで、電力変換装置1の正側と負側の間の全体の電圧は変わらず、PN間循環電流に影響を与えない。
 W相の電圧指令値v_w*とV相電圧指令値v_v*とが同一の極性を有するとき、換言すると、U相とW相とが直列接続され、U相とV相とが直列接続されているときを例に採る。図11の(a)に示すように、相間バランス制御部62は、U相のコンデンサ電圧平均値v_ch_uとV相及びW相のコンデンサ電圧平均値との差をゼロにするように比例積分を実施することで、U相とV相との電圧差、及びU相とW相との電圧差を解消する各相の直流電圧指令値v_dc_u0*、v_dc_v0*及びv_dc_w0*を計算する。
 典型的には、相間バランス制御部62は、V相のコンデンサ電圧平均値V_ch_vとW相のコンデンサ電圧平均値V_ch_wを加算して0.5を乗算することで、V相とWのコンデンサ電圧平均値を算出する。そして、相間バランス制御部62は、U相のコンデンサ電圧平均値V_ch_uからV相とW相のコンデンサ電圧平均値を差分し、その差分に0.5を乗算した後、乗算結果がゼロになるように比例積分制御を実施する。相間バランス制御部62は、更に比例積分制御の結果にゲインGpzを乗算する。
 ゲインGpzは、制御の応答性を調整する係数である。このゲインGphは、PN間循環電流によって制御応答が変わらないように設計しておくことが望ましい。例えば、ゲインGpzは、以下式(5)のように、U相を流れる電流i_dc_uの絶対値の逆数とする。
Figure JPOXMLDOC01-appb-I000007
 最後に、相間バランス制御部62は、U相の電流i_dc_uの反対極性を乗算することで、U相の直流電圧指令値v_dc_u0*を計算する。相間バランス制御部62は、U相の直流電圧指令値v_dc_u0*の極性を反対にすることで、V相の直流電圧指令値v_dc_v_0*とW相の直流電圧指令値v_dc_w0*を計算する。
 同様に、図11の(b)に示すように、相間バランス制御部62は、W相のコンデンサ電圧平均値v_ch_wとU相及びV相のコンデンサ電圧平均値との差をゼロにするように比例積分を実施することで、W相とU相との電圧差、及びW相とVとの電圧差を解消する各相の直流電圧指令値v_dc_u0*、v_dc_v0*及びv_dc_w0*を計算する。
 また、図11の(c)に示すように、相間バランス制御部62は、V相のコンデンサ電圧平均値v_ch_vとU相及びW相のコンデンサ電圧平均値との差をゼロにするように比例積分を実施することで、V相とU相との電圧差、及びV相とW相の電圧差を解消する各相の直流電圧指令値v_dc_u0*、v_dc_v0*及びv_dc_w0*を計算する。
 (全体制御)
 図5に戻り、制御部6は、上下アームバランス制御部61と相間バランス制御部62で計算されたPN間電圧指令値v_pn*と各相の直流電圧指令値v_dc_u0*、v_dc_v0*及びv_dc_w0*とを各々加算し、各相の上アーム及び下アームの電圧指令値v_up*、v_un*、v_vp*、v_vn*、v_wp*、v_wn*の計算に用いる。この計算には、三相の全チョッパセル3のコンデンサ電圧の平均を一定にするための電圧指令値v_u*、v_v*、v_w*も加味されてもよい。
 電圧指令値v_u*、v_v*、v_w*の計算において、制御部6は、チョッパセル3に流入する交流電流の有効分i_dによって、全チョッパセル3のコンデンサ電圧の平均値を所定値にするように制御する。まず、全チョッパセル3のコンデンサ電圧の平均値v_chを算出し、指令値v_ch*に追従するためのD軸電流指令値i_d*を算出する。
 図12に示すように、制御部6は、全チョッパセル3のコンデンサ電圧の平均値v_chを算出し、指令値v_ch*と平均値v_chの差分を取り、この差分がゼロになるようにPI制御を実施することで、D軸電流指令値i_d*を計算する。
 また、制御部6は、各相の出力交流電流i_u、i_v、i_wからD軸電流i_dとQ軸電流i_qを算出する。U相電流i_uを例にとると、出力交流電流i_uは、U相の上アームの電流i_upとU相の下アームの電流i_unを電流検出器から受け取り、上アームの電流i_upからU相の下アームの電流i_unの差分を取ることで推定する。そして、推定した各相の出力交流電流i_u、i_v、i_wを三相/DQ変換することで、D軸電流i_dとQ軸電流i_qを算出する。
 そして、制御部6は、D軸電流i_dとQ軸電流i_qがD軸電流指令値i_d*とQ軸電流指令値i_q*に追従するようにPI制御を実施することで、D軸電圧指令値v_d*とQ軸電圧指令値v_q*を算出し、更にD軸電圧指令値v_d*とQ軸電圧指令値v_q*をDQ/三相変換して、電圧指令値v_u*、v_v*、v_w*を得る。
 各相の上アーム21及び下アーム22の電圧指令値v_up*、v_un*、v_vp*、v_vn*、v_wp*、v_wn*の計算手法と、V相及びW相における計算手法は同一であるため、U相の上アーム21及び下アーム22の電圧指令値v_up*及びv_un*を例に採り説明する。
 図13に示すように、制御部6は、相間及び上下アーム21、22のバランスをとるための直流電圧指令値v_dc_u*に対して、直流電圧v_dc/2にU相の電圧指令値v_u*の極性を乗算した値を加算し、0.5を乗算し、U相の電圧指令値v_u*を減算する。この計算によりU相の上アーム21の電圧指令値v_up*が計算される。
 また、制御部6は、相間及び上下アーム21、22のバランスをとるための直流電圧指令値v_dc_u*に対して、直流電圧v_dc/2にU相の電圧指令値v_u*の極性を乗算した値を減算し、0.5を乗算し、U相の電圧指令値v_u*を減算する。この計算によりU相の下アームの電圧指令値v_un*が計算される。
 図14は、チョッパセル3のコンデンサ電圧を同一にするための制御ブロック図である。制御部6は、更に、各相各上下アーム21、22に電圧を出力させる際、上アーム21内の全チョッパセル3のコンデンサ電圧を同一にし、また下アーム21内の全チョッパセル3のコンデンサ電圧を同一にする措置を講じる。
 すなわち、制御部6は、チョッパセル3を流れる電流の極性が正のとき、チョッパセル3のコンデンサ33は充電されるので、コンデンサ電圧が小さいチョッパセル3の出力電圧を大きくし、コンデンサ電圧が大きいチョッパセル3は出力電圧を小さくする。チョッパセル3を流れる電流の極性が負のとき、コンデンサ33は放電されるので、コンデンサ電圧が小さいチョッパセル3の出力電圧を小さくし、コンデンサ電圧が大きいチョッパセル3は出力電圧を大きくする。
 U相の上アーム21が備えるチョッパセル3を例に採る。例えば、上アーム21内の第1のチョッパセル3に関し、このチョッパセル3のコンデンサ電圧v_ch_up1から上アーム21の全チョッパセル3のコンデンサ電圧平均値v_ch_upを減算し、これに比例積分ゲインを乗算する。
 乗算結果に、U相の上アーム21の電流i_ipの極性を反転した値を更に乗算し、U相の上アーム21のチョッパセル3に対する電圧指令値v_up*を加算する。以上の計算により、上アーム21の第1のチョッパセル3の電圧指令値v_up1*が計算される。同様にして、上アーム21内の第2のチョッパセル3に対する電圧指令値v_up2*第3のチョッパセル3に対する電圧指令値v_up3*が計算される。
 そして、制御部6は、各チョッパセル3の電圧指令値v_up1*、v_up2*及びv_up3*・・・に従って、各チョッパセル3を制御する。このとき、図15に示すように、制御部6は、U相の電圧指令値v_u*が正の電圧を指令しているとき、第1スイッチ41及び第3スイッチ43をオンにし、第2スイッチ42及び第4スイッチ44をオフにする。
 これにより、U相の上アーム21全体としては、電圧指令値v_up*に従って、出力電圧を減少から増加に連続的に転じさせて、直流電源100のv_dc/2と電圧指令値v_u*との差電圧を出力する。U相の下アーム22全体としては、電圧指令値v_un*に従って、出力電圧を増加から減少に連続的に転じさせて、電圧指令値v_u*と基準電位との差電圧を出力する。
 また、図15に示すように、制御部6は、U相の電圧指令値v_u*が負の電圧を指令しているとき、第2スイッチ42及び第4スイッチ44をオンにし、第1スイッチ41及び第3スイッチ43をオフにする。これにより、U相の上アーム21全体としては、電圧指令値v_up*に従って、基準電位と電圧指令値v_u*との差電圧を出力し、U相の下アーム22全体としては、電圧指令値v_un*に従って、出力電圧を増加から減少に連続的に転じさせて、電圧指令値v_u*と直流電源100の-v_dc/2との差電圧を出力させる。
 図16に示すように、各チョッパセル3個別では、電圧指令値v_up1*を例に採ると、制御部6は、キャリア三角波car_up1とv_up1*を比較する。制御部6は、キャリア三角波car_up1より出力電圧指令値v_up1*が大きいときは、スイッチ31をオン、及びスイッチ32をオフにして、コンデンサ33を充放電させる。制御部6は、キャリア三角波car_up1より出力電圧指令値v_up1*が小さいときは、スイッチ31をオフ、及びスイッチ32をオンにして、コンデンサの出力を停止させる。
 上アーム21や下アーム22がn個のチョッパセルで構成される場合、キャリア三角波の位相を360度/nずつずらすことにより、等価キャリア周波数をキャリア三角波周波数のn倍に大きくでき、出力交流電圧の高調波電圧を低減できる。また、下アーム22に対して用いるキャリア三角波位相を、上アーム21に対して180度ずらすことにより、さらに出力交流電圧の高調波電圧を低減できる。
 (作用効果)
 以上のように、この電力変換装置1は、NPC-MMCであり、PN間循環電流に交流電流を重畳させ、交流電流によって上アーム21と下アーム22の電圧差を抑制するようにした。従って、PN間循環電流が流れる経路が一つであっても、上アーム21と下アーム22の電圧差を抑制可能となる。また、交流電流に基づく電力は1周期の単位ではゼロであるため、送電電力に影響を与えることなく、上アーム21と下アーム22の電圧差を抑制することができる。従って、NPC-MMCである電力変換装置1は、上アーム21と下アーム22の出力電圧が干渉せず、電圧の安定化を図ることができる。
 例えば、重畳させる交流電流を周波数が異なる2種類とすれば、上アーム21と下アーム22の電圧差の不均衡のうち、正相分と逆相分を一方の交流電流で抑制し、零相分を他方の交流電流で抑制できる。尚、正相分と逆相分のための交流電流を、出力端子の出力交流周波数の1倍としたが、6N±1(Nは自然数)倍の周波数であれば、同じく電圧差を容易に抑制することができる。また、零相分のための交流電流を、出力端子の出力交流周波数の3倍としたが、3×(2N-1)(Nは自然数)倍の周波数であれば、同じく電圧差を容易に抑制することができる。
 また、正相分と逆相分とがゼロに追従する比例積分制御を実施するようにし、比例積分制御の制御ゲインGpは、出力端子の出力交流電圧の変調率に従って変更するようにした。零相分とがゼロに追従する比例積分制御を実施するようにし、比例積分制御の制御ゲインGzは、出力端子の出力交流電圧の変調率に従って変更するようにした。これにより、変調率Mが変化しても制御応答が一定となる。
 また、ローパスフィルタによって、上アーム21と下アーム22の電圧の不均衡のうち、正相分と逆相分を検出するようにした。これにより、出力交流電圧周波数の脈動、すなわちリップル電圧分を除去できる。
 また、この電力変換装置1は、並列接続された相アーム2間を流れる相間循環電流を流し、相間循環電流を操作して、並列接続された相アーム2間の電圧差の不均衡を抑制するようにした。または、この電力変換装置1は、直列接続された二相の相アーム2に対する電圧指令値を操作して、直列接続された二相の相アーム2の電圧差の不均衡を抑制するようにした。従って、NPC-MMCである電力変換装置1は、相間の出力電圧が干渉せず、電圧の安定化を図ることができる。
 尚、図10に例示した、並列接続された相アーム2間の相間循環電流を流し、相間循環電流を操作して、並列接続された相アーム間の電圧差の不均衡を抑制する手法、及び図11に例示した、直列接続された二相の相アーム2に対する電圧指令値を操作して、直列接続された二相の相アーム2の電圧差の不均衡を抑制する手法は、どちらか一方を採用してもよいし、両方を採用してもよい。
 両方を採用した場合は、並列な二相は相間循環電流で電圧バランスをとり、直列な二相は出力電圧差を設けることで電圧バランスをとるため、どの電圧位相であっても三相のバランスをとることができ、三相のバランスを迅速且つ精度良く図ることができる。また、相間循環電流によってバランスを図る場合には、送電停止の状態、起動直後、また待機状態においても、相間のバランスを図ることができる。
 直列接続された二相の相アーム2に対する電圧指令値を操作して、直列接続された二相の相アーム2の電圧差の不均衡を抑制するには、直列接続された二相の相アーム2のうち、一方の相アーム2の電圧指令値を上げ、他方の相アーム2の電圧指令値を下げ、一方の相アーム2の電圧指令値増分と前記他方の相アーム2の電圧指令値減少分との総計はゼロであるようにすればよい。
 このとき、直列接続された二相の相アーム2の両電圧がゼロに追従する比例積分制御を実施し、比例積分制御の制御ゲインGpzを、相アーム2を通過する電流に従って変更することで、制御応答を一定にすることができる。
 (その他の実施形態)
 本明細書においては、本発明に係る実施形態を説明したが、この実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 電力変換装置
2 相アーム
21 上アーム
22 下アーム
23 出力端子
3 チョッパセル
31 スイッチ
32 スイッチ
33 コンデンサ
34 ダイオード
4 バルブ
41 第1スイッチ
42 第2スイッチ
43 第3スイッチ
44 第4スイッチ
5 中性点
6 制御部
61 上下アームバランス制御部
62 相間バランス制御部
7 バッファリアクトル
100 直流電源
200 交流電力系統
201 三相トランス

Claims (15)

  1.  直流電源と交流電力系統との間に設けられ、交流と直流を相互に変換する電力変換装置であって、
     複数のチョッパセルを直列接続して成る三相の各相アームと、
     前記相アーム内の前記チョッパセルを2つに分けて成る上アーム及び下アームと、
     前記上アームと前記下アームとの間に設けられ、前記交流電力系統と接続される出力端子と、
     前記相アームの両端に設けられ、前記相アームと前記直流電源との間に介在する第1のスイッチ及び第4のスイッチと、
     前記第1のスイッチと前記第4のスイッチとの間に直列接続され、前記相アームと並列接続される第2のスイッチ及び第3のスイッチと、
     前記第2のスイッチと前記第3のスイッチとの間に設けられ、互いに結線される三相の各中性点と、
     前記チョッパセルと前記第1乃至第4のスイッチを制御する制御部と、
     を備え、
     前記制御部は、
     前記第1乃至第4のスイッチを制御することで、二相の前記各相アームを並列接続され、当該並列接続された前記相アームに他の一相の前記相アームを直列接続した各組み合わせの回路を、電圧位相ごとに形成し、
     前記チョッパセルを制御することで、前記回路を介して前記直流電源の正側と負側とを循環するPN間循環電流に、交流電流を重畳し、
     前記交流電流を操作して、前記上アームと前記下アームの電圧差の不均衡を抑制すること、
     を特徴とする電力変換装置。
  2.  前記制御部は、
     周波数が異なる2種類の前記交流電流を重畳し、前記上アームと前記下アームの電圧差の不均衡のうち、正相分と逆相分を一方の前記交流電流で抑制し、零相分を他方の前記交流電流で抑制すること、
     を特徴とする請求項1記載の電力変換装置。
  3.  前記制御部は、
     前記出力端子の出力交流周波数の1倍又は6N±1(Nは自然数)倍の周波数を有する前記一方の交流電流を重畳させること、
     を特徴とする請求項2記載の電力変換装置。
  4.  前記制御部は、
     前記正相分と逆相分とがゼロに追従する比例積分制御を実施し、
     前記比例積分制御の制御ゲインGpを、前記出力端子の出力交流電圧の変調率に従って変更すること、
     を特徴とする請求項3記載の電力変換装置。
  5.  前記制御ゲインGpは、以下数式(1)で表されることを特徴とする請求項4記載の電力変換装置。
    Figure JPOXMLDOC01-appb-M000001
  6.  前記制御部は、
     ローパスフィルタを有し、
     前記上アームと前記下アームの電圧の不均衡のうち、正相分と逆相分を前記ローパスフィルタにより検出すること、
     を特徴とする請求項2乃至5の何れかに記載の電力変換装置。
  7.  前記制御部は、
     前記出力端子の出力交流周波数の3×(2N-1)(Nは自然数)倍の周波数を有する前記他方の交流電流を重畳させること、
     を特徴とする請求項2記載の電力変換装置。
  8.  前記制御部は、
     前記逆相分がゼロに追従する比例積分制御を実施し、
     前記比例積分制御の制御ゲインGzを、前記出力端子の出力交流電圧の変調率に従って変更すること、
     を特徴とする請求項7記載の電力変換装置。
  9.  前記制御ゲインGzは、以下数式(2)で表されることを特徴とする請求項8記載の電力変換装置。
    Figure JPOXMLDOC01-appb-M000002
  10.  前記制御部は、
     前記チョッパセルを制御することで、前記並列接続された前記相アーム間を流れる相間循環電流を流し、
     前記相間循環電流を操作して、前記並列接続された前記相アーム間の電圧差の不均衡を抑制すること、
     を特徴とする請求項1記載の電力変換装置。
  11.  前記制御部は、
     直列接続された二相の前記相アームに対する電圧指令値を操作して、前記直列接続された二相の前記相アームの電圧差の不均衡を抑制すること、
     を特徴とする請求項1記載の電力変換装置。
  12.  前記制御部は、
     前記直列接続された二相の前記相アームのうち、一方の前記相アームの電圧指令値を上げ、他方の前記相アームの電圧指令値を下げ、
     前記一方の相アームの電圧指令値増分と前記他方の記相アームの電圧指令値減少分との総計はゼロであること、
     を特徴とする請求項11記載の電力変換装置。
  13.  前記制御部は、
     前記直列接続された二相の前記相アームの両電圧がゼロに追従する比例積分制御を実施し、
     前記比例積分制御の制御ゲインを、前記相アームを流れる電流に従って変更すること、
     を特徴とする請求項12記載の電力変換装置。
  14.  前記制御ゲインは、並列接続されずに単独となっている相アームを流れる電流の絶対値の逆数であることを特徴とする請求項13記載の電力変換装置。
  15.  前記制御部は、
     各種電流を三相の各相アームの電流値に基づき算出すること、
     を特徴とする請求項1乃至14の何れかに記載の電力変換装置。
PCT/JP2017/002725 2016-02-04 2017-01-26 電力変換装置 WO2017135147A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17747305.5A EP3413456B1 (en) 2016-02-04 2017-01-26 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019431A JP6502870B2 (ja) 2016-02-04 2016-02-04 電力変換装置
JP2016-019431 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135147A1 true WO2017135147A1 (ja) 2017-08-10

Family

ID=59499788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002725 WO2017135147A1 (ja) 2016-02-04 2017-01-26 電力変換装置

Country Status (3)

Country Link
EP (1) EP3413456B1 (ja)
JP (1) JP6502870B2 (ja)
WO (1) WO2017135147A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7165037B2 (ja) * 2018-11-30 2022-11-02 株式会社日立製作所 電力変換装置および電力変換装置の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512134A (ja) 2006-12-08 2010-04-15 シーメンス アクチエンゲゼルシヤフト 電流変換装置
JP2012044839A (ja) * 2010-08-23 2012-03-01 Tokyo Institute Of Technology 電力変換器
JP2014108000A (ja) * 2012-11-29 2014-06-09 Toshiba Corp 電力変換装置
JP2015146692A (ja) * 2014-02-03 2015-08-13 株式会社東芝 電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559611B2 (en) * 2012-09-28 2017-01-31 General Electric Company Multilevel power converter system and method
US9431918B2 (en) * 2012-09-28 2016-08-30 General Electric Company Grounding scheme for modular embedded multilevel converter
US9252681B2 (en) * 2013-08-30 2016-02-02 General Electric Company Power converter with a first string having controllable semiconductor switches and a second string having switching modules
US9667167B2 (en) * 2014-07-15 2017-05-30 General Electric Company Systems and methods for power conversion with direct current fault ride-through capability
JP6253548B2 (ja) * 2014-08-25 2017-12-27 株式会社東芝 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512134A (ja) 2006-12-08 2010-04-15 シーメンス アクチエンゲゼルシヤフト 電流変換装置
JP2012044839A (ja) * 2010-08-23 2012-03-01 Tokyo Institute Of Technology 電力変換器
JP2014108000A (ja) * 2012-11-29 2014-06-09 Toshiba Corp 電力変換装置
JP2015146692A (ja) * 2014-02-03 2015-08-13 株式会社東芝 電力変換装置

Also Published As

Publication number Publication date
JP2017139895A (ja) 2017-08-10
EP3413456A1 (en) 2018-12-12
JP6502870B2 (ja) 2019-04-17
EP3413456B1 (en) 2020-09-23
EP3413456A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP5800154B2 (ja) 電力変換器およびその制御方法
EP2491644B1 (en) System and method for offsetting the input voltage unbalance in multilevel inverters or the like
JP6289887B2 (ja) 電力変換装置
JP5223711B2 (ja) 無停電電源装置
WO2014125697A1 (ja) 三相電力変換装置
KR101688649B1 (ko) 중성점 전압의 불평형 제어에 의한 고효율 3 레벨 태양광 인버터
JP6219188B2 (ja) 電力変換装置
JP6957196B2 (ja) 電力変換装置
US9755551B2 (en) Power conversion device
JP6494378B2 (ja) 電力変換システムおよび電力変換システムの制御方法
JP6730946B2 (ja) 電力変換器の制御装置
WO2016031430A1 (ja) 電力変換装置
WO2017159117A1 (ja) 電力変換装置
JP2017118643A (ja) 自励式無効電力補償装置
WO2017135147A1 (ja) 電力変換装置
JP2021111987A (ja) 電力変換装置
Lee et al. Accurate neutral current control for neutral point voltage balancing in three-level inverters considering digital control and PWM delay
TWI488415B (zh) Three - phase feedforward inductor current control device and its control method
Lyu et al. A neutral-point voltage balance controller for the equivalent SVPWM strategy of NPC three-level inverters
JP2020102934A (ja) 電力変換装置
JP6818956B1 (ja) 電力変換装置
JP2014023310A (ja) コンバータシステムの制御方法および制御装置
WO2023214462A1 (ja) 電力変換装置
Itoh et al. Experimental verification of a multi-level inverter with H-bridge clamp circuit for single-phase three-wire grid connection
JP2020078210A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747305

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747305

Country of ref document: EP

Effective date: 20180904