WO2017133150A1 - 电磁加热装置及其加热控制电路和低功率加热控制方法 - Google Patents
电磁加热装置及其加热控制电路和低功率加热控制方法 Download PDFInfo
- Publication number
- WO2017133150A1 WO2017133150A1 PCT/CN2016/084172 CN2016084172W WO2017133150A1 WO 2017133150 A1 WO2017133150 A1 WO 2017133150A1 CN 2016084172 W CN2016084172 W CN 2016084172W WO 2017133150 A1 WO2017133150 A1 WO 2017133150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving
- unit
- voltage
- switch tube
- power switch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/567—Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/153—Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
- H03K5/1536—Zero-crossing detectors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/02—Induction heating
Definitions
- the invention relates to the technical field of electromagnetic heating, in particular to a heating control circuit of an electromagnetic heating device, a low power heating control method of the electromagnetic heating device and an electromagnetic heating device.
- the electromagnetic resonance circuit of a single IGBT Insulated Gate Bipolar Transistor
- IGBT Insulated Gate Bipolar Transistor
- the IGBT voltage is turned on ahead of time, and the turn-on moment will cause the IGBT transient current peak to be high, which easily exceeds the IGBT current peak specification limit and damages the IGBT;
- the IGBT will have a serious heat generation, and it is necessary to strengthen the heat dissipation of the IGBT (such as increasing the heat sink, increasing the fan speed, etc.) to achieve the temperature rise requirement of the IGBT;
- the IGBT has a hard turn-on phenomenon when the next cycle is turned on, which easily causes the IGBT to burn.
- a first object of the present invention is to provide a heating control circuit for an electromagnetic heating device, which can increase the power switch tube by increasing the driving of the variable voltage unit to control the power switch tube to be turned on when the electromagnetic heating device is heated.
- the risk of damage reduces the noise of opening.
- a second object of the present invention is to provide a low power heating control method for an electromagnetic heating device.
- a third object of the present invention is to provide an electromagnetic heating device.
- a heating control circuit for an electromagnetic heating device includes: a voltage zero-crossing detecting unit, wherein the voltage zero-crossing detecting unit is configured to detect an alternating current power input to the electromagnetic heating device.
- a driving unit the driving unit is connected to a driving end of the power switching tube to drive the power switching tube to be turned on and off; driving a voltage transformation unit, the driving voltage transformation unit and the power switching tube The driving end is connected to change the driving voltage of the power switch tube; the main control unit is respectively connected to the voltage zero-crossing detecting unit, the driving unit and the driving transformer unit, and the main control unit Unit determining, according to the voltage zero crossing signal, Controlling the driving unit and the driving transformer unit before the zero-crossing of the AC power source to operate the power switching tube under the driving of the first driving voltage, and oscillating the collector voltage of the power switching tube to At the minimum, the main control unit controls the driving transformer unit to stop working, and controls the driving unit to
- the driving voltage of the power switching tube is changed by increasing the driving voltage transformation unit, so that the main control unit judges the control driving unit before the zero-crossing point of the alternating current power source according to the voltage zero-crossing signal.
- the power switch tube is operated under the driving of the second driving voltage, so that the power switch tube is turned on and turned on in the manner of voltage-variable driving when the electromagnetic heating device is heated, so that the opening current of the power switch tube is reduced, and the power switch can be reduced.
- the damage caused by the hard opening of the tube can also reduce the opening noise, avoid the heat generation of the power switch tube, improve the operational reliability of the electromagnetic heating device, and widen the heating power range of the electromagnetic heating device.
- the working process of the power switch tube includes a first time period and a second time period, wherein, during the first time period, the amplitude of the first driving voltage remains unchanged or Linearly increasing, the pulse width of the first driving voltage is increased or equal; during the second period, the amplitude of the second driving voltage remains unchanged, the pulse width of the second driving voltage is increased or the like width.
- the power switch tube operates in an amplified state; and in the second time period, the power switch tube operates in a switch state.
- the collector voltage of the power switch tube oscillates to a minimum.
- the main control unit in the first period of time, the main control unit outputs the first control signal to the driving unit, and simultaneously outputs a second control signal to the driving and transforming unit, so that The power switch tube is operated under the driving of a first driving voltage whose amplitude remains unchanged, and the collector voltage of the power switching tube is oscillated to become smaller; in the second time period, the main control unit outputs Transmitting the first control signal to the driving unit to operate the power switch tube under the driving of the second driving voltage, and outputting a third control signal to the driving transformer unit to change the driving The pressure unit stops working.
- the power switch tube is an IGBT
- the power switch tube is an IGBT
- the first control signal is a PPG pulse
- the second control signal is a high level signal
- the third control signal is a low power Flat signal.
- the driving transformer unit includes: a first resistor, one end of the first resistor is connected to the main control unit; a first triode, a base of the first triode a pole connected to the other end of the first resistor, an emitter of the first transistor being grounded; a second resistor connected between a base and an emitter of the first transistor a third resistor, one end of the third resistor is connected to a collector of the first transistor, and the third The other end of the resistor is connected to the driving end of the drive switch.
- the driving unit includes: a fourth resistor, one end of the fourth resistor is connected to the main control unit; and a fifth resistor, one end of the fifth resistor and one end of the fourth resistor and the The main control unit is connected, the other end of the fifth resistor is grounded; the second triode, the base of the second triode is connected to the other end of the fourth resistor, and the second triode is The emitter is grounded, the collector of the second transistor is connected to a power source of a preset voltage through a sixth resistor; a third transistor, a base of the third transistor and the second transistor Connected to the collector, the emitter of the third transistor is grounded, the collector of the third transistor is connected to the power supply of the predetermined voltage through a seventh resistor; the fourth transistor, the a base of the fourth triode is connected to a collector of the third triode, and a collector of the fourth triode is connected to a power source of the predetermined voltage through an eighth resistor; a fifth triode, a base of the fifth triode is
- the heating control circuit of the electromagnetic heating device further includes a first Zener diode and an eleventh resistor, and an anode of the first Zener diode is connected to an emitter of the IGBT and grounded
- the cathode of the first voltage regulator is connected to the gate of the IGBT, and the eleventh resistor is connected in parallel with the first voltage regulator.
- a second aspect of the present invention provides a low power heating control method for an electromagnetic heating device, the electromagnetic heating device including a resonance heating unit, and a power for controlling the resonance heating unit to perform resonance operation a switch tube, a driving unit for driving the power switch tube to be turned on and off, and a driving transformer unit for changing a driving voltage of the power switch tube, the method comprising the following steps: when receiving a low power heating command, using a lost Wave mode controlling the power switch tube to intermittently heat the electromagnetic heating device; detecting a voltage zero-crossing signal input to the AC power source of the electromagnetic heating device; controlling the electromagnetic heating device from stopping the heating interval to heating When the interval is switched, determining, according to the voltage zero-crossing signal, controlling the driving unit and the driving transformer unit before the zero-crossing point of the AC power source to drive the power switch tube under the driving of the first driving voltage Working, and controlling the drive voltage change list when the collector voltage of the power switch tube oscillates to a minimum Stop working, and by controlling the driving unit so
- the power switch tube is controlled by means of wave loss to intermittently heat the electromagnetic heating device, and the electromagnetic heating device is controlled from
- the heating interval is switched to the heating interval, it is judged according to the voltage zero-crossing signal that the power driving tube is operated under the driving of the first driving voltage by controlling the driving unit and driving the voltage transformation unit before the zero-crossing point of the alternating current power source, and at the power
- the control drive transformer unit stops working while controlling the drive order
- the element is operated to drive the power switch tube under the driving of the second driving voltage, so that the power switch tube is turned on and turned on when the electromagnetic heating device enters the heating interval, so that the opening current of the power switch tube is reduced,
- the damage caused by the hard opening of the power switch tube is reduced, the turn-on noise is also reduced, the heat of the power switch tube is prevented from being severe, the operation reliability of the
- the working process of the power switch tube includes a first time period and a second time period, wherein, during the first time period, the amplitude of the first driving voltage remains unchanged or Linearly increasing, the pulse width of the first driving voltage is increased or equal; during the second period, the amplitude of the second driving voltage remains unchanged, the pulse width of the second driving voltage is increased or the like width.
- the power switch tube operates in an amplified state; and in the second time period, the power switch tube operates in a switch state.
- the collector voltage of the power switch tube oscillates to a minimum.
- the first control signal in the first period of time, is output to the driving unit, and a second control signal is output to the driving and transforming unit, so that the power switch tube Operating under the driving of a first driving voltage whose amplitude remains unchanged, the collector voltage of the power switching tube is oscillated to become smaller; in the second period of time, the first control signal is outputted to the driving And a unit for operating the power switch tube under the driving of the second driving voltage, and simultaneously outputting a third control signal to the driving transformer unit to stop the driving transformer unit from operating.
- the first control signal is a PPG pulse
- the second control signal is a high level signal
- the third control signal is a low level signal.
- an embodiment of the present invention also proposes an electromagnetic heating device including the above-described heating control circuit of the electromagnetic heating device.
- the electromagnetic heating device of the embodiment of the invention changes the driving voltage of the power switch tube by adding a driving transformer unit in the heating control circuit, so that the power switch tube is turned on and activated by the variable voltage driving method when the electromagnetic heating device enters the heating interval. Therefore, the opening current of the power switch tube is reduced, the damage caused by the hard opening of the power switch tube can be reduced, the turn-on noise can be reduced, the heat of the power switch tube can be avoided, the operation reliability can be improved, and the heating power range can be widened. .
- FIG. 1 is a block diagram showing a heating control circuit of an electromagnetic heating device according to an embodiment of the present invention
- FIG. 2 is a waveform diagram of a low-power heating operation of an electromagnetic heating device according to an embodiment of the present invention
- FIG. 3 is a waveform diagram of a low-power heating operation of an electromagnetic heating apparatus according to another embodiment of the present invention.
- FIG. 4A is a schematic diagram showing changes of a first driving voltage V1 and a second driving voltage V2 according to an embodiment of the present invention
- 4B is a schematic diagram showing changes of a first driving voltage V1 and a second driving voltage V2 according to another embodiment of the present invention.
- FIG. 5 is a circuit diagram of a driving unit and a driving transformer unit in accordance with an embodiment of the present invention
- FIG. 6 is a flow chart of a low power heating control method of an electromagnetic heating device in accordance with an embodiment of the present invention.
- a heating control circuit of an electromagnetic heating device, a low power heating control method of an electromagnetic heating device, and an electromagnetic heating device according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
- the heating control circuit of the electromagnetic heating device includes: a voltage zero-crossing detecting unit 10, a resonant heating unit 20, a rectifying and filtering unit 30, a power switching tube 40, a driving unit 50, a driving transformer unit 60, and a main control. Unit 70.
- the voltage zero-crossing detecting unit 10 is configured to detect a voltage zero-crossing signal of the alternating current power source (L, N) input to the electromagnetic heating device. For example, as shown in FIG. 1, the voltage zero-crossing detecting unit 10 and the alternating current power source (L, N) ) connected.
- the rectifying and filtering unit 30 performs rectifying and filtering processing on the AC power supply, and then outputs the DC power to the resonant heating unit 20.
- the rectifying and filtering unit 30 includes a rectifying bridge 301 and a filter inductor L1 and a filter capacitor C1, and the resonant heating unit 20 includes a resonant coil.
- the power switch tube 40 is used to control the resonant heating unit 20 to perform a resonance operation, wherein the power switch tube 40 may be an IGBT, and the collector of the IGBT is connected to the parallel resonant coil L2 and the resonant capacitor C2.
- the driving unit 50 is connected to the driving end of the power switching tube 40, for example, the gate of the IGBT to drive the power switch tube 40 to be turned on and off, and drives the voltage converting unit 60 and the driving end of the power switching tube 40, for example, an IGBT.
- the gates are connected to change the driving voltage of the power switch tube 40
- the main control unit 70 for example, the main control chip is connected to the voltage zero-crossing detecting unit 10, the driving unit 50 and the driving transformer unit 60, respectively, and the main control unit 70 is based on the voltage zero-crossing.
- the signal judges that the power switch tube 40 is operated under the driving of the first driving voltage V1 by controlling the driving unit 50 and driving the voltage changing unit 60 before the zero-crossing point of the alternating current power source, and the collector voltage of the power switching tube 40 is oscillated to
- the minimum, for example, zero-time master control unit 70 controls the drive transformer unit 60 to stop operating, and simultaneously controls the drive unit 50 to operate the power switch tube 40 under the driving of the second drive voltage V2, wherein the second drive voltage V2 is greater than The first driving voltage V1.
- the waveform diagram of the electromagnetic heating device during low-power heating operation is an alternating current mains waveform, and a low-power heating waveform (using wave-lossing Mode for intermittent heating, duty ratio is 1/2), electromagnetic heating device, low-power heating, collector C voltage waveform of IGBT, IGBT
- the driving waveform, in which the BC section in which heating is stopped and the CD section in the heating phase, the C-electrode voltage waveform of the IGBT in the figure refers to an envelope waveform formed by the peak voltage during the oscillation of the voltage of the C-pole.
- the main control unit 70 While outputting the first control signal to the driving unit 50, outputting the second control signal to the driving transformer unit 60, so that the IGBT is turned on and off under the driving of the first driving voltage, and the C-electrode voltage of the IGBT is oscillated, and When the C-pole voltage of the IGBT oscillates to a minimum, the main control unit 70 outputs the first control signal to the driving unit 50, and outputs a third control signal to the driving and transforming unit 60, so that the IGBT is turned on and off under the driving of the second driving voltage. Breaking, thereby realizing the variable voltage starting of the IGBT, that is, starting the IGBT by changing the driving voltage of the IGBT.
- FIG. 3 it is a waveform diagram of a low-power heating operation of an electromagnetic heating device, and an AC mains waveform and a low-power heating waveform are sequentially performed from top to bottom (using a wave loss method). Intermittent heating, duty ratio is 2/3), the collector C voltage waveform of the IGBT and the driving waveform of the IGBT when the electromagnetic heating device is heated at low power.
- Duty ratio is 2/3
- the control unit 70 outputs the second control signal to the driving and transforming unit 60, so that the IGBT is turned on and off under the driving of the first driving voltage, and the C-electrode voltage of the IGBT is oscillated. And when the C-pole voltage of the IGBT oscillates to a minimum, the main control unit 70 outputs the first control signal to the driving unit 50, and outputs a third control signal to the driving and transforming unit 60, so that the IGBT is driven by the second driving voltage. Turning on and off, thereby realizing the variable voltage start of the IGBT, that is, starting the IGBT by changing the driving voltage of the IGBT.
- the operation process of the power switch tube 40 includes a first time period T1 and a second time period T2, wherein the amplitude of the first driving voltage V1 remains unchanged during the first time period T1.
- the pulse width of the first driving voltage V1 is increased or equal; in the second period T2, the amplitude of the second driving voltage V2 remains unchanged, and the pulse width of the second driving voltage V2 is increased or equal. That is to say, the driving voltage of the IGBT can be changed by the drive unit 50 and the driving transformer unit 60 to maintain the amplitude V1 changed to maintain the amplitude V2, as shown in FIG.
- the IGBT when the gate driving voltage of the IGBT is V1, the IGBT operates in an amplified state, that is, in the first time period T1, the power switching transistor such as the IGBT operates in an amplified state; when the gate driving voltage of the IGBT is V2, the IGBT operates In the switching state, ie in the second time period T2, the power switching tube, for example the IGBT, operates in the switching state.
- the gate driving voltage of the IGBT when the gate driving voltage of the IGBT is V1, the IGBT operates in an amplified state, and the current through the IGBT is related to the magnitude of the driving voltage V1.
- a power switching tube such as an IGBT
- the collector voltage oscillates to a minimum, for example to oscillate to zero.
- the main control unit 70 outputs the first control signal to the driving unit 50, and simultaneously outputs the second control signal to the driving and transforming unit 60, so that the power switch tube maintains the amplitude unchanged.
- the first driving voltage V1 is driven to operate, and the collector voltage of the power switching tube is oscillated to become smaller; in the second time period T2, the main control unit 70 outputs the first control signal to the driving unit 50 to make the power switching tube.
- the driving of the driving voltage V2 is performed while the third control signal is output to the driving and transforming unit 60, and the triode in the driving and transforming unit 60 is turned off to stop the driving of the variable voltage unit.
- the first control signal may be a PPG pulse
- the second control signal may be a high level signal
- the third control signal may be a low level signal
- the driving transformer unit 60 includes: a first resistor R1, a first transistor Q1, a second resistor R2, and a third resistor R3, wherein one end of the first resistor R1 and the main control unit 70 is connected, the base of the first transistor Q1 is connected to the other end of the first resistor R1, the emitter of the first transistor Q2 is grounded, and the second resistor R2 is connected to the base and the emitter of the first transistor Q1. Between the poles, one end of the third resistor R3 is connected to the collector of the first transistor Q1, and the other end of the third resistor R3 is connected to the driving terminal of the driving switch 40, for example, the gate of the IGBT.
- the driving unit 50 includes: a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, and a second Transistor Q2, third triode Q3, fourth triode Q4, and fifth triode Q5.
- One end of the fourth resistor R4 is connected to the main control unit 70, and one end of the fifth resistor R5 is connected to one end of the fourth resistor R4 and the main control unit 70, and the other end of the fifth resistor R5 is grounded, and the second transistor Q2 is The base is connected to the other end of the fourth resistor R4, the emitter of the second transistor Q2 is grounded, and the collector of the second transistor Q2 is connected to the power supply VDD of the preset voltage through the sixth resistor R6; the third three poles The base of the tube Q3 is connected to the collector of the second transistor Q2, the emitter of the third transistor Q3 is grounded, and the collector of the third transistor Q3 is connected to the power supply VDD of the preset voltage through the seventh resistor R7.
- the base of the fourth transistor Q4 is connected to the emitter of the third transistor Q3, and the collector of the fourth transistor Q4 is connected to the power supply VDD of the preset voltage through the eighth resistor R8, the fifth transistor
- the base of Q5 is connected to the base of the fourth transistor Q4, the collector of the fifth transistor Q5 is grounded, one end of the ninth resistor R9 is connected to the emitter of the fifth transistor Q5, and the ninth resistor R9 is The other end is connected to the emitter of the fourth transistor Q4, and one end of the tenth resistor R10 is respectively connected to the emitter of the fourth transistor Q4 and the ninth
- the other end of resistor R9 is connected to the other end of the tenth resistor R10 and the power switch 40, for example, the drive connected to the gate terminal of the IGBT gate.
- the resistors R1, R2, R3 and the transistor Q1 are added by increasing the driving of the transformer unit 60, so that when the control IGBT is turned on and the electromagnetic heating device is heated, in the T1 phase,
- the main control chip sends a PPG pulse to the driving unit 50, and simultaneously sends a high level signal to the resistor R1 to turn on the Q1.
- the driving voltage of the point is V1
- the IGBT is turned on and off under the driving of V1, so that the C-electrode voltage of the IGBT oscillates; in the T2 phase, the main control chip sends a PPG pulse to the driving unit 50, and simultaneously emits a low-level signal to the resistor.
- R1 the Q1 is turned off, and the driving transformer unit 60 stops the driving voltage of the IGBT.
- the driving voltage of the point is V2, and the driving voltage of the IGBT is maintained at the level of V2 at the T2 stage, and the electromagnetic heating device performs heating.
- the heating control circuit of the electromagnetic heating device of the embodiment of the present invention drives the transformer unit 60 by using the first driving voltage V1 when the IGBT is in the T1 phase of the startup, and the second driving when the T2 phase is used.
- Voltage V2 drives the operation. Because the IGBT starts, due to the existence of the filter capacitor C1, the C-pole voltage of the IGBT is not 0 at this time, which is the voltage value after rectification and filtering of the AC power supply, which is about 1.4 times of the AC power supply voltage. When the driving voltage of the IGBT is V1, the IGBT operates in an amplified state.
- the invention adopts IGBT voltage-variable start-up, so that the turn-on current of the IGBT is reduced, the damage caused by the hard turn-on of the IGBT can be reduced, and the turn-on noise of the IGBT can be reduced at the same time.
- the heating control circuit of the electromagnetic heating device further includes a first Zener diode Z1 and an eleventh resistor R11, and an anode and an IGBT emission of the first Zener diode Z1.
- the cathode of the first Zener diode Z1 is connected to the gate of the IGBT, and the eleventh resistor R11 is connected in parallel with the first Zener diode Z1.
- the electromagnetic heating device may be an electromagnetic product such as an induction cooker, an electromagnetic pressure cooker or an electromagnetic rice cooker.
- the driving voltage of the power switching tube is changed by increasing the driving voltage transformation unit, so that the main control unit judges the control driving unit before the zero-crossing point of the alternating current power source according to the voltage zero-crossing signal.
- the power switch tube is operated under the driving of the second driving voltage, so that the power switch tube is turned on and turned on in the manner of voltage-variable driving when the electromagnetic heating device is heated, so that the opening current of the power switch tube is reduced, and the power switch can be reduced.
- the damage caused by the hard opening of the tube can also reduce the opening noise, avoid the heat generation of the power switch tube, improve the operational reliability of the electromagnetic heating device, and widen the heating power range of the electromagnetic heating device.
- the electromagnetic heating device comprises a resonant heating unit, a power switching tube for controlling the resonance heating unit to perform resonance operation, a driving unit for driving the power switching tube to be turned on and off, and changing a driving voltage of the power switching tube Drive the transformer unit.
- the low power heating control method of the electromagnetic heating device comprises the following steps:
- the power switch tube when receiving the low power heating command, the power switch tube is controlled by means of wave loss to intermittently heat the electromagnetic heating device.
- the electromagnetic heating device can be controlled to perform low-power heating with a wave loss mode, and the duty ratio is 1/2 or 2/3.
- the main control chip The default is the low power state, otherwise it is the high power state.
- the main control chip is processed by the wave loss method, and the waveform of the 1/2 or 1/3 of the AC power source is discarded to realize the low power heating of the electromagnetic heating device.
- the voltage zero-crossing signal of the AC power source can be detected by the voltage zero-crossing detecting unit.
- the IGBT is activated by changing the driving voltage of the power switching transistor, for example, the IGBT, and the inrush current value of the IGBT can be reduced, and the switching noise can be reduced.
- the working process of the power switching transistor such as the IGBT includes a first time period T1 and a second time period T2, wherein in the first time period T1, the first driving The amplitude of the voltage V1 remains unchanged or linearly increased, and the pulse width of the first driving voltage V1 is increased or equal; in the second period T2, the amplitude of the second driving voltage V2 remains unchanged, and the second driving voltage V2 The pulse width is incremented or equal. That is to say, the driving voltage of the IGBT can be changed by the drive unit and the driving transformer unit to maintain the amplitude V1 changed to maintain the amplitude V2, as shown in FIG. 4A; or V1 to V2.
- the IGBT when the gate driving voltage of the IGBT is V1, the IGBT operates in an amplified state, that is, in the first time period T1, the power switching transistor such as the IGBT operates in an amplified state; when the gate driving voltage of the IGBT is V2, the IGBT operates In the switching state, ie in the second time period T2, the power switching tube, for example the IGBT, operates in the switching state.
- the gate driving voltage of the IGBT when the gate driving voltage of the IGBT is V1, the IGBT operates in an amplified state, and the current through the IGBT is related to the magnitude of the driving voltage V1.
- the collector voltage of the power switching transistor such as an IGBT, oscillates to a minimum, for example, to zero.
- the first control signal is outputted to the driving unit, and the second control signal is outputted to the driving transformer unit, so that the power switching tube maintains the first driving voltage V1 of the amplitude unchanged.
- the collector voltage of the power switch tube is oscillated to be small; in the second time period T2, the first control signal is output to the driving unit to operate the power switch tube under the driving of the second driving voltage V2,
- the third control signal is output to the driving transformer unit, and the triode in the transformer unit is driven to be turned off to stop the driving transformer unit from operating.
- the first control signal may be a PPG pulse
- the second control signal may be a high power
- the third control signal can be a low level signal
- the electromagnetic heating device when controlled to operate at a certain heating power, for example, 600 W, intermittent heating may be employed to achieve low power heating.
- a certain heating power for example, 600 W
- intermittent heating may be employed to achieve low power heating.
- the C-pole voltage of the IGBT is maintained at the voltage value after the AC power source is rectified and filtered.
- the driving voltage is started at V1 to turn on the IGBT, and the plurality of PPG pulses cause the oscillation circuit to oscillate, and the C-electrode voltage oscillation of the IGBT becomes small.
- the amplitude of the IGBT drive pulse is V1
- the pulse width is the pulse width of the PPG.
- the width of the PPG can be set to be constant or regular. After a plurality of oscillations, the C-pole voltage of the IGBT is oscillated at the point of reaching the voltage zero-crossing point C. When the minimum is reached, the voltage of the capacitor C1 is close to 0V. At this time, the start phase T1 is completed, and then the T2 phase is entered. The driving voltage of the IGBT is changed to V2, and the IGBT is in a normal switching state. Thereafter, the driving voltage of the IGBT is maintained at V2. The pulse width is constant or regular addition and subtraction, and the IGBT drive is turned off at the next zero crossing point D.
- the IGBT heating can be started by changing the starting voltage of the IGBT, and in the IGBT starting phase (T1 phase), the amplitude of the IGBT driving voltage V1 is constant or Change, the pulse width is constant or increases according to a certain regularity.
- the amplitude of the IGBT driving voltage is always V2, but the pulse width is constant or added or subtracted according to a certain variation law.
- the starting point of the IGBT is before the voltage zero crossing of the AC power source to ensure that the voltage of the capacitor C1 drops to a minimum when the voltage of the AC power source crosses zero, that is, the C-pole voltage of the IGBT oscillates to near 0V, and the voltage of the AC power source passes.
- the driving voltage of the IGBT after zero is V2. Therefore, the turn-on current of the IGBT can be reduced, the damage caused by the hard turn-on of the IGBT can be reduced, and the turn-on noise of the IGBT can be reduced.
- the power switch tube is controlled by means of wave loss to intermittently heat the electromagnetic heating device, and the electromagnetic heating device is controlled from
- the heating interval is switched to the heating interval, it is judged according to the voltage zero-crossing signal that the power driving tube is operated under the driving of the first driving voltage by controlling the driving unit and driving the voltage transformation unit before the zero-crossing point of the alternating current power source, and at the power
- the control drive voltage change unit stops working, and at the same time, by controlling the drive unit to operate the power switch tube under the driving of the second driving voltage, thereby changing when the electromagnetic heating device enters the heating interval
- the pressure driving method realizes the opening and closing of the power switch tube, so that the opening current of the power switch tube is reduced, the damage caused by the hard opening of the power switch tube can be reduced, and the opening noise can be reduced, the heat of the power switch tube can
- an embodiment of the present invention also proposes an electromagnetic heating device including the above-described heating control circuit of the electromagnetic heating device.
- the electromagnetic heating device of the embodiment of the invention changes the driving voltage of the power switch tube by adding a driving transformer unit in the heating control circuit, so that the power switch tube is turned on and activated by the variable voltage driving method when the electromagnetic heating device enters the heating interval. Therefore, the opening current of the power switch tube is reduced, and the damage caused by the hard opening of the power switch tube can be reduced. At the same time, it can also reduce the opening noise, avoid the heat generation of the power switch tube, improve the operation reliability, and widen the heating power range.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
- the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- General Induction Heating (AREA)
- Induction Heating Cooking Devices (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种电磁加热装置及其加热控制电路和低功率加热控制方法,其中加热控制电路包括:电压过零检测单元,用于检测交流电源的电压过零信号;谐振加热单元;整流滤波单元;功率开关管;驱动单元,驱动单元与功率开关管的驱动端相连以驱动功率开关管的开通和关断;驱动变压单元,驱动变压单元与功率开关管的驱动端相连以改变功率开关管的驱动电压;主控单元,主控单元根据电压过零信号判断在交流电源的过零点前控制功率开关管在第一驱动电压的驱动下进行工作,并在功率开关管的集电极电压振荡到最小时控制功率开关管在第二驱动电压的驱动下进行工作,使得功率开关管变压启动,从而降低功率开关管损坏的风险,减少开通噪音。
Description
本发明涉及电磁加热技术领域,特别涉及一种电磁加热装置的加热控制电路、一种电磁加热装置的低功率加热控制方法以及一种电磁加热装置。
目前,单IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)的电磁谐振电路通常采用并联谐振方式,并在采用实现电磁炉大功率运行的谐振参数时,如果在连续低功率段运行,则会出现以下问题:
(1)IGBT电压超前开通,开通瞬间会导致IGBT瞬态电流峰值高,容易超过IGBT电流峰值规格限制,损坏IGBT;
(2)IGBT会发热严重,需要加强对IGBT散热(如增大散热片、增加风机转速等)以实现IGBT的温升要求;
(3)如果采用占空比加热方式下实现低功率,即采用断续加热方式,由于滤波电容存在,IGBT在下一周期开通时存在硬开通现象,容易导致IGBT烧毁。
发明内容
本发明旨在至少从一定程度上解决上述技术中的技术问题之一。为此,本发明的第一个目的在于提出一种电磁加热装置的加热控制电路,通过增加驱动变压单元以在电磁加热装置加热时能够控制功率开关管变压启动开通,从而降低功率开关管损坏的风险,减少开通噪音。
本发明的第二个目的在于提出一种电磁加热装置的低功率加热控制方法。本发明的第三个目的在于提出一种电磁加热装置。
为达到上述目的,本发明第一方面实施例提出的一种电磁加热装置的加热控制电路,包括:电压过零检测单元,所述电压过零检测单元用于检测输入到电磁加热装置的交流电源的电压过零信号;谐振加热单元;整流滤波单元,所述整流滤波单元对所述交流电源进行整流滤波处理以供给所述谐振加热单元;用于控制所述谐振加热单元进行谐振工作的功率开关管;驱动单元,所述驱动单元与所述功率开关管的驱动端相连以驱动所述功率开关管的开通和关断;驱动变压单元,所述驱动变压单元与所述功率开关管的驱动端相连以改变所述功率开关管的驱动电压;主控单元,所述主控单元分别与所述电压过零检测单元、所述驱动单元和所述驱动变压单元相连,所述主控单元根据所述电压过零信号判断在所述
交流电源的过零点前通过控制所述驱动单元和所述驱动变压单元以使所述功率开关管在第一驱动电压的驱动下进行工作,并在所述功率开关管的集电极电压振荡到最小时所述主控单元控制所述驱动变压单元停止工作,并通过控制所述驱动单元以使所述功率开关管在第二驱动电压的驱动下进行工作,其中,所述第二驱动电压大于所述第一驱动电压。
根据本发明实施例的电磁加热装置的加热控制电路,通过增加驱动变压单元来改变功率开关管的驱动电压,这样主控单元根据电压过零信号判断在交流电源的过零点前通过控制驱动单元和驱动变压单元以使功率开关管在第一驱动电压的驱动下进行工作,并在功率开关管的集电极电压振荡到最小时主控单元控制驱动变压单元停止工作,并通过控制驱动单元以使功率开关管在第二驱动电压的驱动下进行工作,从而在电磁加热装置加热时以变压驱动的方式实现功率开关管启动开通,使得功率开关管的开通电流减小,可以降低功率开关管硬开通带来的损害,同时还可降低开通噪音,避免功率开关管发热严重,提高了电磁加热装置的运行可靠性,并能拓宽电磁加热装置的加热功率范围。
根据本发明的一个实施例,所述功率开关管的工作过程包括第一时间段和第二时间段,其中,在所述第一时间段,所述第一驱动电压的幅值保持不变或线性增加,所述第一驱动电压的脉冲宽度递增或等宽;在所述第二时间段,所述第二驱动电压的幅值保持不变,所述第二驱动电压的脉冲宽度递增或等宽。
并且,在所述第一时间段,所述功率开关管工作在放大状态;在所述第二时间段,所述功率开关管工作在开关状态。
根据本发明的一个实施例,在所述交流电源的过零点,所述功率开关管的集电极电压振荡到最小。
根据本发明的一个实施例,在所述第一时间段,所述主控单元输出所述第一控制信号至所述驱动单元,同时输出第二控制信号至所述驱动变压单元,以使所述功率开关管在幅值保持不变的第一驱动电压的驱动下进行工作,所述功率开关管的集电极电压进行振荡变小;在所述第二时间段,所述主控单元输出所述第一控制信号至所述驱动单元以使所述功率开关管在所述第二驱动电压的驱动下进行工作,同时输出第三控制信号至所述驱动变压单元以使所述驱动变压单元停止工作。
具体地,所述功率开关管为IGBT,所述功率开关管为IGBT,所述第一控制信号为PPG脉冲,所述第二控制信号为高电平信号,所述第三控制信号为低电平信号。
根据本发明的一个实施例,所述驱动变压单元包括:第一电阻,所述第一电阻的一端与所述主控单元相连;第一三极管,所述第一三极管的基极与所述第一电阻的另一端相连,所述第一三极管的发射极接地;第二电阻,所述第二电阻连接在所述第一三极管的基极与发射极之间;第三电阻,所述第三电阻的一端与所述第一三极管的集电极相连,所述第三
电阻的另一端与所述驱动开关管的驱动端相连。
并且,所述驱动单元包括:第四电阻,所述第四电阻的一端与所述主控单元相连;第五电阻,所述第五电阻的一端分别与所述第四电阻的一端和所述主控单元相连,所述第五电阻的另一端接地;第二三极管,所述第二三极管的基极与所述第四电阻的另一端相连,所述第二三极管的发射极接地,所述第二三极管的集电极通过第六电阻与预设电压的电源相连;第三三极管,所述第三三极管的基极与所述第二三极管的集电极相连,所述第三三极管的发射极接地,所述第三三极管的集电极通过第七电阻与所述预设电压的电源相连;第四三极管,所述第四三极管的基极与所述第三三极管的集电极相连,所述第四三极管的集电极通过第八电阻与所述预设电压的电源相连;第五三极管,所述第五三极管的基极与所述第四三极管的基极相连,所述第五三极管的集电极接地;第九电阻,所述第九电阻的一端与所述第五三极管的发射极相连,所述第九电阻的另一端与所述第四三极管的发射极相连;第十电阻,所述第十电阻的一端分别与所述第四三极管的发射极和所述第九电阻的另一端相连,所述第十电阻的另一端与所述功率开关管的驱动端相连。
根据本发明的一个实施例,所述的电磁加热装置的加热控制电路还包括第一稳压管和第十一电阻,所述第一稳压管的阳极与所述IGBT的发射极相连后接地,所述第一稳压管的阴极与所述IGBT的门极相连,所述第十一电阻与所述第一稳压管并联。
为达到上述目的,本发明的第二方面实施例提出了一种电磁加热装置的低功率加热控制方法,所述电磁加热装置包括谐振加热单元、用于控制所述谐振加热单元进行谐振工作的功率开关管、驱动所述功率开关管开通和关断的驱动单元、改变所述功率开关管的驱动电压的驱动变压单元,所述方法包括以下步骤:在接收到低功率加热指令时,采用丢波的方式控制所述功率开关管以使所述电磁加热装置进行间断加热;检测输入到所述电磁加热装置的交流电源的电压过零信号;在控制所述电磁加热装置从停止加热区间向加热区间切换时,根据所述电压过零信号判断在所述交流电源的过零点前通过控制所述驱动单元和所述驱动变压单元以使所述功率开关管在第一驱动电压的驱动下进行工作,并在所述功率开关管的集电极电压振荡到最小时控制所述驱动变压单元停止工作,并通过控制所述驱动单元以使所述功率开关管在第二驱动电压的驱动下进行工作,其中,所述第二驱动电压大于所述第一驱动电压。
根据本发明实施例的电磁加热装置的低功率加热控制方法,在接收到低功率加热指令时采用丢波的方式来控制功率开关管以使电磁加热装置进行间断加热,并在控制电磁加热装置从停止加热区间向加热区间切换时,根据电压过零信号判断在交流电源的过零点前通过控制驱动单元和驱动变压单元以使功率开关管在第一驱动电压的驱动下进行工作,并在功率开关管的集电极电压振荡到最小时控制驱动变压单元停止工作,同时通过控制驱动单
元以使功率开关管在第二驱动电压的驱动下进行工作,从而在电磁加热装置进入加热区间时以变压驱动的方式实现功率开关管启动开通,使得功率开关管的开通电流减小,可以降低功率开关管硬开通带来的损害,同时还可降低开通噪音,避免功率开关管发热严重,提高了电磁加热装置的运行可靠性,并能拓宽电磁加热装置的加热功率范围。
根据本发明的一个实施例,所述功率开关管的工作过程包括第一时间段和第二时间段,其中,在所述第一时间段,所述第一驱动电压的幅值保持不变或线性增加,所述第一驱动电压的脉冲宽度递增或等宽;在所述第二时间段,所述第二驱动电压的幅值保持不变,所述第二驱动电压的脉冲宽度递增或等宽。
并且,在所述第一时间段,所述功率开关管工作在放大状态;在所述第二时间段,所述功率开关管工作在开关状态。
根据本发明的一个实施例,在所述交流电源的过零点,所述功率开关管的集电极电压振荡到最小。
根据本发明的一个实施例,在所述第一时间段,输出所述第一控制信号至所述驱动单元,同时输出第二控制信号至所述驱动变压单元,以使所述功率开关管在幅值保持不变的第一驱动电压的驱动下进行工作,所述功率开关管的集电极电压进行振荡变小;在所述第二时间段,输出所述第一控制信号至所述驱动单元以使所述功率开关管在所述第二驱动电压的驱动下进行工作,同时输出第三控制信号至所述驱动变压单元以使所述驱动变压单元停止工作。
其中,所述第一控制信号为PPG脉冲,所述第二控制信号为高电平信号,所述第三控制信号为低电平信号。
此外,本发明的实施例还提出了一种电磁加热装置,其包括上述的电磁加热装置的加热控制电路。
本发明实施例的电磁加热装置,通过在加热控制电路中增加驱动变压单元来改变功率开关管的驱动电压,这样在电磁加热装置进入加热区间时以变压驱动的方式实现功率开关管启动开通,从而使得功率开关管的开通电流减小,可以降低功率开关管硬开通带来的损害,同时还可降低开通噪音,避免功率开关管发热严重,提高了运行可靠性,并能拓宽加热功率范围。
图1为根据本发明一个实施例的电磁加热装置的加热控制电路的方框示意图;
图2为根据本发明一个实施例的电磁加热装置低功率加热运行时的波形图;
图3为根据本发明另一个实施例的电磁加热装置低功率加热运行时的波形图;
图4A为根据本发明一个实施例的第一驱动电压V1与第二驱动电压V2的变化示意图;
图4B为根据本发明另一个实施例的第一驱动电压V1与第二驱动电压V2的变化示意图;
图5为根据本发明一个具体实施例的驱动单元和驱动变压单元的电路图;以及
图6为根据本发明实施例的电磁加热装置的低功率加热控制方法的流程图。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的电磁加热装置的加热控制电路、电磁加热装置的低功率加热控制方法以及电磁加热装置。
图1为根据本发明一个实施例的电磁加热装置的加热控制电路的方框示意图。如图1所示,该电磁加热装置的加热控制电路包括:电压过零检测单元10、谐振加热单元20、整流滤波单元30、功率开关管40、驱动单元50、驱动变压单元60和主控单元70。
其中,电压过零检测单元10用于检测输入到电磁加热装置的交流电源(L,N)的电压过零信号,例如如图1所示,电压过零检测单元10与交流电源(L,N)相连。整流滤波单元30对交流电源进行整流滤波处理后输出直流电供给谐振加热单元20,如图1所示,整流滤波单元30包括整流桥301以及滤波电感L1和滤波电容C1,谐振加热单元20包括谐振线圈L2和谐振电容C2,谐振线圈L2和谐振电容C2并联连接。功率开关管40用于控制谐振加热单元20进行谐振工作,其中,功率开关管40可以是IGBT,IGBT的集电极连接到并联的谐振线圈L2和谐振电容C2。
如图1所示,驱动单元50与功率开关管40的驱动端例如IGBT的门极相连以驱动功率开关管40的开通和关断,驱动变压单元60与功率开关管40的驱动端例如IGBT的门极相连以改变功率开关管40的驱动电压,主控单元70例如主控芯片分别与电压过零检测单元10、驱动单元50和驱动变压单元60相连,主控单元70根据电压过零信号判断在交流电源的过零点前通过控制驱动单元50和驱动变压单元60以使功率开关管40在第一驱动电压V1的驱动下进行工作,并在功率开关管40的集电极电压振荡到最小例如零时主控单元70控制驱动变压单元60停止工作,并同时通过控制驱动单元50以使功率开关管40在第二驱动电压V2的驱动下进行工作,其中,第二驱动电压V2大于第一驱动电压V1。
进一步地,根据本发明的一个实施例,如图2所示,为电磁加热装置低功率加热运行时的波形图,从上向下依次为交流市电波形、低功率加热波形(采用丢波的方式进行间断加热,占空比为1/2)、电磁加热装置低功率加热时IGBT的集电极C极电压波形、IGBT的
驱动波形,其中停止加热的BC区间及加热阶段的CD区间在图中的IGBT的C极电压波形是指C极的电压在震荡过程中由峰值电压所形成的包络波形。从图2可以看出,当电磁加热装置采用丢波的方式即间断加热方式(加热占空比为1/2)进行低功率加热时,在停止加热区间向加热区间切换时,主控单元70输出第一控制信号至驱动单元50的同时,输出第二控制信号至驱动变压单元60,使得IGBT在第一驱动电压的驱动下开通和关断,实现IGBT的C极电压进行振荡,并在IGBT的C极电压振荡到最小时主控单元70输出第一控制信号至驱动单元50的同时,输出第三控制信号至驱动变压单元60,使得IGBT在第二驱动电压的驱动下开通和关断,从而实现IGBT的变压启动,即采用改变IGBT驱动电压的方式启动IGBT。
根据本发明的另一个实施例,如图3所示,为电磁加热装置低功率加热运行时的波形图,从上向下依次为交流市电波形、低功率加热波形(采用丢波的方式进行间断加热,占空比为2/3)、电磁加热装置低功率加热时IGBT的集电极C极电压波形、IGBT的驱动波形。从图3可以看出,当电磁加热装置采用丢波的方式即间断加热方式(加热占空比为2/3)进行低功率加热时,同样地,在停止加热区间向加热区间切换时,主控单元70输出第一控制信号至驱动单元50的同时,输出第二控制信号至驱动变压单元60,使得IGBT在第一驱动电压的驱动下开通和关断,实现IGBT的C极电压进行振荡,并在IGBT的C极电压振荡到最小时主控单元70输出第一控制信号至驱动单元50的同时,输出第三控制信号至驱动变压单元60,使得IGBT在第二驱动电压的驱动下开通和关断,从而实现IGBT的变压启动,即采用改变IGBT驱动电压的方式启动IGBT。
如图2或3所示,功率开关管40例如IGBT的工作过程包括第一时间段T1和第二时间段T2,其中,在第一时间段T1,第一驱动电压V1的幅值保持不变或线性增加,第一驱动电压V1的脉冲宽度递增或等宽;在第二时间段T2,第二驱动电压V2的幅值保持不变,第二驱动电压V2的脉冲宽度递增或等宽。即言,IGBT的驱动电压在驱动单元50和驱动变压单元60的作用下可以是保持幅值不变的V1变化到保持幅值不变的V2,如图4A所示;也可以是V1至V2的线性变化,如图4B所示;或是在V1至V2值内的多点变化值。并且,通过控制第一驱动电压和第二驱动电压的脉冲宽度递增或等宽,平缓地控制IGBT的电流,从而可以尽可能地减少IGBT的冲击电流,避免IGBT损坏。
并且,当IGBT的门极驱动电压为V1时,IGBT工作在放大状态,即在第一时间段T1,功率开关管例如IGBT工作在放大状态;当IGBT的门极驱动电压为V2时,IGBT工作在开关状态,即在第二时间段T2,功率开关管例如IGBT工作在开关状态。而当IGBT的门极驱动电压为V1时,IGBT工作在放大状态,此时通过IGBT的电流与驱动电压V1的大小相关。
在本发明的实施例中,如图2或图3所示,在交流电源的过零点,功率开关管例如IGBT
的集电极电压振荡到最小例如振荡到零。
具体而言,在第一时间段T1,主控单元70输出第一控制信号至驱动单元50,同时输出第二控制信号至驱动变压单元60,以使功率开关管在幅值保持不变的第一驱动电压V1的驱动下进行工作,功率开关管的集电极电压进行振荡变小;在第二时间段T2,主控单元70输出第一控制信号至驱动单元50以使功率开关管在第二驱动电压V2的驱动下进行工作,同时输出第三控制信号至驱动变压单元60,驱动变压单元60中的三极管截止,以使驱动变压单元停止工作。
根据本发明的一个实施例,第一控制信号可以为PPG脉冲,第二控制信号可以为高电平信号,第三控制信号可以为低电平信号。
具体地,如图5所示,驱动变压单元60包括:第一电阻R1、第一三极管Q1、第二电阻R2和第三电阻R3,其中,第一电阻R1的一端与主控单元70相连,第一三极管Q1的基极与第一电阻R1的另一端相连,第一三极管Q2的发射极接地,第二电阻R2连接在第一三极管Q1的基极与发射极之间,第三电阻R3的一端与第一三极管Q1的集电极相连,第三电阻R3的另一端与驱动开关管40的驱动端例如IGBT的门极相连。
并且,如图5所示,驱动单元50包括:第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10以及第二三极管Q2、第三三极管Q3、第四三极管Q4、第五三极管Q5。第四电阻R4的一端与主控单元70相连,第五电阻R5的一端分别与第四电阻R4的一端和主控单元70相连,第五电阻R5的另一端接地,第二三极管Q2的基极与第四电阻R4的另一端相连,第二三极管Q2的发射极接地,第二三极管Q2的集电极通过第六电阻R6与预设电压的电源VDD相连;第三三极管Q3的基极与第二三极管Q2的集电极相连,第三三极管Q3的发射极接地,第三三极管Q3的集电极通过第七电阻R7与预设电压的电源VDD相连,第四三极管Q4的基极与第三三极管Q3的发射极相连,第四三极管Q4的集电极通过第八电阻R8与预设电压的电源VDD相连,第五三极管Q5的基极与第四三极管Q4的基极相连,第五三极管Q5的集电极接地,第九电阻R9的一端与第五三极管Q5的发射极相连,第九电阻R9的另一端与第四三极管Q4的发射极相连,第十电阻R10的一端分别与第四三极管Q4的发射极和第九电阻R9的另一端相连,第十电阻R10的另一端与功率开关管40的驱动端例如IGBT的门极相连。
具体而言,在本发明的实施例中,通过增加驱动变压单元60即增加了电阻R1、R2、R3和三极管Q1,这样在控制IGBT启动开通使得电磁加热装置进行加热时,在T1阶段,主控芯片发出PPG脉冲至驱动单元50,同时发出高电平信号至电阻R1,使Q1导通,此时由于电阻R3分压,此时点的驱动电压为V1,IGBT在V1的驱动下开通和关断,使得IGBT的C极电压进行振荡;在T2阶段,主控芯片发出PPG脉冲至驱动单元50,同时发出低电平信
号至电阻R1,使Q1截止,驱动变压单元60停止对IGBT的驱动电压作用,此时点的驱动电压为V2,并在T2阶段IGBT的驱动电压一直维持在V2的水平,电磁加热装置进行加热。
因此,本发明实施例的电磁加热装置的加热控制电路通过增加驱动变压单元60,当IGBT在启动的T1阶段时,采用第一驱动电压V1驱动工作,当处于T2阶段时,采用第二驱动电压V2驱动工作。因为IGBT启动时,由于滤波电容C1的存在,此时IGBT的C极电压不为0,为交流电源整流滤波后的电压值,约为交流电源电压的1.4倍。而当IGBT的驱动电压为V1时,IGBT工作在放大状态,此时流过IGBT的电流值远小于在V2电压条件下的IGBT开关状态下的电流值,即流过IGBT的放大电流远小于开关电流。所以本发明采用IGBT变压启动,使得IGBT的开通电流减小,可以减小IGBT硬开通带来的损害,同时可降低IGBT的开通噪音。
根据本发明的一个实施例,如图5所示,上述的电磁加热装置的加热控制电路还包括第一稳压管Z1和第十一电阻R11,第一稳压管Z1的阳极与IGBT的发射极相连后接地,第一稳压管Z1的阴极与IGBT的门极相连,第十一电阻R11与第一稳压管Z1并联。
在本发明的实施例中,电磁加热装置可以是电磁炉、电磁压力锅或电磁电饭煲等电磁产品。
根据本发明实施例的电磁加热装置的加热控制电路,通过增加驱动变压单元来改变功率开关管的驱动电压,这样主控单元根据电压过零信号判断在交流电源的过零点前通过控制驱动单元和驱动变压单元以使功率开关管在第一驱动电压的驱动下进行工作,并在功率开关管的集电极电压振荡到最小时主控单元控制驱动变压单元停止工作,并通过控制驱动单元以使功率开关管在第二驱动电压的驱动下进行工作,从而在电磁加热装置加热时以变压驱动的方式实现功率开关管启动开通,使得功率开关管的开通电流减小,可以降低功率开关管硬开通带来的损害,同时还可降低开通噪音,避免功率开关管发热严重,提高了电磁加热装置的运行可靠性,并能拓宽电磁加热装置的加热功率范围。
图6为根据本发明实施例的电磁加热装置的低功率控制方法的流程图。其中,该电磁加热装置包括谐振加热单元、用于控制所述谐振加热单元进行谐振工作的功率开关管、驱动所述功率开关管开通和关断的驱动单元、改变所述功率开关管的驱动电压的驱动变压单元。如图6所示,该电磁加热装置的低功率加热控制方法包括以下步骤:
S1,在接收到低功率加热指令时,采用丢波的方式控制功率开关管以使电磁加热装置进行间断加热。
根据本发明的一个实施例,如图2或图3所示,可采用丢波的方式控制电磁加热装置进行低功率加热,占空比为1/2或2/3。例如,加热功率低于或等于1000W时,主控芯片
默认为低功率状态,否则为高功率状态。当用户控制电磁加热装置运行某小功率(例如600W)加热时,主控芯片采用丢波的方式处理,丢弃交流电源1/2或1/3的波形,实现电磁加热装置低功率加热。
S2,检测输入到电磁加热装置的交流电源的电压过零信号。例如,可通过电压过零检测单元来检测交流电源的电压过零点信号。
S3,在控制电磁加热装置从停止加热区间向加热区间切换时,根据电压过零信号判断在交流电源的过零点前通过控制驱动单元和驱动变压单元以使功率开关管在第一驱动电压的驱动下进行工作,并在功率开关管的集电极电压振荡到最小时控制驱动变压单元停止工作,同时通过控制驱动单元以使功率开关管在第二驱动电压的驱动下进行工作,其中,第二驱动电压大于第一驱动电压。即言,在每次从停止加热区间向加热区间切换时,采用改变功率开关管例如IGBT的驱动电压的方式启动IGBT进行加热,可以降低IGBT的冲击电流值,减少开关噪音。
根据本发明的一个实施例,如图2或图3所示,功率开关管例如IGBT的工作过程包括第一时间段T1和第二时间段T2,其中,在第一时间段T1,第一驱动电压V1的幅值保持不变或线性增加,第一驱动电压V1的脉冲宽度递增或等宽;在第二时间段T2,第二驱动电压V2的幅值保持不变,第二驱动电压V2的脉冲宽度递增或等宽。即言,IGBT的驱动电压在驱动单元和驱动变压单元的作用下可以是保持幅值不变的V1变化到保持幅值不变的V2,如图4A所示;也可以是V1至V2的线性变化,如图4B所示;或是在V1至V2值内的多点变化值。并且,通过控制第一驱动电压和第二驱动电压的脉冲宽度递增或等宽,平缓地控制IGBT的电流,从而可以尽可能地减少IGBT的冲击电流,避免IGBT损坏。
并且,当IGBT的门极驱动电压为V1时,IGBT工作在放大状态,即在第一时间段T1,功率开关管例如IGBT工作在放大状态;当IGBT的门极驱动电压为V2时,IGBT工作在开关状态,即在第二时间段T2,功率开关管例如IGBT工作在开关状态。而当IGBT的门极驱动电压为V1时,IGBT工作在放大状态,此时通过IGBT的电流与驱动电压V1的大小相关。
在本发明的实施例中,如图2或图3所示,在交流电源的过零点,功率开关管例如IGBT的集电极电压振荡到最小例如振荡到零。
具体而言,在第一时间段T1,输出第一控制信号至驱动单元,同时输出第二控制信号至驱动变压单元,以使功率开关管在幅值保持不变的第一驱动电压V1的驱动下进行工作,功率开关管的集电极电压进行振荡变小;在第二时间段T2,输出第一控制信号至驱动单元以使功率开关管在第二驱动电压V2的驱动下进行工作,同时输出第三控制信号至驱动变压单元,驱动变压单元中的三极管截止,以使驱动变压单元停止工作。
根据本发明的一个实施例,第一控制信号可以为PPG脉冲,第二控制信号可以为高电
平信号,第三控制信号可以为低电平信号。
也就是说,在本发明的实施例中,控制电磁加热装置以一定的加热功率例如600W运行时,可采用间断加热的方式,来实现低功率加热。在停止加热区间,由于滤波电容C1存在,IGBT的C极电压维持在交流电源整流滤波后的电压值。在交流电源的电压过零点前的B点启动时,采用驱动电压为V1启动,使IGBT导通,多个PPG脉冲使振荡回路产生振荡,IGBT的C极电压振荡变小。IGBT驱动脉冲幅值为V1,脉冲宽度为PPG的脉冲宽度,可以设定PPG的宽度不变或呈规律性增加,经过多个振荡之后,在到达电压过零点C点即IGBT的C极电压振荡到最小时,使电容C1的电压接近为0V,此时启动阶段T1结束,再进入T2阶段,IGBT的驱动电压改变为V2,IGBT处于正常的开关状态,此后维持IGBT的驱动电压为V2,其脉冲宽度不变或呈规律性加减,并在下个过零点D点时,关闭IGBT驱动。
因此,在采用丢波的方式控制电磁加热装置低功率加热时,可采用变化IGBT启动电压的方式启动IGBT加热,并在IGBT启动阶段(T1阶段),IGBT驱动电压V1的幅值不变或可变,脉冲宽度不变或按照一定规律性增加,在正式加热阶段(T2阶段),IGBT驱动电压的幅值恒为V2,但脉冲宽度不变或按照一定的变化规律加减。其中,IGBT启动阶段点在交流电源的电压过零点前,以保证在交流电源的电压过零时电容C1的电压能下降最小即IGBT的C极电压振荡到接近0V,同时在交流电源的电压过零点后IGBT的驱动电压为V2。所以能够使得IGBT的开通电流减小,可以减小IGBT硬开通带来的损害,同时可降低IGBT的开通噪音。
根据本发明实施例的电磁加热装置的低功率加热控制方法,在接收到低功率加热指令时采用丢波的方式来控制功率开关管以使电磁加热装置进行间断加热,并在控制电磁加热装置从停止加热区间向加热区间切换时,根据电压过零信号判断在交流电源的过零点前通过控制驱动单元和驱动变压单元以使功率开关管在第一驱动电压的驱动下进行工作,并在功率开关管的集电极电压振荡到最小时控制驱动变压单元停止工作,同时通过控制驱动单元以使功率开关管在第二驱动电压的驱动下进行工作,从而在电磁加热装置进入加热区间时以变压驱动的方式实现功率开关管启动开通,使得功率开关管的开通电流减小,可以降低功率开关管硬开通带来的损害,同时还可降低开通噪音,避免功率开关管发热严重,提高了电磁加热装置的运行可靠性,并能拓宽电磁加热装置的加热功率范围。
此外,本发明的实施例还提出了一种电磁加热装置,其包括上述的电磁加热装置的加热控制电路。
本发明实施例的电磁加热装置,通过在加热控制电路中增加驱动变压单元来改变功率开关管的驱动电压,这样在电磁加热装置进入加热区间时以变压驱动的方式实现功率开关管启动开通,从而使得功率开关管的开通电流减小,可以降低功率开关管硬开通带来的损
害,同时还可降低开通噪音,避免功率开关管发热严重,提高了运行可靠性,并能拓宽加热功率范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (16)
- 一种电磁加热装置的加热控制电路,其特征在于,包括:电压过零检测单元,所述电压过零检测单元用于检测输入到电磁加热装置的交流电源的电压过零信号;谐振加热单元;整流滤波单元,所述整流滤波单元对所述交流电源进行整流滤波处理以供给所述谐振加热单元;用于控制所述谐振加热单元进行谐振工作的功率开关管;驱动单元,所述驱动单元与所述功率开关管的驱动端相连以驱动所述功率开关管的开通和关断;驱动变压单元,所述驱动变压单元与所述功率开关管的驱动端相连以改变所述功率开关管的驱动电压;主控单元,所述主控单元分别与所述电压过零检测单元、所述驱动单元和所述驱动变压单元相连,所述主控单元根据所述电压过零信号判断在所述交流电源的过零点前通过控制所述驱动单元和所述驱动变压单元以使所述功率开关管在第一驱动电压的驱动下进行工作,并在所述功率开关管的集电极电压振荡到最小时所述主控单元控制所述驱动变压单元停止工作,并通过控制所述驱动单元以使所述功率开关管在第二驱动电压的驱动下进行工作,其中,所述第二驱动电压大于所述第一驱动电压。
- 根据权利要求1所述的电磁加热装置的加热控制电路,其特征在于,所述功率开关管的工作过程包括第一时间段和第二时间段,其中,在所述第一时间段,所述第一驱动电压的幅值保持不变或线性增加,所述第一驱动电压的脉冲宽度递增或等宽;在所述第二时间段,所述第二驱动电压的幅值保持不变,所述第二驱动电压的脉冲宽度递增或等宽。
- 根据权利要求2所述的电磁加热装置的加热控制电路,其特征在于,在所述第一时间段,所述功率开关管工作在放大状态;在所述第二时间段,所述功率开关管工作在开关状态。
- 根据权利要求1所述的电磁加热装置的加热控制电路,其特征在于,在所述交流电源的过零点,所述功率开关管的集电极电压振荡到最小。
- 根据权利要求2所述的电磁加热装置的加热控制电路,其特征在于,在所述第一时间段,所述主控单元输出所述第一控制信号至所述驱动单元,同时输出第二控制信号至所述驱动变压单元,以使所述功率开关管在幅值保持不变的第一驱动电压的驱动下进行工作,所述功率开关管的集电极电压进行振荡变小;在所述第二时间段,所述主控单元输出所述第一控制信号至所述驱动单元以使所述功率开关管在所述第二驱动电压的驱动下进行工作,同时输出第三控制信号至所述驱动变压单元以使所述驱动变压单元停止工作。
- 根据权利要求5所述的电磁加热装置的加热控制电路,其特征在于,所述功率开关管为IGBT,所述第一控制信号为PPG脉冲,所述第二控制信号为高电平信号,所述第三控制信号为低电平信号。
- 根据权利要求1-6中任一项所述的电磁加热装置的加热控制电路,其特征在于,所述驱动变压单元包括:第一电阻,所述第一电阻的一端与所述主控单元相连;第一三极管,所述第一三极管的基极与所述第一电阻的另一端相连,所述第一三极管的发射极接地;第二电阻,所述第二电阻连接在所述第一三极管的基极与发射极之间;第三电阻,所述第三电阻的一端与所述第一三极管的集电极相连,所述第三电阻的另一端与所述驱动开关管的驱动端相连。
- 根据权利要求7所述的电磁加热装置的加热控制电路,其特征在于,所述驱动单元包括:第四电阻,所述第四电阻的一端与所述主控单元相连;第五电阻,所述第五电阻的一端分别与所述第四电阻的一端和所述主控单元相连,所述第五电阻的另一端接地;第二三极管,所述第二三极管的基极与所述第四电阻的另一端相连,所述第二三极管的发射极接地,所述第二三极管的集电极通过第六电阻与预设电压的电源相连;第三三极管,所述第三三极管的基极与所述第二三极管的集电极相连,所述第三三极管的发射极接地,所述第三三极管的集电极通过第七电阻与所述预设电压的电源相连;第四三极管,所述第四三极管的基极与所述第三三极管的集电极相连,所述第四三极管的集电极通过第八电阻与所述预设电压的电源相连;第五三极管,所述第五三极管的基极与所述第四三极管的基极相连,所述第五三极管的集电极接地;第九电阻,所述第九电阻的一端与所述第五三极管的发射极相连,所述第九电阻的另一端与所述第四三极管的发射极相连;第十电阻,所述第十电阻的一端分别与所述第四三极管的发射极和所述第九电阻的另一端相连,所述第十电阻的另一端与所述功率开关管的驱动端相连。
- 根据权利要求6所述的电磁加热装置的加热控制电路,其特征在于,还包括第一稳压管和第十一电阻,所述第一稳压管的阳极与所述IGBT的发射极相连后接地,所述第一稳压管的阴极与所述IGBT的门极相连,所述第十一电阻与所述第一稳压管并联。
- 一种电磁加热装置,其特征在于,包括根据权利要求1-9中任一项所述的电磁加热装置的加热控制电路。
- 一种电磁加热装置的低功率加热控制方法,其特征在于,所述电磁加热装置包括谐振加热单元、用于控制所述谐振加热单元进行谐振工作的功率开关管、驱动所述功率开关管开通和关断的驱动单元、改变所述功率开关管的驱动电压的驱动变压单元,所述方法包括以下步骤:在接收到低功率加热指令时,采用丢波的方式控制所述功率开关管以使所述电磁加热装置进行间断加热;检测输入到所述电磁加热装置的交流电源的电压过零信号;在控制所述电磁加热装置从停止加热区间向加热区间切换时,根据所述电压过零信号判断在所述交流电源的过零点前通过控制所述驱动单元和所述驱动变压单元以使所述功率开关管在第一驱动电压的驱动下进行工作,并在所述功率开关管的集电极电压振荡到最小时控制所述驱动变压单元停止工作,并通过控制所述驱动单元以使所述功率开关管在第二驱动电压的驱动下进行工作,其中,所述第二驱动电压大于所述第一驱动电压。
- 根据权利要求11所述的方法,其特征在于,所述功率开关管的工作过程包括第一时间段和第二时间段,其中,在所述第一时间段,所述第一驱动电压的幅值保持不变或线性增加,所述第一驱动电压的脉冲宽度递增或等宽;在所述第二时间段,所述第二驱动电压的幅值保持不变,所述第二驱动电压的脉冲宽度递增或等宽。
- 根据权利要求12所述的方法,其特征在于,在所述第一时间段,所述功率开关管工作在放大状态;在所述第二时间段,所述功率开关管工作在开关状态。
- 根据权利要求11所述的方法,其特征在于,在所述交流电源的过零点,所述功率开关管的集电极电压振荡到最小。
- 根据权利要求12所述的方法,其特征在于,在所述第一时间段,输出所述第一控制信号至所述驱动单元,同时输出第二控制信号至所述驱动变压单元,以使所述功率开关管在幅值保持不变的第一驱动电压的驱动下进行 工作,所述功率开关管的集电极电压进行振荡变小;在所述第二时间段,输出所述第一控制信号至所述驱动单元以使所述功率开关管在所述第二驱动电压的驱动下进行工作,同时输出第三控制信号至所述驱动变压单元以使所述驱动变压单元停止工作。
- 根据权利要求15所述的方法,其特征在于,所述第一控制信号为PPG脉冲,所述第二控制信号为高电平信号,所述第三控制信号为低电平信号。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16888971.5A EP3297396B1 (en) | 2016-02-02 | 2016-05-31 | Electromagnetic heating device and heating control circuit thereof, and low power heating control method |
JP2018504860A JP6480083B2 (ja) | 2016-02-02 | 2016-05-31 | 電磁加熱装置及びその加熱制御回路、並びに低電力加熱制御方法 |
US15/921,396 US10085305B2 (en) | 2016-02-02 | 2018-03-14 | Electromagnetic heating device and heating control circuit thereof, and low power heating control method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620106928.2U CN205430652U (zh) | 2016-02-02 | 2016-02-02 | 电磁加热装置及其加热控制电路 |
CN201620106928.2 | 2016-02-02 | ||
CN201610074432.6 | 2016-02-02 | ||
CN201610074432.6A CN107027206B (zh) | 2016-02-02 | 2016-02-02 | 电磁加热装置及其加热控制电路和低功率加热控制方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/921,396 Continuation US10085305B2 (en) | 2016-02-02 | 2018-03-14 | Electromagnetic heating device and heating control circuit thereof, and low power heating control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017133150A1 true WO2017133150A1 (zh) | 2017-08-10 |
Family
ID=59499417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/084172 WO2017133150A1 (zh) | 2016-02-02 | 2016-05-31 | 电磁加热装置及其加热控制电路和低功率加热控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10085305B2 (zh) |
EP (1) | EP3297396B1 (zh) |
JP (1) | JP6480083B2 (zh) |
WO (1) | WO2017133150A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019145321A1 (en) * | 2018-01-29 | 2019-08-01 | Electrolux Appliances Aktiebolag | Induction cooker |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109982467B (zh) * | 2018-12-11 | 2024-10-01 | 浙江绍兴苏泊尔生活电器有限公司 | 电磁加热电路、电磁加热器具及电流调节方法 |
CN114269031B (zh) * | 2020-09-16 | 2024-01-19 | 佛山市顺德区百洛电器有限公司 | 低功率连续加热的控制方法、介质、终端设备及电磁炉 |
CN114263943B (zh) * | 2020-09-16 | 2023-10-20 | 佛山市顺德区百洛电器有限公司 | 降低检锅噪音的控制方法、介质、终端设备及电磁炉 |
CN112272423B (zh) * | 2020-09-18 | 2023-02-21 | 深圳市鑫汇科股份有限公司 | 电磁感应加热控制方法、电磁加热装置和存储介质 |
CN114698168B (zh) * | 2020-12-29 | 2023-06-09 | 佛山市顺德区美的电热电器制造有限公司 | 电磁加热设备及其功率控制方法、功率控制装置 |
CN114698169A (zh) * | 2020-12-29 | 2022-07-01 | 佛山市顺德区美的电热电器制造有限公司 | 电磁加热设备及其检锅方法与系统、存储介质 |
CN112555925B (zh) * | 2021-01-12 | 2023-06-06 | 佛山市顺德区百洛电器有限公司 | 一种两个以上线盘的电磁炉的降噪方法 |
CN115315034A (zh) * | 2022-07-25 | 2022-11-08 | 深圳市鑫汇科股份有限公司 | 自调节igbt驱动电路及电磁加热设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101048019A (zh) * | 2007-04-30 | 2007-10-03 | 山东九阳小家电有限公司 | 电磁加热装置和带有该装置的电磁灶、电热锅、豆浆机 |
CN201323669Y (zh) * | 2008-11-28 | 2009-10-07 | 佛山市顺德区瑞德电子实业有限公司 | 一种电磁炉低功率段连续加热控制装置 |
CN202425086U (zh) * | 2012-01-13 | 2012-09-05 | 深圳麦格米特电气股份有限公司 | 一种电磁炉单管谐振软开关电路 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5626385A (en) * | 1979-08-10 | 1981-03-13 | Sanyo Electric Co | Induction heating cooking unit |
WO1981000801A1 (en) * | 1979-09-17 | 1981-03-19 | Matsushita Electric Ind Co Ltd | Inductive heating equipment |
JPH06290863A (ja) * | 1993-04-02 | 1994-10-18 | Matsushita Electric Ind Co Ltd | 誘導加熱調理器 |
KR100784313B1 (ko) * | 2006-12-27 | 2007-12-13 | 웅진쿠첸 주식회사 | Ih회로 제어 장치 |
CN201001206Y (zh) * | 2007-01-29 | 2008-01-02 | 深圳市鑫汇科电子有限公司 | 实现稳定小功率加热的电磁炉电路 |
CN101754507B (zh) * | 2008-12-12 | 2012-05-09 | 深圳市鑫汇科科技有限公司 | 基于SoC芯片的电磁炉电路 |
CN201550029U (zh) * | 2009-07-07 | 2010-08-11 | 深圳市鑫汇科科技有限公司 | 灶具用数字控制型电源变换器 |
JP5246100B2 (ja) * | 2009-08-20 | 2013-07-24 | パナソニック株式会社 | 炊飯器 |
-
2016
- 2016-05-31 WO PCT/CN2016/084172 patent/WO2017133150A1/zh active Application Filing
- 2016-05-31 EP EP16888971.5A patent/EP3297396B1/en active Active
- 2016-05-31 JP JP2018504860A patent/JP6480083B2/ja active Active
-
2018
- 2018-03-14 US US15/921,396 patent/US10085305B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101048019A (zh) * | 2007-04-30 | 2007-10-03 | 山东九阳小家电有限公司 | 电磁加热装置和带有该装置的电磁灶、电热锅、豆浆机 |
CN201323669Y (zh) * | 2008-11-28 | 2009-10-07 | 佛山市顺德区瑞德电子实业有限公司 | 一种电磁炉低功率段连续加热控制装置 |
CN202425086U (zh) * | 2012-01-13 | 2012-09-05 | 深圳麦格米特电气股份有限公司 | 一种电磁炉单管谐振软开关电路 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019145321A1 (en) * | 2018-01-29 | 2019-08-01 | Electrolux Appliances Aktiebolag | Induction cooker |
Also Published As
Publication number | Publication date |
---|---|
US10085305B2 (en) | 2018-09-25 |
EP3297396A1 (en) | 2018-03-21 |
EP3297396B1 (en) | 2020-04-29 |
US20180206294A1 (en) | 2018-07-19 |
JP6480083B2 (ja) | 2019-03-06 |
JP2018521488A (ja) | 2018-08-02 |
EP3297396A4 (en) | 2018-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017133150A1 (zh) | 电磁加热装置及其加热控制电路和低功率加热控制方法 | |
CN107027206B (zh) | 电磁加热装置及其加热控制电路和低功率加热控制方法 | |
CN107155230B (zh) | 电磁加热烹饪装置及其加热控制电路和低功率加热控制方法 | |
CN107027204B (zh) | 电磁加热装置及其加热控制电路和低功率加热控制方法 | |
CN205430652U (zh) | 电磁加热装置及其加热控制电路 | |
KR102057136B1 (ko) | 전자기 가열 제어 회로 및 전자기 가열 디바이스 | |
TWI501534B (zh) | 電熱裝置及其準諧振式反流器的控制系統與方法 | |
CN106488600B (zh) | 电磁加热装置及其加热控制电路和控制方法 | |
KR20060064018A (ko) | 유도 가열 조리기 | |
WO2020029695A1 (zh) | 烹饪器具及超声波振子的驱动控制方法、装置 | |
CN102447406A (zh) | 交流/直流转换器 | |
JP2013125066A (ja) | 誘導加熱定着装置および画像形成装置 | |
KR101004113B1 (ko) | 고주파 유전가열 장치 및 서미스터를 포함하는 인쇄기판 | |
CN109982466B (zh) | 电磁加热设备及其加热控制装置和方法 | |
JP2013041667A (ja) | 誘導加熱調理器 | |
JP4289002B2 (ja) | 誘導加熱装置 | |
JP2013013163A (ja) | インバータ装置およびそれを用いた誘導加熱装置 | |
WO2001097571A1 (fr) | Dispositif chauffant a haute frequence | |
TWI773515B (zh) | 加熱裝置及低功率連續加熱方法 | |
JP6832810B2 (ja) | 電力変換装置 | |
JP2005166621A (ja) | 誘導加熱装置の制御方式 | |
JP2005222795A (ja) | 誘導加熱装置 | |
KR101410304B1 (ko) | 유도 가열 조리기 및 그를 구비한 전기 레인지 | |
WO2021115809A1 (en) | Method and system to control a qr-inverter in a induction cooking appliance | |
JP2014146531A (ja) | 誘導加熱調理器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16888971 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016888971 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018504860 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |