WO2014136384A1 - 暖房給湯装置 - Google Patents

暖房給湯装置 Download PDF

Info

Publication number
WO2014136384A1
WO2014136384A1 PCT/JP2014/000707 JP2014000707W WO2014136384A1 WO 2014136384 A1 WO2014136384 A1 WO 2014136384A1 JP 2014000707 W JP2014000707 W JP 2014000707W WO 2014136384 A1 WO2014136384 A1 WO 2014136384A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heating
water supply
heat exchanger
heat
Prior art date
Application number
PCT/JP2014/000707
Other languages
English (en)
French (fr)
Inventor
竹内 清
▲祥▼▲隆▼ 久米
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112014001194.0T priority Critical patent/DE112014001194T5/de
Publication of WO2014136384A1 publication Critical patent/WO2014136384A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0257Central heating systems using heat accumulated in storage masses using heat pumps air heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/02Hot-air central heating systems; Exhaust gas central heating systems operating with discharge of hot air into the space or area to be heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • This indication is related with the heating hot-water supply apparatus which performs hot-water supply and heating using the heating action by a heat pump type heating device.
  • Patent Document 1 There are known heating and hot water supply apparatuses described in Patent Document 1 and Patent Document 2.
  • the hot water boiled with the heat pump hot water heat source machine is once stored in a tank, and then the heating operation is performed by circulating the high-temperature water in the upper part of the tank to the radiator for heating.
  • Patent Document 1 when heating operation is performed by directly circulating hot water boiled by a heat pump hot water heat source device to a heat radiator for heating, high-temperature water at the top of the tank is once radiated for heating after being stored in the tank. Switching between the case where the heating operation is carried out by distributing to the vessel.
  • Patent Document 2 describes a heat pump hot water supply air conditioner capable of simultaneously performing heating and hot water supply.
  • a part of the gas refrigerant discharged from the compressor radiates heat to the water sent by the water supply pump in the hot water supply side heat exchanger to create hot water supply water, and the remaining part of the gas refrigerant is in the first four directions.
  • Heating air is created by dissipating heat to the surrounding air through the valve in the indoor heat exchanger.
  • the refrigerants after the heat dissipation are merged and then adiabatically expanded by the expansion valve, and the low-pressure refrigerant evaporates by absorbing the ambient heat in the outdoor heat exchanger, and the first four-way valve and the second It is sucked into the suction side of the compressor through a four-way valve.
  • Patent Document 1 when heating is performed using the amount of hot water boiled by a heat pump hot water heat source machine, hot water is temporarily stored in a tank and then supplied to a radiator for heating. The heated hot water is directly supplied to the radiator for heating. Therefore, the heating operation and the hot water supply operation cannot be performed simultaneously.
  • Patent Document 1 describes that the hot water in the tank can be used with a radiator for heating and can also be used for hot water supply to a bathtub or the like.
  • the hot water once stored in the tank is only used for heating and hot water supply. Therefore, the amount of heat of the hot water boiled by the heat pump hot water heat source device cannot be used for heating without going through the tank, and at the same time cannot be stored in the tank for hot water supply. Furthermore, the amount of heat of the hot water boiled by the heat pump hot water heat source device is not distributable for heating and hot water supply according to the required heating capacity and the required hot water supply capacity.
  • Patent Document 2 a hot water supply operation and a heating operation can be performed at the same time, but there is no mention of an operation with an indoor ventilation function added.
  • the refrigerant path adopted for realizing simultaneous implementation of the hot water supply operation and the heating operation is complicated, and the passage through which the refrigerant flows is very long. If the refrigerant passage becomes long, there is a concern that the device has a heavy load on the environment.
  • An object of the present disclosure is to distribute the amount of heat via hot water obtained from a heat pump heating device while suppressing the length of the refrigerant passage through which the refrigerant flows and performing indoor ventilation with heat exchange between indoor air and outdoor air. It is providing the heating hot-water supply apparatus which can implement simultaneously the hot-water supply operation and heating operation which can be adjusted.
  • a heating hot water supply device includes a heat pump heating device that heats hot water by a heating action of a refrigerant flowing through a refrigerant cycle, and heating heat that flows into the surroundings by flowing in hot water heated by the heat pump heating device.
  • a flow rate adjusting unit that can distribute the hot water to be circulated in the heat exchanger or tank.
  • the heating operation and the hot water supply operation can be performed simultaneously.
  • coolant which is a heat source can be provided.
  • the outdoor air can be heated by having a ventilation device
  • the heating load of the heat pump heating device can be reduced.
  • the ventilation device the heating load of the heat pump type heating device is reduced, and a surplus power for performing the hot water supply operation can be generated, so that simultaneous operation of hot water supply and heating becomes possible.
  • a heating hot water supply apparatus that reduces the heating load and contributes to the improvement of the cleanliness of the room air can be obtained.
  • the heating hot-water supply apparatus can implement
  • the heating and hot water supply device 1 includes a tank unit that stores hot water for hot water supply in a tank 3, a heat pump cycle device 2, a hot water circuit in which hot water for heating and hot water supply circulates, and each part when performing hot water supply operation and heating operation.
  • An integrated ECU 100 (control device) for controlling the operation of The heating and hot water supply apparatus 1 performs a hot water supply operation in which heat is stored in the tank 3 as hot water supply water for discharging to a hot water supply terminal such as a bathtub or shower, and the amount of heat of the hot water heated by the heat pump cycle apparatus 2 is converted into a heat exchanger 7
  • the heating operation to supply to is performed.
  • the hot water supply operation and the heating operation can be performed simultaneously, and can be performed independently.
  • the heating and hot water supply device 1 uses hot water stored in the tank 3 by using, for example, system power in the midnight charge time period, or a daytime solar power generation device when hot water is supplied to a bathtub or a shower.
  • the hot water supply water is boiled and used using the power of the system or the grid power.
  • the heat pump cycle device 2 is an example of a heat pump type heating device.
  • the refrigerant flowing through the refrigerant cycle is used as a heat exchange medium, and water flowing through the hot water circuit is boiled to generate heat for hot water supply and heating.
  • the refrigerant used here is mainly composed of carbon dioxide.
  • the heat pump cycle device 2 is operated by a control signal from the heat pump ECU 101 communicating with the integrated ECU 100, and the operating state is output to the integrated ECU 100 via the heat pump ECU 101.
  • the heat pump cycle device 2 includes a compressor 20, a water refrigerant exchanger 21, a decompressor 22, an air refrigerant heat exchanger 23, and an exhaust fan 24.
  • the compressor 20 is a device that compresses and discharges carbon dioxide refrigerant.
  • the water refrigerant exchanger 21 has a refrigerant side passage 210 and a water side passage 211, and is configured such that heat is exchanged between the refrigerant and water flowing inside so as to face each other.
  • the water refrigerant exchanger 21 heats up the hot water by exchanging heat between the refrigerant compressed by the compressor 20 and the water in the water-side passage 211.
  • the decompressor 22 decompresses the high-pressure refrigerant that has passed through the water-refrigerant heat exchanger 21 to a low-pressure state.
  • the air refrigerant heat exchanger 23 absorbs heat from the air by the exhaust fan 24 that sucks not only the outside air but also room air, and evaporates the low-pressure refrigerant decompressed by the decompressor 22.
  • the refrigerant that has passed through the air refrigerant heat exchanger 23 is compressed again by the compressor 20 and discharged in a high-pressure state.
  • the tank unit includes a tank 3 that stores hot water for hot water supply, and various valves, pumps, and the like that are operated to discharge hot water to a hot water supply terminal such as a faucet or a bath.
  • the tank unit is operated by a control signal from the hot water storage ECU 102 communicating with the integrated ECU 100, and the operating state is output to the integrated ECU 100 via the hot water storage ECU 102.
  • the tank 3 is, for example, a metal tank having excellent corrosion resistance, and a heat insulating material (not shown) is disposed on the outer peripheral portion thereof, so that hot water supply water can be kept warm for a long time.
  • a plurality of tank thermistors for detecting the amount of hot water and the temperature of the hot water are provided.
  • the detected temperature signals of these thermistors are respectively input to the hot water storage ECU 102 and can detect the water temperature and the amount of hot water in the tank at each water level. Therefore, the hot water storage ECU 102 can detect the boundary position between the hot water heated in the upper portion of the tank 3 and the water before the lower boiling in the tank 3 based on the temperature information from the tank thermistor. Furthermore, the hot water storage ECU 102 can calculate the amount of heat stored in the tank 3 by detecting the temperature and the amount of hot water.
  • the tank 3 is connected to a water supply pipe 34 for supplying tap water to the inside of the tank 3, a hot water heat exchanger 39 and the inside of the tank 3, and a heat storage circuit in which water in the tank 3 circulates. 38 and a piping system including a hot water supply pipe 36 connected to a hot water supply terminal are connected.
  • the hot water supply pipe 36 is connected to the uppermost outlet 31 of the tank 3.
  • the water supply pipe 34 is connected to the lowermost inlet 30 of the tank 3.
  • the water supply pipe 34 branches before reaching the tank 3, and the branched water supply pipe 35 joins the hot water supply pipe 36.
  • a mixing valve 37 is provided at the junction of the water supply pipe 35 and the hot water supply pipe 36.
  • the hot water supply pipe 36 positioned between the outlet 31 and the mixing valve 37 is provided with a hot water supply thermistor (not shown) that detects the temperature of the hot water flowing through the hot water supply pipe 36.
  • the temperature information detected by the hot water supply thermistor is output to the hot water storage ECU 102 and used for operation control of the mixing valve 37.
  • the hot water storage ECU 102 controls the opening ratio of the mixing valve 37 to control the mixing ratio between the hot water supplied from the upper part of the tank 3 and the water supplied through the water supply pipe 35, and the hot water supplied to the hot water supply terminal. Adjust water temperature.
  • the heat storage circuit 38 is connected to the tank 3 via the hot water supply heat exchanger 39 so that the low temperature water in the lower part of the tank 3 flows out and is heated by the hot water supply heat exchanger 39 and returns to the upper part of the tank 3. It is the circuit which connects the lower part and the upper part of.
  • the primary-side passage 391 and the secondary-side passage 390 of the hot water supply heat exchanger 39 constitute an internal passage of the hot water supply heat exchanger 39, and are configured so that fluids flowing through the inside exchange heat with each other so as to face each other. ing.
  • the heat storage circuit 38 is connected to the lowermost outlet 32 of the tank 3 and is connected to the uppermost inlet 33 of the tank 3.
  • an incoming water temperature thermistor (not shown) for detecting the water temperature flowing into the secondary side passage 390 of the hot water supply heat exchanger 39 and the water temperature after heating by the secondary side passage 390 are detected.
  • a temperature thermistor (not shown) after heat exchange and a pump 380 are provided.
  • the detected temperature signal of each thermistor is output to hot water storage ECU 102 or integrated ECU 100.
  • the post-heat exchange temperature thermistor is used as a heat medium temperature sensor that detects the temperature of hot water after heat exchange is performed by the hot water supply heat exchanger 39.
  • the pump 380 performs a hot water circulation function that returns water in the lower part of the tank 3 to the upper part of the tank 3 via the heat storage circuit 38.
  • the circuit including the communication passage 50 and the hot water supply passage 52 is a hot water supply heating circuit.
  • the communication passage 50 connects the passage connecting the hot water supply heat exchanger 39 (primary side passage 391) and the internal passage of the heating heat exchanger 7 with the water side passage 211 of the water-refrigerant heat exchanger 21. It is. Accordingly, the communication passage 50 is bifurcated into a heating passage 51 toward the heating heat exchanger 7 and a hot water supply passage 52 toward the water-side passage 211 at the downstream end thereof. In the middle of the hot water supply passage 52, there is a primary side passage 391 of the hot water supply heat exchanger 39.
  • a flow rate adjusting valve 5 is provided at a branch portion between the heating passage 51 and the hot water supply passage 52.
  • path which comprises the heating circuit for hot water supply is formed by piping which connects between each part.
  • the heating heat exchanger 7 is a heating device for generating hot air for indoor heating.
  • the heat exchanger 7 for heating when the hot water heated by the heat pump cycle device 2 is flow-adjusted by the flow rate adjusting valve 5 via the communication passage 50 and flows into the internal passage, heat is dissipated around the internal passage, The outdoor air (outside air or the like) sucked by the air supply fan 70 is heated.
  • the outdoor air heated by the heating heat exchanger 7 heats the room and raises the room temperature.
  • the temperature of the air heated by the heating heat exchanger 7 is detected as a voltage signal by the blown air thermistor 10 which is a blown temperature detection unit.
  • the integrated ECU 100 acquires the detected voltage signal and calculates the temperature of air blown into the room.
  • the heat exchange unit 4 is provided in the middle of the air path until the outdoor air is heated by the heat exchanger 7 for heating.
  • the heat exchange unit 4 includes a heat exchange unit that exchanges heat between indoor air exhausted by the exhaust fan 24 and outdoor air supplied by the air supply fan 70.
  • the heat exchanging unit includes an inside air passage 40 through which indoor air flows and an outside air passage 41 through which outdoor air flows.
  • the inside air passage 40 and the outside air passage 41 are configured to exchange heat when the indoor air and the outdoor air flowing through each of them intersect.
  • the ventilation device included in the heating and hot water supply device 1 includes a heat exchanging unit 4 having a heat exchanging function, an exhaust fan 24 having an air blowing function, and an air supply fan 70.
  • the heat exchange unit 4 may be configured to incorporate a blower, and the indoor air or the outside air may be taken in by the blower.
  • the flow rate adjusting valve 5 can adjust the opening degree of the heating passage 51 and the hot water supply passage 52 in the range of 0% to 100%.
  • the integrated ECU 100 controls the opening degree on the heating passage 51 side and the opening degree on the hot water supply passage 52 side by the flow rate adjusting valve 5 in accordance with establishment of a predetermined condition to be described later. Therefore, the flow rate adjustment valve 5 is capable of distributing the hot water heated by the heat pump cycle device 2 into the hot water that is circulated through the heating heat exchanger 7 and the hot water that is circulated through the hot water supply heat exchanger 39. It is an example of a part.
  • the flow rate adjustment valve 5 can control the flow rate of hot water to the heat exchanger 7 for heating and the flow rate of hot water to the heat exchanger 39 for hot water supply according to the required heating capacity and the required amount of hot water supply. It functions as a part.
  • the flow rate adjusting valve 5 controls the opening degree on the heating passage 51 side to 0% (fully closed) and the opening degree on the hot water supply passage 52 side to 100% (fully open).
  • the flow rate adjustment valve 5 controls the opening degree on the heating passage 51 side to 100% (fully open) and the opening degree on the hot water supply passage 52 side to 0% (fully closed).
  • the flow rate adjusting valve 5 controls the opening degree on the heating passage 51 side to an opening rate corresponding to the required heating capacity, and the heating passage The opening degree on the hot water supply passage 52 side is controlled according to the opening degree on the 51 side.
  • the hot water flow rate at which the required heating capacity is obtained is distributed to the heating heat exchanger 7, and the amount of heat for hot water supply is stored in the tank 3 via the hot water supply heat exchanger 39 by the remaining hot water flow rate. .
  • the heating passage 51 is a passage that extends to the inlet of the water-side passage 211 of the water-refrigerant heat exchanger 21 at the upstream end thereof and the downstream end thereof.
  • the heating passage 51 is provided with an internal passage of the heating heat exchanger 7, an internal passage of the preheating heat exchanger 6, and a pump 54 in order from the upstream side.
  • the pump 54 flows the hot water flowing out of the water-side passage 211 of the water-refrigerant heat exchanger 21 and flowing through the communication passage 50 to the water-side passage 211 via at least one of the hot water supply passage 52 and the heating passage 51. Performs the function of circulating hot water.
  • the preheating heat exchanger 6 when hot water whose flow rate is adjusted by the flow rate adjustment valve 5 and flowing through the heating passage 51 flows into the internal passage, it is sucked by the air supply blower 70 by radiating heat around the internal passage. Heat the outdoor air. That is, the preheating heat exchanger 6 functions as an auxiliary heating device that heats outdoor air before heat exchange is performed in the heat exchange unit of the heat exchange unit 4. In the preheating heat exchanger 6, when the hot water heated by the heat pump cycle device 2 radiates heat in the heating heat exchanger 7 and then flows into the internal passage, the remaining heat (residual heat) of the hot water is radiated around the internal passage. As a result, the outdoor air before heat exchange in the heat exchange unit 4 is preheated.
  • the downstream end of the hot water supply passage 52 joins the heating passage 51 at a passage portion (merging portion 53) located downstream of the preheating heat exchanger 6 and upstream of the heat pump cycle device 2. Therefore, the hot water that has flowed out of the hot water supply heat exchanger 39 joins the hot water that has flowed out of the preheating heat exchanger 6 at the junction 53. Since the junction 53 is positioned downstream of the preheating heat exchanger 6, the water flowing into the water-side passage 211 of the water / refrigerant heat exchanger 21 is radiated by the hot water supply heat exchanger 39 and the temperature is lowered. It becomes mixed water of water and water whose temperature has decreased due to heat radiation by the heat exchanger 7 for heating and the heat exchanger 6 for preheating.
  • the integrated ECU 100 includes an input circuit, a microcomputer that executes various calculations using signals from the input circuit, and an output circuit.
  • the input circuit receives a signal from a remote controller 110 that is a driving operation unit that allows a user to set a driving operation, a communication signal with the heat pump ECU 101 and the hot water storage ECU 102, and detection signals from various thermistors and the like.
  • the output circuit outputs a control signal for directly controlling the flow rate adjusting valve 5, the air supply blower 70, and the pump 54 based on the calculation by the microcomputer.
  • the output circuit outputs control signals for controlling various valves such as the compressor 20, the exhaust fan 24, the pump 380, and the mixing valve 37 indirectly via the heat pump ECU 101 and the hot water storage ECU 102.
  • a signal from the remote controller 110 is a transmission signal to the integrated ECU 100 from an operation panel or the like for HEMS, kitchen installation or bathroom installation, for example, a signal for setting hot water supply automatic operation such as hot water, a signal for requesting heating operation, heating A signal or the like for simultaneous operation and hot water supply operation.
  • the microcomputer of the integrated ECU 100 includes a ROM, a RAM, etc. as a storage unit for storing various data, calculation results, etc., and has a preset control program and an updatable control program. To control. However, when the hot water supply operation for storing the amount of heat in the tank 3 is being carried out but the tank 3 is full, the hot water boiling by the heat pump cycle device 2 is stopped. In this case, when the heating operation is being carried out, the heating operation is continued, and when the required heating capacity is small, the heating output is reduced to the lower limit level.
  • the flowchart shown in FIG. 3 is started when a request for a heating operation and a hot water supply operation is input to the integrated ECU 100, and only a heating operation request is input and the required heating capacity is not high.
  • the control flow shown in FIG. 3 is mainly executed by the integrated ECU 100.
  • the indoor blowing temperature Ta detected by the blowing air thermistor 10 is lower than the blowing target temperature Tset (or the indoor target temperature or the indoor set temperature).
  • the blowing target temperature is determined based on, for example, a signal transmitted from the remote controller 110 to the integrated ECU 100 when the temperature setting unit of the remote controller 110 is operated.
  • the flow rate adjusting valve 5 is set so that the opening degree of the heating heat exchanger 7 side, that is, the heating passage 51 is increased. To control. Then, after this process, the process returns to S10 again, and thereafter continues.
  • the hot water boiled in the heat pump cycle device 2 flows more in the heating heat exchanger 7 than in the previous time. For this reason, with the rise in the temperature of the hot water flowing through the heat exchanger 7 for heating, the blown air temperature rises and control is performed to improve the heating capacity supplied to the room.
  • Ta is equal to or higher than Tset. If it is determined in S10 that Ta is equal to or higher than Tset, it is next determined in S30 whether Ta is higher than a temperature obtained by adding a predetermined temperature ⁇ to Tset.
  • the predetermined temperature ⁇ is set to about 5 ° C., for example.
  • the heating hot water supply apparatus 1 includes a ventilation device and a flow rate adjustment unit.
  • the ventilator has a heat exchange part (heat exchange unit 4) for exchanging heat between indoor air and outdoor air, exhausts the indoor air after heat exchange to the outside, and supplies the outdoor air after heat exchange to the room To do.
  • the flow rate adjusting unit can distribute the hot water heated by the heat pump cycle device 2 into hot water that is circulated through the heating heat exchanger 7 and hot water that is circulated through the hot water supply heat exchanger 39.
  • the heating operation and the hot water supply operation can be simultaneously performed.
  • coolant which is a heat source is realizable.
  • the heating load of the heat pump cycle device 2 is large if the heating water heater is not provided in the ventilation device.
  • the heating capacity is insufficient or no hot water supply is possible, and the simultaneous operation of heating and hot water supply cannot be established.
  • the heating and hot water supply device 1 since the outdoor air can be heated by having the ventilation device, the heating load of the heat pump cycle device 2 can be reduced. In other words, by having the ventilation device, the heating load of the heat pump cycle device 2 can be reduced, and the remaining power for performing the hot water supply operation can be generated, so that the hot water supply and heating can be operated simultaneously.
  • the heating hot water supply apparatus 1 has a function of ventilating the room after performing heat exchange between room air and outdoor air, thereby reducing the heating load and contributing to improving the cleanliness of the room air.
  • the heating and hot water supply apparatus 1 can adjust the distribution of the amount of heat from the heat pump cycle apparatus 2 while suppressing the length of the refrigerant pipe through which the refrigerant flows and performing indoor ventilation with heat exchange between indoor air and outdoor air. Heating and hot water supply operation. Thereby, the heating hot-water supply apparatus 1 can implement
  • a refrigerant having a great influence on the environment such as chlorofluorocarbon gas
  • the heating capability can be adjusted even below the lower limit heating capability of the heat pump.
  • the heating capacity can be widely adjusted, the room temperature can be easily controlled to a constant temperature, and the user's filling can be improved.
  • an auxiliary heating device for example, a preheating heat exchanger 6 that heats outdoor air before heat exchange by the heat exchange unit 4 is provided.
  • the heat exchange unit 4 can exchange heat with the indoor air. Therefore, the thermal loss by implementing indoor ventilation can be suppressed and a preferable heating hot-water supply apparatus can be provided on energy efficiency.
  • the hot water heated by the heat pump cycle device 2 flows out of the heating heat exchanger 7 and then flows into the preheating heat exchanger 6.
  • the preheating of the outdoor air before heat exchange by the heat exchange unit 4 can be performed using the remaining heat of the hot water after radiating heat by the heat exchanger 7 for heating.
  • the outdoor air temperature is below freezing point
  • the moisture in the air freezes inside the heat exchange unit 4, leading to a decrease in ventilation air volume and damage to the apparatus.
  • such a malfunction can be avoided by preheating using the residual heat of warm water with the heat exchanger 6 for preheating.
  • the water temperature which returns to the heat pump cycle apparatus 2 can be reduced by further radiating the residual heat of warm water with the heat exchanger 6 for preheating, it contributes also to improving COP (coefficient of performance).
  • the hot water that has flowed out of the hot water supply heat exchanger 39 during the heating and hot water supply operation for performing both heating and hot water supply is located downstream of the preheating heat exchanger 6 and upstream of the heat pump cycle device 2. In (merging part 53), it joins with the warm water which flowed out the heat exchanger 6 for preheating.
  • the lower the outside air temperature that requires preheating the higher the hot water flow rate in the hot water circuit for heating and the higher the hot water temperature. Further, when the outside air temperature becomes high, the hot water flow rate decreases and the hot water temperature also decreases. As a result, the amount of heat exchanged by the preheating heat exchanger increases as the temperature of the outside air decreases. On the other hand, since the temperature of hot water after heat exchange in the heat exchanger for hot water supply differs depending on the temperature of hot water remaining in the tank, it is generally irrelevant to the outside air.
  • the temperature of the hot water entering the preheating heat exchanger becomes too high when the remaining hot water temperature is high, and the air temperature after heat exchange becomes room air.
  • the temperature may become higher and the heat exchange in the heat exchange unit may occur in the opposite direction.
  • the remaining hot water temperature is too low, the temperature of the hot water entering the preheating heat exchanger becomes too low, and the air temperature after heat exchange does not become sufficiently high.
  • the preheating heat is supplied regardless of the state of the hot water supply operation.
  • the outlet temperature of the heat exchanger 6 can be stabilized.
  • the heat exchanger 7 for heating is provided so as to radiate heat to the outdoor air after being heat-exchanged by the heat exchange unit 4 and before being supplied indoors.
  • the integrated ECU 100 controls the operation of the flow rate adjusting unit according to the blowing temperature Ta detected by the blowing air thermistor 10, and warm water circulated to the heating heat exchanger 7 and hot water circulated to the hot water supply heat exchanger 39. And control the flow rate ratio.
  • the integrated ECU 100 controls the operation of the flow rate adjusting unit so as to increase the flow rate of the hot water flowing through the heating heat exchanger 7.
  • the integrated ECU 100 controls the operation of the flow rate adjusting unit so as to reduce the flow rate of the hot water flowing through the heating heat exchanger 7 when the blowout temperature Ta is higher than a temperature obtained by adding a predetermined temperature to the blowout target temperature Tset. To do. Specifically, the flow rate adjusting valve 5 adjusts the opening area of the heating passage 51 and the opening area of the hot water supply passage 52 during the heating and hot water supply operation.
  • the heating capacity can be widely adjusted and finely adjusted. According to such heating capacity adjustment, it becomes easy to control the room temperature so as not to fluctuate so much.
  • the refrigerant that exhibits the heating action is a refrigerant mainly composed of carbon dioxide. According to this, when the refrigerant of the heat pump cycle device 2 is carbon dioxide, since the temperature range that can be heated is wide, it is possible to widely set compatible hot water supply capacity and heating capacity in the heating hot water supply operation.
  • the heating hot water supply apparatus 1 ⁇ / b> A of the second embodiment is different from the heating hot water supply apparatus 1 of the first embodiment in the flow rate adjustment unit.
  • the flow rate adjusting unit according to the second embodiment includes a heating pump 56 provided in the heating passage 51 and a hot water supply pump 57 provided in the hot water supply passage 52.
  • the flow rate adjusting valve 5 is not provided at the branch portion 55 of the heating passage 51 and the hot water supply passage 52.
  • the heating pump 56 is provided in a passage portion located downstream of the heating heat exchanger 7 and upstream of the preheating heat exchanger 6 in the heating passage 51.
  • the hot water supply pump 57 is provided in a passage portion located downstream of the hot water supply heat exchanger 39 and upstream of the junction 53 in the hot water supply passage 52.
  • the integrated ECU 100A controls the rotational speeds of the heating pump 56 and the hot water supply pump 57 in accordance with the blowing temperature Ta detected by the blowing air thermistor 10 so that the hot water flow rate to be driven can be adjusted. it can.
  • the heating pump 56 functions as a flow rate adjusting unit that adjusts the flow rate of hot water to be circulated through the heating heat exchanger 7.
  • the hot water supply pump 57 functions as a flow rate adjusting unit that adjusts the flow rate of hot water to be circulated through the hot water supply heat exchanger 39.
  • the flowchart shown in FIG. 6 is started when a request for a heating operation and a hot water supply operation is input to the integrated ECU 100A, and only a heating operation request is input and the required heating capacity is not high.
  • the control flow shown in FIG. 6 is mainly executed by the integrated ECU 100A.
  • each of the heating pump 56 and the hot water supply pump 57 adjusts the flow rate of the hot water to be driven during the heating hot water supply operation for both heating and hot water supply.
  • the hot water flow rate of the heating heat exchanger 7 can be finely adjusted, and the heating capacity is adjusted even below the lower limit heating capacity of the heat pump. be able to. As described above, since the heating capacity can be adjusted widely, it becomes easy to control the room temperature so as not to fluctuate so much.
  • the integrated ECU 100A increases the flow rate of the hot water flowing through the heating heat exchanger 7 when the blowing temperature Ta detected by the blowing air thermistor 10 is lower than the blowing target temperature Tset during the heating hot water supply operation.
  • the operations of the heating pump 56 and the hot water supply pump 57 are controlled (S20A).
  • the integrated ECU 100A when the blowing temperature Ta is higher than the temperature obtained by adding the predetermined temperature ⁇ to the blowing target temperature Tset, the heating pump so as to reduce the flow rate of the hot water flowing through the heating heat exchanger 7 56 and the hot water supply pump 57 are controlled (S40A).
  • the heating capacity can be adjusted so as to approach the blowing target temperature Tset.
  • the heating and hot water supply apparatus 1 ⁇ / b> B of the third embodiment is different from the heating hot water supply apparatus 1 of the first embodiment in place of the blown air thermistor 10 and the heat exchanger outlet thermistor 11 (heat exchange A vessel outlet temperature detector).
  • the heat exchanger outlet thermistor 11 is provided in the outlet pipe of the heating heat exchanger 7 and detects the hot water temperature Tw at the outlet of the heating heat exchanger 7.
  • the temperature of the hot water after radiating heat in the heating heat exchanger 7 is detected as a voltage signal by the heat exchanger outlet thermistor 11.
  • the integrated ECU 100B obtains the detected voltage signal and calculates the water temperature Tw at the outlet of the heating heat exchanger 7.
  • the integrated ECU 100B controls the operation of the flow rate adjusting valve 5 in accordance with the detected water temperature Tw at the outlet of the heating heat exchanger 7 and distributes the hot water and hot water supply heat exchanger 39 to the heating heat exchanger 7. It is possible to control the flow rate ratio with the hot water to be circulated.
  • the flowchart shown in FIG. 9 is started when a heating operation request and a hot water supply operation request are input to the integrated ECU 100B, or when only a heating operation request is input.
  • the control flow shown in FIG. 9 is mainly executed by the integrated ECU 100A.
  • the heat exchanger outlet thermistor 11 determines whether or not the water temperature Tw is lower than the temperature obtained by adding the predetermined temperature ⁇ to the blowout target temperature Tset. If it is determined in S10B that Tw is lower than (Tset + ⁇ ), since the heating capacity is still insufficient, the flow rate adjustment valve 5 is controlled to increase the opening of the heating passage 51 in S20 as in the first embodiment. To do. Then, after this process, the process returns to S10 again, and thereafter continues.
  • Tw is equal to or greater than (Tset + ⁇ )
  • Tset + ⁇ it is next determined in S30B whether Tw is higher than a temperature obtained by adding a predetermined temperature ⁇ to (Tset + ⁇ ).
  • the heating hot water supply apparatus 1C of the fourth embodiment is different from the heating hot water supply apparatus 1 of the first embodiment in the object to be heated by the heating heat exchanger 8. That is, the heating heat exchanger 8 does not heat the outside air supplied to the room (outdoor air) like the heating heat exchanger 7 of the first embodiment.
  • the heat exchanger 8 for heating is used as a hot water heater or a floor heating device installed indoors. When the heating heat exchanger 8 is a floor heating device, the hot water flowing through the internal passage of the heating heat exchanger 8 passes through the floor heating panel and radiates heat to heat the floor surface.
  • the heating water heater 1C replaces the blown air thermistor 10 of the first embodiment with a heat exchanger outlet thermistor 11 (heat exchanger outlet temperature detection) in the same manner as the third embodiment. Part).
  • the hot water heated by the water-refrigerant heat exchanger 21 is distributed to the hot water supply heat exchanger 39 in accordance with the opening degree control of the flow rate adjustment valve 5.
  • the heating and hot water supply apparatus 1 ⁇ / b> D communicates one passage opening / closing part of the flow control valve 5 and the joining part 53 (a part downstream from the preheating exchanger 6) via the inside of the tank 3.
  • a hot water supply passage 52D is provided.
  • the hot water supply passage 52D is a passage that connects one passage opening / closing portion of the flow rate control valve 5 and the introduction port 33 at the upper portion of the tank 3, and a passage that connects the outlet port 32 at the lower portion of the tank 3 and the junction portion 53. Including.
  • the pump 54 is driven to control the passage opening of the flow rate adjusting valve 5 so as to communicate with the communication passage 50 and the hot water supply passage 52D.
  • Hot water heated by the refrigerant heat exchanger 21 is stored in the tank 3 from above.
  • the water located in the lower part of the tank 3 flows out to reach the junction 53, flows into the water-side passage 211 of the water-refrigerant heat exchanger 21, and is heated again by the water-refrigerant heat exchanger 21. , Supplied into the tank 3 from above.
  • the hot water boiled by the refrigerant heating action of the heat pump cycle apparatus 2 is directly supplied into the tank 3 during the hot water supply operation or the heating hot water supply operation without passing through the heat exchanger for hot water supply. Can be saved.
  • the heating hot-water supply apparatus of the said embodiment is provided with the heat exchanger 6 for preheating as an auxiliary heating apparatus which heats outdoor air before heat-exchange in the heat exchange part of the ventilation unit 4, the auxiliary heating included in this indication
  • the apparatus is not limited to this embodiment.
  • various electric heaters such as a PTC heater, a sheathed heater, and a halogen heater that generate heat when energized can be used as the auxiliary heating device.
  • the working refrigerant flowing through the heat pump cycle device 2 is not limited to carbon dioxide, but may be other refrigerants such as Freon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

 暖房給湯装置は、冷媒サイクルを流れる冷媒の加熱作用によって温水を沸き上げるヒートポンプ式加熱装置(2)と、前記ヒートポンプ式加熱装置で加熱された温水が流入して周囲に放熱する暖房用熱交換器(7,8)と、給湯用水を生成するために、前記ヒートポンプ式加熱装置で加熱された温水が流入する給湯用熱交換器(39)またはタンク(3)と、室内空気と室外空気とを熱交換する熱交換部(40,41)を有し、前記熱交換後の前記室内空気を室外に排気し、前記熱交換後の前記室外空気を室内に給気する換気装置(4,24,70)と、前記ヒートポンプ式加熱装置によって加熱された温水を、前記暖房用熱交換器に流通させる温水と前記給湯用熱交換器または前記タンクに流通させる温水とに分配することが可能な流量調整部(5,56,57)と、を備える。

Description

暖房給湯装置 関連出願の相互参照
 本開示は、2013年3月8日に出願された日本出願番号2013-47147号に基づくもので、ここにその記載内容を援用する。
 本開示は、ヒートポンプ式加熱装置による加熱作用を利用して給湯と暖房を行う暖房給湯装置に関する。
 特許文献1、特許文献2に記載の暖房給湯装置が知られている。特許文献1では、ヒートポンプ温水熱源機にて沸き上げた温水を一旦タンクに貯えた後、タンク上部の高温水を暖房用放熱器へ流通させることにより暖房運転を行う。特許文献1では、ヒートポンプ温水熱源機にて沸き上げた温水を、直接的に暖房用放熱器へ流通させて暖房運転を行う場合と、一旦タンクに貯えた後にタンク上部の高温水を暖房用放熱器へ流通させて暖房運転を行う場合と、を切り換える。
 特許文献2には、暖房と給湯を同時に実施可能なヒートポンプ給湯空調機が記載されている。暖房給湯運転時には、圧縮機が吐出したガス冷媒の一部が給湯側熱交換器にて給水ポンプで送られてくる水に放熱することで給湯用水をつくり、さらにガス冷媒の残部が第1四方弁を介し、室内側熱交換器にて周囲の空気に放熱することで暖房風をつくる。これらの放熱後の冷媒は、合流した後、膨張弁で断熱膨張され、低圧となった冷媒は室外側熱交換器にて周囲の熱を吸熱することで蒸発し、第1四方弁及び第2四方弁を介して圧縮機の吸入側に吸入される。
特許第4419475号公報 特開2012‐225619号公報
 しかしながら、特許文献1によれば、ヒートポンプ温水熱源機にて沸き上げた温水の熱量を使用して暖房を行う場合に、一旦タンクに温水を貯えてから暖房用放熱器へ供給したり、当該沸き上げた温水を直接的に暖房用放熱器へ供給したりする。したがって、暖房運転と給湯運転を同時に実施することができない。
 また、特許文献1には、タンクの湯を暖房用放熱器で使用することができるとともに、浴槽等への給湯用にも使用することができることが記載されている。しかし、一旦タンクに貯えた湯を暖房用と給湯用とに使用するに過ぎない。したがって、ヒートポンプ温水熱源機にて沸き上げた温水の熱量を、タンクを経由することなく暖房用として使用し、同時に給湯用としてタンクに貯熱することはできない。さらに、ヒートポンプ温水熱源機にて沸き上げた温水の熱量を、必要な暖房能力と必要な給湯能力とに応じて、暖房用と給湯用とに分配可能ではない。
 特許文献2によれば、給湯運転と暖房運転とを同時に実施できるが、室内の換気機能を加えた運転については、何ら言及されていない。また、給湯運転と暖房運転の同時実施を実現するために採用された冷媒経路が複雑であり、冷媒が流れる通路も非常に長くなる。冷媒通路が長くなると、環境に対して負荷が大きい装置になってしまう懸念がある。
 本開示の目的は、冷媒が流れる冷媒通路の長さを抑制し、かつ室内空気と室外空気の熱交換を伴った室内換気を行いつつ、ヒートポンプ式加熱装置から得られる温水を介した熱量の分配が調整可能な給湯運転と暖房運転とを同時に実施できる暖房給湯装置を提供することである。
 本開示の一例において、暖房給湯装置は、冷媒サイクルを流れる冷媒の加熱作用によって温水を沸き上げるヒートポンプ式加熱装置と、ヒートポンプ式加熱装置で加熱された温水が流入して周囲に放熱する暖房用熱交換器と、給湯用水を生成するために、ヒートポンプ式加熱装置で加熱された温水が流入する給湯用熱交換器またはタンクと、室内空気と室外空気とを熱交換する熱交換部を有し、熱交換後の室内空気を室外に排気し、熱交換後の室外空気を室内に給気する換気装置と、ヒートポンプ式加熱装置によって加熱された温水を、暖房用熱交換器に流通させる温水と給湯用熱交換器またはタンクに流通させる温水とに分配することが可能な流量調整部と、を備える。
 これによれば、ヒートポンプ式加熱装置で加熱した温水を暖房用熱交換器と給湯用熱交換器またはタンクとに分配する温水通路を構成することにより、暖房運転と給湯運転の同時実施を実現しても、熱源である冷媒の経路を簡単化した装置を提供することができる。
 さらに換気装置を有することにより、室外空気を昇温できるため、ヒートポンプ式加熱装置の暖房負荷を軽減できる。換言すれば、換気装置を有することで、ヒートポンプ式加熱装置の暖房負荷が軽減され、給湯運転を行うための余力を生み出すことができるため、給湯及び暖房の同時運転が可能となる。このように室内空気と室外空気との熱交換を行った上で室内を換気する機能を併せ持つことにより、暖房負荷を低減し、室内空気の清浄性向上に寄与する暖房給湯装置が得られる。
 したがって、冷媒が流れる冷媒通路の長さを抑制し、かつ室内空気と室外空気の熱交換を伴った室内換気を行いつつ、ヒートポンプ式加熱装置からの熱量の分配が調整可能な給湯運転と暖房運転とを同時に実施できる暖房給湯装置が得られる。これにより、暖房給湯装置は、安定的な運転と高効率な運転を実現できる。
第1実施形態の暖房給湯装置を示した構成図である。 第1実施形態の暖房給湯装置について制御装置と各部との関係を示した構成図である。 第1実施形態の暖房給湯装置について暖房給湯運転に関する処理手順を示したフローチャートである。 第2実施形態の暖房給湯装置を示した構成図である。 第2実施形態の暖房給湯装置について制御装置と各部との関係を示した構成図である。 第2実施形態の暖房給湯装置について暖房給湯運転に関する処理手順を示したフローチャートである。 第3実施形態の暖房給湯装置を示した構成図である。 第3実施形態の暖房給湯装置について制御装置と各部との関係を示した構成図である。 第3実施形態の暖房給湯装置について暖房給湯運転に関する処理手順を示したフローチャートである。 第4実施形態の暖房給湯装置を示した構成図である。 他の実施形態に記載された暖房給湯装置を示した構成図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合わせることも可能である。
 (第1実施形態)
 本開示の暖房給湯装置の一実施形態である第1実施形態について図1~図3を参照して説明する。
 暖房給湯装置1は、給湯用の温水をタンク3に貯えるタンクユニットと、ヒートポンプサイクル装置2と、暖房用及び給湯用の温水が循環する温水回路と、給湯運転及び暖房運転を実施する際の各部の作動を制御する統合ECU100(制御装置)と、を備える。暖房給湯装置1は、浴槽、シャワー等の給湯端末へ出湯するために給湯用水としてタンク3内に熱量を貯える給湯運転を行い、ヒートポンプサイクル装置2で加熱した温水の熱量を暖房用熱交換器7に供給する暖房運転を行う。給湯運転と暖房運転は、同時に実施可能であり、それぞれ単独で実施可能である。
 暖房給湯装置1は、浴槽やシャワーなどへ出湯するときには、状況に応じて、例えば、深夜料金時間帯の系統電力を使用してタンク3の貯湯水のみを使用したり、昼間の太陽光発電装置の電力、または系統電力を使用して給湯用水を沸き上げて使用したりする。
 ヒートポンプサイクル装置2は、ヒートポンプ式加熱装置の一例であり、冷媒サイクルを流れる冷媒を熱交換媒体とし、温水回路を流れる水を沸き上げ、給湯用及び暖房用の熱量を生成する。ここで用いる冷媒は、二酸化炭素を主成分とする。ヒートポンプサイクル装置2は、統合ECU100と通信するヒートポンプECU101からの制御信号により作動するとともに、その作動状態はヒートポンプECU101を介して統合ECU100に出力される。
 ヒートポンプサイクル装置2は、圧縮機20、水冷媒交換器21、減圧器22、空気冷媒熱交換器23及び排気用送風機24を備えている。圧縮機20は、二酸化炭素冷媒を圧縮、吐出する機器である。水冷媒交換器21は、冷媒側通路210と水側通路211を有し、対向するように内部を流れる冷媒と水が互いに熱交換するように構成されている。水冷媒交換器21は、圧縮機20で圧縮された冷媒と水側通路211の水との間で熱交換して温水を沸き上げる。減圧器22は、水冷媒熱交換器21を通過した高圧冷媒を低圧状態に減圧する。空気冷媒熱交換器23は、外気だけでなく室内空気を吸引する排気用送風機24によって空気から吸熱して、減圧器22で減圧された低圧冷媒を蒸発させる。この空気冷媒熱交換器23を通過した冷媒は、再度圧縮機20で圧縮されて高圧状態で吐出される。
 タンクユニットは、給湯用の温水を貯えるタンク3と、水栓、風呂等の給湯端末へ出湯するために作動する各種弁、ポンプ等とを含む。タンクユニットは、統合ECU100と通信する貯湯ECU102からの制御信号により作動するとともに、その作動状態は貯湯ECU102を介して統合ECU100に出力される。
 タンク3は、例えば耐食性に優れた金属製のタンクであり、その外周部に図示しない断熱材が配置されており、高温の給湯用水を長時間に渡って保温することができる。タンク3の外壁面には、貯湯水の湯量、貯湯温度を検出するための複数個のタンクサーミスタ(図示せず)が設けられている。これらのサーミスタの検出温度信号は、それぞれ貯湯ECU102に入力されるようになっており、各水位レベルでのタンク内の水温や湯量を検出可能である。したがって、貯湯ECU102は、タンクサーミスタからの温度情報に基づいて、タンク3内の上部の沸き上げられた湯とタンク3内の下部の沸き上げられる前の水との境界位置を検出できる。さらに貯湯ECU102は、温度及び湯量の検出することにより、タンク3内に貯えられている貯熱量を算出することができる。
 タンク3には、タンク3の内部に水道水を供給するための給水管34と、給湯用熱交換器39とタンク3の内部とを接続し、タンク3内の水が循環する貯熱用回路38と、給湯端末に繋がる給湯管36等からなる配管系統と、が接続されている。給湯管36は、タンク3の最上部の導出口31に接続されている。給水管34は、タンク3の最下部の導入口30に接続されている。給水管34は、タンク3に至る手前で分岐し、この分岐した給水管35は給湯管36に合流する。給水管35と給湯管36との合流部には混合弁37が設けられている。
 導出口31と混合弁37との間に位置する給湯管36には、給湯管36を流れる温水の温度を検出する給湯サーミスタ(図示せず)が設けられている。給湯サーミスタにより検出される温度情報は、貯湯ECU102に出力され、混合弁37の作動制御に用いられる。貯湯ECU102は、混合弁37の開度を制御することによって、タンク3の上部から供給される温水と給水管35を通じて供給される水との混合割合を制御して、給湯端末へ出湯される給湯用水の温度を調整する。
 貯熱用回路38は、タンク3内の下部の低温水が流出して給湯用熱交換器39で加熱されてタンク3内の上部に戻るように、給湯用熱交換器39を介してタンク3の下部と上部とを連絡する回路である。給湯用熱交換器39の一次側通路391と二次側通路390は、給湯用熱交換器39の内部通路を構成し、対向するように内部を流れる流体同士が互いに熱交換するように構成されている。
 貯熱用回路38は、タンク3の最下部の導出口32に接続され、タンク3の最上部の導入口33に接続されている。貯熱用回路38には、給湯用熱交換器39の二次側通路390に流入する水温を検出する入水温度サーミスタ(図示せず)と、二次側通路390で加熱後の水温を検出する熱交換後温度サーミスタ(図示せず)と、ポンプ380と、が設けられている。各サーミスタの検出温度信号は、貯湯ECU102または統合ECU100に出力される。熱交換後温度サーミスタは、給湯用熱交換器39で熱交換された後の温水の温度を検出する熱媒体温度センサとして使用される。ポンプ380は、タンク3の下部の水を、貯熱用回路38を経由してタンク3の上部に戻す温水循環機能を果たす。
 連絡通路50と給湯用通路52とを含む回路は、給湯用加熱回路である。連絡通路50は、給湯用熱交換器39(一次側通路391)と暖房用熱交換器7の内部通路を連結する通路と、水冷媒熱交換器21の水側通路211と、を連絡する通路である。したがって、連絡通路50は、その下流端で、暖房用熱交換器7に向かう暖房用通路51と、水側通路211に向かう給湯用通路52と、に二手に分岐する。給湯用通路52の途中には、給湯用熱交換器39の一次側通路391が存在する。暖房用通路51と給湯用通路52の分岐部には、流量調整弁5が設けられている。なお、給湯用加熱回路を構成する各通路は、各部間を接続する配管により形成される。
 暖房用熱交換器7は、室内暖房のための温風を生成するための暖房機器である。暖房用熱交換器7では、ヒートポンプサイクル装置2で加熱された温水が連絡通路50を経由して流量調整弁5で流量調整されて内部通路に流入すると、内部通路の周囲に放熱することにより、給気用送風機70により吸引される室外空気(外気等)を加熱する。暖房用熱交換器7で加熱された室外空気は、室内を暖房し、室内温度を上昇させることになる。暖房用熱交換器7で加熱された空気の温度は、吹出し温度検出部である吹出し空気サーミスタ10によって電圧信号として検出される。統合ECU100は、検出された電圧信号を取得して室内への吹出し空気温度を算出する。
 室外空気が暖房用熱交換器7で加熱されるまでの空気経路の途中には、熱交換ユニット4が設けられている。熱交換ユニット4は、排気用送風機24により排気された室内空気と給気用送風機70により給気された室外空気とが熱交換する熱交換部を有する。この熱交換部は、室内空気が流通する内気通路40と、室外空気が流通する外気通路41とを含んで構成される。内気通路40と外気通路41は、それぞれを流通する室内空気と室外空気とが交差するときに熱交換するように構成されている。暖房給湯装置1が有する換気装置は、熱交換機能を有する熱交換ユニット4と、送風機能を有する排気用送風機24及び給気用送風機70とによって構成されている。また、熱交換ユニット4は、送風機を内蔵させるように構成してもよく、この送風機により室内空気または外気を取り入れるようにしてもよい。
 流量調整弁5は、暖房用通路51及び給湯用通路52のそれぞれ開度を0%~100%の範囲で調整することができる。統合ECU100は、後述する所定の条件の成立にしたがい、流量調整弁5による暖房用通路51側の開度と給湯用通路52側の開度をそれぞれ制御する。したがって、流量調整弁5は、ヒートポンプサイクル装置2によって加熱された温水を、暖房用熱交換器7に流通させる温水と給湯用熱交換器39に流通させる温水とに分配することが可能な流量調整部の一例である。換言すれば、流量調整弁5は、暖房用熱交換器7への温水流量と給湯用熱交換器39への温水流量とを、必要な暖房能力、必要な給湯熱量に応じて制御できる流量調整部として機能する。
 給湯運転のみを実施する場合は、流量調整弁5は、暖房用通路51側の開度を0%(全閉)、給湯用通路52側の開度を100%(全開)に制御する。暖房運転のみを実施する場合は、流量調整弁5は、暖房用通路51側の開度を100%(全開)、給湯用通路52側の開度を0%(全閉)に制御する。暖房運転のみを実施する場合でも、必要な暖房能力が高くないときは、流量調整弁5は、暖房用通路51側の開度を必要な暖房能力に応じた開放率に制御し、暖房用通路51側の開度に応じて給湯用通路52側の開度を制御する。これにより、暖房用熱交換器7には、必要な暖房能力が得られる温水流量が分配され、残りの温水流量によって給湯用熱交換器39を介してタンク3に給湯用の熱量が貯熱される。
 暖房用通路51は、その上流端が流量調整弁5であり、下流端が水冷媒熱交換器21の水側通路211の入口部まで延びる通路である。暖房用通路51には、上流側から順に、暖房用熱交換器7の内部通路、予熱用熱交換器6の内部通路、ポンプ54が設けられる。ポンプ54は、水冷媒熱交換器21の水側通路211を流出して連絡通路50を流れてきた温水を、給湯用通路52及び暖房用通路51の少なくとも一方を経由して水側通路211に戻す温水循環機能を果たす。
 予熱用熱交換器6では、流量調整弁5で流量調節されて暖房用通路51を流通する温水が内部通路に流入すると、内部通路の周囲に放熱することにより、給気用送風機70により吸引される室外空気を加熱する。つまり、予熱用熱交換器6は、熱交換ユニット4の熱交換部で熱交換される前に室外空気を加熱する補助加熱装置として機能する。予熱用熱交換器6では、ヒートポンプサイクル装置2で加熱された温水が暖房用熱交換器7で放熱した後、内部通路に流入すると、温水の余った熱(余熱)が内部通路の周囲に放熱されることにより、熱交換ユニット4で熱交換される前の室外空気を予め加熱する。
 給湯用通路52の下流端は、予熱用熱交換器6よりも下流であってヒートポンプサイクル装置2よりも上流に位置する通路部位(合流部53)で暖房用通路51に合流する。したがって、給湯用熱交換器39を流出した温水は、合流部53で、予熱用熱交換器6を流出してきた温水に合流するようになる。この合流部53が予熱用熱交換器6よりも下流に位置することにより、水冷媒熱交換器21の水側通路211に流入する水は、給湯用熱交換器39で放熱して温度低下した水と、暖房用熱交換器7及び予熱用熱交換器6で放熱して温度低下した水との混合水になる。
 統合ECU100は、入力回路と、入力回路からの信号を用いて各種演算を実行するマイクロコンピュータと、出力回路と、を備えている。入力回路は、ユーザーが運転操作を設定できる運転操作部であるリモートコントローラ110からの信号、ヒートポンプECU101及び貯湯ECU102との通信信号、各種のサーミスタ等からの検出信号が入力される。出力回路は、マイクロコンピュータによる演算に基づいて、直接的に流量調整弁5、給気用送風機70、ポンプ54を制御する制御信号を出力する。出力回路は、ヒートポンプECU101、貯湯ECU102を介して間接的に、圧縮機20及び排気用送風機24、ポンプ380、混合弁37等の各種弁などを制御する制御信号を出力する。
 リモートコントローラ110からの信号は、HEMS、台所設置や浴室設置の操作パネル等から統合ECU100への送信信号であり、例えば、出湯等の給湯自動運転を設定する信号、暖房運転を要求する信号、暖房運転及び給湯運転の同時実施する信号等である。統合ECU100のマイクロコンピュータは、各種のデータ、演算結果等を記憶する記憶部としてのROM、RAM等を内蔵し、予め設定された制御プログラムや更新可能な制御プログラムを有し、給湯運転、暖房運転を制御する。ただし、タンク3へ熱量を貯える給湯運転を実施しているときに、タンク3ないが満水状態になった場合は、ヒートポンプサイクル装置2による温水沸き上げを停止することとする。この場合に、暖房運転を実施しているときは、暖房運転を継続し、必要な暖房能力が小さい場合には、暖房出力を下限レベルまで低下させるようにする。
 上記構成の暖房給湯装置1において、給湯運転と暖房運転を同時に行う暖房給湯運転の作動について図3のフローチャートを参照して説明する。図3に示すフローチャートは、統合ECU100に、暖房運転及び給湯運転の要求が入力された場合、暖房運転要求のみが入力され、かつ必要な暖房能力が高くない場合に、開始される。図3に示す制御フローは、主に統合ECU100によって実行される。
 まず、S10で、吹出し空気サーミスタ10によって検出される室内への吹出し温度Taが吹出し目標温度Tset(あるいは室内の目標温度、室内の設定温度)よりも低いか否かを判定する。吹出し目標温度は、例えば、リモートコントローラ110の温度設定部が操作されることによりリモートコントローラ110から統合ECU100に送信された信号に基づいて決まる。
 S10で、TaがTsetよりも低いと判定すると、暖房能力がまだ足りないため、S20で暖房用熱交換器7側の通路、すなわち暖房用通路51の開度を増大するように流量調整弁5を制御する。そして、この処理の後、再びS10に戻り、以降継続実行する。S20の処理により、ヒートポンプサイクル装置2で沸き上げられた温水が前回よりも暖房用熱交換器7に多く流れるようになる。このため、暖房用熱交換器7を流れる温水温度の上昇に伴い、吹出し空気温度が上昇し、室内に供給される暖房能力を向上する制御が行われる。
 S10で、TaがTset以上であると判定すると、次にS30でTaがTsetに所定温度αを加えた温度よりも高いか否かを判定する。所定温度αは、例えば約5℃に設定される。
 S30で、Taが(Tset+α)よりも高いと判定すると、暖房能力が過剰であるため、S40で暖房用熱交換器7側の通路、すなわち暖房用通路51の開度を減少するように流量調整弁5を制御する。そして、この処理の後、再びS10に戻り、以降継続実行する。S40の処理により、ヒートポンプサイクル装置2で沸き上げられた温水が前回よりも暖房用熱交換器7に少なく流れるようになる。このため、暖房用熱交換器7を流れる温水温度の低下に伴い、吹出し空気温度が下降し、室内に供給される暖房能力を抑制する制御が行われる。
 また、S30で、Taが(Tset+α)以下であると判定すると、再びS10に戻り、以降継続実行する。
 次に、第1実施形態の暖房給湯装置1がもたらす作用効果を以下に述べる。暖房給湯装置1は、換気装置と流量調整部を備える。換気装置は、室内空気と室外空気とを熱交換する熱交換部(熱交換ユニット4)を有し、熱交換後の室内空気を室外に排気し、熱交換後の室外空気を室内に給気する。流量調整部は、ヒートポンプサイクル装置2によって加熱された温水を、暖房用熱交換器7に流通させる温水と給湯用熱交換器39に流通させる温水とに分配することが可能である。
 これによれば、ヒートポンプサイクル装置2で加熱した温水を暖房用熱交換器7と給湯用熱交換器39とに分配する温水通路を構成することにより、暖房運転と給湯運転の同時実施を実現しても、熱源である冷媒の経路を簡単化した装置を実現できる。
 例えば、必要な暖房能力が大きな場合に、換気装置が備えていない暖房給湯装置であると、ヒートポンプサイクル装置2の暖房負荷が大きくなる。これにより、必要な暖房能力が大きく、かつ給湯運転を同時に行おうとした場合に、ヒートポンプサイクル装置2の能力制約によって、暖房能力不足、もしくは給湯不可となり、暖房及び給湯の同時運転を成立できなくなる。
 そこで、暖房給湯装置1によれば、換気装置を有することにより、室外空気を昇温できるため、ヒートポンプサイクル装置2の暖房負荷を軽減できる。換言すれば、換気装置を有することで、ヒートポンプサイクル装置2の暖房負荷が軽減され、給湯運転を行うための余力を生み出すことができるため、給湯及び暖房の同時運転が可能となる。このように暖房給湯装置1は、室内空気と室外空気との熱交換を行った上で室内を換気する機能を併せ持つことにより、暖房負荷を低減し、室内空気の清浄性向上にも寄与する。
 したがって、暖房給湯装置1は、冷媒が流れる冷媒配管の長さを抑制し、かつ室内空気と室外空気の熱交換を伴った室内換気を行いつつ、ヒートポンプサイクル装置2からの熱量の分配が調整可能な暖房給湯運転を実施できる。これにより、暖房給湯装置1は、安定的かつ高効率な運転を実現できる。例えば、フロンガス等の環境への影響が大きい冷媒を使用する場合には、ヒートポンプサイクル装置2に封入する冷媒封入量を抑制できるため、環境にやさしい暖房給湯装置を提供できる。
 また、流量調整部によって暖房用熱交換器7の温水流量を調整することにより、ヒートポンプの下限加熱能力以下でも暖房能力を調整することができる。このように、暖房能力を幅広く調整できることで、室内温度を一定温度に制御しやすくなり、ユーザーのフィリングの改善が図れる。
 また、暖房給湯装置1によれば、熱交換ユニット4で熱交換される前に室外空気を加熱する補助加熱装置(例えば予熱用熱交換器6)を備える。これによれば、各種の補助加熱装置によって室外空気を予熱してから、熱交換ユニット4で室内空気と熱交換させることができる。したがって、室内の換気を実施することによる熱的損失を抑制することができ、エネルギー効率上、好ましい暖房給湯装置を提供できる。
 また、暖房運転時、暖房給湯運転時に、ヒートポンプサイクル装置2によって加熱された温水は、暖房用熱交換器7を流出した後、予熱用熱交換器6に流入する。これにより、熱交換ユニット4で熱交換前の室外空気の予熱を、暖房用熱交換器7で放熱した後の温水の余熱を用いて実施することができる。さらに、外気温度が氷点下である場合は室外空気を直接熱交換ユニット4に送ると、熱交換ユニット4の内部で空気の水分が凍結し、換気風量の低下や装置の破損につながる。そこで、予熱用熱交換器6で温水の余熱を用いて予熱することにより、このような不具合を回避することができる。また、予熱用熱交換器6で温水の余熱をさらに放熱することにより、ヒートポンプサイクル装置2に戻る水温を低下させることができるので、COP(成績係数)を向上させることにも寄与する。
 さらに、暖房と給湯の両方を行う暖房給湯運転時に、給湯用熱交換器39を流出した温水は、予熱用熱交換器6よりも下流であってヒートポンプサイクル装置2よりも上流に位置する通路部位(合流部53)で、予熱用熱交換器6を流出してきた温水に合流する。
 ヒートポンプ式の給湯装置では、予熱が必要になる低外気温度ほど、暖房のための温水回路の温水流量も増え、温水温度も上昇する。また、外気温度が高くなれば温水流量は減り、温水温度も低下する。この結果、低温度の外気ほど予熱用熱交換器で交換される熱量が大きくなる。一方で、給湯用熱交換器で熱交換後の温水温度は、タンクに残存している温水の温度によって異なるため、一般に外気とは無関係になる。仮に給湯用通路の合流箇所を予熱用熱交換器の前に設けると、残湯温度が高い場合は予熱用熱交換器に入る温水温度が高くなりすぎて、熱交換後の空気温度が室内空気温度よりも高くなり、熱交換ユニット内の熱交換が逆方向におきることがある。逆に残湯温度が低すぎる場合は、予熱用熱交換器に入る温水温度が低くなりすぎて、熱交換後の空気温度が十分に高くならない。
 そこで、予熱用熱交換器6よりも下流でヒートポンプサイクル装置2よりも上流である合流部53で給湯用通路52を暖房用通路51に合流させることにより、給湯運転の状態に関係なく、予熱用熱交換器6の出口温度を安定させることができる。
 また、暖房用熱交換器7は、熱交換ユニット4で熱交換された後であって室内に給気される前の室外空気に放熱するように設けられている。統合ECU100は、吹出し空気サーミスタ10によって検出される吹出し温度Taに応じて、流量調整部の作動を制御して、暖房用熱交換器7に流通させる温水と給湯用熱交換器39に流通させる温水との流量割合を制御する。統合ECU100は、暖房給湯運転時に、吹出し温度Taが、吹出し目標温度よりも低い場合は、暖房用熱交換器7に流通させる温水の流量を増加させるように流量調整部の作動を制御する。統合ECU100は、吹出し温度Taが、吹出し目標温度Tsetに所定温度を加えた温度よりも高い場合は、暖房用熱交換器7に流通させる温水の流量を減少させるように流量調整部の作動を制御する。具体的には、流量調整弁5は、暖房給湯運転時に、暖房用通路51の開口面積と給湯用通路52の開口面積とを調整する。
 これによれば、流量調整弁5による暖房用通路51と給湯用通路52の開度比率の調整によって、暖房能力を幅広く調整でき、かつ微調整も可能となる。このような暖房能力調整によれば、室内温度をあまり変動させないようにして、一定温度に制御することが容易となる。
 また、ヒートポンプサイクル装置2において、加熱作用を発揮する冷媒は、二酸化炭素を主成分とする冷媒である。これによれば、ヒートポンプサイクル装置2の冷媒が二酸化炭素である場合、沸き上げ可能な温度範囲が広いため、暖房給湯運転において、適合可能な給湯能力及び暖房能力を広く設定することができる。
 (第2実施形態)
 第2実施形態の暖房給湯装置1Aは、図4及び図5に示すように、第1実施形態の暖房給湯装置1に対して、流量調整部が相違する。第2実施形態において、説明しない構成、作動、効果については第1実施形態と同様である。第2実施形態の流量調整部は、暖房用通路51に設けられる暖房用ポンプ56と、給湯用通路52に設けられる給湯用ポンプ57と、から構成される。さらに暖房給湯装置1Aでは、暖房用通路51と給湯用通路52の分岐部55には流量調整弁5が設けられていない。
 暖房用ポンプ56は、暖房用通路51において、暖房用熱交換器7よりも下流であって、予熱用熱交換器6よりも上流に位置する通路部位に設けられている。給湯用ポンプ57は、給湯用通路52において、給湯用熱交換器39よりも下流であって、合流部53よりも上流に位置する通路部位に設けられている。
 統合ECU100Aは、吹出し空気サーミスタ10によって検出される吹出し温度Taに応じて、暖房用ポンプ56及び給湯用ポンプ57のそれぞれの回転数を制御して、駆動する温水流量を調整可能に制御することができる。暖房用ポンプ56は、暖房用熱交換器7に流通させる温水流量を調整する流量調整部の機能を果たす。給湯用ポンプ57は、給湯用熱交換器39に流通させる温水流量を調整する流量調整部の機能を果たす。
 上記構成の暖房給湯装置1Aにおいて、給湯運転と暖房運転を同時に行う暖房給湯運転の作動について図6のフローチャートを参照して説明する。図6に示すフローチャートは、統合ECU100Aに、暖房運転及び給湯運転の要求が入力された場合、暖房運転要求のみが入力され、かつ必要な暖房能力が高くない場合に、開始される。図6に示す制御フローは、主に統合ECU100Aによって実行される。
 第1実施形態と同様のS10でTaがTsetよりも低いと判定すると、暖房能力がまだ足りない。このため、S20Aで暖房用熱交換器の内部通路を流通する温水流量を増加させるために、暖房用ポンプ56の回転数を増大させるとともに給湯用ポンプ57の回転数を低下させるように制御し、出力(流量)を増大させる。そして、この処理の後、再びS10に戻り、以降継続実行する。S20Aの処理により、ヒートポンプサイクル装置2で沸き上げられた温水が前回よりも暖房用熱交換器7に多く流れるようになる。このため、暖房用熱交換器7を流れる温水温度の上昇に伴い、吹出し空気温度が上昇し、室内に供給される暖房能力を向上する制御が行われる。
 S10で、TaがTset以上であると判定し、さらにS30で、Taが(Tset+α)よりも高いと判定すると、暖房能力が過剰である。このため、S40Aで暖房用熱交換器の内部通路を流通する温水流量を減少させるために、暖房用ポンプ56の回転数を低下させるとともに給湯用ポンプ57の回転数を増加させるように制御し、出力(流量)を減少させる。そして、この処理の後、再びS10に戻り、以降継続実行する。S40Aの処理により、ヒートポンプサイクル装置2で沸き上げられた温水が前回よりも暖房用熱交換器7に少なく流れるようになる。このため、暖房用熱交換器7を流れる温水温度の低下に伴い、吹出し空気温度が下降し、室内に供給される暖房能力を抑制する制御が行われる。
 次に、第2実施形態の暖房給湯装置1Aの効果について説明する。暖房給湯装置1Aによれば、暖房用ポンプ56及び給湯用ポンプ57のそれぞれは、暖房と給湯の両方を行う暖房給湯運転時に、駆動する温水の流量を調整する。
 これによれば、暖房用ポンプ56及び給湯用ポンプ57のそれぞれを制御することによって、暖房用熱交換器7の温水流量を微調整可能になり、ヒートポンプの下限加熱能力以下でも暖房能力を調整することができる。このように、暖房能力を幅広く調整できることで、室内温度をあまり変動させないように一定温度に制御しやすくなる。
 また、統合ECU100Aは、暖房給湯運転時に、吹出し空気サーミスタ10によって検出される吹出し温度Taが、吹出し目標温度Tsetよりも低い場合は、暖房用熱交換器7に流通させる温水の流量を増加させるように暖房用ポンプ56及び給湯用ポンプ57の作動を制御する(S20A)。また、統合ECU100Aは、当該吹出し温度Taが、吹出し目標温度Tsetに所定温度αを加えた温度よりも高い場合は、暖房用熱交換器7に流通させる温水の流量を減少させるように暖房用ポンプ56及び給湯用ポンプ57の作動を制御する(S40A)。
 これによれば、吹出し温度Taと吹出し目標温度Tsetとに応じて、暖房用ポンプ56の出力を調整することにより、吹出し目標温度Tsetに近づけるように暖房能力を調整することができる。
 (第3実施形態)
 第3実施形態の暖房給湯装置1Bは、図7及び図8に示すように、第1実施形態の暖房給湯装置1と異なり、吹出し空気サーミスタ10の代わりに、熱交換器出口サーミスタ11(熱交換器出口温度検出部)を用いる。例えば、熱交換器出口サーミスタ11は、暖房用熱交換器7の出口の配管に設けられ、暖房用熱交換器7の出口の温水温度Twを検出する。また、第3実施形態において、説明しない構成、作動、効果については第1実施形態と同様である。
 暖房用熱交換器7で放熱した後の温水の温度は、熱交換器出口サーミスタ11によって電圧信号として検出される。統合ECU100Bは、検出された電圧信号を取得して、暖房用熱交換器7の出口の水温Twを算出する。統合ECU100Bは、検出されたに暖房用熱交換器7出口の水温Twに応じて、流量調整弁5の作動を制御して、暖房用熱交換器7に流通させる温水と給湯用熱交換器39に流通させる温水との流量割合を制御することができる。
 上記構成の暖房給湯装置1Bにおいて、給湯運転と暖房運転を同時に行う暖房給湯運転の作動について図9のフローチャートを参照して説明する。図9に示すフローチャートは、統合ECU100Bに、暖房運転及び給湯運転の要求が入力された場合、暖房運転要求のみが入力された場合に、開始される。図9に示す制御フローは、主に統合ECU100Aによって実行される。
 まずS10Bで、熱交換器出口サーミスタ11によって水温Twが吹出し目標温度Tsetに所定温度βを加えた温度よりも低いか否かを判定する。S10Bで、Twが(Tset+β)よりも低いと判定すると、暖房能力がまだ足りないため、第1実施形態と同様のS20で暖房用通路51の開度を増大するように流量調整弁5を制御する。そして、この処理の後、再びS10に戻り、以降継続実行する。
 S10で、Twが(Tset+β)以上であると判定すると、次にS30BでTwが(Tset+β)に所定温度αを加えた温度よりも高いか否かを判定する。
 S30Bで、Twが(Tset+β+α)よりも高いと判定すると、暖房能力が過剰であるため、第1実施形態と同様のS40で暖房用通路51の開度を減少するように流量調整弁5を制御する。そして、この処理の後、再びS10に戻り、以降継続実行する。
 また、S30で、Twが(Tset+β+α)以下であると判定すると、再びS10に戻り、以降継続実行する。
 (第4実施形態)
 第4実施形態の暖房給湯装置1Cは、第1実施形態の暖房給湯装置1に対して、暖房用熱交換器8によって加熱される対象が相違する。すなわち、暖房用熱交換器8は、第1実施形態の暖房用熱交換器7のように室内に給気される外気(室外空気)を加熱するのではない。例えば、暖房用熱交換器8は、室内設置の温水式暖房器、床暖房機器等として用いられる。暖房用熱交換器8が床暖房機器である場合は、暖房用熱交換器8の内部通路を流通する温水は、床暖房パネル内を通過して放熱することにより床面を暖房する。
 暖房給湯装置1Cは、暖房用熱交換器8の採用に伴い、第1実施形態の吹出し空気サーミスタ10の代わりに、第3実施形態と同様に熱交換器出口サーミスタ11(熱交換器出口温度検出部)を用いる。
 また、第4実施形態において、説明しないすべての構成、作動、効果については第1実施形態、第3実施形態と同様である。
 (他の実施形態)
 上述の実施形態では、本開示の好ましい実施形態について説明したが、本開示は上述した実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。
 上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。本開示の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
 上記実施形態の暖房給湯装置1~1Cでは、水冷媒熱交換器21によって加熱された温水は流量調整弁5の開度制御に伴い、給湯用熱交換器39に流通させる形態であったが、他の形態として暖房給湯装置1Dに示すようにタンク3に流入させるようにしてもよい。図11に示すように、暖房給湯装置1Dは、流量制御弁5の一つの通路開閉部と合流部53(予熱用交換器6よりも下流の部位)とをタンク3の内部を介して連絡する給湯用通路52Dを備える。給湯用通路52Dは、流量制御弁5の一つの通路開閉部とタンク3の上部の導入口33とを連絡する通路と、タンク3の下部の導出口32と合流部53とを連絡する通路を含む。
 暖房給湯装置1Dによれば、給湯運転時や暖房給湯運転時に、ポンプ54を駆動し、連絡通路50と給湯用通路52Dと連通させるように流量調整弁5の通路開口を制御することにより、水冷媒熱交換器21で加熱された温水を上部からタンク3内に貯める。これに伴い、タンク3の下部に位置する水は、流出して合流部53に至り、水冷媒熱交換器21の水側通路211に流入して再び水冷媒熱交換器21で加熱された後、タンク3内に上部から供給される。したがって、暖房給湯装置1Dによれば、給湯運転時や暖房給湯運転時に、ヒートポンプサイクル装置2の冷媒加熱作用により沸き上げた温水を、給湯用の熱交換器を介することなく直接タンク3の内部に貯めることができる。
 上記実施形態の暖房給湯装置は、換気ユニット4の熱交換部で熱交換される前に室外空気を加熱する補助加熱装置として、予熱用熱交換器6を備えるが、本開示に含まれる補助加熱装置はこの実施形態に限定されない。例えば、補助加熱装置には、通電により発熱するPTCヒータ、シーズヒータ、ハロゲンヒータ等の各種電気ヒータ等を採用することもできる。
 また、上記実施形態において、ヒートポンプサイクル装置2を流れる作動冷媒は、二酸化炭素に限定されるものではなく、フロン等の他の冷媒であってもよい。

Claims (8)

  1.  冷媒サイクルを流れる冷媒の加熱作用によって温水を沸き上げるヒートポンプ式加熱装置(2)と、
     前記ヒートポンプ式加熱装置で加熱された温水が流入して周囲に放熱する暖房用熱交換器(7,8)と、
     給湯用水を生成するために、前記ヒートポンプ式加熱装置で加熱された温水が流入する給湯用熱交換器(39)またはタンク(3)と、
     室内空気と室外空気とを熱交換する熱交換部(40,41)を有し、前記熱交換後の前記室内空気を室外に排気し、前記熱交換後の前記室外空気を室内に給気する換気装置(4,24,70)と、
     前記ヒートポンプ式加熱装置によって加熱された温水を、前記暖房用熱交換器に流通させる温水と前記給湯用熱交換器または前記タンクに流通させる温水とに分配することが可能な流量調整部(5,56,57)と、
    を備える暖房給湯装置。
  2.  前記換気装置の前記熱交換部で熱交換される前に前記室外空気を加熱する補助加熱装置(6)をさらに備える請求項1に記載の暖房給湯装置。
  3.  前記補助加熱装置として、前記暖房用熱交換器よりも下流の温水通路に設けられる予熱用熱交換器(6)を備え、
     前記予熱用熱交換器は、前記ヒートポンプ式加熱装置によって加熱された温水が前記暖房用熱交換器を流出した後、前記予熱用熱交換器に流入することにより、前記熱交換部で熱交換される前の前記室外空気を予熱し、
     暖房と給湯の両方を行う暖房給湯運転時に、
      前記ヒートポンプ式加熱装置によって加熱された温水は、前記暖房用熱交換器を流通する温水と前記給湯用熱交換器を流通する温水とに分配され、
      前記給湯用熱交換器を流出した前記温水は、前記予熱用熱交換器よりも下流であって前記ヒートポンプ式加熱装置よりも上流に位置する通路部位で、前記予熱用熱交換器を流出してきた前記温水に合流する請求項2に記載の暖房給湯装置。
  4.  前記暖房用熱交換器(7)は、前記換気装置の前記熱交換部で熱交換された後であって前記室内に給気される前の前記室外空気に放熱するように設けられており、
     前記室外空気を前記暖房用熱交換器(7)で加熱した後、前記室内に吹き出される空気の温度を検出する吹出し温度検出部(10)と、
     前記吹出し温度検出部によって検出される空気温度に応じて、前記流量調整部の作動を制御して、前記暖房用熱交換器に流通させる温水と前記給湯用熱交換器または前記タンクに流通させる温水との流量割合を制御する制御装置(100,100A)と、
    を備え、
     前記制御装置は、暖房と給湯の両方を行う暖房給湯運転時に、前記吹出し温度検出部によって検出される空気温度が吹出し目標温度よりも低い場合は、前記暖房用熱交換器に流通させる温水の流量を増加させるように前記流量調整部の作動を制御し、
     前記制御装置は、暖房と給湯の両方を行う暖房給湯運転時に、前記吹出し温度検出部によって検出される空気温度が前記吹出し目標温度に所定温度を加えた温度よりも高い場合は、前記暖房用熱交換器に流通させる温水の流量を減少させるように前記流量調整部の作動を制御する請求項1ないし請求項3のいずれか一項に記載の暖房給湯装置。
  5.  前記ヒートポンプ式加熱装置で加熱された後の温水が流れる温水通路(50)は、前記暖房用熱交換器へ向かう暖房用通路(51)と、前記給湯用熱交換器へ向かう給湯用通路(52)と、の二手に分岐するように構成され、
     前記流量調整部は、前記暖房用通路と前記給湯用通路(52)との二手に分岐する分岐部に設けられる流量調整弁(5)であり、
     前記流量調整弁は、暖房と給湯の両方を行う暖房給湯運転時に、前記暖房用通路の開口面積と前記給湯用通路の開口面積とを調整する請求項1ないし請求項4のいずれか一項に記載の暖房給湯装置。
  6.  前記ヒートポンプ式加熱装置で加熱された後の温水が流れる温水通路(50)は、前記暖房用熱交換器へ向かう暖房用通路(51)と、前記給湯用熱交換器へ向かう給湯用通路(52)と、の二手に分岐するように構成され、
     前記流量調整部は、前記暖房用通路に設けられる暖房用ポンプ(56)と、前記給湯用通路に設けられる給湯用ポンプ(57)と、から構成され、
     前記暖房用ポンプ及び前記給湯用ポンプのそれぞれは、暖房と給湯の両方を行う暖房給湯運転時に、駆動する温水の流量を調整する請求項1ないし請求項4のいずれか一項に記載の暖房給湯装置。
  7.  前記暖房用熱交換器(7)で放熱した後の温水の温度を検出する熱交換器出口温度検出部(11)と、
     前記熱交換器出口温度検出部によって検出される水温に応じて、前記流量調整部の作動を制御して、前記暖房用熱交換器に流通させる温水と前記給湯用熱交換器または前記タンクに流通させる温水との流量割合を制御する制御装置(100B)と、
    を備える請求項1ないし請求項3のいずれか一項に記載の暖房給湯装置。
  8.  前記ヒートポンプ式加熱装置において、加熱作用を発揮する冷媒は、二酸化炭素を主成分とする冷媒である請求項1ないし請求項7のいずれか一項に記載の暖房給湯装置。
PCT/JP2014/000707 2013-03-08 2014-02-12 暖房給湯装置 WO2014136384A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014001194.0T DE112014001194T5 (de) 2013-03-08 2014-02-12 Heiz- und Heißwasserversorgungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047147A JP5920251B2 (ja) 2013-03-08 2013-03-08 暖房給湯装置
JP2013-047147 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136384A1 true WO2014136384A1 (ja) 2014-09-12

Family

ID=51490923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000707 WO2014136384A1 (ja) 2013-03-08 2014-02-12 暖房給湯装置

Country Status (3)

Country Link
JP (1) JP5920251B2 (ja)
DE (1) DE112014001194T5 (ja)
WO (1) WO2014136384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629169C1 (ru) * 2016-05-30 2017-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" (ЛГТУ) Абонентский ввод системы теплоснабжения

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427380B2 (ja) * 2014-10-09 2018-11-21 リンナイ株式会社 ヒートポンプシステム
FI129149B (en) * 2016-09-16 2021-08-13 Byro Energiatekniikka Oy Exhaust air heat pump apparatus and method for processing exhaust air
EP3690336A4 (en) * 2017-09-26 2020-09-23 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE
FR3079287B1 (fr) * 2018-03-20 2022-09-09 Andre Batt Systeme de chauffage hybride
EP3572732A1 (de) * 2018-05-25 2019-11-27 Weider Wärmepumpen GmbH Wärmepumpenheizvorrichtung zum heizen eines gebäudes oder eines brauchwasserspeichers
KR102110874B1 (ko) * 2018-10-31 2020-05-14 주식회사 도우이앤이 공기조화시스템의 배기열 회수 장치
WO2020240685A1 (ja) * 2019-05-28 2020-12-03 三菱電機株式会社 制御装置、空気環境調整システム、空気環境調整方法、プログラム、及び記録媒体
CN113854928B (zh) * 2021-11-18 2022-09-02 佛山市顺德区乐普达电机有限公司 一种用于洗碗机具有加热功能的电机结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182630U (ja) * 1984-05-15 1985-12-04 三菱電機株式会社 空調換気扇
JPH06323593A (ja) * 1993-05-19 1994-11-25 Sekisui Chem Co Ltd 熱交換型換気扇
JP2000074396A (ja) * 1998-08-27 2000-03-14 Noritz Corp 暖房端末器の制御方法
JP2009216346A (ja) * 2008-03-12 2009-09-24 Panasonic Electric Works Co Ltd 貯湯式給湯システム
JP2010019477A (ja) * 2008-07-10 2010-01-28 Corona Corp 貯湯式給湯暖房装置
JP2010203685A (ja) * 2009-03-03 2010-09-16 Mitsubishi Electric Corp 空気調和装置及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182630U (ja) * 1984-05-15 1985-12-04 三菱電機株式会社 空調換気扇
JPH06323593A (ja) * 1993-05-19 1994-11-25 Sekisui Chem Co Ltd 熱交換型換気扇
JP2000074396A (ja) * 1998-08-27 2000-03-14 Noritz Corp 暖房端末器の制御方法
JP2009216346A (ja) * 2008-03-12 2009-09-24 Panasonic Electric Works Co Ltd 貯湯式給湯システム
JP2010019477A (ja) * 2008-07-10 2010-01-28 Corona Corp 貯湯式給湯暖房装置
JP2010203685A (ja) * 2009-03-03 2010-09-16 Mitsubishi Electric Corp 空気調和装置及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629169C1 (ru) * 2016-05-30 2017-08-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" (ЛГТУ) Абонентский ввод системы теплоснабжения

Also Published As

Publication number Publication date
JP5920251B2 (ja) 2016-05-18
DE112014001194T5 (de) 2015-11-19
JP2014173792A (ja) 2014-09-22

Similar Documents

Publication Publication Date Title
WO2014136384A1 (ja) 暖房給湯装置
EP2833072B1 (en) Heating and hot water supply system
JP6320633B2 (ja) ヒートポンプ式設備装置
WO2006004046A1 (ja) 給湯装置
EP3115701B1 (en) Heat-pump hot water generator
JP5171868B2 (ja) 貯湯式給湯装置
WO2015115434A1 (ja) 空気調和システム
JP2009281650A (ja) 暖房システム
JP2004278876A (ja) ヒートポンプ式給湯暖房機
JP2014016075A (ja) ハイブリッドシステム
US20150153080A1 (en) Operation of a hvac system using a combined hydronic and force air system
JP2006105434A (ja) ヒートポンプ式給湯暖房装置
JP6123697B2 (ja) ヒートポンプ式暖房給湯装置
JP6354627B2 (ja) ヒートポンプ給湯暖房システム
JP6065606B2 (ja) ヒートポンプ給湯装置
JP2009287898A (ja) ヒートポンプ式温水熱利用システム
JP7008347B2 (ja) 温水及びエネルギー貯蔵
JP2006078146A (ja) ヒートポンプ、床暖房装置および空気調和装置
KR20170042486A (ko) 난방 장치
JP2010054145A (ja) ヒートポンプ給湯機
JP2001296055A (ja) 貯湯式の給湯熱源装置
CN205690767U (zh) 一种具有制冷制热功能的配电系统
JP2002295899A (ja) 貯湯式の給湯熱源装置
EP3091293B1 (en) Heating device
JP5741256B2 (ja) 貯湯式給湯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120140011940

Country of ref document: DE

Ref document number: 112014001194

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760016

Country of ref document: EP

Kind code of ref document: A1