WO2017134743A1 - 給湯システムの制御方法及び給湯システム - Google Patents

給湯システムの制御方法及び給湯システム Download PDF

Info

Publication number
WO2017134743A1
WO2017134743A1 PCT/JP2016/053062 JP2016053062W WO2017134743A1 WO 2017134743 A1 WO2017134743 A1 WO 2017134743A1 JP 2016053062 W JP2016053062 W JP 2016053062W WO 2017134743 A1 WO2017134743 A1 WO 2017134743A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water
local
tank
temperature
Prior art date
Application number
PCT/JP2016/053062
Other languages
English (en)
French (fr)
Inventor
大坪 祐介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/053062 priority Critical patent/WO2017134743A1/ja
Priority to JP2017564998A priority patent/JP6529612B2/ja
Priority to EP16889233.9A priority patent/EP3412985B1/en
Publication of WO2017134743A1 publication Critical patent/WO2017134743A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1012Arrangement or mounting of control or safety devices for water heating systems for central heating by regulating the speed of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/136Defrosting or de-icing; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0676Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on flow sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a hot water supply system control method and a hot water supply system for improving the performance of a heat pump water heater in a hot water supply system using a heat pump water heater using CO 2 or the like as a refrigerant.
  • the heat pump water heater has a characteristic that operation efficiency decreases when the incoming water temperature is high.
  • the water supplied to the heat pump water heater is, for example, introduced at a low temperature from a water tank or the like, and exchanged heat with the refrigerant in the heat pump water heater to obtain high temperature water. It can be supplied to the hot water tank through a pipe. Therefore, it is possible to secure water supply at a low temperature that can maximize the performance of the heat pump using the CO 2 refrigerant.
  • low temperature water can be supplied from the water tank to the heat pump water heater in order to store the hot water in the hot water tank.
  • the hot water discharged from the heat pump water heater exchanges heat with the local cold water in the heat exchanger, flows into the heat pump water heater in a low temperature state, exchanges heat with the refrigerant, and becomes hot water again. Supplied.
  • a hot water supply system that uses a commercial heat pump water heater used in large facilities such as hotels and hospitals
  • tanks and heat exchangers are selected according to the local load, and the local water flow rate is also It depends on the load.
  • the heat pump water heater cannot adjust the water flow rate according to the local load, so the temperature of the water flowing into the heat pump water heater may become high depending on the selection of the tank and heat exchanger in the local construction. In this case, in the heat pump water heater using the CO 2 refrigerant, the temperature of water entering the heat pump water heater becomes high, so that the performance deteriorates and the inefficient operation is continued.
  • the present invention is for solving the above-described problems, and the main purpose is to detect the water flow rate and temperature on the use side and adjust the temperature of water entering the heat pump water heater to adjust the heat pump water heater.
  • a hot water supply system control method and a hot water supply system that improve performance are provided.
  • the method for controlling a hot water supply system includes a heat pump water heater, a hot water tank for storing hot water heated by the heat pump water heater, and heat exchange using hot water stored in the hot water tank as a high-temperature heat medium.
  • a hot water storage pipe that communicates the hot water storage pipe and the heat exchanger, a hot water supply pipe that communicates the heat pump water heater and the hot water storage tank, a water inlet pipe that communicates the heat pump water heater and the hot water storage tank, Piping, a hot water tank water inlet pipe communicating with the hot water tank and the heat exchanger, a local water inlet pipe communicating with the heat exchanger, a local hot water pipe communicating with the heat exchanger, and the hot water tank water inlet pipe
  • the control device comprises: Receiving the values detected by the hot water tank incoming water
  • the control device controls the circulation pump provided in the circulation side circuit to adjust the water flow rate. For this reason, the temperature of the water flowing into the lower part of the hot water tank can be kept low, and as a result, the temperature of the water entering the heat pump water heater can be kept low, so that the effect of improving the performance of the heat pump water heater is obtained. It is done.
  • Embodiment 1 It is a figure showing the hot-water supply system in Embodiment 1 of this invention. It is a figure showing the control flow in Embodiment 2 of this invention. It is a figure showing the hot-water supply system in Embodiment 3 of this invention.
  • FIG. 1 is a diagram illustrating a hot water supply system according to Embodiment 1 of the present invention.
  • the water flow rate of the use side circuit 122 and the circulation side circuit 121 of the hot water supply system 10 of the heat pump water heater 100 is detected, and the circulation pump 103 of the circulation side circuit 121 is controlled.
  • a hot water supply system 10 according to Embodiment 1 of the present invention includes a heat pump water heater 100, a hot water storage tank 101, a heat exchanger 102, a circulation pump 103, each pipe, and each sensor.
  • Each pipe is composed of a water inlet pipe 104, a hot water outlet pipe 105, a hot water tank outlet hot water pipe 106, a hot water tank incoming water pipe 107, a local incoming water pipe 108, and a local hot water outlet pipe 109.
  • Each sensor includes a hot water tank incoming water flow rate sensor 110, a local incoming water flow rate sensor 111, a hot water tank temperature sensor 112, a hot water tank incoming water pipe temperature sensor 113, a local incoming water pipe temperature sensor 114, and an outside air temperature sensor 117.
  • Hot water heated by the heat pump water heater 100 flows through the hot water supply pipe 105 and is supplied to the upper layer of the hot water storage tank 101.
  • Hot water stored in the lower layer of the hot water storage tank 101 flows through the water inlet pipe 104 and is supplied to the heat pump water heater 100.
  • the connection of the heat pump water heater 100, the hot water outlet pipe 105, the hot water storage tank 101, and the incoming water pipe 104 constitutes a hot water supply side circuit 120.
  • the hot water in the upper layer stored in the hot water tank 101 flows through the hot water tank outlet pipe 106 and is supplied to the heat exchanger 102.
  • the hot water passing through the heat exchanger 102 flows through the hot water tank inlet pipe 107 and is returned to the lower layer of the hot water tank 101.
  • the circulating connection of the hot water storage tank 101, the hot water storage tank outlet pipe 106, the heat exchanger 102, and the hot water tank input pipe 107 constitutes a circulation side circuit 121.
  • the circulation side circuit 121 is provided with a circulation pump 103, and the circulation pump 103 circulates hot water stored in the hot water storage tank 101 to the circulation side circuit 121.
  • the circulation pump 103 is installed in the hot water tank inlet pipe 107 between the heat exchanger 102 and the hot water tank inlet pipe temperature sensor 113.
  • the circulation pump 103 is installed in the hot water tank outlet pipe 106. You may install in the other place in the side circuit 121.
  • the water on the local site flows through the local water intake pipe 108 and is supplied to the heat exchanger 102.
  • Water heated by heat exchange via the heat exchanger 102 flows through the local hot water supply pipe 109 and is used locally.
  • the connection of the local water inlet pipe 108, the heat exchanger 102, and the local hot water outlet pipe 109 constitutes a use side circuit 122.
  • a hot water tank water inlet side flow sensor 110 is installed in the hot water tank water inlet pipe 107, and a local water inlet side flow sensor 111 is installed in the local water inlet pipe 108.
  • a hot water tank temperature sensor 112 is installed in the hot water tank 101, a hot water tank water inlet pipe temperature sensor 113 is installed in the hot water tank water inlet pipe 107, and a local water inlet pipe temperature sensor 114 is installed in the local water inlet pipe 108.
  • the heat pump water heater 100 is provided with an outside air temperature sensor 117 for measuring the outside air temperature. Data detected by each sensor is transmitted to the control device 115 of the heat pump water heater 100 and input.
  • the control device 115 receives the data transmitted from each sensor and calculates an analog signal (4 to 20 A, etc.) so as to adjust the output of the circulation pump 103.
  • the analog signal derived by the calculation of the control device 115 is output to the circulation pump 103 and the circulation pump 103 is controlled, so that the flow rate of the hot water circulating in the circulation side circuit 121 can be adjusted.
  • the control device 115 may have a storage unit for storing data of each sensor.
  • the hot water supply side circuit 120 the low temperature water that has flowed into the heat pump water heater 100 from the incoming water pipe 104 exchanges heat with the refrigerant in the heat pump water heater 100, and is stored as hot water in the hot water storage tank 101 through the hot water discharge pipe 105.
  • the hot water storage operation stops the operation of the heat pump water heater 100 when the temperature detected by the hot water tank temperature sensor 112 installed in the hot water tank 101 reaches a set value (for example, 70 ° C.).
  • a set value for example, 70 ° C.
  • the use side circuit 122 when hot water is required on the use side, the low temperature water flows into the heat exchanger 102 through the local water intake pipe 108 and exchanges heat with the hot water on the hot water storage tank 101 side to become high temperature water. It is supplied to the user side through 109.
  • the circulation side circuit 121 the hot water in the hot water tank 101 flows into the heat exchanger 102 through the hot water tank outlet pipe 106 by the circulation pump 103 and exchanges heat with the load side water, and the water whose temperature has decreased due to the heat exchange is stored in the hot water tank. The water flows into the hot water storage tank 101 through the inlet pipe 107 and thereafter repeats the same flow.
  • the heat pump water heater has a characteristic that operation efficiency decreases when the incoming water temperature is high. Therefore, in this hot water supply system 10, in order to improve the performance of the heat pump water heater, it is necessary to lower the incoming water temperature of the heat pump water heater 100. In order to lower the incoming water temperature of the heat pump water heater 100, it is necessary to keep the temperature of the bottom of the hot water storage tank 101 communicating with the incoming water pipe 104 low. Furthermore, in order to keep the temperature of the bottom of the hot water tank 101 low, it is necessary to keep the outlet temperature on the hot water tank 101 side of the heat exchanger 102 communicating with the hot water tank incoming pipe 107 low.
  • the circulation pump 103 is controlled so that water having the same flow rate as the detection value of the on-site water-inflow sensor 111 in the use-side circuit 122 also flows into the circulation-side circuit 121. It may be adjusted via the control device 115 while detecting the value of. Specifically, the control device 115 receives the values detected by the hot water tank incoming water flow sensor 110 and the local incoming water flow sensor 111. And the control apparatus 115 produces the analog signal which controls the circulation pump 103 so that the value of the hot water tank incoming water flow sensor 110 becomes the same value as the value of the local incoming water flow sensor 111. Thereafter, the control device 115 transmits the created analog signal to the circulation pump 103 to adjust the output of the circulation pump 103.
  • the relationship between the analog signal from the control device 115 and the flow rate of the circulation side circuit 121 is stored in the control device 115 in advance so that the flow rate of the circulation side circuit 121 can be adjusted immediately after the detection of the flow rate. It is possible to smoothly achieve a predetermined flow rate.
  • storing the relationship between the analog signal from the control device 115 and the flow rate of the circulation side circuit 121 in the control device 115 may not be stored in advance, but may be stored as needed at predetermined intervals during operation. .
  • the output adjustment signal is sent to the circulation pump 103 via the control device 115 so that the flow rate of the use side circuit 122 and the flow rate of the circulation side circuit 121 are the same.
  • the control device 115 controls the circulation pump 103 and adjusts the flow rate of the circulation side circuit 121, so that it is possible to reduce the temperature of the incoming water of the heat pump water heater 100 and perform an efficient operation.
  • Embodiment 2 Control of circulation pump 103 in circulation side circuit 121 of hot water supply system 10 in Embodiment 2 of the present invention will be described using FIG.
  • the control device 115 changes the output value to the circulation pump 103 to control so that the water flow rate of the use side circuit 122 and the water flow rate of the circulation side circuit 121 become equal. By doing so, the flow rate of the circulation side circuit 121 is adjusted.
  • the water temperature of the hot water tank water intake pipe 107 may not decrease even if the water flow rate is the same.
  • the circulating pump 103 is set so that the detected value T1 of the hot water tank incoming pipe temperature sensor 113 of the hot water tank incoming pipe 107 and the detected value T2 of the local incoming pipe temperature sensor 114 of the local incoming pipe 108 are close to each other. Adjust the output.
  • FIG. 2 is a diagram showing a control flow in the second embodiment of the present invention. Specifically, as shown in the flow of FIG. 2, when the local incoming side flow rate sensor 111 detects that the water in the use side circuit 122 has flowed in Step 1, the current flow rate is set as the target flow rate. Next, in step 2, the necessary analog signal is predicted from the relationship between the analog signal stored in advance in the control device 115 and the flow rate flowing through the circulation side circuit 121, and an analog signal close to the target flow rate is created and output. Thus, the flow rate of the circulation pump 103 is adjusted. In step 3, when the flow rate of the circulation circuit 121 as a result of output in step 2 does not reach the target value, the analog signal is corrected.
  • the analog signal is adjusted until the values of the on-site water inlet side flow rate sensor 111 of the use side circuit 122 and the hot water tank inlet side flow rate sensor 110 of the circulation side circuit 121 become equal.
  • the detected value T1 of the hot water tank incoming pipe temperature sensor 113 of the hot water tank incoming pipe 107 and the detected value T2 of the local incoming pipe temperature sensor 114 of the local incoming pipe 108 are compared.
  • the analog signal is reduced to reduce the flow rate of the circulation pump 103, thereby lowering the value of T1, thereby reducing the temperature of the incoming water to the hot water storage tank 101.
  • the detected value T1 of the hot water tank inlet pipe temperature sensor 113 of the hot water tank inlet pipe 107 and the local water inlet pipe 108 on-site the detected value T1 of the hot water tank inlet pipe temperature sensor 113 of the hot water tank inlet pipe 107 and the local water inlet pipe 108 on-site.
  • how many times the temperature of T1 decreases depends on the heat exchange efficiency of the heat exchanger 102 that is arranged and actually used in the field and the flow rate of water in the use side circuit 122. .
  • the determination value here may be T1> T2 + ⁇ , and ⁇ may be set according to the local system.
  • the value of ⁇ may be set automatically after determining how close T1 approaches T2 by increasing or decreasing the flow rate on the circulation side during this control.
  • the temperature of water entering the hot water storage tank 101 can be lowered to the same level as the temperature of the local water inlet pipe 108, so the temperature of water entering the heat pump water heater 100 is further reduced. This makes it possible to operate efficiently.
  • FIG. 3 is a diagram illustrating a hot water supply system according to Embodiment 3 of the present invention.
  • the third embodiment of the present invention is a circuit in which a branch pipe and a three-way valve 116 for branching, which are pipes for returning the hot water tank water inlet pipe 107 to the intermediate part of the hot water tank 101, are added to FIG. Since other configurations are the same as those of the first embodiment of the present invention, description thereof is omitted.
  • the high temperature water that has passed through the local hot water supply pipe 109 flows into the local water intake pipe 108, and the high temperature water flows into the heat exchanger 102 to repeat the same cycle.
  • the hot water in the use side circuit 122 is maintained at a high temperature, heat exchange with the hot water in the hot water storage tank 101 is not necessary, but when the hot water temperature in the use side circuit 122 is lowered (for example, from 60 ° C. to 40 ° C.). In order to reduce the temperature to 0 ° C., it is necessary to exchange heat with hot water in the circulation side circuit 121 to obtain high-temperature water.
  • the temperature of the water entering the hot water storage tank 101 after heat exchange in the heat exchanger 102 is also relatively high (for example, 40 ° C.). . Therefore, when this hot water is introduced into the bottom of the hot water storage tank 101, the incoming water temperature to the heat pump water heater 100 also increases, and the performance of the heat pump water heater deteriorates. Therefore, in such a case, high temperature water may be introduced into the intermediate portion of the hot water storage tank 101.
  • the local load becomes 0 during operation, and the temperature detected by the local incoming pipe temperature sensor 114 becomes higher than a set value (for example, 50 ° C.) due to high temperature water circulating in the local incoming pipe 108. Then, the output to the circulation pump 103 is stopped. In this state, when the hot water circulates in the use side circuit 122, especially in winter, the temperature of the hot water decreases. Therefore, when the temperature falls below a threshold value (for example, 40 ° C.), The circulation pump 103 is operated. The analog signal at this time is as described in the first embodiment of the present invention. However, since the local water temperature is relatively high (for example, 40 ° C.), the temperature of the hot water tank water intake pipe 107 is also relatively high. Become.
  • the high-temperature water is returned to the intermediate portion of the hot water tank 101 by switching the direction of the three-way valve 116.
  • the temperature distribution in the hot water tank 101 is not easily broken, and as a result, the temperature of water entering the heat pump water heater 100 can be kept low.
  • the freeze prevention control in the hot water supply system 10 will be described. If the operation of the heat pump water heater 100 is stopped at a low outside air temperature such as in winter, water in the water circuit may freeze. Therefore, the heat pump water heater 100 operates the pump in the heat pump water heater 100 when the detected temperature of the outside temperature sensor 117 in the heat pump water heater 100 detects a predetermined value (for example, 0 ° C.) or less in order to prevent freezing. And has a function to prevent freezing.
  • a predetermined value for example, 0 ° C.
  • the use side circuit 122 maintains the hot water temperature at the next load occurrence by continuing to rotate the high temperature water even when the load is stopped, and also has a function of preventing the water circuit from freezing. ing.
  • an operation for preventing the water circuit from freezing at the time of low outside air is required.
  • the antifreezing operation is performed by operating the pump in the heat pump water heater according to the temperature detected by the outside air temperature sensor 117 of the heat pump water heater 100.
  • an antifreezing operation may be performed by turning on the analog signal of the circulation pump 103 and causing water to flow between the hot water storage tank 101 and the heat exchanger 102.
  • the high-temperature water flowing out from the hot water storage tank 101 flows into the heat exchanger 102 and then maintains a relatively high temperature (for example, 60 ° C.). After leaving, it flows into the hot water storage tank 101. However, since the temperature layer in the hot water storage tank 101 collapses when flowing into the bottom of the hot water storage tank 101, the temperature detected by the hot water tank water supply pipe temperature sensor 113 installed in the hot water storage tank water supply pipe 107 exceeds a threshold (for example, 40 ° C.). If this happens, the three-way valve 116 is switched.
  • a threshold for example, 40 ° C.
  • the antifreezing operation can be performed without destroying the temperature layer of the hot water tank 101.
  • the load of the use side circuit 122 becomes large and the water temperature of the local water intake pipe 108 flowing into the heat exchanger 102 decreases, the water temperature of the hot water tank water intake pipe 107 also decreases.
  • the three-way valve 116 is switched again to the bottom of the hot water tank 101.
  • the circuit may be switched so that water flows.
  • the water pipe side between the hot water tank 101 and the heat exchanger 102 is also subjected to the freeze prevention operation, so that the winter season Prevent water freezing. Then, by switching the water flow at this time with the three-way valve 116, it is possible to prevent freezing without destroying the temperature distribution in the hot water storage tank 101.
  • the fifth embodiment of the present invention describes a case where the control device 115 is not integrated with the heat pump water heater 100.
  • the control device 115 provided in the heat pump water heater 100 has been described.
  • the control device 115 may not be incorporated into the heat pump water heater 100 but may be a single device, or may be incorporated into the circulation pump 103, for example.
  • 10 hot water supply system 100 heat pump water heater, 101 hot water tank, 102 heat exchanger, 103 circulation pump, 104 water supply pipe, 105 hot water discharge pipe, 106 hot water tank hot water supply pipe, 107 hot water tank water supply pipe, 108 local water supply pipe, 109 local hot water supply Piping, 110 Hot water tank inlet side flow sensor, 111 Local water inlet flow sensor, 112 Hot water tank temperature sensor, 113 Hot water tank incoming pipe temperature sensor, 114 Local incoming pipe temperature sensor, 115 Control device, 116 Three-way valve, 117 Outside air temperature sensor , 120 Hot water supply side circuit, 121 Circulation side circuit, 122 Usage side circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

欧州などの水質(硬水)で間接的に現地の低温水を加温する間接熱交換方式のヒートポンプ給湯器システムにおいて、現地工事の選定次第ではヒートポンプ給湯器に流入する水温が高温となる可能性がある。この場合、CO冷媒を利用したヒートポンプ給湯器ではユニット入水温度が高くなるため、効率の悪い運転を継続してしまう。現地入水配管と、貯湯槽側入水配管に流量センサを設け、現地側の低温水を貯湯槽の高温水と熱交換させて間接的に高温水を供給させるシステムにおいて、貯湯槽入水配管の温度を低温水化させて、貯湯槽に流入させ、ヒートポンプ給湯器への入水温度を下げて運転性能を上げるために、貯湯槽側入水配管の水流量が現地側入水配管の水流量と等しくなるように循環ポンプの出力を調整することで、高効率化を図ることが可能となる。

Description

給湯システムの制御方法及び給湯システム
 本発明は、CO等を冷媒としたヒートポンプ給湯器を使用した給湯システムにおいて、ヒートポンプ給湯器の性能を向上させるための給湯システムの制御方法及び給湯システムに関するものである。
 従来、日本国内向けの給湯システムにおいては、電気料金の安価な夜間にヒートポンプ給湯器を使用して加熱した冷水を高温水として貯湯槽へ貯めておき、昼間にそのお湯を直接利用するシステムが採用されている(例えば、非特許文献1参照)。
 ヒートポンプ給湯器は、水の入水温度が高いと運転効率が低下するという特性がある。しかし、上記のようなシステムにおいては、ヒートポンプ給湯器へ給水される水は、例えば給水槽などから低温の状態で流入させ、ヒートポンプ給湯器内の冷媒と熱交換させて高温水とした上で出湯配管を通して貯湯槽へ供給することができる。そのため、CO冷媒を利用したヒートポンプの性能を最大限に発揮できる低温での給水が確保できる。
 また、貯湯槽内に貯められた温水を直接利用するので、貯湯槽へ高温水を貯湯するために給水槽などから低水温の水をヒートポンプ給湯器へ供給することが可能である。
三菱電機 業務用エコキュート・ホットウォーターヒートポンプ カタログ 8ページ図
 ヒートポンプ給湯器を例えば欧州などの水質(硬水)で利用する場合、現地(給湯システムの据え付け場所)側の水を直接ヒートポンプ給湯器へ流入させて高温出湯させると熱交換器にスケールが発生して水回路が詰まる課題が発生する。また、ヒートポンプで加熱した温水を直接利用できないなどの課題があるため、このような場合には、ヒートポンプ給湯器で加熱した温水と現地側の冷水を例えばプレート熱交換器などの熱交換器で熱交換させて温水として間接的に加熱する方式が採用されている。
 この間接加熱方式の場合、ヒートポンプ給湯器を出た温水が熱交換器で現地側冷水と熱交換し、低温となった状態でヒートポンプ給湯器へ流入し、冷媒と熱交換して再び高温水となり供給される。しかし、例えばホテルや病院などの大型施設で利用される業務用のヒートポンプ給湯器を使用する給湯システムにおいては、現地側の負荷に応じてタンクや熱交換器が選定され、現地側の水流量も負荷に応じて異なる。ヒートポンプ給湯器では現地側の負荷に応じて水流量を調整することができないため、現地の工事におけるタンクや熱交換器の選定次第ではヒートポンプ給湯器に流入する水温が高温となる可能性がある。この場合、CO冷媒を利用したヒートポンプ給湯器では、ヒートポンプ給湯器への入水温度が高くなるため性能が悪化し、効率の悪い運転を継続してしまう問題点があった。
 本発明は、上記のような課題を解決するためのものであり、主たる目的は、利用側の水流量や温度を検知して、ヒートポンプ給湯器への入水温度を調整することでヒートポンプ給湯器の性能を改善する給湯システムの制御方法及び給湯システムを提供するものである。
 本発明に係る給湯システムの制御方法は、ヒートポンプ給湯器と、前記ヒートポンプ給湯器にて加熱した湯水を貯湯する貯湯槽と、前記貯湯槽に貯湯された湯水を高温側の熱媒体として用いる熱交換器と、前記ヒートポンプ給湯器と前記貯湯槽とを連通する出湯配管と、前記ヒートポンプ給湯器と前記貯湯槽とを連通する入水配管と、前記貯湯槽と前記熱交換器とを連通する貯湯槽出湯配管と、前記貯湯槽と前記熱交換器とを連通する貯湯槽入水配管と、前記熱交換器と連通する現地入水配管と、前記熱交換器と連通する現地出湯配管と、前記貯湯槽入水配管に設置される貯湯槽入水側流量センサと、前記現地入水配管に設置される現地入水側流量センサと、循環ポンプとを備える給湯システムにおいて、制御装置を備え、前記制御装置が、前記貯湯槽入水側流量センサと前記現地入水側流量センサが検知した値を受信し、前記貯湯槽入水側流量センサの値が前記現地入水側流量センサの値と同じ値になるように、前記循環ポンプを制御するアナログ信号を作成し、前記作成したアナログ信号を前記循環ポンプに送信し、前記循環ポンプの出力を制御するものである。
 本発明に係る給湯システムの制御方法においては、制御装置が、循環側回路に設けられた循環ポンプを制御し水流量を調整する。このため、貯湯槽下部へ流入する水の温度を低く保つことができ、その結果、ヒートポンプ給湯器への入水温度を低温に保つことができるため、ヒートポンプ給湯器の性能が向上するという効果が得られる。
本発明の実施の形態1における給湯システムを表す図である。 本発明の実施の形態2における制御フローを表す図である。 本発明の実施の形態3における給湯システムを表す図である。
 以下、本発明の実施の形態に係る給湯システムについて説明する。なお、この実施の形態により本発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[実施の形態1]
 図1は、本発明の実施の形態1における給湯システムを表す図である。
 本発明の実施の形態1は、ヒートポンプ給湯器100の給湯システム10の利用側回路122と循環側回路121の水流量を検知して、循環側回路121の循環ポンプ103を制御するものである。
 本発明の実施の形態1における給湯システム10は、ヒートポンプ給湯器100、貯湯槽101、熱交換器102、循環ポンプ103、各配管及び各センサから構成される。
 各配管は、入水配管104、出湯配管105、貯湯槽出湯配管106、貯湯槽入水配管107、現地入水配管108、現地出湯配管109からなる。
 各センサは、貯湯槽入水側流量センサ110、現地入水側流量センサ111、貯湯槽温度センサ112、貯湯槽入水配管温度センサ113、現地入水配管温度センサ114、外気温度センサ117からなる。
 ヒートポンプ給湯器100で加熱した湯水は、出湯配管105内を流れて貯湯槽101の上層部に供給される。貯湯槽101の下層部に貯湯された湯水は入水配管104内を流れてヒートポンプ給湯器100に給水される。このヒートポンプ給湯器100、出湯配管105、貯湯槽101、入水配管104の接続が給湯側回路120を構成する。
 貯湯槽101に貯湯された上層部の高温の湯水は、貯湯槽出湯配管106内を流れて熱交換器102に供給される。熱交換器102を経由した湯水は、貯湯槽入水配管107内を流れて貯湯槽101の下層部に戻される。この貯湯槽101、貯湯槽出湯配管106、熱交換器102、貯湯槽入水配管107の循環した接続が循環側回路121を構成する。循環側回路121には循環ポンプ103が設けられ、循環ポンプ103は貯湯槽101に貯湯された湯水を循環側回路121に循環させる。図1では、循環ポンプ103は熱交換器102と貯湯槽入水配管温度センサ113との間の貯湯槽入水配管107に設置されているが、例えば、貯湯槽出湯配管106に設置されるなど、循環側回路121内の他の場所に設置されてもよい。
 現地(給湯システム10の据え付け場所)側の水は、現地入水配管108内を流れて熱交換器102に供給される。熱交換器102を経由し熱交換されて温められた水は、現地出湯配管109内を流れて、現地で利用される。この現地入水配管108、熱交換器102、現地出湯配管109の接続が利用側回路122を構成する。
 貯湯槽入水配管107には貯湯槽入水側流量センサ110、現地入水配管108には現地入水側流量センサ111がそれぞれ設置されている。貯湯槽101内には貯湯槽温度センサ112、貯湯槽入水配管107には貯湯槽入水配管温度センサ113、現地入水配管108には現地入水配管温度センサ114がそれぞれ設置されている。また、ヒートポンプ給湯器100には、外気温を測定する外気温度センサ117が設置されている。
 この各センサによって検知されるデータはヒートポンプ給湯器100の制御装置115へ送信され入力される。制御装置115は、各センサから送信されたデータを受信し、循環ポンプ103の出力を調整するようにアナログ信号(4~20Aなど)を演算する。制御装置115の演算により導き出されたアナログ信号は、循環ポンプ103に出力されて循環ポンプ103が制御されることにより、循環側回路121を循環する湯水の流量調整が可能となる。なお、制御装置115は、各センサのデータを保存するための記憶手段を有していてもよい。
 次にこの給湯システム10における動作について説明する。給湯側回路120では、入水配管104よりヒートポンプ給湯器100へ流入した低温水はヒートポンプ給湯器100内で冷媒と熱交換し、高温水となって出湯配管105を通して貯湯槽101へ貯湯される。貯湯運転は貯湯槽101内に設置された貯湯槽温度センサ112の検知温度が設定値(例えば70℃)となった場合にヒートポンプ給湯器100の運転を停止する。そして、貯湯槽温度センサ112の検知温度が設定値以下となった場合は運転を開始し、貯湯槽101内に湯水を貯湯する。利用側回路122では、利用側で湯水が必要となった際に現地入水配管108を通して熱交換器102に低温水が流入し、貯湯槽101側の温水と熱交換して高温水となり現地出湯配管109を通って利用側へ供給される。循環側回路121では、貯湯槽101の温水が循環ポンプ103により貯湯槽出湯配管106を通して熱交換器102へ流入して負荷側の水と熱交換し、熱交換により温度が低下した水が貯湯槽入水配管107を通り貯湯槽101へ流入し、以後同じ流れを繰り返す。
 ヒートポンプ給湯器は、水の入水温度が高いと運転効率が低下するという特性がある。そのため、この給湯システム10において、ヒートポンプ給湯器の性能を向上させるためには、ヒートポンプ給湯器100の入水温度を低くすることが必要である。そして、ヒートポンプ給湯器100の入水温度を低下させるためには、入水配管104で連通する貯湯槽101の底部の温度を低く保つ必要がある。さらに、貯湯槽101の底部の温度を低く保つためには、貯湯槽入水配管107で連通する熱交換器102の貯湯槽101側の出口温度を低く保つ必要がある。このため、利用側回路122の水流量に合わせて循環側回路121の循環ポンプ103を制御する必要がある。循環ポンプ103の制御は、利用側回路122の現地入水側流量センサ111の検知値と同じ流量の水が循環側回路121にも流れるように、循環側回路121側の貯湯槽入水側流量センサ110の値を検知しながら制御装置115を介して調整すればよい。
 具体的には、制御装置115が、貯湯槽入水側流量センサ110と現地入水側流量センサ111が検知した値を受信する。そして、貯湯槽入水側流量センサ110の値が現地入水側流量センサ111の値と同じ値になるように、制御装置115が循環ポンプ103を制御するアナログ信号を作成する。その後、制御装置115は、作成したアナログ信号を循環ポンプ103に送信して循環ポンプ103の出力を調整する。
 なお、流量の検知後すぐに循環側回路121の流量を調整できるように、試運転時にあらかじめ制御装置115からのアナログ信号と循環側回路121の流量との関係を制御装置115に記憶しておけば、スムーズに所定の流量とすることが可能となる。
 また、制御装置115からのアナログ信号と循環側回路121の流量との関係を制御装置115に記憶することは、あらかじめ記憶させておくのではなく、運転時に所定の間隔で随時記憶するものでもよい。
 以上のように、本発明の実施の形態1においては、利用側回路122の流量と循環側回路121の流量とが同じとなるように循環ポンプ103に制御装置115を介して出力の調整信号を与える。制御装置115が循環ポンプ103を制御し、循環側回路121の流量を調整することにより、ヒートポンプ給湯器100の入水側温度を低下させて効率の良い運転を実施することが可能となる。
[実施の形態2]
 図1を用いて本発明の実施の形態2における、給湯システム10の循環側回路121における循環ポンプ103の制御について説明する。
 本発明の実施の形態1で説明したとおり、利用側回路122の水流量と循環側回路121の水流量が等しくなるように、制御装置115が循環ポンプ103への出力値を変化させて制御を行うことにより循環側回路121の流量の調整を行う。しかしながら、現地の負荷状況や熱交換器102の性能によっては、水流量を同一にしても貯湯槽入水配管107の水温が低下しない場合がある。このような場合は、貯湯槽入水配管107の貯湯槽入水配管温度センサ113の検知値T1と現地入水配管108の現地入水配管温度センサ114の検知値T2の値が近くなるように循環ポンプ103の出力を調整すればよい。
 図2は、本発明の実施の形態2における制御フローを表す図である。
 具体的には、図2のフローに示すとおり、ステップ1において利用側回路122の水が流れたことを現地入水側流量センサ111で検知した場合、現在の流量を目標流量とする。次にステップ2において、あらかじめ制御装置115に記憶しておいたアナログ信号と循環側回路121を流れる流量との関係から必要となるアナログ信号を予測し、目標流量に近いアナログ信号を作成し出力して循環ポンプ103の流量を調整する。ステップ3において、ステップ2で出力した結果の循環側回路121の流量が目標値に到達しなかった場合には、アナログ信号を補正する。アナログ信号の補正により、利用側回路122の現地入水側流量センサ111と循環側回路121の貯湯槽入水側流量センサ110の値が等しくなるまでアナログ信号を調整する。ステップ4において、貯湯槽入水配管107の貯湯槽入水配管温度センサ113の検知値T1と現地入水配管108の現地入水配管温度センサ114の検知値T2を比較する。T1>T2+α(例えばα=3)の場合は、アナログ信号を低減して循環ポンプ103の流量を低下させることで、T1の値を低下させることにより、貯湯槽101への入水温度を現地入水配管108の温度と同等程度まで低下させることが可能となる。ここで、ヒートポンプ給湯器の性能を向上させるため貯湯槽入水配管107の温度を低下させるためには、貯湯槽入水配管107の貯湯槽入水配管温度センサ113の検知値T1と現地入水配管108の現地入水配管温度センサ114の検知値T2が等しくなる(T1=T2)方が良い。しかし、T1の温度が何度まで低下するか(どれだけT2に近づくか)は、現地で手配され実際に使用する熱交換器102の熱交換効率や利用側回路122の水の流量に依存する。そのため、T1の温度はT2の温度に対して若干(+α)上昇することが考えられる。よって、ここでの判定値としてはT1>T2+αとし、αについては現地のシステムに応じて設定できるようにしておけばよい。もしくは、本制御中に循環側の流量を増減させてT1がどれだけT2に近づくかを判別したうえで、αの値を自動で設定できるようにしても良い。
 水流量だけでなく、温度検知を追加することで、貯湯槽101への入水温度を現地入水配管108の温度と同等程度まで下げることができるために、ヒートポンプ給湯器100への入水温度をさらに低下させることができ、効率の良い運転をすることが可能となる。
[実施の形態3]
 本発明の実施の形態3においては、利用側回路122への入水温度が高くなった場合や、現地負荷が0となるが高温水が利用側回路122を循環する場合の対策について説明する。
 図3は、本発明の実施の形態3における給湯システムを表す図である。
 本発明の実施の形態3においては、図1に対して、貯湯槽入水配管107を貯湯槽101の中間部に戻す配管である分岐管と分岐用の三方弁116を追加した回路である。その他の構成については本発明の実施の形態1と同様であるため、説明を省略する。
 通常の運転については、本発明の実施の形態1に記載のとおりであるため、説明を省略する。ここで、利用側回路122で負荷が0となり、現地での出湯が不要となった場合、現地での水の流れを止めると利用側回路122内の水温が低下する。この場合、利用側回路122で負荷が発生し湯水が必要となったとしても、温度の低下した湯水が現地の例えばシャワーなどへ供給されてしまう。そのため、利用側回路122で負荷が0となった場合においても通常は利用側回路122で湯水を循環させることが一般的である。
 この際、現地入水配管108には現地出湯配管109を通った高温水が流入し、高温水が熱交換器102へ流入して同じサイクルを繰り返す。利用側回路122の温水が高い温度を維持している場合には、貯湯槽101の湯水との熱交換は不要であるが、利用側回路122の温水温度が低下した場合(例えば60℃から40℃へ低下)には、循環側回路121の湯水と熱交換をさせて高温水とする必要がある。この際、利用側回路122の水は比較的高い温度を維持しているため、熱交換器102で熱交換後の貯湯槽101への入水の温度も比較的高い温度(例えば40℃)となる。そのため、この温水を貯湯槽101の底へ入水させると、ヒートポンプ給湯器100への入水温度も高くなるため、ヒートポンプ給湯器の性能が悪化する。よってこのような場合には貯湯槽101の中間部へ高温水を入水させるようにすれば良い。
 具体的には、運転中に現地負荷が0となり、現地入水配管108に高温水が循環することで、現地入水配管温度センサ114の検知する温度が設定値(例えば50℃)より高くなった場合、循環ポンプ103への出力を止める。
 この状態で利用側回路122を温水が循環した場合、特に冬場には温水温度が低下するため、閾値(例えば40℃)以下となった場合は、利用側回路122の温水を再び過熱するために循環ポンプ103を稼動させる。この際のアナログ信号は、本発明の実施の形態1に記載のとおりであるが、現地入水温度が比較的高温(例えば40℃)であるため、貯湯槽入水配管107の温度も比較的高温となる。
 この場合に三方弁116の方向を切り替えることにより、高温水を貯湯槽101の中間部へ戻す。高温水を貯湯槽101の中間部に戻すことにより、貯湯槽101内の温度分布が崩れにくく、その結果、ヒートポンプ給湯器100への入水温度を低く保つことができる。
 なお、現地入水配管108の現地入水配管温度センサ114の値が再び給水温度(例えば15℃)程度に低下した場合には、三方弁116の方向を切り替え、温水を貯湯槽101の底部に戻し、本発明の実施の形態1に記載の通常制御へ移行すればよい。
 以上のように、三方弁116を制御して、温水を貯湯槽101の中間部へ戻す回路に切り替えることにより、ヒートポンプ給湯器100の入水温度の上昇を抑えることができ、効率の良い運転を行うことが可能である。
[実施の形態4]
 本発明の実施の形態4は、給湯システム10における凍結防止制御について説明する。
 冬季などの低外気温度時にヒートポンプ給湯器100の運転が停止している場合、水回路内の水が凍結する可能性がある。そのためヒートポンプ給湯器100は、凍結を防止するためにヒートポンプ給湯器100内の外気温度センサ117の検知温度が所定値(例えば0℃)以下を検知した場合、ヒートポンプ給湯器100内のポンプを運転させて凍結を防止する機能を有している。また、本発明の実施の形態3に示すとおり利用側回路122においては、負荷停止時にも高温水を回し続けることによって次回負荷発生時の出湯温度を維持とともに、水回路の凍結防止機能も有している。これに対して、貯湯槽101から熱交換器102の間の水配管においても、低外気時に水回路の凍結を防止する運転が必要となる。
 図3を用いて本給湯システムにおいての凍結防止運転について説明する。前述のとおり、低外気時には、ヒートポンプ給湯器100の外気温度センサ117の検知温度によって、ヒートポンプ給湯器内のポンプを運転させて凍結防止運転を行う。この場合に循環ポンプ103のアナログ信号をONすることによって貯湯槽101と熱交換器102間についても水を流すことによって凍結防止運転を実施すればよい。
 この場合、利用側回路122の負荷が小さい場合においては貯湯槽101から流出した高温水は熱交換器102へ流入後、比較的高温の状態(例えば60℃)を維持した状態で熱交換器102を出た後に貯湯槽101へ流入する。しかし、貯湯槽101の底部へ流入すると、貯湯槽101内の温度層が崩れるため、貯湯槽入水配管107に設置された貯湯槽入水配管温度センサ113の検知温度が閾値(例えば40℃)を超えた場合には三方弁116を切り替える。三方弁116を切り替えて、貯湯槽101の中間部に高温水が流入するように回路を切り替えれば、貯湯槽101の温度層を崩すことなく、凍結防止運転が可能となる。なお、利用側回路122の負荷が大きくなり、熱交換器102に流入する現地入水配管108の水温が低下した場合には貯湯槽入水配管107の水温も低下する。この場合、貯湯槽入水配管107に設置された貯湯槽入水配管温度センサ113の検知温度が閾値(例えば40℃)以下となった場合には三方弁116を再び切り替えて、貯湯槽101の底部へ水が流れるように回路を切り替えればよい。
 以上のように、本発明の実施の形態4においては、ヒートポンプ給湯器100の凍結防止運転に合わせて、貯湯槽101と熱交換器102間の水配管側も凍結防止運転を行うことで、冬季の水の凍結を防止する。そして、この際の水の流れを三方弁116で切り替えることにより、貯湯槽101内の温度分布を崩すことなく凍結防止を図ることが可能となる。
[実施の形態5]
 本発明の実施の形態5は、制御装置115がヒートポンプ給湯器100と一体ではない場合を説明するものである。
 本発明の実施の形態1に係る発明では、ヒートポンプ給湯器100に設けられている制御装置115を説明するものであった。しかしながら、制御装置115は、ヒートポンプ給湯器100に組み込まれず、単体の装置であってもよいし、例えば、循環ポンプ103に組み込まれているものでもよい。
 10 給湯システム、100 ヒートポンプ給湯器、101 貯湯槽、102 熱交換器、103 循環ポンプ、104 入水配管、105 出湯配管、106 貯湯槽出湯配管、107 貯湯槽入水配管、108 現地入水配管、109 現地出湯配管、110 貯湯槽入水側流量センサ、111 現地入水側流量センサ、112 貯湯槽温度センサ、113 貯湯槽入水配管温度センサ、114 現地入水配管温度センサ、115 制御装置、116 三方弁、117 外気温度センサ、120 給湯側回路、121 循環側回路、122 利用側回路。

Claims (13)

  1.  ヒートポンプ給湯器と、
     前記ヒートポンプ給湯器にて加熱した湯水を貯湯する貯湯槽と、
     前記貯湯槽に貯湯された湯水を高温側の熱媒体として用いる熱交換器と、
     前記ヒートポンプ給湯器と前記貯湯槽とを連通する出湯配管と、
     前記ヒートポンプ給湯器と前記貯湯槽とを連通する入水配管と、
     前記貯湯槽と前記熱交換器とを連通する貯湯槽出湯配管と、
     前記貯湯槽と前記熱交換器とを連通する貯湯槽入水配管と、
     前記熱交換器と連通する現地入水配管と、
     前記熱交換器と連通する現地出湯配管と、
     前記貯湯槽入水配管に設置される貯湯槽入水側流量センサと、
     前記現地入水配管に設置される現地入水側流量センサと、
     循環ポンプと、を備える給湯システムにおいて、
     制御装置を備え、
     前記制御装置が、前記貯湯槽入水側流量センサと前記現地入水側流量センサが検知した値を受信し、
     前記貯湯槽入水側流量センサの値が前記現地入水側流量センサの値と同じ値になるように、前記循環ポンプを制御するアナログ信号を作成し、
     前記作成したアナログ信号を前記循環ポンプに送信し、
     前記循環ポンプの出力を制御する給湯システムの制御方法。
  2.  前記制御装置が、前記循環ポンプを制御するアナログ信号を作成する際に、あらかじめ記憶しておいたアナログ信号と循環側回路を流れる流量との関係を参照し、アナログ信号を作成する請求項1に記載の給湯システムの制御方法。
  3.  前記制御装置が、前記アナログ信号と該アナログ信号に対応して検知される貯湯槽入水側流量センサの値との対応関係のデータを記憶する請求項1又は2に記載の給湯システムの制御方法。
  4.  前記制御装置が、前記循環ポンプを制御するアナログ信号を作成する際に、前記記憶したデータを参照し、アナログ信号を作成する請求項3に記載の給湯システムの制御方法。
  5.  前記貯湯槽入水配管が貯湯槽入水配管温度センサを備え、
     前記現地入水配管が現地入水配管温度センサを備え、
     前記制御装置が、前記貯湯槽入水配管温度センサと前記現地入水配管温度センサが検知した温度を受信し、前記貯湯槽入水配管温度センサの温度が前記現地入水配管温度センサの温度と同じ温度になるように前記循環ポンプを制御するアナログ信号を作成し、前記作成したアナログ信号を前記循環ポンプに送信し、前記循環ポンプの出力を制御する請求項1~4のいずれか1項に記載の給湯システムの制御方法。
  6.  制御装置が、
     利用側回路の水が流れたことを現地入水側流量センサで検知した場合に、利用側回路の現在の流量を目標流量と決定する第1工程と、
     前記制御装置にあらかじめ記憶しておいたアナログ信号と循環側回路を流れる流量との関係を参照し、アナログ信号を予測し、前記目標流量に近いアナログ信号を作成し出力することで循環ポンプを制御して、循環側回路の流量を調整する第2工程と、
     前記第2工程を経て循環側回路の流量が目標値に到達しなかった場合に、利用側回路の現地入水側流量センサと循環側回路の貯湯槽入水側流量センサの値が等しくなるまでアナログ信号を補正して循環ポンプを制御することで、循環側回路の流量を調整する第3工程と、
     前記第2工程又は前記第3工程を経て循環回路の流量が目標値に到達した場合に、貯湯槽入水配管の貯湯槽入水配管温度センサの検知値T1と現地入水配管の現地入水配管温度センサの検知値T2を比較し、T1>T2+αの場合は、T1≦T2+αとなるまでアナログ信号を補正して循環ポンプを制御することで、循環側回路の流量を調整する第4工程と、を有する給湯システムの制御方法。
  7.  前記貯湯槽入水配管が三方弁を備え、
     前記現地入水配管温度センサが検知した温度が設定値より高い場合において、
     前記制御装置が、前記循環ポンプと前記貯湯槽の中間部とが連通するように前記三方弁を切り替える請求項1~6のいずれか1項に記載の給湯システムの制御方法。
  8.  前記貯湯槽入水配管が三方弁を備え、
     前記現地入水配管温度センサが検知した温度が閾値より低い場合において、
     前記制御装置が、前記循環ポンプと前記貯湯槽の下部とが連通するように前記三方弁を切り替える請求項1~6のいずれか1項に記載の給湯システムの制御方法。
  9.  前記ヒートポンプ給湯器が外気温度センサを備え、
     前記外気温度センサが検知した温度が所定値より低い場合において、
     前記制御装置が、前記ヒートポンプ給湯器の凍結防止運転を開始し、併せて、前記循環ポンプの凍結防止運転を開始する請求項1~8のいずれか1項に記載の給湯システムの制御方法。
  10.  前記凍結防止運転中において、
     前記貯湯槽入水配管温度センサが検知した温度が閾値より高い場合に、
     前記制御装置が、前記循環ポンプと前記貯湯槽の中間部とが連通するように前記三方弁を切り替える請求項9に記載の給湯システムの制御方法。
  11.  前記凍結防止運転中において、
     前記貯湯槽入水配管温度センサが検知した温度が閾値より低い場合に、
     前記制御装置が、前記循環ポンプと前記貯湯槽の下部とが連通するように前記三方弁を切り替える請求項9に記載の給湯システムの制御方法。
  12.  ヒートポンプ給湯器と、
     前記ヒートポンプ給湯器にて加熱した湯水を貯湯する貯湯槽と、
     前記貯湯槽に貯湯された湯水を高温側の熱媒体として用いる熱交換器と、
     前記ヒートポンプ給湯器と前記貯湯槽とを連通する出湯配管と、
     前記ヒートポンプ給湯器と前記貯湯槽とを連通する入水配管と、
     前記貯湯槽と前記熱交換器とを連通する貯湯槽出湯配管と、
     前記貯湯槽と前記熱交換器とを連通する貯湯槽入水配管と、
     前記熱交換器と連通する現地入水配管と、
     前記熱交換器と連通する現地出湯配管と、
     前記貯湯槽入水配管に設置される貯湯槽入水側流量センサと、
     前記現地入水配管に設置される現地入水側流量センサと、
     前記貯湯槽入水配管に設置される貯湯槽入水配管温度センサと、
     前記現地入水配管に設置される現地入水配管温度センサと、
     循環ポンプと、を備える給湯システムにおいて、
     請求項1~11のいずれか1項に記載の給湯システムの制御方法で使用される制御装置を備える給湯システム。
  13.  前記貯湯槽入水配管が三方弁を備える請求項12に記載の給湯システム。
PCT/JP2016/053062 2016-02-02 2016-02-02 給湯システムの制御方法及び給湯システム WO2017134743A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/053062 WO2017134743A1 (ja) 2016-02-02 2016-02-02 給湯システムの制御方法及び給湯システム
JP2017564998A JP6529612B2 (ja) 2016-02-02 2016-02-02 給湯システムの制御方法及び給湯システム
EP16889233.9A EP3412985B1 (en) 2016-02-02 2016-02-02 Method for controlling water-heating system, and water-heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053062 WO2017134743A1 (ja) 2016-02-02 2016-02-02 給湯システムの制御方法及び給湯システム

Publications (1)

Publication Number Publication Date
WO2017134743A1 true WO2017134743A1 (ja) 2017-08-10

Family

ID=59500695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053062 WO2017134743A1 (ja) 2016-02-02 2016-02-02 給湯システムの制御方法及び給湯システム

Country Status (3)

Country Link
EP (1) EP3412985B1 (ja)
JP (1) JP6529612B2 (ja)
WO (1) WO2017134743A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111379A1 (ja) * 2017-12-07 2019-06-13 三菱電機株式会社 給湯システム
CN112983328A (zh) * 2021-02-18 2021-06-18 江苏腾龙石化机械有限公司 一种防冻石油井口

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3102544B1 (fr) * 2019-10-29 2022-07-08 Soc Ind De Chauffage Sic Installation de chauffage d’un local comprenant un dispositif de protection contre le gel en cas d’absence d’alimentation electrique
CN110822700B (zh) * 2019-11-12 2021-06-15 珠海格力电器股份有限公司 一种壁挂炉及其控制方法
CN111006425B (zh) * 2019-11-28 2021-10-29 江苏苏净集团有限公司 一种基于目标负荷控制的多并联二氧化碳热泵控制方法
CN115327888B (zh) * 2022-08-22 2023-04-07 宁波奥克斯电气股份有限公司 一种循环水泵流量的pid算法、直流循环水泵、空气能热泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125307A (ja) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp 貯湯式給湯器
JP2006138493A (ja) * 2004-11-10 2006-06-01 Hanshin Electric Co Ltd 貯湯式給湯装置
JP2006300470A (ja) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd 貯湯式給湯器
JP2008224071A (ja) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2015224850A (ja) * 2014-05-29 2015-12-14 三菱電機株式会社 貯湯式給湯機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147583B1 (en) * 2014-05-23 2019-03-13 Mitsubishi Electric Corporation Storage water heater
GB2534608A (en) * 2015-01-29 2016-08-03 C-Tech Innovation Ltd Domestic hot water system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125307A (ja) * 2002-10-03 2004-04-22 Mitsubishi Electric Corp 貯湯式給湯器
JP2006138493A (ja) * 2004-11-10 2006-06-01 Hanshin Electric Co Ltd 貯湯式給湯装置
JP2006300470A (ja) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd 貯湯式給湯器
JP2008224071A (ja) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2015224850A (ja) * 2014-05-29 2015-12-14 三菱電機株式会社 貯湯式給湯機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111379A1 (ja) * 2017-12-07 2019-06-13 三菱電機株式会社 給湯システム
JPWO2019111379A1 (ja) * 2017-12-07 2020-07-09 三菱電機株式会社 給湯システム
EP3722697A4 (en) * 2017-12-07 2020-12-16 Mitsubishi Electric Corporation HOT WATER SUPPLY SYSTEM
CN112983328A (zh) * 2021-02-18 2021-06-18 江苏腾龙石化机械有限公司 一种防冻石油井口

Also Published As

Publication number Publication date
JP6529612B2 (ja) 2019-06-12
EP3412985A1 (en) 2018-12-12
JPWO2017134743A1 (ja) 2018-09-13
EP3412985A4 (en) 2019-02-27
EP3412985B1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2017134743A1 (ja) 給湯システムの制御方法及び給湯システム
CN105318540B (zh) 热水供给装置
KR100640137B1 (ko) 히트 펌프식 급탕 난방 장치
US8950203B2 (en) Heat pump device
JP4513754B2 (ja) ハイブリッド給湯システム
JP2008145096A (ja) 給湯システム、及び給湯方法
WO2014136384A1 (ja) 暖房給湯装置
US20090084329A1 (en) Malfunction detection device for hot water supplier
JP6107958B2 (ja) 蓄熱システム
JP5462009B2 (ja) 太陽熱給湯システム
JP5220083B2 (ja) 給湯システム
US10941965B2 (en) System and method for providing supplemental heat to a refrigerant in an air-conditioner
EP2041496B1 (en) An arrangement and a method for changing the temperature of a first and a second fluid located in two separate receptacles
JP5472178B2 (ja) 給湯暖房装置
EP3540324B1 (en) Heating medium circulation system
JP4375095B2 (ja) ヒートポンプ給湯機
JP2008020099A (ja) 給湯装置
JPH0618092A (ja) 集中給湯装置
JP5050617B2 (ja) 貯湯式給湯機
KR20170042486A (ko) 난방 장치
JP4155162B2 (ja) 貯湯式給湯装置
JP6191352B2 (ja) 貯湯給湯装置
JP5537966B2 (ja) 太陽熱給湯装置
JP6090907B2 (ja) 給湯システム
JP2007071443A (ja) 給湯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889233

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889233

Country of ref document: EP

Effective date: 20180903