WO2017131212A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2017131212A1
WO2017131212A1 PCT/JP2017/003063 JP2017003063W WO2017131212A1 WO 2017131212 A1 WO2017131212 A1 WO 2017131212A1 JP 2017003063 W JP2017003063 W JP 2017003063W WO 2017131212 A1 WO2017131212 A1 WO 2017131212A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
resin
flexible component
resin material
carbon atoms
Prior art date
Application number
PCT/JP2017/003063
Other languages
English (en)
French (fr)
Inventor
大亮 中嶋
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP17744442.9A priority Critical patent/EP3409725B1/en
Priority to CN201780008101.5A priority patent/CN108495895B/zh
Priority to JP2017563882A priority patent/JP6970020B2/ja
Priority to US16/069,061 priority patent/US11027577B2/en
Publication of WO2017131212A1 publication Critical patent/WO2017131212A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/04Disc wheels, i.e. wheels with load-supporting disc body with a single disc body not integral with rim, i.e. disc body and rim being manufactured independently and then permanently attached to each other in a second step, e.g. by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/16Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form
    • B60C7/18Non-inflatable or solid tyres characterised by means for increasing resiliency using springs of helical or flat coil form disposed radially relative to wheel axis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/10Metallic materials
    • B60B2360/104Aluminum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/30Increase in
    • B60B2900/321Lifetime
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/70Adaptation for
    • B60B2900/721Use under adverse external conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B3/00Disc wheels, i.e. wheels with load-supporting disc body
    • B60B3/10Disc wheels, i.e. wheels with load-supporting disc body apertured to simulate spoked wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0091Compositions of non-inflatable or solid tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C7/00Non-inflatable or solid tyres
    • B60C7/10Non-inflatable or solid tyres characterised by means for increasing resiliency
    • B60C7/14Non-inflatable or solid tyres characterised by means for increasing resiliency using springs
    • B60C7/146Non-inflatable or solid tyres characterised by means for increasing resiliency using springs extending substantially radially, e.g. like spokes

Definitions

  • the present invention relates to a tire.
  • a support structure that supports a load from a vehicle, a belt layer provided on the outer peripheral side of the support structure (not necessarily provided), and provided on the outer side (outer peripheral side) of the belt layer.
  • a “non-pneumatic tire” that includes a tread layer or the like and is capable of integrally forming a support structure serving as a skeleton member with, for example, a resin material.
  • the belt layer in the “non-pneumatic tire” is formed by laminating a layer of rubberized steel cord or the like, and is joined to the outer peripheral side of a support structure made of resin.
  • polyamide 6 PA6
  • PA66 polymid 66
  • PA46 polyamide 46
  • an object of the present invention is to provide a tire that is excellent in durability even when used in a high humidity environment or in contact with water, although the skeleton member is made of a resin material.
  • the gist configuration of the present invention for solving the above-described problems is as follows.
  • the tire of the present invention is a tire whose skeleton member is made of a resin material
  • the resin material comprises a resin composition containing 60% by mass or more of a polyamide resin obtained by polymerizing an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms.
  • Such a tire of the present invention is excellent in durability even when used in a high humidity environment or in contact with water, although the skeleton member is made of a resin material.
  • the resin composition further contains 40% by mass or less of a flexible component having a glass transition point of 0 ° C. or less.
  • a flexible component having a glass transition point of 0 ° C. or less Even in a low-temperature environment, the skeleton member can maintain good elasticity, and the durability of the skeleton member can be improved.
  • the flexible component includes polyethylene, polypropylene, ethylene-propylene rubber, ethylene-1-butene copolymer, poly- ⁇ -olefin, acrylic rubber, styrene-ethylene-butylene-styrene copolymer, and modifications thereof. It is preferable to include at least one selected from the group consisting of polymers. In this case, the tire frame member can obtain excellent elasticity and further excellent durability.
  • maleic anhydride is copolymerized or grafted on at least a part of the flexible component. In this case, the elasticity and durability of the skeleton member of the tire are further improved.
  • an epoxy-terminated (meth) acrylic ester is copolymerized or grafted on at least a part of the flexible component. Also in this case, the elasticity and durability of the tire frame member are further improved.
  • the tire includes an attachment body attached to the axle, an inner cylinder body that is externally attached to the attachment body, and an outer cylinder body that surrounds the inner cylinder body from the outside in the tire radial direction.
  • a ring member, a plurality of connecting members arranged between the inner cylindrical body and the outer cylindrical body along the tire circumferential direction, for connecting the two cylindrical bodies, and a tire radial direction of the outer cylindrical body of the ring member A tread member made of vulcanized rubber provided on the outside, and a tire comprising:
  • the ring member and the connecting member as the skeleton member are made of the resin material.
  • the skeleton member is made of a resin material, a tire having excellent durability can be obtained even when used in a high humidity environment or in contact with water.
  • the tire of the present invention is preferable as a non-pneumatic tire.
  • the tire of the present invention is excellent in durability even when the skeleton member is a non-pneumatic tire made of a resin material, even when used in a high humidity environment or in contact with water.
  • the skeleton member is made of a resin material, it is possible to provide a tire having excellent durability even when used in a high humidity environment or in contact with water.
  • the tire of the present invention is a tire whose skeleton member is made of a resin material.
  • the tire skeleton member is a member constituting the tire skeleton, more specifically, a member that supports the rubber member from the inside of the tire to the outside in order to maintain the shape of the tire tread.
  • Means for example, a ring member and a connecting member (spoke structure) in a non-pneumatic tire.
  • the resin material comprises a resin composition containing 60% by mass or more of a polyamide resin obtained by polymerizing an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms. It is characterized by. A polyamide resin obtained by polymerizing an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms is difficult to absorb water.
  • a resin composition containing 60% by mass or more of a polyamide resin obtained by polymerizing an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms is used as a resin material constituting the skeleton member. Therefore, the water absorption rate of the skeletal member can be reduced. As a result, even if it is used in a high humidity environment such as in the summer or when it is in contact with water due to rain, the rigidity and strength of the skeleton member can be reduced. Decrease in physical properties can be suppressed, and good durability can be secured in a wide range of wet environments.
  • the resulting polyamide resin has high water absorption. The flexibility is also low, and the durability of the tire in a wet environment cannot be sufficiently improved.
  • the carbon number of the aliphatic diamine used for the polyamide resin exceeds 20, or when the carbon number of the aliphatic dicarboxylic acid used for the polyamide resin exceeds 20, the heat resistance of the resulting polyamide resin is lowered, and during normal running Tire durability is reduced.
  • the aliphatic diamine having 6 to 20 carbon atoms constituting the polyamide resin for example, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, 1,9 -Nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1, 16-hexadecamethylenediamine, 1,18-octadecamethylenediamine, 2,2,4-trimethyl-1,6-hexamethylenediamine, 2,4,4-trimethyl-1,6-hexamethylenediamine, 2- And methyl-1,8-octamethylenediamine.
  • Examples of the aliphatic dicarboxylic acid having 10 to 20 carbon atoms constituting the polyamide resin include 1,10-decanedioic acid (so-called sebacic acid), 1,11-undecanedioic acid, and 1,12-dodecane.
  • Examples include diacid, 1,14-tetradecanedioic acid, 1,16-hexadecanedioic acid, 1,18-octadecanedioic acid, 1,20-eicosanedioic acid, and the like.
  • the polyamide resin is obtained by polymerizing the aliphatic diamine having 6 to 20 carbon atoms and the aliphatic dicarboxylic acid having 10 to 20 carbon atoms, that is, the aliphatic diamine having 6 to 20 carbon atoms and the carbon number 10.
  • a condensation polymer with ⁇ 20 aliphatic dicarboxylic acids examples include polyamide 610 (PA610), polyamide 612 (PA612), polyamide 1010 (PA1010), polyamide 1012 (PA1012), and the like.
  • the polyamide resin can be synthesized by a known method by condensation polymerization of an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms, but a commercially available product can also be used. Also, trade names “Hyprolon 70NN”, “Hyprolon 90NN”, “Hyprolon 200NN”, “Hyprolon 400NN”, etc., manufactured by Arkema, Inc. can be used.
  • a polymer obtained by polymerizing the above aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms that is, an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms.
  • the condensation polymer with an acid has the following formula (1): As shown in Fig. 2, two amide bonds in the main chain are in opposite directions.
  • a polyamide obtained by ring-opening polymerization of lactam is represented by the following formula (2): As shown, the amide bonds in the main chain are in the same direction.
  • Polyamides with two amide bonds in the main chain in opposite directions have lower crystallinity and higher degree of molecular chain freedom than polyamides with amide bonds in the main chain in the same direction. High mechanical strength.
  • polyamides in which the amide bonds in the main chain are in two opposite directions have a small entropy difference between the melt and the crystal, and thus have a high melting point and excellent heat resistance. Therefore, by using a resin composition containing a condensation polymer of an aliphatic diamine having 6 to 20 carbon atoms and an aliphatic dicarboxylic acid having 10 to 20 carbon atoms for the skeleton member, physical properties such as rigidity and strength of the skeleton member can be obtained. It is possible to improve the durability.
  • the content of the polyamide resin in the resin composition is 60% by mass or more, preferably 70% by mass or more, from the viewpoint of reducing the water absorption rate of the skeleton member.
  • the content of the polyamide resin in the resin composition used for the skeleton member is less than 60% by mass, the effect of reducing the water absorption rate of the skeleton member is insufficient, and the durability in a wet environment is insufficient.
  • the resin composition used for the skeleton member preferably further contains 40% by mass or less of a flexible component having a glass transition point (Tg) of 0 ° C. or less.
  • Tg glass transition point
  • the skeleton member can maintain good elasticity even in a low temperature environment, and improve the durability of the skeleton member. Can do.
  • the flexible component means one having a Young's modulus at 23 ° C. lower than that of the polyamide resin.
  • the flexible component include polyethylene, polypropylene, ethylene-propylene rubber, ethylene-1-butene copolymer, poly ⁇ -olefin, acrylic rubber, styrene-ethylene, from the viewpoint of obtaining excellent elasticity and durability.
  • the flexible component is ethylene-propylene rubber, poly- ⁇ -olefin, acrylic rubber, styrene-ethylene-butylene-styrene copolymer, and ethylene-1- It is preferable to include at least one selected from the group consisting of butene copolymers.
  • maleic anhydride or epoxy-terminated (meth) acrylic acid ester is copolymerized or grafted on at least a part of the flexible component. Since the flexible component in which these compounds are copolymerized or grafted reacts with the terminal group of the polyamide resin and the dispersibility in the resin composition is improved, the elasticity and durability of the skeleton member are further improved.
  • (meth) acrylic acid ester refers to acrylic acid ester and / or methacrylic acid ester.
  • the glass transition point (Tg) of the flexible component is set to 0 ° C. or less in order to improve durability at low temperatures. It is. From the same viewpoint, the glass transition point (Tg) of the flexible component is preferably ⁇ 20 ° C. or lower.
  • the content of the flexible component in the resin composition is 40% by mass or less, preferably 30% by mass or less, and preferably 1% by mass or more. If the content of the flexible component in the resin composition is 1% by mass or more, better elasticity can be ensured even in a low temperature environment, and if it is 40% by mass or less, the above-described effect of the polyimide resin is sufficient. In addition to manifestation, the strength of the skeletal material can be maintained sufficiently well.
  • the resin composition can contain one or more additives such as an anti-aging agent, a plasticizer, a filler, and a pigment in addition to the polyamide resin and the flexible component described above.
  • additives such as an anti-aging agent, a plasticizer, a filler, and a pigment in addition to the polyamide resin and the flexible component described above.
  • FIG. 1 is an explanatory view schematically showing a configuration of a non-pneumatic tire according to an embodiment of the present invention as seen from the side of the tire
  • FIG. 2 is an enlarged view of a part of FIG. It is explanatory drawing.
  • FIG. 2 for easy understanding, one first elastic coupling plate 21 and two second elastic coupling plates 22 among a plurality of first elastic coupling plates 21 and a plurality of second elastic coupling plates 22 described later. Only with a solid line.
  • the non-pneumatic tire 10 of this embodiment includes an attachment body 11 attached to an axle (not shown), an inner cylinder body 12 and an inner cylinder body 12 that are externally mounted on the attachment body 11.
  • Ring member 14 having an outer cylindrical body 13 that surrounds the outer side of the tire in the radial direction of the tire, and a plurality of both cylindrical bodies 12, 13 disposed between the inner cylindrical body 12 and the outer cylindrical body 13 along the tire circumferential direction.
  • a tread member 16 made of vulcanized rubber that integrally covers the outer periphery of the ring member 14.
  • the attachment body 11, the inner cylinder body 12, the outer cylinder body 13, and the tread member 16 are arranged coaxially with the common shaft and in the center in the tire width direction so as to coincide with each other.
  • the axis is the axis O
  • the direction orthogonal to the axis O is the tire radial direction
  • the direction around the axis O is the tire circumferential direction.
  • the attachment body 11 connects the mounting cylinder portion 17 to which the front end portion of the axle is mounted, the outer ring portion 18 surrounding the mounting cylinder portion 17 from the outer side in the tire radial direction, and the mounting cylinder portion 17 and the outer ring portion 18. And a plurality of ribs 19 (see FIGS. 1 and 2).
  • the mounting cylinder part 17, the outer ring part 18, and the rib 19 are integrally formed of a metal material such as an aluminum alloy.
  • the mounting cylinder part 17 and the outer ring part 18 are each formed in a cylindrical shape and arranged coaxially with the axis O. Further, the plurality of ribs 19 are arranged at equal intervals in the circumferential direction.
  • the connecting member 15 includes a first elastic connecting plate 21 and a second elastic connecting plate 22 that connect the inner cylinder 12 and the outer cylinder 13 in the ring member 14 to each other.
  • a plurality of first elastic coupling plates 21 are arranged along the tire circumferential direction at one tire width direction position, and the second elastic coupling plates 22 are arranged in the other tire width direction different from the one tire width direction position.
  • a plurality of tires are arranged at positions along the tire circumferential direction. For example, 60 first elastic connecting plates 21 and second elastic connecting plates 22 are provided.
  • the plurality of first elastic connecting plates 21 are arranged along the tire circumferential direction at the same position in the tire width direction, and the second elastic connecting plates 22 are the same apart from the first elastic connecting plate 21 in the tire width direction.
  • a plurality of tires are arranged at positions in the tire width direction along the tire circumferential direction.
  • the plurality of connecting members 15 are individually disposed at positions that are axially symmetric with respect to the axis O between the inner cylinder 12 and the outer cylinder 13 in the ring member 14. All the connecting members 15 have the same shape and size. Furthermore, the width of the connecting member 15 in the tire width direction is smaller than the width of the outer cylinder 13 in the tire width direction.
  • the first elastic coupling plates 21 adjacent in the tire circumferential direction are not in contact with each other, and the second elastic coupling plates 22 adjacent in the tire circumferential direction are also in non-contact with each other. Further, the first elastic connecting plate 21 and the second elastic connecting plate 22 adjacent in the tire width direction are also not in contact with each other. Note that the widths in the tire width direction of the first elastic connecting plate 21 and the second elastic connecting plate 22 are equal to each other. The thicknesses of the first elastic connecting plate 21 and the second elastic connecting plate 22 in the tire side view are also equal to each other.
  • each end part 21a, 22a of the 1st elastic connection board 21 and the 2nd elastic connection board 22 differs in the position of a tire width direction on the internal peripheral surface of the outer cylinder 13, and is the same in a tire peripheral direction. It is connected to the position.
  • each of the first elastic connecting plate 21 and the second elastic connecting plate 22 intermediate portions 21c, 22c positioned between the one end portions 21a, 22a and the other end portions 21b, 22b are arranged in the tire circumferential direction.
  • a plurality of curved portions 21d to 21f and 22d to 22f are formed along the direction in which the elastic connecting plates 21 and 22 extend when the tire 10 is viewed from the side of the tire when viewed from the tire width direction.
  • the bending directions of the bending portions 21d to 21f and 22d to 22f adjacent to each other in the extending direction among the plurality of bending portions 21d to 21f and 22d to 22f are opposite to each other. It is facing.
  • the plurality of curved portions 21d to 21f formed on the first elastic connecting plate 21 are a first curved portion 21d curved so as to project toward the other side in the tire circumferential direction, a first curved portion 21d, and one end portion. Between the second curved portion 21e, which is located between the first curved portion 21d and the other end portion 21b, and between the first curved portion 21d and the other end portion 21b. And a third curved portion 21f that is curved so as to project toward one side in the tire circumferential direction.
  • the plurality of curved portions 22d to 22f formed on the second elastic connecting plate 22 are a first curved portion 22d curved so as to project toward one side in the tire circumferential direction, a first curved portion 22d, and one end portion. 22a, and located between the second curved portion 22e, which is curved so as to protrude toward the other side in the tire circumferential direction, and between the first curved portion 22d and the other end 22b, and A third curved portion 22f that is curved so as to project toward the other side in the tire circumferential direction.
  • the first bending portions 21d and 22d have a larger radius of curvature in a tire side view than the second bending portions 21e and 22e and the third bending portions 21f and 22f.
  • the first curved portions 21d and 22d are arranged at the center in the extending direction of the first elastic connecting plate 21 and the second elastic connecting plate 22.
  • both elastic connecting plates 21 and 22 are equal to each other.
  • the other end portions 21 b and 22 b of the both elastic connecting plates 21 and 22 are connected to the one end portions 21 a and 22 a and the tire radial direction on the outer peripheral surface of the inner cylindrical body 12 in the tire side view.
  • first curved portions 21d and 22d, the second curved portions 21e and 22e, and the third curved portions 21f and 22f of the first elastic connecting plate 21 and the second elastic connecting plate 22 are mutually connected to the tire.
  • the direction of protrusion in the circumferential direction is opposite and the size is the same.
  • each connecting member 15 seen from the side of the tire is the tire radial direction as shown in a pair of first elastic connecting plate 21 and second elastic connecting plate 22 drawn with emphasis by solid lines in FIG. And is symmetrical with respect to an imaginary line L passing through the one end portions 21a and 22a of both elastic connecting plates 21 and 22.
  • one end side portion extending from the center portion in the extending direction to the one end portions 21a and 22a in the tire side view is from the center portion to the other end portion. Thickness is larger than the other end side part over 21b and 22b.
  • the ring member 14 is divided into a one-side split ring member located on one side in the tire width direction and a second-side split ring member located on the other side in the tire width direction, for example, at the center in the tire width direction. It may be.
  • the one-side split ring member may be integrally formed with the first elastic connecting plate 21 and the other-side split ring member may be integrally formed with the second elastic connecting plate 22, respectively.
  • the elastic connecting plate 21, the other-side split ring member, and the second elastic connecting plate 22 may be integrally formed by injection molding.
  • the ring member 14 is fixed to the mounting body 11 in a state where the inner cylindrical body 12 is externally fitted to the mounting body 11.
  • the skeleton member corresponds to the ring member 14 and the connecting member 15 of the non-pneumatic tire
  • the ring member 14 and the connecting member 15 are It consists of a resin composition containing 60% by mass or more of the above-described resin material, that is, a polyamide resin obtained by polymerizing the above-mentioned aliphatic diamine having 6 to 20 carbon atoms and aliphatic dicarboxylic acid having 10 to 20 carbon atoms.
  • the ring member 14 and the connecting member 15 are non-pneumatic that has excellent durability even when used in a high humidity environment or in contact with water. Tires can be provided.
  • the ring member 14 and the connecting member 15 need to be made of the above-described resin material, that is, the resin composition.
  • the resin composition Different resin compositions may be used for the connecting member 15 and the ring member 14 constituting the.
  • the tread member 16 is formed in a cylindrical shape and integrally covers the outer peripheral surface side of the outer cylindrical body 13 of the ring member 14 over the entire area.
  • the tread member 16 is formed of a vulcanized rubber obtained by vulcanizing a rubber composition containing, for example, natural rubber from the viewpoint of wear resistance and the like.
  • the adhesive layer 25 is provided between the outer cylindrical body 13 and the tread member 16 of the ring member 14 and interposes the connection between the outer cylindrical body 13 and the tread member 16.
  • a cyanoacrylate adhesive is used. It is preferable that it contains.
  • FIG. 3A and 3B show an inner cylinder and an outer cylinder connected by a connecting member according to another example, in which FIG. 3A is a front view and FIG. 3B is a perspective view.
  • the connecting member 23 is configured by only the first elastic connecting plate 21, unlike the connecting member 15 configured by the first elastic connecting plate 21 and the second elastic connecting plate 22.
  • a plurality of first elastic connecting plates 21 constituting the connecting member 23 are arranged between the inner cylindrical body 12 and the outer cylindrical body 13 along the tire circumferential direction, and connect the cylindrical bodies 12 and 13 to each other.
  • Other configurations and operations are the same as those of the connecting member 15.
  • the tire of this invention is not limited to a non-pneumatic tire
  • a pneumatic tire may be sufficient.
  • the skeleton member is made of a resin material by providing a lumen between the tread member 16 of the non-pneumatic tire 10 shown in FIGS. 1 and 2 and the outer peripheral surface of the outer cylindrical body 13 of the ring member 14.
  • a pneumatic tire can be formed.
  • Resin component of resin composition The following resins 1 to 7 were used as the resin component of the resin material (resin composition) constituting the skeleton members of the tires of Examples and Comparative Examples.
  • Flexible component of resin composition The following flexible components A to G were used as the flexible components of the resin material (resin composition) constituting the skeleton members of the tires of the examples and comparative examples.
  • SEBS Styrene-ethylene-butylene-styrene copolymer
  • Examples 1 to 12 and Comparative Examples 1 to 7 A sample non-pneumatic tire was produced. All of the sample non-pneumatic tires have a tire size of 155 / 65R13, and their structures are those shown in FIGS. About the non-pneumatic tire of each sample, the materials which comprise a ring member and a connection member (spoke structure) differ, and the same thing was used about the other member. About the kind of material contained in the resin composition which comprises a ring member and a connection member, and its content, it is as showing in Table 1. About the produced non-pneumatic tire of each sample, (1) what was stored at 23 ° C. and humidity 50% RH for 2 weeks, and (2) what was immersed in water at 23 ° C. for 2 weeks, The tire was evaluated as follows.
  • ⁇ Tire durability (endurance over bumps)> For each sample, a hemispherical protrusion having a diameter of 20 mm is attached to the drum durability tester, a load of 650 N is applied in an environment of 40 ° C., and a travel distance until failure is measured when traveling at 50 km / h. Thus, tire durability was evaluated.
  • the running distance of each test tire was displayed as an index value when the running distance of the tire of Example 1 stored for 2 weeks at 23 ° C. and humidity 50% RH was set to 100. The larger the index value, the higher the durability of the tire.
  • the skeleton member is made of a resin material, it is possible to provide a tire that is excellent in durability even when used in a high humidity environment or in contact with water. It can be used as a tire and is easy to recycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、骨格部材が樹脂材料からなるものの、高湿度環境下で使用したり、水と接触しても、耐久性に優れるタイヤとして、骨格部材が樹脂材料からなるタイヤであって、前記樹脂材料が、炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂を60質量%以上含む樹脂組成物からなることを特徴とする、タイヤを提供する。

Description

タイヤ
 本発明は、タイヤに関するものである。
 近年、パンクの発生を回避するため、内部に加圧空気を充填する必要の無いタイヤが開示されている。例えば、下記特許文献1には、車両からの荷重を支持する支持構造体、支持構造体の外周側に設けられるベルト層(設けなくてもよい)、ベルト層の外側(外周側)に設けられたトレッド層等を具え、骨格部材となる支持構造体を、例えば樹脂材料により一体成形することが可能な「非空気圧タイヤ」が提案されている。なお、この「非空気圧タイヤ」におけるベルト層は、スチールコード等をゴム引きした層を積層して形成されており、樹脂により形成された支持構造体の外周側に接合される。
特開2011-219009号公報
 通常の空気入りタイヤでは、車両の荷重、走行、停止、旋回といった様々な入力を、ゴム、有機繊維コード、スチールコード、空気等からなる構造体によって支えているのに対し、上述のような骨格部材を樹脂材料で形成したタイヤにおいては、これら入力の大部分を、樹脂材料からなる骨格部材で支えることとなる。そのため、樹脂材料からなる骨格部材には1~10%に及ぶ大変形歪が加わることとなり、一般的な樹脂成型品と比べて高い歪入力に対する耐性が必要となる。
 本発明者らが検討したところ、かかる骨格部材に用いる樹脂材料として、ポリアミド樹脂が好適であり、ポリアミド樹脂は、上記のような大変形入力に対する耐性が比較的高いことを見出した。しかしながら、本発明者が更に検討を進めたところ、一般的に広く使用されているポリアミド6(PA6)、ポリミド66(PA66)、ポリアミド46(PA46)等は、吸水率が大きく、夏季等の高湿度環境下や、降雨下では、水分を吸収することで軟化して、強度ひいては耐久性が低下するおそれがあることが分かった。
 そこで、本発明は、骨格部材が樹脂材料からなるものの、高湿度環境下で使用したり、水と接触しても、耐久性に優れるタイヤを提供することを課題とする。
 上記課題を解決する本発明の要旨構成は、以下の通りである。
 本発明のタイヤは、骨格部材が樹脂材料からなるタイヤであって、
 前記樹脂材料が、炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂を60質量%以上含む樹脂組成物からなることを特徴とする。
 かかる本発明のタイヤは、骨格部材が樹脂材料からなるものの、高湿度環境下で使用したり、水と接触しても、耐久性に優れる。
 本発明のタイヤの好適例においては、前記樹脂組成物が、更に、ガラス転移点が0℃以下である柔軟性成分を40質量%以下含む。この場合、低温環境下においても、骨格部材が良好な弾性を維持でき、骨格部材の耐久性を向上させることができる。
 ここで、前記柔軟性成分は、ポリエチレン、ポリプロピレン、エチレン-プロピレンゴム、エチレン-1-ブテン共重合体、ポリα-オレフィン、アクリルゴム及びスチレン-エチレン-ブチレン-スチレン共重合体、並びにこれらの変性重合体からなる群から選択される少なくとも一種を含むことが好ましい。この場合、タイヤの骨格部材が、優れた弾性と、更に優れた耐久性を得ることができる。
 また、前記柔軟性成分の少なくとも一部に、無水マレイン酸が、共重合又はグラフトされていることが更に好ましい。この場合、タイヤの骨格部材の弾性及び耐久性が更に向上する。
 また、前記柔軟性成分の少なくとも一部に、エポキシ末端(メタ)アクリル酸エステルが、共重合又はグラフトされていることも更に好ましい。この場合も、タイヤの骨格部材の弾性及び耐久性が更に向上する。
 本発明の一実施態様においては、前記タイヤは、車軸に取り付けられる取付け体と、該取付け体に外装される内筒体及び該内筒体をタイヤ径方向の外側から囲繞する外筒体を有するリング部材と、前記内筒体と前記外筒体の間にタイヤ周方向に沿って複数配置された、前記両筒体同士を連結する連結部材と、前記リング部材の外筒体のタイヤ径方向外側に設けられた加硫ゴムからなるトレッド部材と、を具えるタイヤであって、
 前記骨格部材としての、前記リング部材及び前記連結部材が、前記樹脂材料からなる。この場合、骨格部材が樹脂材料からなるものの、高湿度環境下で使用したり、水と接触しても、耐久性に優れるタイヤを得ることができる。
 本発明のタイヤは、非空気入りタイヤとして好ましい。本発明のタイヤは、骨格部材が樹脂材料からなる非空気入りタイヤであっても、高湿度環境下で使用したり、水と接触しても、耐久性に優れる。
 本発明によれば、骨格部材が樹脂材料からなるものの、高湿度環境下で使用したり、水と接触しても、耐久性に優れるタイヤを提供することができる。
本発明の一実施形態に係る非空気入りタイヤの構成を模式的に示す、タイヤ側面から見た説明図である。 図1の一部を拡大して示す説明図である。 他の例による連結部材により連結された内筒体と外筒体を示し、(a)は正面図、(b)は斜視図である。
 以下に、本発明のタイヤを、その実施形態に基づき、詳細に例示説明する。
 本発明のタイヤは、骨格部材が樹脂材料からなるタイヤである。ここで、前記タイヤの骨格部材とは、タイヤ骨格を構成する部材、より具体的には、タイヤトレッドの形状を維持するため、タイヤ内方から外方へ向かってゴム部材を支持する部材のことを意味している。例えば、非空気入りタイヤにおける、リング部材及び連結部材(スポーク構造)等のことである。
 そして、本発明は、前記樹脂材料が、炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂を60質量%以上含む樹脂組成物からなることを特徴とする。炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂は、吸水し難い。そのため、骨格部材を構成する樹脂材料として、炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂を60質量%以上含む樹脂組成物を用いることで、骨格部材の吸水率を低減することができ、その結果として、夏季等の高湿度環境下で使用したり、降雨下での使用で水と接触しても、骨格部材の剛性や強度といった物性の低下を抑制でき、幅広い湿潤環境下で良好な耐久性を確保することが可能となる。
 なお、ポリアミド樹脂に用いる脂肪族ジアミンの炭素数が6未満であったり、ポリアミド樹脂に用いる脂肪族ジカルボン酸の炭素数が10未満であると、得られるポリアミド樹脂の吸水性が高いことに加えて、柔軟性も低く、タイヤの湿潤環境下での耐久性を十分に向上させることができない。
 一方、ポリアミド樹脂に用いる脂肪族ジアミンの炭素数が20を超えたり、ポリアミド樹脂に用いる脂肪族ジカルボン酸の炭素数が20を超えると、得られるポリアミド樹脂の耐熱性が低下し、通常走行時のタイヤの耐久性が低下する。
 ここで、前記ポリアミド樹脂を構成する炭素数6~20の脂肪族ジアミンとしては、例えば、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、1,18-オクタデカメチレンジアミン、2,2,4-トリメチル-1,6-ヘキサメチレンジアミン、2,4,4-トリメチル-1,6-ヘキサメチレンジアミン、2-メチル-1,8-オクタメチレンジアミン等が挙げられる。
 また、前記ポリアミド樹脂を構成する炭素数10~20の脂肪族ジカルボン酸としては、例えば、1,10-デカン二酸(所謂、セバシン酸)、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、1,16-ヘキサデカン二酸、1,18-オクタデカン二酸、1,20-エイコサン二酸等が挙げられる。
 前記ポリアミド樹脂については、上述した炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるもの、即ち、炭素数6~20の脂肪族ジアミンと炭素数10~20の脂肪族ジカルボン酸との縮合重合体であれば、特に限定はされない。かかる縮合重合体としては、例えば、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリアミド1010(PA1010)、ポリアミド1012(PA1012)等が挙げられる。前記ポリアミド樹脂は、公知の方法で、炭素数6~20の脂肪族ジアミンと炭素数10~20の脂肪族ジカルボン酸を縮合重合させることで合成できるが、市販品を利用することもでき、例えば、アルケマ社製の商品名「Hyprolon 70NN」、「Hyprolon 90NN」、「Hyprolon 200NN」、「Hyprolon 400NN」等を利用できる。
 上述した炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるもの、即ち、炭素数6~20の脂肪族ジアミンと炭素数10~20の脂肪族ジカルボン酸との縮合重合体は、下記式(1):
Figure JPOXMLDOC01-appb-C000001
に示すように、主鎖中のアミド結合が2つずつ逆方向になっている。
 一方、例えば、ラクタムの開環重合で得られるポリアミドは、下記式(2):
Figure JPOXMLDOC01-appb-C000002
に示すように、主鎖中のアミド結合が同一方向になっている。
 主鎖中のアミド結合が2つずつ逆方向になっているポリアミドは、主鎖中のアミド結合が同一方向になっているポリアミドに比べて、結晶性が低く、分子鎖の自由度が高いため、機械的強度が高い。また、主鎖中のアミド結合が2つずつ逆方向になっているポリアミドは、融体と結晶とのエントロピー差が小さいため、融点が高く、耐熱性にも優れている。そのため、炭素数6~20の脂肪族ジアミンと炭素数10~20の脂肪族ジカルボン酸との縮合重合体を含む樹脂組成物を骨格部材に使用することで、骨格部材の剛性や強度といった物性を向上させて、耐久性を向上させることが可能となる。
 また、前記樹脂組成物中の前記ポリアミド樹脂の含有量は、骨格部材の吸水率を低減する観点から、60質量%以上であり、好ましくは70質量%以上である。骨格部材に用いる樹脂組成物中の前記ポリアミド樹脂の含有量が60質量%未満では、骨格部材の吸水率を低減する効果が不十分で、湿潤環境下での耐久性が不十分となる。
 前記骨格部材に用いる樹脂組成物は、更に、ガラス転移点(Tg)が0℃以下である柔軟性成分を40質量%以下含むことが好ましい。骨格部材に用いる樹脂組成物にガラス転移点が0℃以下の柔軟性成分を含ませることで、低温環境下においても、骨格部材が良好な弾性を維持でき、骨格部材の耐久性を向上させることができる。
 ここで、前記柔軟性成分とは、23℃におけるヤング率が前記ポリアミド樹脂よりも低いものをいう。かかる柔軟性成分としては、優れた弾性及び耐久性を得る観点からは、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレンゴム、エチレン-1-ブテン共重合体、ポリα-オレフィン、アクリルゴム、スチレン-エチレン-ブチレン-スチレン共重合体、並びにこれらの変性重合体等が挙げられる。これらの中でも、より優れた弾性及び耐久性を得る観点から、前記柔軟性成分が、エチレン-プロピレンゴム、ポリα-オレフィン、アクリルゴム、スチレン-エチレン-ブチレン-スチレン共重合体及びエチレン-1-ブテン共重合体からなる群から選択される少なくとも一種を含むことが好ましい。
 さらに、前記柔軟性成分は、その少なくとも一部に、無水マレイン酸又はエポキシ末端(メタ)アクリル酸エステルが、共重合又はグラフトされていることが好ましい。これらの化合物が共重合又はグラフトされている柔軟性成分は、ポリアミド樹脂の末端基と反応し、樹脂組成物中での分散性が向上するため、骨格部材の弾性及び耐久性が更に向上する。ここで、「(メタ)アクリル酸エステル」とは、アクリル酸エステル及び/又はメタクリル酸エステルを指す。
 なお、前記樹脂組成物が40質量%以下含むことが好ましい柔軟性成分に関して、該柔軟性成分のガラス転移点(Tg)を0℃以下としたのは、低温下での耐久性を向上させるためである。また、同様の観点から、前記柔軟性成分のガラス転移点(Tg)は、-20℃以下であることが好ましい。
 前記樹脂組成物における前記柔軟性成分の含有量については、40質量%以下であり、好ましくは30質量%以下であり、また、好ましくは1質量%以上である。樹脂組成物における柔軟性成分の含有量が1質量%以上であれば、低温環境下でもより良好な弾性を確保でき、また、40質量%以下であれば、上述したポリミド樹脂による効果が十分に発現することに加え、骨格材料の強度を十分に良好に維持することができる。
 なお、前記樹脂組成物は、上述した、ポリアミド樹脂及び柔軟性成分の他にも、例えば、老化防止剤、可塑剤、充填剤、顔料等の添加剤を、一種以上含むことができる。
(非空気入りタイヤ)
 次に、本発明の一実施形態に係る、非空気入りタイヤについて説明する。
 図1は、本発明の一実施形態に係る非空気入りタイヤの構成を模式的に示す、タイヤ側面から見た説明図であり、また、図2は、図1の一部を拡大して示す説明図である。なお、図2では、理解し易いように、後述する複数の第1弾性連結板21及び複数の第2弾性連結板22のうち、それぞれ一つの第1弾性連結板21及び第2弾性連結板22のみを、実線で強調して描いている。
 図1及び図2に示すように、本実施形態の非空気入りタイヤ10は、車軸(図示しない)に取り付けられる取付け体11と、取付け体11に外装される内筒体12及び内筒体12をタイヤ径方向の外側から囲繞する外筒体13を有するリング部材14と、内筒体12と外筒体13の間にタイヤ周方向に沿って複数配置された、両筒体12,13同士を連結する連結部材15と、リング部材14の外周を一体的に覆う加硫ゴムからなるトレッド部材16とを具える。
 ここで、取付け体11、内筒体12、外筒体13、及びトレッド部材16は、それぞれ共通軸と同軸に、また、タイヤ幅方向の中央部を互いに一致させて配置されており、この共通軸を軸線O、軸線Oに直交する方向をタイヤ径方向、軸線O回りに周回する方向をタイヤ周方向という。
 取付け体11は、車軸の先端部が装着される装着筒部17と、装着筒部17をタイヤ径方向の外側から囲繞する外リング部18と、装着筒部17と外リング部18とを連結する複数のリブ19とを具えている(図1,2参照)。
 装着筒部17、外リング部18、及びリブ19は、例えばアルミニウム合金等の金属材料で一体的に形成されている。装着筒部17及び外リング部18はそれぞれ、円筒状に形成され軸線Oと同軸に配設されている。また、複数のリブ19は、周方向に同等の間隔をあけて配置されている。
 連結部材15は、リング部材14における内筒体12と外筒体13とを互いに連結する第1弾性連結板21及び第2弾性連結板22を具えている。第1弾性連結板21は、一方のタイヤ幅方向の位置にタイヤ周方向に沿って複数配置され、第2弾性連結板22は、一方のタイヤ幅方向の位置とは異なる他方のタイヤ幅方向の位置にタイヤ周方向に沿って複数配置されている。第1弾性連結板21と第2弾性連結板22は、合わせて、例えば60個設けられている。
 即ち、第1弾性連結板21は、タイヤ幅方向における同一の位置にタイヤ周方向に沿って複数配置され、第2弾性連結板22は、第1弾性連結板21からタイヤ幅方向に離れた同一のタイヤ幅方向の位置にタイヤ周方向に沿って複数配置されている。
 なお、複数の連結部材15は、リング部材14における内筒体12と外筒体13との間において、軸線Oを基準に軸対称となる位置に各別に配置されている。また、全ての連結部材15は、互いに同形同大となっている。さらに、連結部材15のタイヤ幅方向幅は、外筒体13のタイヤ幅方向幅より小さくなっている。
 そして、タイヤ周方向で隣り合う第1弾性連結板21同士は、互いに非接触とされ、タイヤ周方向で隣り合う第2弾性連結板22同士も、互いに非接触となっている。さらに、タイヤ幅方向で隣り合う第1弾性連結板21及び第2弾性連結板22同士も、互いに非接触となっている。
 なお、第1弾性連結板21及び第2弾性連結板22のそれぞれのタイヤ幅方向幅は、互いに同等になっている。また、第1弾性連結板21及び第2弾性連結板22のそれぞれのタイヤ側面視における厚さも、互いに同等になっている。
 ここで、第1弾性連結板21の内、外筒体13に連結された一端部21aは、内筒体12に連結された他端部21bよりもタイヤ周方向の一方側に位置し、第2弾性連結板22の内、外筒体13に連結された一端部22aは、内筒体12に連結された他端部22bよりもタイヤ周方向の他方側に位置している。
 また、第1弾性連結板21及び第2弾性連結板22の各一端部21a,22aは、外筒体13の内周面において、タイヤ幅方向の位置を互いに異ならせて、タイヤ周方向における同一の位置に連結されている。
 図示例では、第1弾性連結板21及び第2弾性連結板22のそれぞれにおいて、一端部21a,22aと他端部21b,22bとの間に位置する中間部分21c,22cに、タイヤ周方向に湾曲する湾曲部21d~21f,22d~22fが、このタイヤ10をタイヤ幅方向から見たタイヤ側面視で、弾性連結板21,22が延びる方向に沿って複数形成されている。両弾性連結板21,22のそれぞれにおいて、複数の湾曲部21d~21f,22d~22fの内、前述の延びる方向で互いに隣り合う各湾曲部21d~21f,22d~22fの湾曲方向は、互いに逆向きになっている。
 第1弾性連結板21に形成された複数の湾曲部21d~21fは、タイヤ周方向の他方側に向けて突となるように湾曲した第1湾曲部21dと、第1湾曲部21dと一端部21aとの間に位置し、且つタイヤ周方向の一方側に向けて突となるように湾曲した第2湾曲部21eと、第1湾曲部21dと他端部21bとの間に位置し、且つタイヤ周方向の一方側に向けて突となるように湾曲した第3湾曲部21fと、を有している。
 第2弾性連結板22に形成された複数の湾曲部22d~22fは、タイヤ周方向の一方側に向けて突となるように湾曲した第1湾曲部22dと、第1湾曲部22dと一端部22aとの間に位置し、且つタイヤ周方向の他方側に向けて突となるように湾曲した第2湾曲部22eと、第1湾曲部22dと他端部22bとの間に位置し、且つタイヤ周方向の他方側に向けて突となるように湾曲した第3湾曲部22fと、を有している。
 図示例では、第1湾曲部21d,22dは、第2湾曲部21e,22e及び第3湾曲部21f,22fよりも、タイヤ側面視の曲率半径が大きくなっている。なお、第1湾曲部21d,22dは、第1弾性連結板21及び第2弾性連結板22の延びる方向における中央部に配置されている。
 更に、両弾性連結板21,22の各長さは、互いに同等とされている。また、両弾性連結板21,22の各他端部21b,22bは、図2に示すように、タイヤ側面視で、内筒体12の外周面において、各一端部21a,22aとタイヤ径方向で対向する位置から軸線Oを中心にタイヤ周方向における他方側及び一方側にそれぞれ同じ角度(例えば20°以上135°以下)ずつ離れた各位置に、各別に連結されている。また、第1弾性連結板21及び第2弾性連結板22のそれぞれの第1湾曲部21d,22d同士、第2湾曲部21e,22e同士、並びに第3湾曲部21f,22f同士は、互いに、タイヤ周方向に突となる向きが逆で、かつ大きさが同等になっている。
 これにより、各連結部材15のタイヤ側面視の形状は、図2において実線で強調して描いた、一組の第1弾性連結板21及び第2弾性連結板22に示すように、タイヤ径方向に沿って延在し、且つ両弾性連結板21,22の各一端部21a,22aを通る仮想線Lに対して線対称となっている。
 また、両弾性連結板21,22のそれぞれにおいて、図2に示すように、タイヤ側面視で、前述した延びる方向の中央部から一端部21a,22aにわたる一端側部分は、中央部から他端部21b,22bにわたる他端側部分よりも厚さが大きくなっている。これにより、連結部材15の重量の増大を抑えたり、連結部材15の柔軟性を確保したりしながら、第1、第2弾性連結板21,22において大きな負荷がかかり易い一端側部分の強度を高めることができる。なお、これらの一端側部分と他端側部分とは段差なく滑らかに連なっている。
 なお、リング部材14は、タイヤ幅方向の一方側に位置する一方側分割リング部材と、タイヤ幅方向の他方側に位置する他方側分割リング部材とに、例えばタイヤ幅方向の中央部で分割されていてもよい。この場合、一方側分割リング部材は第1弾性連結板21と、他方側分割リング部材は第2弾性連結板22と、それぞれ一体に形成してもよく、更に、一方側分割リング部材及び第1弾性連結板21、並びに、他方側分割リング部材及び第2弾性連結板22は、それぞれ射出成形により一体に形成してもよい。
 リング部材14は、内筒体12が取付け体11に外嵌された状態で、取付け体11に固定されている。
 そして、本発明の一実施形態に係る非空気入りタイヤでは、前記骨格部材が、非空気入りタイヤの前記リング部材14及び前記連結部材15に該当し、該リング部材14及び該連結部材15が、上述した樹脂材料、即ち、上述した炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂を60質量%以上含む樹脂組成物からなっている。
 前記リング部材14及び前記連結部材15を、上述した樹脂組成物からなる樹脂材料から形成することで、高湿度環境下で使用したり、水と接触しても、耐久性に優れた非空気入りタイヤを提供できる。
 また、本発明の一実施形態に係る非空気入りタイヤは、前記リング部材14及び前記連結部材15が、上述した樹脂材料、即ち、前記樹脂組成物からなることが必要であるが、前記骨格部材を構成する連結部材15とリング部材14とで、異なる樹脂組成物を用いてもよい。
 本実施形態の非空気入りタイヤ10では、トレッド部材16は円筒状に形成され、リング部材14の外筒体13の外周面側を全域にわたって一体に覆っている。トレッド部材16は、耐摩耗性等の観点から、例えば天然ゴム等を含むゴム組成物が加硫された加硫ゴムで形成されている。
 また、接着層25は、リング部材14の外筒体13とトレッド部材16との間に設けられて、外筒体13とトレッド部材16の接合を介在しており、例えば、シアノアクリレート系接着剤を含んでいることが好ましい。
 次に、内筒体12と外筒体13同士を連結する連結部材の他の例を示す。
 図3は、他の例による連結部材により連結された内筒体と外筒体を示し、(a)は正面図、(b)は斜視図である。図3に示すように、連結部材23は、第1弾性連結板21及び第2弾性連結板22で構成されている連結部材15とは異なり、第1弾性連結板21のみで構成されている。連結部材23を構成する第1弾性連結板21は、内筒体12と外筒体13の間にタイヤ周方向に沿って複数配置され、両筒体12,13同士を連結している。その他の構成及び作用は、連結部材15と同様である。
 なお、上記においては、図面を参照して、主として、非空気入りタイヤについて説明したが、本発明のタイヤは、非空気入りタイヤに限定されるものではなく、空気入りタイヤであってもよい。
 例えば、図1及び図2に示す非空気入りタイヤ10のトレッド部材16と、リング部材14の外筒体13の外周面との間に、内腔を設けることで、骨格部材が樹脂材料からなる空気入りタイヤを形成することができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(樹脂組成物の樹脂成分)
 実施例及び比較例のタイヤの骨格部材を構成する樹脂材料(樹脂組成物)の樹脂成分として、下記の樹脂1~7を使用した。
 樹脂1: ポリアミド610(PA610)、アルケマ社製、商品名「Hyprolon 70NN」、23℃でのヤング率=2000MPa、23℃で2週間、水中に浸漬した後の吸水率=3.2質量%
 樹脂2: ポリアミド612(PA612)、アルケマ社製、商品名「Hyprolon 90NN」、23℃でのヤング率=1700MPa、23℃で2週間、水中に浸漬した後の吸水率=3.0質量%
 樹脂3: ポリアミド1010(PA1010)、アルケマ社製、商品名「Hyprolon 200NN」、23℃でのヤング率=1500MPa、23℃で2週間、水中に浸漬した後の吸水率=2.4質量%
 樹脂4: ポリアミド1012(PA1012)、アルケマ社製、商品名「Hyprolon 400NN」、23℃でのヤング率=1100MPa、23℃で2週間、水中に浸漬した後の吸水率=2.5質量%
 樹脂5: ポリアミド66(PA66)、旭化成社製、商品名「REONA 1300S」、23℃でのヤング率=2700MPa、23℃で2週間、水中に浸漬した後の吸水率=8.1質量%
 樹脂6: ポリアミド6(PA6)、宇部興産社製、商品名「UBEナイロン 1013B」、23℃でのヤング率=2600MPa、23℃で2週間、水中に浸漬した後の吸水率=8.9質量%
 樹脂7: ポリアミド12(PA12)、アルケマ社製、商品名「Rilsamid AMNO TLD」、23℃でのヤング率=1450MPa、23℃で2週間、水中に浸漬した後の吸水率=1.8質量%
(樹脂組成物の柔軟性成分)
 実施例及び比較例のタイヤの骨格部材を構成する樹脂材料(樹脂組成物)の柔軟性成分として、下記の柔軟性成分A~Gを使用した。
 柔軟性成分A: エチレン-アクリル酸メチル共重合体(EAR)、日本ポリエチレン社製、商品名「Lexperl EMA EB050S」、ガラス転移点(Tg)=-18℃、23℃でのヤング率=15MPa、変性基無し
 柔軟性成分B: エチレン-アクリル酸メチル共重合体(EAR)、Archema社製、商品名「Bondine AX8390」、ガラス転移点(Tg)=-20℃未満、23℃でのヤング率=30MPa、変性基=無水マレイン酸との共重合(MAH-co)
 柔軟性成分C: エチレン-アクリル酸メチル共重合体(EAR)、Archema社製、商品名「Lotader GMA AX8900」、ガラス転移点(Tg)=-20℃未満、23℃でのヤング率=30MPa、変性基=グリシジルメタクリレートとの共重合(GMA-co)
 柔軟性成分D: ポリα-オレフィン、住友化学社製、商品名「TAFMER MH7020」、ガラス転移点(Tg)=-50℃未満、23℃でのヤング率=40MPa、変性基=無水マレイン酸のグラフト(MAH-g)
 柔軟性成分E: スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、Kraton社製、商品名「FG1924」、ガラス転移点(Tg)=-20℃未満、23℃でのヤング率=14MPa、変性基=無水マレイン酸のグラフト(MAH-g)
 柔軟性成分F: ポリプロピレン(PP)、サンアロマー社製、商品名「PM940M」、ガラス転移点(Tg)=0℃未満、23℃でのヤング率=550MPa、変性基無し
 柔軟性成分G: 低密度ポリエチレン(LDPE)、旭化成社製、商品名「サンテックLD M6545」、ガラス転移点(Tg)=0℃未満、23℃でのヤング率=120MPa、変性基無し
<実施例1~12及び比較例1~7>
 サンプルとなる非空気入りタイヤを作製した。サンプルの非空気入りタイヤは、いずれもタイヤサイズが155/65R13であり、それらの構造は、図1及び図2に示したものである。
 各サンプルの非空気入りタイヤについては、リング部材及び連結部材(スポーク構造)を構成する材料が異なるだけであり、その他の部材については、同様のものを用いた。リング部材及び連結部材を構成する樹脂組成物に含有される材料の種類及びその含有量については、表1に示す通りである。
 作製した各サンプルの非空気入りタイヤについて、(1)23℃、湿度50%RHで、2週間保管したものと、(2)23℃で、水中に2週間浸漬したものと、を準備し、該タイヤに対して、以下の評価を行った。
<タイヤ耐久性(突起乗り越し耐久性)>
   各サンプルについて、ドラム耐久試験機に直径20mmの半球状の突起を取り付け、40℃の環境下、650Nの荷重を掛け、50km/hで走行させたときの故障に至るまでの走行距離を測定することによって、タイヤ耐久性を評価した。なお、結果については、各供試タイヤの走行距離を、23℃、湿度50%RHで、2週間保管した実施例1のタイヤの走行距離を100としたときの指数値で表示した。指数値が大きい程、タイヤの耐久性が高いことを示す。
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、本発明に従う実施例のタイヤは、高湿度環境下でも、水に浸漬しても、耐久性に優れることが分かる。また、ガラス転移点が0℃以下の柔軟性成分を配合した樹脂組成物を用いたタイヤについては、耐久性が更に大きく向上することが分かる。
 本発明によれば、骨格部材が樹脂材料からなるものの、高湿度環境下で使用したり、水と接触しても、耐久性に優れるタイヤを提供することができ、かかるタイヤは、各種車輌向けのタイヤとして利用できる上、リサイクルし易い。
 10:非空気入りタイヤ、 11:取付け体、 12:内筒体、 13:外筒体、 14:リング部材、 15:連結部材、 16:トレッド部材、 17:装着筒部、 18:外リング部、 19:リブ、 21:第1弾性連結板(連結部材)、 21a:一端部、 21b:他端部、 21c:中間部分、 21d~21f:湾曲部、 22:第2弾性連結板(連結部材)、 22a:一端部、 22b:他端部、 22c:中間部分、 22d~22f:湾曲部、 23:連結部材、 25:接着層

Claims (7)

  1.  骨格部材が樹脂材料からなるタイヤであって、
     前記樹脂材料が、炭素数6~20の脂肪族ジアミン及び炭素数10~20の脂肪族ジカルボン酸を重合させてなるポリアミド樹脂を60質量%以上含む樹脂組成物からなることを特徴とする、タイヤ。
  2.  前記樹脂組成物が、更に、ガラス転移点が0℃以下である柔軟性成分を40質量%以下含む、請求項1に記載のタイヤ。
  3.  前記柔軟性成分が、ポリエチレン、ポリプロピレン、エチレン-プロピレンゴム、エチレン-1-ブテン共重合体、ポリα-オレフィン、アクリルゴム及びスチレン-エチレン-ブチレン-スチレン共重合体、並びにこれらの変性重合体からなる群から選択される少なくとも一種を含む、請求項2に記載のタイヤ。
  4.  前記柔軟性成分の少なくとも一部に、無水マレイン酸が、共重合又はグラフトされている、請求項2又は3に記載のタイヤ。
  5.  前記柔軟性成分の少なくとも一部に、エポキシ末端(メタ)アクリル酸エステルが、共重合又はグラフトされている、請求項2又は3に記載のタイヤ。
  6.  車軸に取り付けられる取付け体と、該取付け体に外装される内筒体及び該内筒体をタイヤ径方向の外側から囲繞する外筒体を有するリング部材と、前記内筒体と前記外筒体の間にタイヤ周方向に沿って複数配置された、前記両筒体同士を連結する連結部材と、前記リング部材の外筒体のタイヤ径方向外側に設けられた加硫ゴムからなるトレッド部材と、を具えるタイヤであって、
     前記骨格部材としての、前記リング部材及び前記連結部材が、前記樹脂材料からなる、請求項1~5のいずれか一項に記載のタイヤ。
  7.  非空気入りタイヤである、請求項1~6のいずれか一項に記載のタイヤ。
PCT/JP2017/003063 2016-01-29 2017-01-27 タイヤ WO2017131212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17744442.9A EP3409725B1 (en) 2016-01-29 2017-01-27 Tire
CN201780008101.5A CN108495895B (zh) 2016-01-29 2017-01-27 轮胎
JP2017563882A JP6970020B2 (ja) 2016-01-29 2017-01-27 タイヤ
US16/069,061 US11027577B2 (en) 2016-01-29 2017-01-27 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016168 2016-01-29
JP2016-016168 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131212A1 true WO2017131212A1 (ja) 2017-08-03

Family

ID=59398332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003063 WO2017131212A1 (ja) 2016-01-29 2017-01-27 タイヤ

Country Status (5)

Country Link
US (1) US11027577B2 (ja)
EP (1) EP3409725B1 (ja)
JP (1) JP6970020B2 (ja)
CN (1) CN108495895B (ja)
WO (1) WO2017131212A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225108B2 (en) 2017-05-11 2022-01-18 Bridgestone Corporation Tire
WO2023282154A1 (ja) * 2021-07-08 2023-01-12 株式会社クラレ ポリアミド組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108495895B (zh) 2016-01-29 2021-03-09 株式会社普利司通 轮胎
JP7466285B2 (ja) 2019-10-21 2024-04-12 株式会社ブリヂストン 車輪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042822A (ja) * 2002-07-12 2004-02-12 Daicel Degussa Ltd ゴム補強構造体
JP2013166819A (ja) * 2012-02-14 2013-08-29 Yokohama Rubber Co Ltd:The 熱可塑性樹脂組成物およびそれを用いたタイヤ
JP2013245318A (ja) * 2012-05-28 2013-12-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2014088120A (ja) * 2012-10-30 2014-05-15 Bridgestone Corp 空気入りタイヤ
JP2016199689A (ja) * 2015-04-10 2016-12-01 株式会社ブリヂストン ポリアミド系熱可塑性エラストマー及びタイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130497A (ja) * 1996-11-01 1998-05-19 Mitsubishi Gas Chem Co Inc ポリアミド樹脂組成物
US20030045639A1 (en) 2001-04-18 2003-03-06 Ube Industries, Ltd. Hydraulic or pneumatic device comprising tube comprising polyamide resin
JP5473606B2 (ja) 2007-01-18 2014-04-16 横浜ゴム株式会社 優れた伸長性及び屈曲疲労を有するポリアミド樹脂組成物並びにそれを使用する空気入りタイヤ及びホース
JP5394304B2 (ja) 2010-04-12 2014-01-22 東洋ゴム工業株式会社 非空気圧タイヤ及びその製造方法
EP2610072B1 (en) * 2010-08-25 2017-11-01 Bridgestone Corporation Tire, and tire manufacturing method
JP5879089B2 (ja) * 2011-10-20 2016-03-08 株式会社ブリヂストン 非空気入りタイヤの製造方法
JP5894964B2 (ja) 2013-05-15 2016-03-30 株式会社ブリヂストン 非空気入りタイヤ
JP6014715B2 (ja) 2015-05-18 2016-10-25 株式会社ブリヂストン タイヤ
CN108495895B (zh) 2016-01-29 2021-03-09 株式会社普利司通 轮胎

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042822A (ja) * 2002-07-12 2004-02-12 Daicel Degussa Ltd ゴム補強構造体
JP2013166819A (ja) * 2012-02-14 2013-08-29 Yokohama Rubber Co Ltd:The 熱可塑性樹脂組成物およびそれを用いたタイヤ
JP2013245318A (ja) * 2012-05-28 2013-12-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2014088120A (ja) * 2012-10-30 2014-05-15 Bridgestone Corp 空気入りタイヤ
JP2016199689A (ja) * 2015-04-10 2016-12-01 株式会社ブリヂストン ポリアミド系熱可塑性エラストマー及びタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3409725A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225108B2 (en) 2017-05-11 2022-01-18 Bridgestone Corporation Tire
WO2023282154A1 (ja) * 2021-07-08 2023-01-12 株式会社クラレ ポリアミド組成物

Also Published As

Publication number Publication date
CN108495895B (zh) 2021-03-09
CN108495895A (zh) 2018-09-04
EP3409725A1 (en) 2018-12-05
JP6970020B2 (ja) 2021-11-24
EP3409725A4 (en) 2018-12-26
JPWO2017131212A1 (ja) 2018-11-22
US11027577B2 (en) 2021-06-08
US20190023074A1 (en) 2019-01-24
EP3409725B1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2017131212A1 (ja) タイヤ
CN105142928B (zh) 轮胎
US11225108B2 (en) Tire
CN108367596B (zh) 轮胎
WO2013129630A1 (ja) タイヤ
TWI392820B (zh) 用於空氣制動系統之塑膠管
JP6787730B2 (ja) タイヤ
CN108472995A (zh) 轮胎
JP6664895B2 (ja) タイヤ
JP6253968B2 (ja) タイヤインナーライナー及び空気入りタイヤ
US9803084B2 (en) Resin composition for fuel tubes, and fuel tube
JP7162004B2 (ja) タイヤ用金属樹脂複合部材及びタイヤ
JP7221951B2 (ja) タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
CN110740874B (zh) 轮胎
KR102149520B1 (ko) 고분자 필름
JP2020002331A (ja) 樹脂組成物及び非空気入りタイヤ
JP2020082803A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744442

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744442

Country of ref document: EP

Effective date: 20180829