WO2017130836A1 - n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置 - Google Patents

n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置 Download PDF

Info

Publication number
WO2017130836A1
WO2017130836A1 PCT/JP2017/001777 JP2017001777W WO2017130836A1 WO 2017130836 A1 WO2017130836 A1 WO 2017130836A1 JP 2017001777 W JP2017001777 W JP 2017001777W WO 2017130836 A1 WO2017130836 A1 WO 2017130836A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
semiconductor element
insulating layer
atom
layer
Prior art date
Application number
PCT/JP2017/001777
Other languages
English (en)
French (fr)
Inventor
清水浩二
村瀬清一郎
崎井大輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US16/066,858 priority Critical patent/US10615352B2/en
Priority to EP17744066.6A priority patent/EP3410468A4/en
Priority to JP2017503970A priority patent/JP6962189B2/ja
Priority to KR1020187022939A priority patent/KR20180105166A/ko
Priority to CN201780007670.8A priority patent/CN108475642B/zh
Publication of WO2017130836A1 publication Critical patent/WO2017130836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the drive circuit in the RFID tag is generally composed of a complementary circuit composed of a p-type FET and an n-type FET in order to suppress power consumption.
  • FETs using CNTs usually exhibit the characteristics of p-type semiconductor elements in the atmosphere.
  • An FET using an organic semiconductor has a single channel.
  • a complementary circuit cannot be configured with the same material, and materials must be selected separately for the p-type FET and the n-type FET, which complicates the manufacturing process, reduces production efficiency, and increases manufacturing costs. Problems arise.
  • the FET using CNTs is converted into an n-type semiconductor element by vacuum heat treatment or ion doping (see, for example, Patent Document 2 and Non-Patent Document 1), or using an ambipolar organic semiconductor material (for example, Patent Documents 3 to 4) have been studied to form complementary circuits made of the same material.
  • Patent Document 2 discusses a method of doping CNTs with oxygen or potassium ions to convert them into n-type semiconductor elements.
  • oxygen is difficult to separate as an element, and potassium ions are difficult to handle.
  • an n-type semiconductor element using high-performance CNT, a high-performance complementary semiconductor element, and a wireless communication device using the same can be manufactured by a simple process.
  • Schematic sectional view showing an n-type semiconductor element which is one embodiment of the present invention Schematic sectional view showing an n-type semiconductor element which is one embodiment of the present invention
  • Sectional drawing which showed the manufacturing process of the n-type semiconductor element which is one of the embodiment of this invention Schematic cross-sectional view showing a complementary semiconductor device according to one embodiment of the present invention
  • Schematic cross-sectional view showing a complementary semiconductor device according to one embodiment of the present invention Schematic cross-sectional view showing a complementary semiconductor device according to one embodiment of the present invention
  • Schematic cross-sectional view showing a complementary semiconductor device according to one embodiment of the present invention Schematic cross-sectional view showing a complementary semiconductor device according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of an n-type semiconductor element of the present invention.
  • a gate electrode 2 formed on the insulating substrate 1, a gate insulating layer 3 covering the gate electrode 2, a source electrode 5 and a drain electrode 6 provided thereon, and a semiconductor layer 4 provided between these electrodes And a second insulating layer 8 covering the semiconductor layer.
  • the semiconductor layer 4 includes a carbon nanotube composite in which a conjugated polymer is attached to at least a part of the surface, or the carbon nanotube 7, and the second insulating layer 8 is an organic compound containing a bond of carbon atoms and nitrogen atoms or a general An organic compound having the structure of the formula (2) is contained.
  • This structure is a so-called bottom gate / bottom contact structure in which the gate electrode is disposed below the semiconductor layer, and the source electrode and the drain electrode are disposed on the lower surface of the semiconductor layer.
  • FIG. 2 is a schematic cross-sectional view showing a second embodiment of the n-type semiconductor element of the present invention.
  • the source electrode 5 and the drain electrode 6 formed on the insulating substrate 1, the second insulating layer 8 provided between these electrodes, the semiconductor layer 4 in contact with these electrodes, and the semiconductor layer 4 are covered. It has a gate insulating layer 3 and a gate electrode 2 provided thereon.
  • the semiconductor layer 4 includes a carbon nanotube composite in which a conjugated polymer is attached to at least a part of the surface, or the carbon nanotube 7, and the second insulating layer 8 is an organic compound containing a bond of carbon atoms and nitrogen atoms or a general An organic compound having the structure of the formula (2) is contained.
  • This structure is a so-called top gate / bottom contact structure in which the gate electrode is disposed on the upper side of the semiconductor layer, and the source electrode and the drain electrode are disposed on the lower surface of the semiconductor layer.
  • the material used for the gate electrode, the source electrode, and the drain electrode may be any conductive material that can generally be used as an electrode.
  • conductive metal oxides such as tin oxide, indium oxide, indium tin oxide (ITO); platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, Metals such as calcium, magnesium, palladium, molybdenum, amorphous silicon and polysilicon, and alloys thereof; inorganic conductive materials such as copper iodide and copper sulfide; polythiophene, polypyrrole, polyaniline; complex of polyethylenedioxythiophene and polystyrenesulfonic acid Examples thereof include, but are not limited to, conductive polymers whose conductivity has been improved by doping with iodine or the like; carbon materials; and materials containing an organic component and a conductor. These electrode materials may be used alone, or a pluralityl, silver, copper
  • the oligomer or polymer is not particularly limited, and an acrylic resin, an epoxy resin, a novolac resin, a phenol resin, a polyimide precursor, polyimide, or the like can be used, but an acrylic resin is preferable from the viewpoint of crack resistance during bending. This is presumed to be because the glass transition temperature of the acrylic resin is 100 ° C. or lower, and softens when the conductive film is thermally cured to increase the binding between the conductive particles.
  • the average particle diameter of the metal particles in the conductive film is randomly selected from the obtained images, for example, by observing the cross section of the electrode at a magnification of 10,000 using a scanning electron microscope (SEM). It can be calculated by measuring the particle diameter of 100 particles and obtaining the average value.
  • the particle diameter is the particle diameter when the shape is spherical.
  • the average value of the maximum width and the minimum width observed with an electron microscope for a certain particle is calculated as the particle diameter of the particle.
  • Examples of the electrode forming method include a method using a known technique such as resistance heating vapor deposition, electron beam beam, sputtering, plating, CVD, ion plating coating, ink jet, and printing.
  • the paste containing the organic component and the conductor is applied to an insulating substrate by a known technique such as spin coating, blade coating, slit die coating, screen printing, bar coater, mold method, printing transfer method, and dip-up method.
  • the method for forming the electrode is not particularly limited as long as conduction can be achieved.
  • vinyltrimethoxysilane R 15 is a methyl group, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyl trimethoxysilane, It is particularly preferable to use phenyltrimethoxysilane, p-tolyltrimethoxysilane, benzyltrimethoxysilane, ⁇ -naphthyltrimethoxysilane, ⁇ -naphthyltrimethoxysilane, trifluoroethyltrimethoxysilane, and trimethoxysilane.
  • the gate insulating layer preferably further contains a metal compound containing a bond between a metal atom and an oxygen atom.
  • the metal compound is not particularly limited as long as it contains a bond between a metal atom and an oxygen atom, and examples thereof include metal oxides and metal hydroxides.
  • the metal atom contained in the metal compound is not particularly limited as long as it forms a metal chelate, but magnesium, aluminum, titanium, chromium, manganese, cobalt, nickel, copper, zinc, gallium, zirconium, ruthenium, palladium, indium , Hafnium, platinum and the like. Among these, aluminum is preferable from the viewpoint of availability, cost, and metal chelate stability.
  • the gate insulating layer preferably contains 10 to 180 parts by weight of the metal atoms with respect to 100 parts by weight of the total of carbon atoms and silicon atoms. By setting it as this range, an insulation characteristic can be improved more.
  • CNT composite The state where the conjugated polymer is attached to at least a part of the surface of the CNT means a state where a part or all of the surface of the CNT is covered with the conjugated polymer.
  • the reason why the conjugated polymer can coat the CNT is presumed to be that the ⁇ electron cloud derived from the conjugated structure of the two overlaps to cause an interaction.
  • Whether or not the CNT is coated with the conjugated polymer can be determined by approaching the color of the conjugated polymer from the color of the uncoated CNT. Quantitatively, the presence of deposits and the weight ratio of deposits to CNTs can be identified by elemental analysis such as X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • a polythiophene polymer that is easily attached to CNTs and easily forms a CNT complex is preferably used.
  • Those containing a condensed heteroaryl unit having a nitrogen-containing double bond in the ring and a thiophene unit in the repeating unit are more preferred.
  • the condensed heteroaryl unit having a nitrogen-containing double bond in the ring includes thienopyrrole, pyrrolothiazole, pyrrolopyridazine, benzimidazole, benzotriazole, benzoxazole, benzothiazole, benzothiadiazole, quinoline, quinoxaline, benzotriazine, thienoxazole , Thienopyridine, thienothiazine, thienopyrazine and the like.
  • a benzothiadiazole unit or a quinoxaline unit is particularly preferable.
  • the heterocyclic group refers to a group derived from an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, an amide ring, in the ring, and it may or may not have a substituent. Also good. Although carbon number of a heterocyclic group is not specifically limited, The range of 2-20 is preferable.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an aryl group, or a butadienyl group, and may or may not have a substituent. Although carbon number of an alkenyl group is not specifically limited, The range of 2-20 is preferable.
  • a step of uniformly dispersing CNT in a solvent and filtering the dispersion with a filter By obtaining CNT smaller than the filter pore diameter from the filtrate, CNT shorter than the distance between the pair of electrodes can be obtained efficiently.
  • a membrane filter is preferably used as the filter.
  • the pore diameter of the filter used for the filtration may be smaller than the distance between the pair of electrodes, and is preferably 0.5 to 10 ⁇ m.
  • Other methods for shortening CNT include acid treatment, freeze pulverization treatment, and the like.
  • imine compounds examples include ethyleneimine, N-methylhexane-1-imine, N-methyl-1-butyl-1-hexaneimine, propane-2-imine, methanediimine, N-methylethaneimine, ethane-1,2 -Diimine and the like.
  • R 1 to R 4 each independently represents a group composed of one or more kinds of atoms selected from a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom and a sulfur atom.
  • X 1 and X 2 each independently represent any group represented by the following general formulas (3) to (8).
  • a 2nd insulating layer contains the compound containing a ring structure from a viewpoint of the storage stability of FET.
  • the amine compound having a ring structure or the compounds represented by the general formulas (1) and (2) include a ring structure containing a nitrogen atom as a hetero atom in the formula.
  • the film thickness of the second insulating layer is preferably 50 nm or more, and more preferably 100 nm or more. Moreover, it is preferable that it is 10 micrometers or less, and it is more preferable that it is 3 micrometers or less. By setting the film thickness within this range, it is easy to form a uniform thin film.
  • the film thickness can be measured by an atomic force microscope or an ellipsometry method.
  • n-type semiconductor element The characteristics of an n-type semiconductor element are that a positive voltage higher than the threshold voltage is applied to the gate electrode to cause conduction between the source and drain. For example, the absolute value of the threshold voltage is small. Those having high mobility are highly functional and good n-type semiconductor elements.
  • FIG. 7 is a schematic cross-sectional view showing a second embodiment of the complementary semiconductor device of the present invention.
  • a p-type semiconductor element 30 and an n-type semiconductor element 40 of the present invention are formed on the surface of the insulating substrate 1.
  • the p-type semiconductor element includes a source electrode 5 and a drain electrode 6 formed on an insulating substrate 1, a semiconductor layer 4 provided between these electrodes, a gate insulating layer 3 covering them, And a gate electrode 2 provided on the substrate.
  • Each semiconductor layer 4 includes a carbon nanotube composite 7 in which a conjugated polymer is attached to at least a part of the surface.
  • This structure is a so-called top gate / bottom contact structure in which the gate electrode is disposed on the upper side of the semiconductor layer, and the source electrode and the drain electrode are disposed on the lower surface of the semiconductor layer.
  • Embodiments of the complementary semiconductor device of the present invention are not limited to these, and one or more of the p-type semiconductor element and the n-type semiconductor element exemplified in FIGS. 6 to 9 were used in appropriate combination. It may be a thing.
  • the gate insulating layer of the p-type semiconductor element and the gate insulating layer of the n-type semiconductor element are made of the same material because the number of material types can be reduced and the same process can be used. That these insulating layers are made of the same material means that the types and composition ratios of elements contained in 1 mol% or more in the composition constituting each insulating layer are the same. Whether or not the types and composition ratios of the elements are the same can be identified by elemental analysis such as X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS).
  • XPS X-ray photoelectron spectroscopy
  • SIMS secondary ion mass spectrometry
  • each of the complementary semiconductor devices shown in FIGS. 6 to 9 is an example where the p-type semiconductor element and the n-type semiconductor element have the same structure. Conversely, the case where the p-type semiconductor element and the n-type semiconductor element are not the same structure includes the following.
  • a complementary semiconductor device in which a doping region 9b is provided only in the semiconductor layer of one of the p-type semiconductor element 35 and the n-type semiconductor element 45 (n-type drive semiconductor element 45 in FIG. 11):
  • the configurations of the two differ from each other in the presence or absence of a doping region in the semiconductor layer.
  • the insulating substrate may be made of any material as long as at least the surface on which the electrode system is disposed is insulative, and is preferably made of the same material as the n-type semiconductor element.
  • the material used for the gate electrode, the source electrode, and the drain electrode may be any conductive material that can generally be used as an electrode, and is preferably composed of the same material as the n-type semiconductor element.
  • the material used for the gate insulating layer is not particularly limited; however, inorganic materials such as silicon oxide and alumina; organic materials such as polyimide, polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, polyvinylidene fluoride, polysiloxane, and polyvinylphenol (PVP) A material; or a mixture of an inorganic material powder and an organic material can be mentioned, and it is preferable that the material is composed of the same material as the n-type semiconductor element.
  • inorganic materials such as silicon oxide and alumina
  • organic materials such as polyimide, polyvinyl alcohol, polyvinyl chloride, polyethylene terephthalate, polyvinylidene fluoride, polysiloxane, and polyvinylphenol (PVP) A material
  • PVP polyvinylphenol
  • an organic polymer material that can be produced by a coating method such as inkjet.
  • an organic polymer material selected from the group consisting of polyfluoroethylene, polynorbornene, polysiloxane, polyimide, polystyrene, polycarbonate and derivatives thereof, polyacrylic acid derivatives, polymethacrylic acid derivatives, and copolymers containing these. It is preferable to use from the viewpoint of the uniformity of the insulating layer. Polyacrylic acid derivatives, polymethacrylic acid derivatives, or copolymers containing these are particularly preferred.
  • the method of forming the second insulating layer is not particularly limited, and dry methods such as resistance heating vapor deposition, electron beam, sputtering, and CVD can be used, but from the viewpoint of manufacturing cost and adaptability to a large area. It is preferable to use a coating method. Specifically, as a coating method, a spin coating method, a blade coating method, a slit die coating method, a screen printing method, a bar coater method, a mold method, a printing transfer method, a dip pulling method, an ink jet method, a drop cast method, or the like is preferably used. be able to.
  • the coating method can be selected according to the properties of the coating film to be obtained, such as coating thickness control and orientation control.
  • the solvent for dissolving the insulating material used for the second insulating layer is not particularly limited, but ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-butyl ether , Ethers such as propylene glycol mono t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol ethyl methyl ether; ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, Isobutyl acetate, 3-methoxybutyl acetate Esters such as 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate; acetone,
  • Ketones alcohols such as butyl alcohol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, diacetone alcohol; toluene, xylene And aromatic hydrocarbons. Two or more of these may be used.
  • FIG. 12 shows an equivalent circuit of a complementary semiconductor device manufactured by combining the n-type semiconductor element and the p-type semiconductor element.
  • the input signal changes between low “L” (ground potential GND) and high “H” (V DD ).
  • the p-type FET becomes conductive and the n-type FET is cut off, so that the output signal becomes “H”.
  • the n-type FFT is turned on and the p-type FFT is cut off, so that the output signal becomes “L”.
  • the method for manufacturing the complementary semiconductor device is not particularly limited.
  • the method for forming the electrodes and insulating layers constituting each semiconductor element is as described above, and by selecting the order in order, for example, a complementary semiconductor device as shown in FIGS. 6 to 9 can be manufactured. it can. From the viewpoint of manufacturing cost and process simplicity, it is preferable to form the p-type semiconductor element and the n-type semiconductor element at the same time rather than separately. Therefore, it is preferable that the p-type semiconductor element and the n-type semiconductor element have the same structure.
  • the method for manufacturing a complementary semiconductor device preferably includes a step of applying and drying a semiconductor layer of a p-type semiconductor element and a semiconductor layer of an n-type semiconductor element, respectively. Furthermore, it is more preferable to include the following manufacturing steps. (1) forming a source electrode and a drain electrode of a p-type semiconductor element and a source electrode and a drain electrode of an n-type semiconductor element in the same process; (2) Applying and drying a composition containing a compound containing a bond of a silicon atom and a carbon atom, and performing the same step on the gate insulating layer of the p-type semiconductor element and the gate insulating layer of the n-type semiconductor element Forming with: (3) A step of forming the semiconductor layer of the p-type semiconductor element and the semiconductor layer of the n-type semiconductor element in the same step.
  • forming two electrodes and layers in the same step means forming the two electrodes and layers together by performing a process necessary for forming the electrodes and layers once. Any of these processes can be applied even when the structures of the p-type semiconductor element and the n-type semiconductor element are different, but the application is easier when they have the same structure.
  • the gate electrode 2 is formed in the p-type semiconductor element region 10 on the insulating substrate 1 and the gate electrode 2 is formed in the n-type semiconductor element region 20 by the method described above.
  • a compound containing a bond of silicon atom and carbon atom is applied and dried to form the gate insulating layer 3 in the p-type semiconductor element region 10 and the n-type semiconductor element region 20.
  • FIG. 13A the gate electrode 2 is formed in the p-type semiconductor element region 10 on the insulating substrate 1 and the gate electrode 2 is formed in the n-type semiconductor element region 20 by the method described above.
  • a compound containing a bond of silicon atom and carbon atom is applied and dried to form the gate insulating layer 3 in the p-type semiconductor element region 10 and the n-type semiconductor element region 20.
  • the gate electrode 2 in the p-type drive semiconductor element region 10 and the gate electrode 2 in the n-type drive semiconductor element region 20 are made of the same material because the use efficiency of the material is improved and the number of material types is reduced.
  • the semiconductor layer 4 in the p-type drive semiconductor element region 10 and the semiconductor layer 4 in the n-type drive semiconductor element region 20 are preferably made of the same material.
  • This wireless communication device is a device that performs electrical communication when an RFID tag receives a carrier wave transmitted from an antenna mounted on a reader / writer, such as an RFID. Specifically, for example, a radio signal transmitted from an antenna mounted on a reader / writer is received by an antenna of the RFID tag, converted into a direct current by a rectifier circuit, and the RFID tag generates electricity. Next, the generated RFID tag receives a command from a radio signal and performs an operation according to the command. Thereafter, a response of a result corresponding to the command is transmitted from the RFID tag antenna to the reader / writer antenna. The operation corresponding to the command is performed by at least a known demodulation circuit, operation control logic circuit, and modulation circuit.
  • the wireless communication device of the present invention has at least the above-described n-type semiconductor element or complementary semiconductor device and an antenna.
  • a power generation unit that rectifies an external modulated wave signal received by the antenna 50 and supplies power to each unit, and demodulates and controls the modulated wave signal.
  • Demodulation circuit to send to the circuit, modulation circuit to modulate the data sent from the control circuit and send it to the antenna, write the data demodulated by the demodulation circuit to the storage circuit and read the data from the storage circuit and send it to the modulation circuit
  • Examples thereof include a wireless communication device that is configured by a control circuit to perform and in which each circuit unit is electrically connected.
  • the demodulation circuit, the control circuit, the modulation circuit, and the memory circuit are formed of the above-described n-type semiconductor element or complementary semiconductor device, and may further include a capacitor, a resistance element, and a diode.
  • the storage circuit further includes a nonvolatile rewritable storage unit such as EEPROM (Electrically Erasable Programmable Read-Only Memory), FeRAM (Ferroelectric Random Access Memory), and the like.
  • the power generation unit is composed of a capacitor and a diode.
  • the antenna, the capacitor, the resistance element, the diode, and the nonvolatile rewritable memory section may be any commonly used one, and the material and shape used are not particularly limited. Also, the material for electrically connecting each of them may be any conductive material that can be generally used. Any connection method can be used as long as electrical connection can be obtained, and the width and thickness of the connection portion are arbitrary.
  • the product tag includes, for example, a base and the above-described wireless communication device covered with the base.
  • the base is made of, for example, a non-metallic material such as paper formed in a flat plate shape.
  • the base has a structure in which two flat papers are bonded together, and the wireless communication device is arranged between the two papers.
  • individual identification information for identifying an individual product is stored in advance in the storage circuit of the wireless storage device.
  • Elemental analysis Elemental information and elements in the film by X-ray photoelectron spectroscopy (Quanta SXM manufactured by PHI) that irradiates the film to be measured with soft X-rays in an ultra-high vacuum and detects photoelectrons emitted from the surface. The amount was analyzed.
  • a semiconductor solution for forming a semiconductor layer was prepared.
  • the CNT dispersion A was filtered using a membrane filter (pore size 10 ⁇ m, diameter 25 mm, Omnipore membrane manufactured by Millipore) to remove a CNT composite having a length of 10 ⁇ m or more.
  • o-DCB manufactured by Wako Pure Chemical Industries, Ltd.
  • chloroform as a low boiling point solvent was distilled off using a rotary evaporator, and the solvent was replaced with o-DCB.
  • CNT dispersion B was obtained.
  • 3 mL of o-DCB was added to 1 ml of CNT dispersion B to obtain semiconductor solution A (CNT complex concentration 0.03 g / l with respect to the solvent).
  • Semiconductor solution B (CNT complex concentration 0.03 g / l with respect to the solvent) was obtained in the same manner as semiconductor solution A, except that compound [60] was used instead of P3HT.
  • Semiconductor Solution Preparation Example 3 Semiconductor Solution C 1.0 g of CNT1 and 50 mL of chloroform were added and dispersed for 1 hour using an ultrasonic cleaner. Furthermore, 5 mL of this dispersion was fractionated, diluted to 100 mL, and further dispersed for 2 hours using an ultrasonic cleaner to obtain CNT dispersion C. The obtained CNT dispersion C was filtered using a membrane filter (pore size: 10 ⁇ m, diameter: 25 mm, Omnipore membrane manufactured by Millipore) to remove CNTs having a length of 10 ⁇ m or more to obtain a semiconductor solution C.
  • a membrane filter pore size: 10 ⁇ m, diameter: 25 mm, Omnipore membrane manufactured by Millipore
  • the internal temperature was raised to 90 ° C., and a component mainly composed of methanol produced as a by-product was distilled off.
  • the bath was heated at 130 ° C. for 2.0 hours, the internal temperature was raised to 118 ° C., and a component mainly composed of water and propylene glycol monobutyl ether was distilled off, and then cooled to room temperature, and the solid content concentration was 26.0.
  • a weight percent polysiloxane solution A was obtained.
  • the resulting polysiloxane had a weight average molecular weight of 6,000.
  • PGMEA propylene glycol monoethyl ether acetate
  • Gate Insulating Layer Solution B 10 g of polysiloxane solution A is weighed and aluminum bis (ethylacetoacetate) mono (2,4-pentanedionate) (trade name “Aluminum Chelate D”, manufactured by Kawaken Fine Chemicals Co., Ltd., hereinafter referred to as Aluminum Chelate D) 0 .13 g and 54.4 g of propylene glycol monoethyl ether acetate (hereinafter referred to as PGMEA) were mixed and stirred at room temperature for 2 hours to obtain a gate insulating layer solution B.
  • the content of the polymer in this solution was 2000 parts by weight with respect to 100 parts by weight of the aluminum chelate D.
  • Gate Insulating Layer Solution C Except that 2.5 g of polysiloxane solution A, 13 g of indium tris (2,4-pentanedionate) (manufactured by Wako Pure Chemical Industries, Ltd.) instead of aluminum chelate D, and 49.8 g of PGMEA, In the same manner as the gate insulating layer solution B, a gate insulating layer solution C was obtained. The content of the polymer in this solution was 5 parts by weight with respect to 100 parts by weight of indium tris (2,4-pentanedionate).
  • a gate insulating layer solution F was obtained in the same manner as the gate insulating layer solution B except that 13 g of aluminum chelate D and 49.5 g of PGMEA were used. The content of the polymer in this solution was 87 parts by weight with respect to 100 parts by weight of the aluminum chelate D.
  • bifunctional epoxy acrylate monomer epoxy ester 3002A; manufactured by Kyoeisha Chemical Co., Ltd.
  • Bifunctional epoxy acrylate monomer epoxy ester 70PA; manufactured by Kyoeisha Chemical Co., Ltd.
  • GMA / St / AA 20/40/5/20/15.
  • Example 1 The n-type semiconductor element shown in FIG. 1 was produced. On the glass substrate 1 (thickness 0.7 mm), the resistance electrode method was used to vacuum deposit 5 nm of chromium and 50 nm of gold through a mask to form the gate electrode 2 of the n-type driving semiconductor element. Next, ethyl silicate 28 (trade name, manufactured by Colcoat Co., Ltd.) was spin-coated on the above substrate (2000 rpm ⁇ 30 seconds), and heat-treated at 200 ° C. for 1 hour in a nitrogen stream to thereby form a gate insulating film having a thickness of 600 nm. Layer 3 was formed.
  • ethyl silicate 28 trade name, manufactured by Colcoat Co., Ltd.
  • the source-drain current (Id) -source-drain voltage (Vsd) characteristics when the gate voltage (Vg) of the n-type drive semiconductor element was changed were measured.
  • the conductive paste A was applied by screen printing, and prebaked at 100 ° C. for 10 minutes in a drying oven. Then, after exposure using an exposure apparatus “PEM-8M”, immersion development with 0.5% Na 2 CO 3 solution for 30 seconds, rinsing with ultrapure water, and curing at 140 ° C. for 30 minutes in a drying oven The source electrode 5 and the drain electrode 6 of the n-type drive semiconductor element were formed. Next, 1 ⁇ L of the above-mentioned semiconductor solution B is dropped between the source electrode 5 and the drain electrode 6 of the n-type drive semiconductor element, air-dried at 30 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

簡便なプロセスで優れた相補型半導体素子を提供する。基材と、前記基材上にソース電極、ドレイン電極、ゲート電極、ゲート絶縁層、半導体層を備えたn型駆動半導体素子であって、前記半導体層に対して前記ゲート絶縁層と反対側に炭素原子と窒素原子の結合を含む有機化合物を含む第2絶縁層を含有し、前記半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有するn型半導体素子。

Description

n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置
 本発明は、n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置に関する。
 近年、非接触型のタグとしてRFID(Radio Frequency IDentification)技術を用いた無線通信システムの開発が進められている。RFIDシステムでは、リーダ/ライタと呼ばれる無線送受信機とRFIDタグとの間で、無線通信が行われる。
 RFIDタグは、物流管理、商品管理、万引き防止などの様々な用途での利用が期待されており、交通カードなどのICカード、商品タグなど一部で導入が始まっている。RFIDタグはICチップと、リーダ/ライタとの無線通信するためのアンテナを有している。タグ内に設置されたアンテナが、リーダ/ライタから送信される搬送波を受信し、ICチップ内の駆動回路が動作する。
 RFIDタグは、あらゆる商品で使用することが期待されている。そのためには製造コストの低減が必要であり、真空や高温を使用する製造プロセスから脱却し、塗布・印刷技術を用いたフレキシブルで安価なものが検討されている。
 例えば、ICチップ内の駆動回路には、成形性に優れた有機半導体を半導体層として用いた電界効果型トランジスタ(以下、FETという)が提案されている。有機半導体をインクとして利用することで、インクジェット技術やスクリーニング技術等により、フレキシブル基板上に直接回路パターンを形成することが可能になる。そこで、従来の無機半導体に換わり、カーボンナノチューブ(CNT)や有機半導体を用いたFETが盛んに検討されている(例えば、特許文献1参照)。
 RFIDタグ内の駆動回路は、その消費電力を抑制するなどのためp型FETとn型FETからなる相補型回路で構成するのが一般的である。しかしCNTを用いたFETは、大気中では通常p型半導体素子の特性を示すことが知られている。また有機半導体を用いたFETは単一チャネルである。このため、同一材料では相補型回路を構成できず、p型FETとn型FETで材料を別々に選択しなければならず、製造プロセスが煩雑になり、生産の効率低下と製造コストの増加という問題が生ずる。
 そこでCNTを用いたFETを真空加熱処理やイオンをドーピングしてn型半導体素子に転換すること(例えば、特許文献2、非特許文献1参照)や、両極性有機半導体材料を用いて(例えば、特許文献3~4参照)、同一材料からなる相補型回路を形成することが検討されている。
国際公開第2009/139339号 米国特許出願公開第2003/122133号明細書 特開2008-311594号公報 特開2014-116564号公報
Nano Letters.1,p.453-456(2001)
 特許文献2では、CNTに酸素またはカリウムイオンをドーピングしてn型半導体素子に転換する方法が検討されている。しかしながら、酸素は元素として分離することが難しく、カリウムイオンは取扱いが難しいという問題があった。
 非特許文献1では、CNTを用いたFETをフォトリソグラフィー技術でパターン保護した後、200℃、10時間真空加熱処理を行い、n型半導体素子に転換する方法が検討されている。しかしながら、真空状態での高温処理を長時間することが必要となり、プロセスの長時間化や製造コストの増加という問題があった。
 特許文献3では、n型FETとp型FETの各電極、絶縁層および半導体層は同一材料とし、n型FETにのみ、ゲート絶縁膜とソースおよびドレイン電極に、それぞれ分極性薄膜を形成することで、相補型回路が形成されている。しかしながら、分極性薄膜をn型FETにのみ選択的に形成するための工程の追加が必要となり、製造工程数が多くなる問題があった。
 特許文献4では、ペンタセンを半導体層に用いたn型FETの半導体層領域に接してゲート絶縁膜側に硼化ランタンを含む層領域を設けることが検討されている。しかしながら、硼化ランタン層を新たに形成することが必要となり、製造コストが増加する問題があった。
 本発明は上記課題に着目し、簡便なプロセスで優れたn型半導体素子、および相補型半導体装置を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
すなわち本発明は、
基材と、
ソース電極、ドレイン電極およびゲート電極と、
前記ソース電極およびドレイン電極と接する半導体層と、
前記半導体層を前記ゲート電極と絶縁するゲート絶縁層と、
前記半導体層に対して前記ゲート絶縁層とは反対側で前記半導体層と接する第2絶縁層と、
を備えたn型半導体素子であって、
前記半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有し、
前記第2絶縁層が、炭素原子と窒素原子の結合を含む有機化合物を含有する
n型半導体素子である。
 本発明の他の構成は、
基材と、
ソース電極、ドレイン電極およびゲート電極と、
前記ソース電極およびドレイン電極と接する半導体層と、
前記半導体層を前記ゲート電極と絶縁するゲート絶縁層と、
前記半導体層に対して前記ゲート絶縁層とは反対側で前記半導体層と接する第2絶縁層と、
を備えたn型半導体素子であって、
前記半導体層が、カーボンナノチューブを含有し、
前記第2絶縁層が、一般式(2)の構造を有する有機化合物を含有する
n型半導体素子である。
 また、本発明は以下の構成を有する。すなわち本発明は、
前記n型半導体素子と、p型半導体素子と、
を備えた相補型半導体装置であって、
前記p型半導体素子は、
基材と、
ソース電極、ドレイン電極およびゲート電極と、
前記ソース電極およびドレイン電極と接する半導体層と、
前記半導体層を前記ゲート絶縁層と絶縁するゲート絶縁層と、
を備えたp型半導体素子であって、
前記p型半導体素子の半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有する
相補型半導体装置である。
 本発明によれば、高機能なCNTを用いたn型半導体素子、高機能な相補型半導体素子、およびそれを用いた無線通信装置を簡便なプロセスで作製することができる。
本発明の実施形態の一つであるn型半導体素子を示した模式断面図 本発明の実施形態の一つであるn型半導体素子を示した模式断面図 本発明の実施形態の一つであるn型半導体素子を示した模式断面図 本発明の実施形態の一つであるn型半導体素子を示した模式断面図 本発明の実施形態の一つであるn型半導体素子の製造工程を示した断面図 本発明の実施形態の一つである相補型半導体装置を示した模式断面図 本発明の実施形態の一つである相補型半導体装置を示した模式断面図 本発明の実施形態の一つである相補型半導体装置を示した模式断面図 本発明の実施形態の一つである相補型半導体装置を示した模式断面図 p型半導体素子とn型半導体素子が同一構造でない場合の相補型半導体装置を示した模式断面図 p型半導体素子とn型半導体素子が同一構造でない場合の相補型半導体装置を示した模式断面図 本発明の相補型半導体装置の機能を説明する模式図 本発明の実施形態の一つである相補型半導体装置の製造工程を示した断面図 本発明のn型半導体素子または相補型半導体装置を用いた無線通信装置の一例を示すブロック図 折り曲げ時の電極の密着耐性の評価を行う際の模式斜視図 折り曲げ時の電極の密着耐性の評価を行う際の模式斜視図
 <n型半導体素子>
 本発明のn型半導体素子は、基材と、ソース電極、ドレイン電極およびゲート電極と、前記ソース電極およびドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層と、前記半導体層に対して前記ゲート絶縁層とは反対側で前記半導体層と接する第2絶縁層と、を備えたn型半導体素子であって、前記半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有し、前記第2絶縁層が、炭素原子と窒素原子の結合を含む有機化合物を含有する。
 また、本発明の他の実施形態によるn型半導体素子は、基材と、ソース電極、ドレイン電極およびゲート電極と、前記ソース電極およびドレイン電極と接する半導体層と、前記半導体層を前記ゲート電極と絶縁するゲート絶縁層と、前記半導体層に対して前記ゲート絶縁層とは反対側で前記半導体層と接する第2絶縁層と、を備えたn型半導体素子であって、前記半導体層が、カーボンナノチューブを含有し、前記第2絶縁層が、一般式(2)の構造を有する有機化合物を含有する。
 図1は本発明のn型半導体素子の第一の実施形態を示す模式断面図である。
絶縁性基材1の上に形成されるゲート電極2と、それを覆うゲート絶縁層3と、その上に設けられるソース電極5およびドレイン電極6と、それらの電極の間に設けられる半導体層4と、半導体層を覆う第2絶縁層8を有する。半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体、またはカーボンナノチューブ7を含み、第2絶縁層8は、炭素原子と窒素原子の結合を含む有機化合物または一般式(2)の構造を有する有機化合物を含有する。
この構造は、ゲート電極が半導体層の下側に配置され、半導体層の下面にソース電極およびドレイン電極が配置される、いわゆるボトムゲート・ボトムコンタクト構造である。
 図2は、本発明のn型半導体素子の第二の実施形態を示す模式断面図である。
絶縁性基材1の上に形成されるソース電極5およびドレイン電極6と、それらの電極の間に設けられる第2絶縁層8と、それらの電極に接する半導体層4と、半導体層4を覆うゲート絶縁層3と、その上に設けられるゲート電極2とを有する。半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体、またはカーボンナノチューブ7を含み、第2絶縁層8は、炭素原子と窒素原子の結合を含む有機化合物または一般式(2)の構造を有する有機化合物を含有する。
この構造は、ゲート電極が半導体層の上側に配置され、半導体層の下面にソース電極およびドレイン電極が配置される、いわゆるトップゲート・ボトムコンタクト構造である。
 図3は、本発明のn型半導体素子の第三の実施形態を示す模式断面図である。
絶縁性基材1の上に形成されるゲート電極2と、それを覆うゲート絶縁層3と、その上に設けられる半導体層4と、その上に形成されるソース電極5およびドレイン電極6と、それらの上に設けられる第2絶縁層8を有する。半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体、またはカーボンナノチューブ7を含み、第2絶縁層8は、炭素原子と窒素原子の結合を含む有機化合物または一般式(2)の構造を有する有機化合物を含有する。
この構造は、ゲート電極が半導体層の下側に配置され、半導体層の上面にソース電極およびドレイン電極が配置される、いわゆるボトムゲート・トップコンタクト構造である。
 図4は、本発明のn型半導体素子の第四の実施形態を示す模式断面図である。
絶縁性基材1の上に形成される第2絶縁層8と、その上に形成される半導体層4と、その上に形成されるソース電極5およびドレイン電極6と、それらを覆うゲート絶縁層3と、その上に設けられるゲート電極2とを有する。半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体、またはカーボンナノチューブ7を含み、第2絶縁層8は、炭素原子と窒素原子の結合を含む有機化合物または一般式(2)の構造を有する有機化合物を含有する。
この構造は、ゲート電極が半導体層の上側に配置され、半導体層の上面にソース電極およびドレイン電極が配置される、いわゆるトップゲート・トップコンタクト構造である。
 本発明のn型半導体素子の実施形態はこれらに限定されるものではない。また、以下の説明は、特に断りのない限り実施形態によらず共通する。
 (絶縁性基材)
 絶縁性基材は、少なくとも電極系が配置される面が絶縁性であればいかなる材質のものでもよい。例えば、シリコンウエハ、ガラス、サファイア、アルミナ焼結体等の無機材料、ポリイミド、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサン、ポリビニルフェノール(PVP)、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシレン等の有機材料などが好適に用いられる。
また、例えばシリコンウエハ上にPVP膜を形成したものやポリエチレンテレフタレート上にポリシロキサン膜を形成したものなど複数の材料が積層されたものであってもよい。
 (電極)
 ゲート電極、ソース電極およびドレイン電極に用いられる材料は、一般的に電極として使用されうる導電材料であればいかなるものでもよい。例えば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物;白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、パラジウム、モリブデン、アモルファスシリコンやポリシリコンなどの金属やこれらの合金;ヨウ化銅、硫化銅などの無機導電性物質;ポリチオフェン、ポリピロール、ポリアニリン;ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体など;ヨウ素などのドーピングなどで導電率を向上させた導電性ポリマーなど;炭素材料など;および有機成分と導電体を含有する材料などが挙げられるが、これらに限定されるものではない。
これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。
 中でも、電極の柔軟性が増し、屈曲時にも密着性が良く電気的接続が良好となる点から、有機成分と導電体を含有することが好ましい。有機成分としては、特に制限はないが、モノマー、オリゴマーもしくはポリマー、光重合開始剤、可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤、顔料などが挙げられる。電極の折り曲げ耐性向上の観点からは、オリゴマーもしくはポリマーが好ましい。
 オリゴマーもしくはポリマーとしては特に限定されず、アクリル樹脂、エポキシ樹脂、ノボラック樹脂、フェノール樹脂、ポリイミド前駆体、ポリイミドなどを用いることができるが、屈曲時の耐クラック性の観点からアクリル樹脂が好ましい。これは、アクリル樹脂のガラス転移温度は100℃以下であり、導電膜の熱硬化時に軟化し、導電体粒子間の結着が高まるためと推定される。
 アクリル樹脂とは、繰返し単位に少なくともアクリル系モノマーに由来する構造を含む樹脂である。アクリル系モノマーの具体例としては炭素-炭素二重結合を有するすべての化合物が使用可能であるが、好ましくは、
メチルアクリレート、アクリル酸、アクリル酸2-エチルヘキシル、メタクリル酸エチル、n-ブチルアクリレート、i-ブチルアクリレート、i-プロパンアクリレート、グリシジルアクリレート、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレートなどのアクリル系モノマーおよびこれらのアクリレートをメタクリレートに代えたものや;
スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン、クロロメチルスチレン、ヒドロキシメチルスチレンなどのスチレン類;γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン;
などが挙げられる。
これらアクリル系モノマーは、単独あるいは2種以上用いてもよい。
 導電体としては、一般的に電極として使用されうる導電材料であればいかなるものでもよいが、金属粒子であることが好ましい。これにより導電膜表面に凹凸が形成され、その凹凸にゲート絶縁膜が入り込むことで生じるアンカー効果によって、導電膜とゲート絶縁膜との密着性がより向上するからである。この導電膜の凹凸による導電膜とゲート絶縁膜との密着性向上によって、折り曲げ耐性や、電圧を繰り返し印加した時の電気特性における素子の信頼性がより改善する。
 金属粒子としては、具体的には、金、銀、銅、白金、鉛、錫、ニッケル、アルミニウム、タングステン、モリブデン、酸化ルテニウム、クロム、チタン、カーボン若しくはインジウムの少なくとも1種を含む金属粒子が好ましい。これらの金属粒子を単独、合金、あるいは混合粒子として用いることができる。
これらの中でも導電性の観点から金、銀、銅または白金の粒子が好ましい。中でも、コスト、安定性の観点から銀の粒子であることがより好ましい。また、導電膜の電気抵抗率低減の観点から、カーボンブラックを含むことがさらに好ましい。
 導電膜表面の凹凸の指標としては、導電膜表面の算術平均粗さ(Ra)が挙げられる。例えば、Raは5~200nmが好ましい。Raが5nm以上であることでアンカー効果が効果的に発現する。また、Raが200nm以下であることで、ピンホール欠陥の無いゲート絶縁膜を製膜することができる。ピンホール欠陥が発生しないことで、素子の短絡を防ぐことができる。
 なお、表面粗さは、表面形状測定装置や原子間力顕微鏡(AFM)で測定することができる。表面形状測定装置を用いる場合、導電膜上の任意の5箇所でRaの測定を行い、それらの平均値を採用する。AFMを用いる場合も、導電膜上の任意の5箇所でRaの測定を行い、それらの平均値を採用する。これらの測定方法は導電膜のサイズに応じて使い分けられる。いずれの方法でも測定可能な場合は、表面形状測定装置で測定した値を採用する。
 導電膜中の金属粒子の平均粒子径は0.01~5μmが好ましく、0.01~2μmがより好ましい。平均粒子径が0.01μm以上であると、粒子同士の接触確率が向上し、作製される電極の比抵抗値、および断線確率を低くすることができる。また平均粒子径が5μm以下であれば、折り曲げ耐性の高い導電膜となる。また、平均粒子径が2μm以下であれば、電極の表面平滑度、パターン精度、寸法精度がさらに向上する。
 なお、本発明において導電膜中の金属粒子の平均粒子径は、例えば電極の断面を、走査型電子顕微鏡(SEM)を用いて10000倍の倍率で観察し、得られた像から無作為に選択した粒子100個の粒子径を測長し、その平均の値を求めることにより算定することができる。粒子径とは、形状が球形の場合は、その直径が粒子径である。形状が球形以外の場合は、ある1個の粒子について電子顕微鏡で観察される最大の幅と最小の幅の平均値をその粒子の粒子径として算定する。
 導電膜中の導電体の量は、導電膜の70~95重量%の範囲内であることが好ましく、下限としては80質量%以上が、上限としては90重量%以下が、それぞれより好ましい。この範囲にあることで、導電膜の比抵抗値、および断線確率を低くすることができる。
 またゲート電極、ソース電極およびドレイン電極の幅、厚み、ソース電極5およびドレイン電極6の間隔は任意である。電極幅は10μm~10mm、厚みは0.01μm~100μm、ソース電極およびドレイン電極の間隔は1μm~1mmが好ましいが、これに限らない。
 電極の形成方法としては、抵抗加熱蒸着、電子線ビーム、スパッタリング、メッキ、CVD、イオンプレーティングコーティング、インクジェット、印刷などの公知技術を用いた方法が挙げられる。また前記有機成分および導電体を含むペーストをスピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法などの公知の技術で絶縁基板上に塗布し、オーブン、ホットプレート、赤外線などを用いて乾燥を行い形成する方法などが挙げられる。導通を取ることができれば、電極の形成方法は特に制限されない。
 また電極パターンの形成方法としては、上記方法で作製した電極薄膜を公知のフォトリソグラフィー法などで所望の形状にパターン形成してもよいし、あるいは電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターン形成してもよい。
 (ゲート絶縁層)
 ゲート絶縁層に用いられる材料は、特に限定されないが、酸化シリコン、アルミナ等の無機材料;ポリイミド、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサン、ポリビニルフェノール(PVP)等の有機高分子材料;あるいは無機材料粉末と有機材料の混合物を挙げることができる。
中でもケイ素と炭素の結合を含む有機化合物を含むものが好ましい。
 有機化合物としては、一般式(9)で表されるシラン化合物、一般式(10)で表されるエポキシ基含有シラン化合物、またはこれらの縮合物またはこれらを共重合成分とするポリシロキサン等が挙げられる。これらの中でもポリシロキサンは絶縁性が高く、低温硬化が可能であるためより好ましい。
 R14 Si(OR154-m  (9)
 ここで、R14は水素、アルキル基、複素環基、アリール基またはアルケニル基を示し、R14が複数存在する場合、それぞれのR14は同じでも異なっていてもよい。R15は水素、アルキル基、アシル基またはアリール基を示し、R15が複数存在する場合、それぞれのR15は同じでも異なっていてもよい。mは1~3の整数を示す。
 R16 17 Si(OR184-n-l  (10)
 ここで、R16は1つ以上のエポキシ基を鎖の一部に有するアルキル基を示し、R16が複数存在する場合、それぞれのR16は同じでも異なっていてもよい。R17は水素、アルキル基、複素環基、アリール基またはアルケニル基を示し、R17が複数存在する場合、それぞれのR17は同じでも異なっていてもよい。R18は水素、アルキル基、アシル基またはアリール基を示し、R18が複数存在する場合、それぞれのR18は同じでも異なっていてもよい。lは0~2の整数、nは1または2を示す。ただし、l+n≦3である。
 R14~R18におけるアルキル基、アシル基およびアリール基の説明は、後述のR19~R24での説明と同様である。
 R14およびR17における複素環基とは、例えば、ピラン環、ピペリジン環、アミド環などの炭素以外の原子を環内に有する脂肪族環から導かれる基を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は、特に限定されないが、2以上20以下の範囲が好ましい。
 R14およびR17におけるアルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は、特に限定されないが、2以上20以下の範囲が好ましい。
 R16のエポキシ基を鎖の一部に有するアルキル基とは、隣り合う2つの炭素原子が1つの酸素原子と結合して形成される3員環エーテル構造を鎖の一部に有するアルキル基を示す。これは、アルキル基において炭素が最も長く連続する部分である主鎖に含まれる隣り合う2つの炭素原子が利用される場合と、主鎖以外の部分、いわゆる側鎖に含まれる隣り合う2つの炭素原子が利用される場合のいずれも含む。
 ポリシロキサンの共重合成分として一般式(9)で表されるシラン化合物を導入することにより、可視光領域において高い透明性を保ちつつ、膜の絶縁性、耐薬品性を高め、かつ絶縁膜内のトラップが少ない絶縁膜を形成できる。
 また、一般式(9)におけるm個のR14の少なくとも1つがアリール基であると、絶縁膜の柔軟性が向上し、クラック発生が防止できるため好ましい。
 一般式(9)で表されるシラン化合物としては、具体的に、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-トリルトリメトキシシラン、ベンジルトリメトキシシラン、α-ナフチルトリメトキシシラン、β-ナフチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシシラン、オクタデシルメチルジメトキシシラン、トリメトキシシラン、トリフルオロエチルトリメトキシシラン、トリフルオロエチルトリエトキシシラン、トリフルオロエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ヘプタデカフルオロデシルトリイソプロポキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、トリフルオロエチルメチルジメトキシシラン、トリフルオロエチルメチルジエトキシシラン、トリフルオロエチルメチルジイソプロポキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルメチルジイソプロポキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、ヘプタデカフルオロデシルメチルジエトキシシラン、ヘプタデカフルオロデシルメチルジイソプロポキシシラン、トリデカフルオロオクチルメチルジメトキシシラン、トリデカフルオロオクチルメチルジエトキシシラン、トリデカフルオロオクチルメチルジイソプロポキシシラン、トリフルオロエチルエチルジメトキシシラン、トリフルオロエチルエチルジエトキシシラン、トリフルオロエチルエチルジイソプロポキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリルオロプロピルエチルジエトキシシラン、トリフルオロプロピルエチルジイソプロポキシシラン、ヘプタデカフルオロデシルエチルジメトキシシラン、ヘプタデカフルオロデシルエチルジエトキシシラン、ヘプタデカフルオロデシルエチルジイソプロポキシシラン、トリデカフルオロオクチルエチルジエトキシシラン、トリデカフルオロオクチルエチルジメトキシシラン、トリデカフルオロオクチルエチルジイソプロポキシシラン、p-トリフルオロフェニルトリエトキシシランなどが挙げられる。
 上記シラン化合物のうち、架橋密度を上げ、耐薬品性と絶縁特性を向上させるために、m=1であるビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシシラン、フェニルトリメトキシシラン、p-トリルトリメトキシシラン、ベンジルトリメトキシシラン、α-ナフチルトリメトキシシラン、β-ナフチルトリメトキシシラン、トリフルオロエチルトリメトキシシラン、トリメトキシシラン、p-トリフルオロフェニルトリエトキシシランを用いることが好ましい。また、量産性の観点から、R15がメチル基であるビニルトリメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、p-トリルトリメトキシシラン、ベンジルトリメトキシシラン、α-ナフチルトリメトキシシラン、β-ナフチルトリメトキシシラン、トリフルオロエチルトリメトキシシラン、トリメトキシシランを用いることが特に好ましい。
 また、一般式(9)で表されるシラン化合物を2種以上組み合わせることがより好ましい。中でも、アルキル基を有するシラン化合物とアリール基を有するシラン化合物を組み合わせることにより、高い絶縁性とクラック防止のための柔軟性を両立できるため、特に好ましい。
 また、一般式(10)で表されるエポキシ基含有シラン化合物としては、具体的に、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリイソプロポキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジイソプロポキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルエチルジエトキシシラン、γ-グリシドキシプロピルエチルジイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルエチルジイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-グリシドキシエチルトリメトキシシランなどが挙げられる。
 これらのうち、架橋密度を上げ、耐薬品性と絶縁特性を向上させるために、n=1、l=0であるγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、γ-グリシドキシプロピルトリイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリイソプロポキシシラン、β-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-グリシドキシエチルトリメトキシシランを用いることが好ましい。また、量産性の観点から、R18がメチル基であるγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-グリシドキシエチルトリメトキシシランを用いることが特に好ましい。
 ゲート絶縁層は、さらに金属原子と酸素原子の結合を含む金属化合物を含有することが好ましい。金属化合物は、金属原子と酸素原子の結合を含むものであれば特に制限はなく、例えば金属酸化物、金属水酸化物等が例示される。金属化合物に含まれる金属原子は、金属キレートを形成するものであれば特に限定されないが、マグネシウム、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ルテニウム、パラジウム、インジウム、ハフニウム、白金などが挙げられる。中でも、入手容易性、コスト、金属キレートの安定性の点からアルミニウムが好ましい。
 ゲート絶縁層において、炭素原子とケイ素原子の合計100重量部に対して前記金属原子が10~180重量部含まれることが好ましい。この範囲とすることで、絶縁特性をより向上させられる。
 ゲート絶縁層中の炭素原子とケイ素原子の合計100重量部に対する前記金属原子の重量比はX線光電子分光(XPS)により判定することができる。
 ゲート絶縁層の膜厚は0.05~5μmが好ましく、0.1~1μmがより好ましい。この範囲の膜厚にすることにより、均一な薄膜形成が容易になる。膜厚は、原子間力顕微鏡やエリプソメトリ法などにより測定できる。
 ゲート絶縁層の作製方法は特に制限はないが、例えば、絶縁層を形成する材料を含む組成物を基板に塗布し、乾燥することで得られたコーティング膜を必要に応じ熱処理する方法が挙げられる。塗布方法としては、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法などの公知の塗布方法が挙げられる。コーティング膜の熱処理の温度としては、100~300℃の範囲にあることが好ましい。
 ここで、例えば、(A)アルミニウムキレート、(B)重量平均分子量が1000以上のポリマー、および(C)溶媒を含有し、(A)100重量部に対して、(B)が5~90重量部含まれる組成物を基板に塗布、乾燥、熱処理することで絶縁層が形成される。前記絶縁層は、概ね、ケイ素と炭素の結合を含む有機化合物と、アルミニウム原子と酸素原子の結合を含む化合物を含み、炭素原子とケイ素原子の合計100重量部に対して前記アルミニウム原子が10~180重量部含まれる。
 なお、上述の組成物と絶縁層における原子の含有比率の関係は大まかな傾向であり、例えば金属原子の種類等によっては必ず上述の関係が満たされるわけではない。
絶縁層は単層でも複数層でもよい。また、1つの層を複数の絶縁性材料から形成してもよいし、複数の絶縁性材料を積層して複数の絶縁層を形成しても構わない。
 (CNT複合体)
 CNTの表面の少なくとも一部に共役系重合体が付着した状態とは、CNTの表面の一部、あるいは全部を共役系重合体が被覆した状態を意味する。共役系重合体がCNTを被覆できるのは、両者の共役系構造に由来するπ電子雲が重なることによって相互作用が生じるためと推測される。CNTが共役系重合体で被覆されているか否かは、被覆されたCNTの反射色が被覆されていないCNTの色から共役系重合体の色に近づくことで判断できる。定量的にはX線光電子分光(XPS)などの元素分析によって、付着物の存在とCNTに対する付着物の重量比を同定することができる。
 また、CNTへの付着のしやすさから、共役系重合体の重量平均分子量が1000以上であることが好ましい。ここで、共役系重合体とは、繰り返し単位が共役構造をとり、重合度が2以上の化合物を指す。
 CNTの表面の少なくとも一部に共役系重合体を付着させることにより、CNTの保有する高い電気的特性を損なうことなくCNTを溶液中に均一に分散することが可能になる。また、CNTが均一に分散した溶液から塗布法により、均一に分散したCNT膜を形成することが可能になる。これにより、高い半導体特性を実現できる。
 CNTに共役系重合体を付着させる方法は、(I)溶融した共役系重合体中にCNTを添加して混合する方法、(II)共役系重合体を溶媒中に溶解させ、この中にCNTを添加して混合する方法、(III)CNTを溶媒中に超音波等で予備分散させておき、そこへ共役系重合体を添加し混合する方法、(IV)溶媒中に共役系重合体とCNTを入れ、この混合系へ超音波を照射して混合する方法などが挙げられる。本発明では、いずれの方法を用いてもよく、複数の方法を組み合わせてもよい。
 共役系重合体としては、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ-p-フェニレン系重合体、ポリ-p-フェニレンビニレン系重合体などが挙げられるが、特に限定されない。上記重合体は単一のモノマーユニットが並んだものが好ましく用いられるが、異なるモノマーユニットをブロック共重合したもの、ランダム共重合したものも用いられる。また、グラフト重合したものも用いることができる。
 上記重合体の中でも本発明においては、CNTへの付着が容易であり、CNT複合体を形成しやすいポリチオフェン系重合体が好ましく使用される。環中に含窒素二重結合を有する縮合へテロアリールユニットとチオフェンユニットを繰り返し単位中に含むものがより好ましい。
 環中に含窒素二重結合を有する縮合へテロアリールユニットとしては、チエノピロール、ピロロチアゾール、ピロロピリダジン、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、ベンゾチアジアゾール、キノリン、キノキサリン、ベンゾトリアジン、チエノオキサゾール、チエノピリジン、チエノチアジン、チエノピラジンなどのユニットが挙げられる。これらの中でも特にベンゾチアジアゾールユニットまたはキノキサリンユニットが好ましい。これらのユニットを有することで、CNTと共役系重合体の密着性が増し、CNTを半導体層中により良好に分散することができる。
 さらに、上記共役系重合体として、以下の一般式(11)で表される構造を有するものが特に好ましい。
Figure JPOXMLDOC01-appb-C000005
 ここで、R19~R24は同じでも異なっていてもよく、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン原子、シアノ基、ホルミル基、カルバモイル基、アミノ基、アルキルカルボニル基、アリールカルボニル基、カルボキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基またはシリル基を示す。また、R19~R24は隣接する基同士で環構造を形成してもかまわない。Aは単結合、アリーレン基、チエニレン基を除くヘテロアリーレン基、エテニレン基、エチニレン基の中から選ばれる。lおよびmは、それぞれ0~10の整数を示し、l+m≧1である。nは2~1000の範囲を示す。l、mおよびnが2以上の場合、それぞれの繰り返し単位において、R19~R24およびAは同じでも異なっていてもよい。
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、置換基を有していても有していなくてもよい。置換基を有する場合、置換基には特に制限はなく、例えば、アルコキシ基、アリール基、ヘテロアリール基等を挙げることができ、これら置換基はさらに置換基を有していてもよい。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、1以上20以下が好ましく、より好ましくは1以上8以下である。
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、置換基を有していても有していなくてもよい。置換基を有する場合、置換基には特に制限はなく、例えば、アルキル基、アルコキシ基、アリール基、ヘテロアリール基等を挙げることができ、これら置換基はさらに置換基を有していてもよい。これら置換基に関する説明は、特にことわらない限り、以下の記載にも共通する。シクロアルキル基の炭素数は特に限定されないが、3以上20以下の範囲が好ましい。
 複素環基とは、例えば、ピラン環、ピペリジン環、アミド環などの炭素以外の原子を環内に有する脂肪族環から導かれる基を示し、置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、2以上20以下の範囲が好ましい。
 アルケニル基とは、例えば、ビニル基、アリール基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、2以上20以下の範囲が好ましい。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、置換基を有していても有していなくてもよい。シクロアルケニル基の炭素数は特に限定されないが、3以上20以下の範囲が好ましい。
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、2以上20以下の範囲が好ましい。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基など、エーテル結合の一方を脂肪族炭化水素基で置換した官能基を示し、置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、1以上20以下の範囲が好ましい。
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものであり、置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、1以上20以下の範囲が好ましい。
 アリールエーテル基とは、例えば、フェノキシ基、ナフトキシ基など、エーテル結合の一方を芳香族炭化水素基で置換した官能基を示し、置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、6以上40以下の範囲が好ましい。
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものであり、置換基を有していても有していなくてもよい。アリールチオエーテル基の炭素数は特に限定されないが、6以上40以下の範囲が好ましい。
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、アントラセニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、6以上40以下の範囲が好ましい。
 ヘテロアリール基とは、例えば、フラニル基、チオフェニル基、ベンゾフラニル基、ジベンゾフラニル基、ピリジル基、キノリニル基など、炭素以外の原子を一個または複数個環内に有する芳香族基を示し、置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は特に限定されないが、2以上30以下の範囲が好ましい。
ハロゲン原子とは、フッ素、塩素、臭素またはヨウ素を示す。
 アルキルカルボニル基とは、例えば、アセチル基、ヘキサノイル基など、カルボニル結合の一方を脂肪族炭化水素基で置換した官能基を示し、置換基を有していても有していなくてもよい。アルキルカルボニル基の炭素数は特に限定されないが、2以上20以下の範囲が好ましい。
 アリールカルボニル基とは、例えば、ベンゾイル基など、カルボニル結合の一方を芳香族炭化水素基で置換した官能基を示し、置換基を有していても有していなくてもよい。アリールカルボニル基の炭素数は特に限定されないが、7以上40以下の範囲が好ましい。
 アルコキシカルボニル基とは、例えば、メトキシカルボニル基など、カルボニル結合の一方をアルコキシ基で置換した官能基を示し、置換基を有していても有していなくてもよい。アルコキシカルボニル基の炭素数は特に限定されないが、2以上20以下の範囲が好ましい。
 アリールオキシカルボニル基とは、例えば、フェノキシカルボニル基など、カルボニル結合の一方をアリールオキシ基で置換した官能基を示し、置換基を有していても有していなくてもよい。アリールオキシカルボニル基の炭素数は特に限定されないが、7以上40以下の範囲が好ましい。
 アルキルカルボニルオキシ基とは、例えば、アセトキシ基など、エーテル結合の一方をアルキルカルボニル基で置換した官能基を示し、置換基を有していても有していなくてもよい。アルキルカルボニルオキシ基の炭素数は特に限定されないが、2以上20以下の範囲が好ましい。
 アリールカルボニルオキシ基とは、例えば、ベンゾイルオキシ基など、エーテル結合の一方をアリールカルボニル基で置換した官能基を示し、置換基を有していても有していなくてもよい。アリールカルボニルオキシ基の炭素数は特に限定されないが、7以上40以下の範囲が好ましい。
 カルバモイル基、アミノ基およびシリル基は、置換基を有していても有していなくてもよい。置換基を有する場合、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などを挙げることができ、これら置換基はさらに置換基を有していてもよい。
 隣接する基同士で互いに結合して環構造を形成する場合、前記一般式(11)で説明すると、例えば、R19とR20が互いに結合して共役または非共役の縮合環を形成する。縮合環の構成元素として、炭素以外にも窒素、酸素、硫黄、リン、ケイ素原子を含んでいてもよいし、さらに別の環と縮合してもよい。
 次に、一般式(11)のAについて説明する。アリーレン基とは2価(結合部位が2箇所)の芳香族炭化水素基を示し、無置換でも置換されていてもかまわない。置換される場合の置換基の例としては、上記アルキル基や、ヘテロアリール基、ハロゲンが挙げられる。アリーレン基の好ましい具体例としては、フェニレン基、ナフチレン基、ビフェニレン基、フェナントリレン基、アントリレン基、ターフェニレン基、ピレニレン基、フルオレニレン基、ペリレニレン基などが挙げられる。
 ヘテロアリーレン基とは2価の複素芳香環基を示し、無置換でも置換されていてもかまわない。ヘテロアリーレン基の好ましい具体例しては、ピリジレン基、ピラジレン基、キノリニレン基、イソキノリレン基、キノキサリレン基、アクリジニレン基、インドリレン基、カルバゾリレン基などに加え、ベンゾフラン、ジベンゾフラン、ベンゾチオフェン、ジベンゾチオフェン、ベンゾジチオフェン、ベンゾシロールおよびジベンゾシロールなどの複素芳香環から導かれる2価の基などが挙げられる。
 一般式(11)のlおよびmは0~10の整数を示し、l+m≧1である。構造中にチオフェンユニットを含有することでCNTとの密着性が向上し、CNTの分散性が向上することから、好ましくはlおよびmはそれぞれ1以上、さらに好ましくはl+m≧4である。また、モノマーの合成、およびその後の重合の容易さからl+m≦12が好ましい。
 nは、共役系重合体の重合度を表しており、2~1000の範囲である。CNTへの付着のしやすさを考慮して、nは3~500の範囲が好ましい。本発明において、重合度nは、重量平均分子量から求めた値である。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて測定し、ポリスチレンの標準試料を用いて換算して求める。
 また、CNT複合体の形成のしやすさから、共役系重合体は溶媒に可溶であることが好ましく、R19~R24の少なくとも一つがアルキル基であることが好ましい。
 共役系重合体としては、下記のような構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 また、共役系重合体は、公知の方法により合成することができる。例えば、チオフェン同士を連結する方法としては、ハロゲン化チオフェンとチオフェンボロン酸またはチオフェンボロン酸エステルをパラジウム触媒下でカップリングする方法、ハロゲン化チオフェンとチオフェングリニヤール試薬をニッケルまたはパラジウム触媒下でカップリングする方法が挙げられる。また、他のユニットとチオフェンユニットを連結する場合も、ハロゲン化した他のユニットとチオフェンユニットとを、同様の方法でカップリングすることができる。また、そのようにして得られたモノマーの末端に重合性官能基を導入し、パラジウム触媒やニッケル触媒下で重合を進行させることで共役系重合体を得ることができる。
 共役系重合体は、合成過程で使用した原料や副生成物などの不純物を除去することが好ましい。不純物を除去する方法としては、例えば、シリカゲルカラムグラフィー法、ソクスレー抽出法、ろ過法、イオン交換法、キレート法などを用いることができる。これらの方法を2種以上組み合わせてもよい。
 CNTとしては、1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT、2枚のグラフェン・シートが同心円状に巻かれた2層CNT、複数のグラフェン・シートが同心円状に巻かれた多層CNTのいずれを用いてもよいが、高い半導体特性を得るためには単層CNTを用いるのが好ましい。CNTは、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等により得ることができる。
 また、CNTは半導体型CNTを80重量%以上含むことがより好ましい。さらに好ましくは半導体型CNTを95重量%以上含むことである。半導体型80重量%以上のCNTを得る方法としては、既知の方法を用いることができる。例えば、密度勾配剤の共存下で超遠心する方法、特定の化合物を選択的に半導体型もしくは金属型CNTの表面に付着させ、溶解性の差を利用して分離する方法、電気的性質の差を利用し電気泳動等により分離する方法などが挙げられる。半導体型CNTの含有率を測定する方法としては、可視-近赤外吸収スペクトルの吸収面積比から算出する方法や、ラマンスペクトルの強度比から算出する方法等が挙げられる。
 本発明において、CNTを半導体素子の半導体層に用いる場合、CNTの長さは、ソース電極とドレイン電極間の距離よりも短いことが好ましい。CNTの平均長さは、ソース電極とドレイン電極間距離にもよるが、好ましくは2μm以下、より好ましくは1μm以下である。
 CNTの平均長さとは、ランダムにピックアップした20本のCNTの長さの平均値を言う。CNT平均長さの測定方法としては、原子間力顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡等で得た画像の中から、20本のCNTをランダムにピックアップし、それらの長さの平均値を得る方法が挙げられる。
 一般に市販されているCNTは長さに分布があり、電極間距離よりも長いCNTが含まれることがあるため、CNTをソース電極とドレイン電極間距離よりも短くする工程を加えることが好ましい。例えば、硝酸、硫酸などによる酸処理、超音波処理、または凍結粉砕法などにより、CNTを短繊維状にカットする方法が有効である。またフィルターによる分離を併用することは、CNTの純度を向上させる点でさらに好ましい。
また、CNTの直径は特に限定されないが、1nm以上100nm以下が好ましく、より好ましくは50nm以下である。
 本発明では、CNTを溶媒中に均一分散させ、分散液をフィルターによってろ過する工程を設けることが好ましい。フィルター孔径よりも小さいCNTを濾液から得ることで、一対の電極間距離よりも短いCNTを効率よく得られる。この場合、フィルターとしてはメンブレンフィルターが好ましく用いられる。ろ過に用いるフィルターの孔径は、一対の電極間距離よりも小さければよく、0.5~10μmが好ましい。
他にCNTを短小化する方法として、酸処理、凍結粉砕処理などが挙げられる。
 (半導体層)
 半導体層は、前記CNT複合体またはカーボンナノチューブを含有する。半導体層は電気特性を阻害しない範囲であれば、さらに有機半導体や絶縁材料を含んでもよい。また半導体層中の1μm当たりに存在する上記CNT複合体またはカーボンナノチューブの総長さが1μm~50μmであることが好ましい。総長さがこの範囲内であると、FETの抵抗が低くなるので好ましい。半導体層中の1μm当たりに存在する上記CNT複合体またはカーボンナノチューブの総長さとは、半導体層中の任意の1μm内に存在するCNT複合体またはカーボンナノチューブの長さの総和を言う。CNT複合体またはカーボンナノチューブの総長さの測定方法としては、原子間力顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡等で得た半導体層の画像の中から任意の1μmを選択し、その領域に含まれる全てのCNT複合体またはカーボンナノチューブの長さを測定して合計する方法が挙げられる。
 半導体層の膜厚は1nm以上100nm以下が好ましい。この範囲内にあることで、均一な薄膜形成が容易になる。より好ましくは1nm以上50nm以下、さらに好ましくは1nm以上20nm以下である。膜厚は、原子間力顕微鏡やエリプソメトリ法などにより測定できる。
 半導体層の形成方法としては、抵抗加熱蒸着、電子線ビーム、スパッタリング、CVDなど乾式の方法を用いることも可能であるが、製造コストや大面積への適合の観点から塗布法を用いることが好ましい。具体的には、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法などを好ましく用いることができ、塗膜厚み制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択できる。また、形成した塗膜に対して、大気下、減圧下または窒素やアルゴン等の不活性ガス雰囲気下でアニーリング処理を行ってもよい。
 (第2絶縁層)
 第2絶縁層は、半導体層に対してゲート絶縁層と反対側に形成される。半導体層に対してゲート絶縁層と反対側とは、例えば、半導体層の上側にゲート絶縁層を有する場合は半導体層の下側を指す。第2絶縁層を形成することにより半導体層を保護することもできる。
 前記第2絶縁層は、炭素原子と窒素原子の結合を含む有機化合物を含有する。そのような有機化合物としてはいかなる有機化合物でもよいが、例えば、アミド系化合物、イミド系化合物、ウレア系化合物、アミン系化合物、イミン系化合物、アニリン系化合物、ニトリル系化合物などを挙げることができる。
 アミド系化合物としては、ポリアミド、ホルムアミド、アセトアミド、ポリ-N-ビニルアセトアミド、N,N-ジメチルホルムアミド、アセトアニリド、ベンズアニリド、N-メチルベンズアニリド、スルホンアミド、ナイロン、ポリビニルピロリドン、N-メチルピロリドン、ポリビニルポリピロリドン、β-ラクタム、γ-ラクタム、δ-ラクタム、ε-カプロラクタムなどが挙げられる。
イミド系化合物としては、ポリイミド、フタルイミド、マレイミド、アロキサン、スクシンイミドなどが挙げられる。
 ウレア系化合物としては、ウラシル、チミン、尿素、アセトヘキサミドなどが挙げられる。
 アミン系化合物としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、シクロヘキシルアミン、メチルシクロヘキシルアミン、ジメチルシクロヘキシルアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン、シクロオクチルアミン、シクロデシルアミン、シクロドデシルアミン、1-アザビシクロ[2.2.2]オクタン(キヌクリジン)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)、ポリ(メラミン-co-ホルムアルデヒド)、テトラメチルエチレンジアミン、ジフェニルアミン、トリフェニルアミン、フェニルアラニンなどが挙げられる。
 イミン系化合物としては、エチレンイミン、N-メチルヘキサン-1-イミン、N-メチル-1-ブチル-1-ヘキサンイミン、プロパン-2-イミン、メタンジイミン、N-メチルエタンイミン、エタン-1,2-ジイミンなどが挙げられる。
 アニリン系化合物としては、アニリン、メチルアミノ安息香酸などが挙げられる。
 ニトリル系化合物としては、アセトニトリル、アクリロニトリルなどが挙げられる。その他の化合物としてはポリウレタン、アラントイン、2-イミダゾリジノン、1,3-ジメチル-2-イミダゾリジノン、ジシアンジアミジン、シトルリン、ピペリジン、イミダゾール、ピリミジン、ジュロリジン、ポリ(メラミン-co-ホルムアルデヒド)などを挙げることができるが、これらに限定されるものではない。
 これらの中でも、n型半導体素子の特性向上の観点からは、第2絶縁層は、以下の一般式(1)または(2)から選ばれる一種類以上を含む化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000018
(R~Rは、それぞれ独立して、水素原子、炭素原子、窒素原子、酸素原子、ケイ素原子、リン原子および硫黄原子から選ばれる一種類以上の原子により構成される基を示す。XおよびXは、それぞれ独立して、下記一般式(3)~(8)で表されるいずれかの基を示す。)
Figure JPOXMLDOC01-appb-C000019
(R~R13は、それぞれ独立して、水素原子、炭素原子、窒素原子、酸素原子、ケイ素原子、リン原子および硫黄原子から選ばれる一種類以上の原子により構成される基を示す。)
 さらに、一般式(1)~(8)のR~R13は、材料の入手性の観点から、炭化水素基であることが好ましい。
 中でも、第2絶縁層は、FETの保存安定性の観点から、環構造を含有する化合物を含むことが好ましい。特に環構造を有するアミン系化合物、または、一般式(1)および(2)が、式中に記載の窒素原子をヘテロ原子として含む環構造を含有する化合物であることが、より好ましい。環構造を有するアミン系化合物としては、シクロヘキシルアミン、メチルシクロヘキシルアミン、ジメチルシクロヘキシルアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン、シクロオクチルアミン、シクロデシルアミン、シクロドデシルアミン、アニリン、ジフェニルアミン、トリフェニルアミンなどが挙げられる。窒素原子をヘテロ原子として含む環構造を含有する化合物としては、ポリビニルピロリドン、N-メチルピロリドン、ポリビニルポリピロリドン、β-ラクタム、γ-ラクタム、δ-ラクタム、ε-カプロラクタム、ポリイミド、フタルイミド、マレイミド、アロキサン、スクシンイミド、ウラシル、チミン、2-イミダゾリジノン、1,3-ジメチル-2-イミダゾリジノン、キヌクリジン、DBU、DBN、TBD、MTBD、ピペリジン、イミダゾール、ピリミジン、ジュロリジンなどが挙げられる。
 また、第2絶縁層は、アミジン化合物およびグアニジン化合物を含有することが、さらに好ましい。アミジン化合物としては、DBU、DBN、グアニジン化合物としては、TBD、MTBDなどが挙げられる。これらの化合物は、電子供与性が高く、CNTを用いたFETのn型半導体素子としての性能がさらに向上するため好ましい。
 第2絶縁層の膜厚は、50nm以上であることが好ましく、100nm以上であることがより好ましい。また、10μm以下であることが好ましく、3μm以下であることがより好ましい。この範囲の膜厚にすることにより、均一な薄膜形成が容易になる。膜厚は、原子間力顕微鏡やエリプソメトリ法などにより測定できる。
 第2絶縁層は単層でも複数層でもよい。また、1つの層を複数の絶縁性材料から形成してもよいし、複数の絶縁性材料を積層して形成しても構わない。
 第2絶縁層の形成方法としては、特に限定されず、抵抗加熱蒸着、電子線ビーム、スパッタリング、CVDなど乾式の方法を用いることも可能であるが、製造コストや大面積への適合の観点から塗布法を用いることが好ましい。塗布法として、具体的には、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法、ドロップキャスト法などを好ましく用いることができる。塗膜厚み制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択できる。
 塗布法を用いて第2絶縁層を形成するに際して、第2絶縁層に用いられる絶縁材料を溶解させる溶媒としては、特に制限されないが、エチレングリゴールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールエチルメチルエーテル等のエーテル類;エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン等のケトン類;ブチルアルコール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコール等のアルコール類;トルエン、キシレン等の芳香族炭化水素類が挙げられる。
 これらを2種以上用いてもよい。中でも、1気圧における沸点が110~200℃の溶剤を含有することが好ましい。沸点が110℃以上であれば、溶液塗布時に溶剤の揮発が抑制されて、塗布性が良好となる。沸点が200℃以下であれば、絶縁膜中に残存する溶剤が少なく、より良好な耐熱性や耐薬品性を有する絶縁層が得られる。また、形成した塗膜に対して、大気下、減圧下または窒素やアルゴン等の不活性ガス雰囲気下でアニーリング処理を行ってもよい。
 このようにして形成されたn型半導体素子は、ソース電極とドレイン電極との間に流れる電流(ソース・ドレイン間電流)を、ゲート電圧を変化させることによって制御することができ、その移動度は、下記の(a)式を用いて算出することができる。
 μ=(δId/δVg)L・D/(W・εr・ε・Vsd)   (a)
 ただしIdはソース・ドレイン間電流(A)、Vsdはソース・ドレイン間電圧(V)、Vgはゲート電圧(V)、Dはゲート絶縁層の厚み(m)、Lはチャネル長(m)、Wはチャネル幅(m)、εrはゲート絶縁層の比誘電率、εは真空の誘電率(8.85×10-12F/m)である。
 また、しきい値電圧は、Id-Vgグラフにおける線形部分の延長線とVg軸との交点から求めることができる。
 n型半導体素子の特性は、ゲート電極にしきい値電圧以上の正の電圧が印加されることでソース-ドレイン間が導通することで動作するものであり、例えばしきい値電圧の絶対値が小さく、移動度が高いものが、高機能な特性の良いn型半導体素子となる。
 (n型半導体素子の製造方法)
 n型半導体素子の製造方法は特に制限はないが、n型半導体素子の半導体層を塗布および乾燥して形成する工程を含むことが好ましい。さらに、炭素原子と窒素原子の結合を含む有機化合物を含有する組成物を塗布および乾燥してn型駆動半導体素子の第2絶縁層を形成する工程を含むことが好ましい。
 以下、図5に示す実施形態に係るn型半導体素子の製造方法を例に、具体的に説明する。まず、図5(a)に示すように、絶縁性基材1上にゲート電極2を前述の方法で形成する。次に図5(b)に示すようにケイ素原子と炭素原子の結合を含む有機化合物を塗布および乾燥して、ゲート絶縁層3を形成する。次に図5(c)に示すように、ゲート絶縁層3の上部にソース電極5およびドレイン電極6を、同一の材料を用いて前述の方法で同時に形成する。次に図5(d)に示すように、ソース電極5とドレイン電極6間に半導体層4を前述の方法で形成する。次に図5(e)に示すように、半導体層4を覆うように第2絶縁層8を前述の方法で形成することによりn型半導体素子を作製できる。
 <相補型半導体装置>
 本発明の相補型半導体装置は前記n型半導体素子、およびp型半導体素子の両方を備えている。p型半導体素子は、基材と、ソース電極、ドレイン電極およびゲート電極と、前記ソース電極およびドレイン電極と接する半導体層と、前記半導体層を前記ゲート絶縁層と絶縁するゲート絶縁層と、を備え、前記半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有する
 図6は、本発明の相補型半導体装置の第一の実施形態を示す模式断面図である。
絶縁性基材1の表面に、p型半導体素子10と、本発明のn型半導体素子20が形成されている。p型半導体素子は、絶縁性基材1の上に形成されるゲート電極2と、それを覆うゲート絶縁層3と、その上に設けられるソース電極5およびドレイン電極6と、それらの電極の間に設けられる半導体層4とを有する。各半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体7を含む。
この構造は、ゲート電極が半導体層の下側に配置され、半導体層の下面にソース電極およびドレイン電極が配置される、いわゆるボトムゲート・ボトムコンタクト構造である。
 図7は、本発明の相補型半導体装置の第二の実施形態を示す模式断面図である。
絶縁性基材1の表面に、p型半導体素子30と、本発明のn型半導体素子40が形成されている。p型半導体素子は、絶縁性基材1の上に形成されるソース電極5およびドレイン電極6と、それらの電極の間に設けられる半導体層4と、それらを覆うゲート絶縁層3と、その上に設けられるゲート電極2とを有する。各半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体7を含む。
この構造は、ゲート電極が半導体層の上側に配置され、半導体層の下面にソース電極およびドレイン電極が配置される、いわゆるトップゲート・ボトムコンタクト構造である。
 図8は、本発明の相補型半導体装置の第三の実施形態を示す模式断面図である。
絶縁性基材1の表面に、p型半導体素子50と、本発明のn型半導体素子60が形成されている。p型半導体素子は、絶縁性基材1の上に形成されるゲート電極2と、それを覆うゲート絶縁層3と、その上に設けられる半導体層4と、その上に形成されるソース電極5およびドレイン電極6とを有する。各半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体7を含む。
この構造は、ゲート電極が半導体層の下側に配置され、半導体層の上面にソース電極およびドレイン電極が配置される、いわゆるボトムゲート・トップコンタクト構造である。
 図9は、本発明の相補型半導体装置の第四の実施形態を示す模式断面図である。
絶縁性基材1の表面に、p型半導体素子70と、本発明のn型半導体素子80が形成されている。p型半導体素子は、絶縁性基材1の上に形成される半導体層4と、その上に形成されるソース電極5およびドレイン電極6と、それらを覆うゲート絶縁層3と、その上に設けられるゲート電極2とを有する。各半導体層4は、表面の少なくとも一部に共役系重合体が付着したカーボンナノチューブ複合体7を含む。
この構造は、ゲート電極が半導体層の上側に配置され、半導体層の上面にソース電極およびドレイン電極が配置される、いわゆるトップゲート・トップコンタクト構造である。
 本発明の相補型半導体装置の実施形態はこれらに限定されるものではなく、図6~図9に例示されたp型半導体素子とn型半導体素子の各1種以上を適宜組み合わせて用いられたものであってもよい。例えば図6中のp型半導体素子10と図7中のn型半導体素子40を含む相補型半導体装置や、図8中のp型半導体素子50と図9中のn型半導体素子80を含む相補型半導体装置などであってもよい。
 また、p型半導体素子とn型半導体素子は、その本質的な機能を損なわない範囲で、図6~図9に例示された構造以外の構造のものであってもよい。
なお、p型半導体素子はゲート電極にしきい値電圧以下の負の電圧が印加されるとソース-ドレイン間が導通することで動作し、n型半導体素子とは、動作が異なる。
また、前記p型半導体素子は、半導体層に対して基材と反対側に第2の絶縁層を形成されることが好ましい。第2の絶縁層を形成することによって、半導体層を酸素や水分などの外部環境から保護することが可能となるからである。
 p型半導体素子のソース電極およびドレイン電極、ならびに前記n型半導体素子のソース電極およびドレイン電極はすべて同一材料から構成されることが好ましい。材料種類が少なくなり、これらの電極を同一工程で作製することも可能となるからである。
各電極が同一材料から構成されるとは、各電極に含まれる元素の中で最も含有モル比率が高い元素が同一であることをいう。電極中の元素の種類と含有比率は、X線光電子分光(XPS)や二次イオン質量分析法(SIMS)などの元素分析によって、同定することができる。
 また、p型半導体素子のゲート絶縁層とn型半導体素子のゲート絶縁層が同一材料からなることが、材料種類が少なくなり同一工程での作製も可能なるため、好ましい。
これらの絶縁層が同一材料からなるとは、各絶縁層を構成する組成物中に1モル%以上含まれる元素の種類および組成比が同じであることをいう。元素の種類および組成比が同じであるか否かは、X線光電子分光(XPS)や二次イオン質量分析法(SIMS)などの元素分析によって、同定することができる。
 p型半導体素子とn型半導体素子は材料種類が少なくなり同一工程での作製も可能なるため、同一構造であることが好ましい。同一構造とは、本発明では基材上に形成される層および電極の形成順番、層数が同じであることをいう。p型半導体素子とn型半導体素子が同一構造であることで、p型半導体素子とn型半導体素子を同時に製造するプロセスが簡便となり、生産効率も良くなる。
 図6~図9に示す相補型半導体装置は、いずれもp型半導体素子とn型半導体素子が同一構造である場合の例である。逆に、p型半導体素子とn型半導体素子が同一構造でない場合とは、以下のようなものが挙げられる。図6中のp型半導体素子10と図7中のn型駆動半導体素子40を含む相補型半導体装置:ここでは、各半導体素子に含まれる電極や層の構成順序が異なる。
 図10に示すような、p型駆動半導体素子15とn型駆動半導体素子25のうちのいずれか一方(図10ではn型駆動半導体素子25)のみに付加的な層9aを有する相補型半導体素子:ここでは、各半導体素子に含まれる電極や層の構成が異なる。
 図11に示すような、p型半導体素子35とn型半導体素子45のうちのいずれか一方(図11ではn型駆動半導体素子45)の半導体層のみにドーピング領域9bを設ける相補型半導体装置:ここでは、半導体層のドーピング領域の有無の点で両者の構成が異なる。
 次に本発明の相補型半導体素子を構成するp型半導体素子の部材について詳細に説明する。以下の説明は、特に断りのない限り実施形態によらず共通する。 
 (絶縁性基材)
 絶縁性基材は、少なくとも電極系が配置される面が絶縁性であればいかなる材質のものでもよく、前記n型半導体素子と同一材料から構成されることが好ましい。
 (電極)
 ゲート電極、ソース電極およびドレイン電極に用いられる材料は、一般的に電極として使用されうる導電材料であればいかなるものでもよく、前記n型半導体素子と同一材料から構成されることが好ましい。
 (ゲート絶縁層)
 ゲート絶縁層に用いられる材料は、特に限定されないが、酸化シリコン、アルミナ等の無機材料;ポリイミド、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサン、ポリビニルフェノール(PVP)等の有機高材料;あるいは無機材料粉末と有機材料の混合物を挙げることができ、前記n型半導体素子と同一材料から構成されることが好ましい。
 (半導体層)
 半導体層は、前記n型半導体素子の半導体層同様、CNT複合体を含有する。半導体層はCNT複合体の電気特性を阻害しない範囲であれば、さらに有機半導体や絶縁材料を含んでもよく、前記n型半導体素子と同一材料から構成されることが好ましい。
 (第2絶縁層)
 本発明では、p型半導体素子の半導体層に対して基材と反対側に第2絶縁層を形成してもよい。第2絶縁層を形成することによって、半導体層を酸素や水分などの外部環境から保護することができる。
 第2絶縁層に用いられる材料としては、特に限定されないが、具体的には酸化シリコン、アルミナ等の無機材料;ポリイミドやその誘導体、ポリビニルアルコール、ポリビニルクロライド、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリシロキサンやその誘導体、ポリビニルフェノールやその誘導体等などの有機高分子材料;あるいは無機材料粉末と有機高分子材料の混合物や有機低分子材料と有機高分子材料の混合物を挙げることができる。
 これらの中でも、インクジェット等の塗布法で作製できる有機高分子材料を用いることが好ましい。特に、ポリフルオロエチレン、ポリノルボルネン、ポリシロキサン、ポリイミド、ポリスチレン、ポリカーボネートおよびこれらの誘導体、ポリアクリル酸誘導体、ポリメタクリル酸誘導体、およびこれらを含む共重合体からなる群より選ばれる有機高分子材料を用いることが、絶縁層の均一性の観点から好ましい。ポリアクリル酸誘導体、ポリメタクリル酸誘導体、またはこれらを含む共重合体が特に好ましい。
 第2絶縁層の膜厚は、一般的には50nm~10μm、好ましくは100nm~3μmである。第2絶縁層は単層でも複数層でもよい。また、1つの層を複数の絶縁性材料から形成してもよいし、複数の絶縁性材料を積層して形成しても構わない。
 第2絶縁層の形成方法としては、特に限定されず、抵抗加熱蒸着、電子線ビーム、スパッタリング、CVDなど乾式の方法を用いることも可能であるが、製造コストや大面積への適合の観点から塗布法を用いることが好ましい。塗布法として、具体的には、スピンコート法、ブレードコート法、スリットダイコート法、スクリーン印刷法、バーコーター法、鋳型法、印刷転写法、浸漬引き上げ法、インクジェット法、ドロップキャスト法などを好ましく用いることができる。塗膜厚み制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択できる。
 第2絶縁層に用いられる絶縁材料を溶解させる溶媒としては、特に制限されないが、エチレングリゴールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールエチルメチルエーテル等のエーテル類;エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン等のケトン類;ブチルアルコール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコール等のアルコール類;トルエン、キシレン等の芳香族炭化水素類が挙げられる。これらを2種以上用いてもよい。
 中でも、1気圧における沸点が110~200℃の溶剤を含有することが好ましい。沸点が110℃以上であれば、溶液塗布時に溶剤の揮発が抑制されて、塗布性が良好となる。沸点が200℃以下であれば、絶縁膜中に残存する溶剤が少なく、より良好な耐熱性や耐薬品性を有する絶縁層が得られる。また、形成した塗膜に対して、大気下、減圧下または窒素やアルゴン等の不活性ガス雰囲気下でアニーリング処理を行ってもよい。
 (相補型半導体装置の特性)
 前記n型半導体素子、および前記p型半導体素子を組み合わせて作製した相補型半導体装置の等価回路を図12に示す。
 相補型半導体装置の動作を以下に示す。
まず、入力信号(Vin)は、ロー “L”(接地電位GND)とハイ “H”(VDD)との間で変化する。入力信号が“L”の場合、p型FETが導通し、n型FETが遮断されることにより、出力信号が“H”になる。逆に、入力信号が“H”の場合、n型FFTが導通し、p型FFTが遮断されることにより、出力信号が“L”になる。
 例えば、n型FETのしきい値電圧が大きいと、入力信号が“H”の時に、n型FFTが完全に導通せず、出力信号が“L”にならない。
また、相補型半導体装置は、入力信号の変化に対する、出力信号の変化(ゲイン)は移動度と相関しており、ゲインが大きい相補型半導体装置が高性能である。
そのため、相補型半導体装置の特性は、例えばp型半導体素子およびn型半導体素子それぞれのしきい値電圧の絶対値が小さく、移動度が高いものが、消費電力が低く高機能な特性の良い相補型半導体装置となる。
 (相補型半導体装置の製造方法)
 相補型半導体装置の製造方法は特に制限はない。各半導体素子を構成する電極や絶縁層の形成方法は前述の通りであり、その順序を適宜選択することで、例えば図6~図9に示されたような相補型半導体装置を製造することができる。
製造コスト、プロセス簡便性の観点から、p型半導体素子とn型半導体素子を別々に形成するのではなく、同時に形成することが好ましい。そのため、p型半導体素子とn型半導体素子が同一構造であることが好ましい。
 相補型半導体装置の製造方法は、p型半導体素子の半導体層と、n型半導体素子の半導体層を、それぞれ塗布および乾燥して形成する工程を含むことが好ましい。さらに以下の製造工程を含むことがより好ましい。
(1)p型半導体素子のソース電極およびドレイン電極と、n型半導体素子のソース電極およびドレイン電極と、を同一工程で形成する工程; 
(2)ケイ素原子と炭素原子の結合を含む化合物を含有する組成物を塗布および乾燥して、前記p型半導体素子のゲート絶縁層と、前記n型半導体素子のゲート絶縁層と、を同一工程で形成する工程; 
(3)前記p型半導体素子の半導体層と、前記n型半導体素子の半導体層と、を同一工程で形成する工程。
 ここで、2つの電極や層を同一工程で形成するとは、その電極や層の形成に必要なプロセスを1回行うことで、2つの電極や層をともに形成することをいう。
これらの工程はいずれも、p型半導体素子とn型半導体素子の構造が異なる場合であっても適用可能であるが、それらが同一構造である場合の方が適用が容易である。
 以下、第一の実施形態に係る相補型半導体装置の製造方法を例に、具体的に説明する。まず、図13(a)に示すように、絶縁性基材1上のp型半導体素子領域10にゲート電極2を、n型半導体素子領域20にゲート電極2を、前述の方法で形成する。
次に図13(b)に示すようにケイ素原子と炭素原子の結合を含む化合物を塗布および乾燥して、p型半導体素子領域10およびn型半導体素子領域20にゲート絶縁層3を形成する。
次に図13(c)に示すようにp型半導体素子領域10およびn型半導体素子領域20のゲート絶縁層3の上部にソース電極5およびドレイン電極6を、同一の材料を用いて前述の方法で同時に形成する。
次に図13(d)に示すようにp型半導体素子領域10およびn型半導体素子領域20のソース電極5とドレイン電極6間それぞれに半導体層4を前述の方法で形成する。
次に図13(e)に示すように、n型半導体素子の半導体層4を覆うように第2絶縁層8を前述の方法で形成することにより相補型半導体装置を作製できる。
 なお、材料の使用効率向上、材料種類が少なくなることから、p型駆動半導体素子領域10のゲート電極2とn型駆動半導体素子領域20のゲート電極2は同一材料であることが好ましい。同様の理由でp型駆動半導体素子領域10の半導体層4とn型駆動半導体素子領域20の半導体層4は同一材料であることが好ましい。
 <無線通信装置>
 次に、本発明のn型半導体素子、または相補型半導体装置を含有する無線通信装置について説明する。この無線通信装置は、例えばRFIDのような、リーダ/ライタに搭載されたアンテナから送信される搬送波をRFIDタグが受信することで電気通信を行う装置である。具体的な動作は、例えばリーダ/ライタに搭載されたアンテナから送信された無線信号を、RFIDタグのアンテナが受信し、整流回路により直流電流に変換されRFIDタグが起電する。次に、起電されたRFIDタグは、無線信号からコマンドを受信し、コマンドに応じた動作を行う。その後、コマンドに応じた結果の回答をRFIDタグのアンテナからリーダ/ライタのアンテナへ無線信号を送信する。なお、コマンドに応じた動作は少なくとも公知の復調回路、動作制御ロジック回路、変調回路で行われる。
 本発明の無線通信装置は、上述のn型半導体素子、または相補型半導体装置と、アンテナと、を少なくとも有するものである。より具体的な構成としては、例えば図14に示すように、アンテナ50で受信した外部からの変調波信号の整流を行い各部に電源を供給する電源生成部、上記変調波信号を復調して制御回路へ送る復調回路、制御回路から送られたデータを変調してアンテナに送り出す変調回路、復調回路で復調されたデータの記憶回路への書込みおよび記憶回路からデータを読み出して変調回路への送信を行う制御回路で構成され、各回路部が電気的に接続された無線通信装置が挙げられる。前記復調回路、制御回路、変調回路、記憶回路は上述のn型半導体素子、または相補型半導体装置から構成され、さらにコンデンサ、抵抗素子、ダイオードを含んでいても良い。なお前記記憶回路は、さらにEEPROM(Electrically Erasable Programmable Read-Only Memory)、FeRAM(Ferroelectric Randam Access Memory)等の不揮発性の書換え可能な記憶部を有している。なお、前記電源生成部はコンデンサ、ダイオードから構成される。
 アンテナ、コンデンサ、抵抗素子、ダイオード、不揮発性の書き換え可能な記憶部は一般的に使用されるものであればよく、用いられる材料、形状は特に限定はされない。またそれぞれを電気的に接続する材料も、一般的に使用されうる導電材料であればいかなるものでもよい。接続方法も電気的に導通を取ることができれば、いかなる方法でもよく、接続部の幅、厚みは任意である。
 <商品タグ>
 次に、本発明の無線通信装置を含有する商品タグについて説明する。この商品タグは、例えば基体と、この基体によって被覆された上記無線通信装置を有している。
 基体は、例えば、平板状に形成された紙などの非金属材料によって形成されている。例えば、基体は2枚の平板状の紙を貼り合わせた構造をしており、この2枚の紙の間に上記無線通信装置が配置されている。上記無線記憶装置の記憶回路に、例えば商品を個体識別する個体識別情報が予め格納されている。
 この商品タグとリーダ/ライタとの間で、無線通信を行う。リーダ/ライタとは、無線により商品タグに対するデータの読み取りおよび書き込みを行う装置であり、商品の流通過程や決済時に、商品タグとデータのやり取りを行うものである。例えば、携帯型のものや、レジに設置される固定型のものがある。リーダ/ライタは公知のものが利用できる。
 具体的には、この商品タグは個体識別情報の送信を要求する所定のリーダ/ライタからのコマンドに応じ、記憶している個体識別情報を無線により返信する識別情報返信機能を備えている。これにより、例えば商品の精算レジにおいて、非接触で多数の商品を同時に識別することが可能となり、バーコードでの識別と比較すると決済処理の容易化や迅速化を図ることができる。
 例えば、商品の会計の際には、リーダ/ライタが商品タグから読み取った商品情報をPOS(Point of sale system、販売時点情報管理)端末に送信すると、POS端末においてその商品情報によって特定される商品の販売登録がなされるといったことが可能となる。
 以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。実施例中における各評価法を以下の(1)~(3)で説明する。
 (1)重量平均分子量測定
 ポリマーの重量平均分子量はサンプルを孔径0.45μmメンブレンフィルターで濾過後、GPC(GEL PERMEATION CHROMATOGRAPHY:ゲル浸透クロマトグラフィー、東ソー(株)製HLC-8220GPC)(展開溶剤:テトラヒドロフラン、展開速度:0.4ml/分)を用いてポリスチレン換算により求めた。
 (2)元素分析
 測定対象の膜に超高真空中において軟X線を照射し、表面から放出される光電子を検出するX線光電子分光(PHI社製 Quantera SXM)により膜中の元素情報、元素量を分析した。
 (3)電極の密着性評価
 図15を参照して説明する。n型半導体素子を形成した基板101について、n型半導体素子を形成した面上の中央部に直径30mmの金属円柱100を固定し、この円柱に沿って、円柱の抱き角0°(サンプルが平面の状態)の状態に置き(図15A参照)、円柱への抱き角が180°(円柱で折り返した状態)となる範囲(図15B参照)で、折り曲げ動作を行った。耐屈曲性は、曲げ動作前後のn型半導体素子パターンを光学顕微鏡で観察し、剥がれ、欠けの有無を確認した。
 半導体溶液の作製例1;半導体溶液A
 ポリ(3-ヘキシルチオフェン)(P3HT)(アルドリッチ(株)製)2.0mgのクロロホルム10ml溶液にCNT1(CNI社製、単層CNT、純度95%)を1.0mg加え、氷冷しながら超音波ホモジナイザー(東京理化器械(株)製VCX-500)を用いて出力20%で4時間超音波撹拌し、CNT分散液A(溶媒に対するCNT複合体濃度0.96g/l)を得た。
 次に、半導体層を形成するための半導体溶液の作製を行った。上記CNT分散液Aをメンブレンフィルター(孔径10μm、直径25mm、ミリポア社製オムニポアメンブレン)を用いてろ過を行い、長さ10μm以上のCNT複合体を除去した。得られた濾液にo-DCB(和光純薬工業(株)製)5mlを加えた後、ロータリーエバポレーターを用いて、低沸点溶媒であるクロロホルムを留去し、溶媒をo-DCBで置換し、CNT分散液Bを得た。CNT分散液B1mlにo-DCB3mLを加え、半導体溶液A(溶媒に対するCNT複合体濃度0.03g/l)とした。
 半導体溶液の作製例2;半導体溶液B
 化合物[60]を式1に示す方法で合成した。
Figure JPOXMLDOC01-appb-C000020
 化合物(1-a)((株)東京化成工業製)4.3gと臭素((株)和光純薬工業製)10gを48%臭化水素酸150mlに加え、120℃で3時間撹拌した。室温に冷却し、析出した固体をグラスフィルターで濾過し、水1000mlとアセトン100mlで洗浄した。得られた固体を60℃で真空乾燥し、化合物(1-b)6.72gを得た。
 化合物(1-c)10.2gをジメチルホルムアミド100mlに溶解し、N-ブロモスクシンイミド((株)和光純薬工業製)9.24gを加え、窒素雰囲気下、室温で3時間撹拌した。得られた溶液に水200ml、n-ヘキサン200mlおよびジクロロメタン200mlを加え、有機層を分取した。得られた有機層を水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製し、化合物(1-d)14.4gを得た。
 化合物(1-d)14.2gをテトラヒドロフラン200mlに溶解し、-80℃に冷却した。n-ブチルリチウム(1.6Mヘキサン溶液)((株)和光純薬工業製)35mlを加えた後、-50℃まで昇温し、再度-80℃に冷却した。2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン((株)和光純薬工業製)13.6mlを加え、室温まで昇温し、窒素雰囲気下で4時間撹拌した。得られた溶液に1N塩化アンモニウム水溶液200mlと酢酸エチル200mlを加え、有機層を分取した。得られた有機層を水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン/ジクロロメタン)で精製し化合物(1-e)14.83gを得た。
 化合物(1-e)14.83gと、5,5’-ジブロモ-2,2’-ビチオフェン((株)東京化成工業製)6.78gをジメチルホルムアミド200mlに加え、さらに窒素雰囲気下でリン酸カリウム((株)和光純薬工業製)26.6gおよび[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(アルドリッチ社製)1.7gを加え、100℃で4時間撹拌した。得られた溶液に水500mlと酢酸エチル300mlを加え、有機層を分取した。得られた有機層を水500mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ヘキサン)で精製し、化合物(1-f)を4.53g得た。
 化合物(1-f)4.53gをテトラヒドロフラン40mlに溶解し、-80℃に冷却した。n-ブチルリチウム(1.6Mヘキサン溶液)6.1mlを加えた後、-5℃まで昇温し、再度-80℃に冷却した。2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン2.3mlを加え、室温まで昇温し、窒素雰囲気下で2時間撹拌した。得られた溶液に1N塩化アンモニウム水溶液150mlと酢酸エチル200mlを加え、有機層を分取した。得られた有機層を水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、化合物(1-g)2.31gを得た。
 化合物(1-b)0.498gと、上記の化合物(1-g)2.31gをジメチルホルムアミド17mlに加え、さらに窒素雰囲気下でリン酸カリウム2.17gおよび[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(アルドリッチ社製)0.14gを加え、90℃で7時間撹拌した。得られた溶液に水200mlとクロロホルム100mlを加え、有機層を分取した。得られた有機層を水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、化合物(1-h)を1.29g得た。化合物(1-h)のH-NMR分析結果を示す。
H-NMR(CDCl,(d=ppm)):8.00(s,2H),7.84(s,2H),7.20―7.15(m,8H),7.04(d,2H),6.95(d,2H),2.88(t,4H),2.79(t,4H),1.77-1.29(m,48H),0.88(m,12H)。
 化合物(1-h)0.734gをクロロホルム15mlに溶解し、N-ブロモスクシンイミド0.23g/ジメチルホルムアミド10mlを加え、窒素雰囲気下、室温で9時間撹拌した。得られた溶液に水100mlとクロロホルム100mlを加え、有機層を分取した。得られた有機層を水200mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、化合物(1-i)0.58gを得た。
 化合物(1-j)0.5g、ビス(ピナコラト)ジボロン(BASF製)0.85g、酢酸カリウム((株)和光純薬工業製)0.86gを1,4-ジオキサン7mlに加え、さらに窒素雰囲気下で[ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム0.21gを加え、80℃で7時間撹拌した。得られた溶液に水100mlと酢酸エチル100mlを加え、有機層を分取した。得られた有機層を水100mlで洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン)で精製し、化合物(1-k)を57mg得た。
 化合物(1-i)93mgと、上記の化合物(1-k)19.3mgをトルエン6mlに溶解した。ここに水2ml、炭酸カリウム0.18g、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)7.7mgおよびAliquat(R)336(アルドリッチ社製)1滴を加え、窒素雰囲気下、100℃にて25時間撹拌した。次いで、フェニルボロン酸40mgを加え、100℃にて7時間撹拌した。得られた溶液にメタノール50mlを加え、生成した固体をろ取し、メタノール、水、メタノール、アセトンの順に洗浄した。得られた固体をクロロホルムに溶解させ、シリカゲルショートカラム(溶離液:クロロホルム)を通した後に濃縮乾固し、化合物[60]を30mg得た。重量平均分子量は4367、数平均分子量は3475、重合度nは3.1であった。
 P3HTの代わりに、化合物[60]を用いたこと以外は半導体溶液Aと同様にして半導体溶液B(溶媒に対するCNT複合体濃度0.03g/l)を得た。
 半導体溶液の作製例3;半導体溶液C
 CNT1を1.0gと、クロロホルム50mL加え、超音波洗浄機を用いて1時間分散した。さらにこの分散液5mLを分取し100mLに希釈してさらに超音波洗浄機を用いて2時間分散しCNT分散液Cを得た。得られたCNT分散液Cをメンブレンフィルター(孔径10μm、直径25mm、ミリポア社製オムニポアメンブレン)を用いて濾過を行い、長さ10μm以上のCNTを除去し、半導体溶液Cを得た。
 半導体溶液の作製例4;半導体溶液D
 CNT1を1.5mgと、ドデシル硫酸ナトリウム((株)和光純薬工業製)1.5mgを30mlの水中に加え、氷冷しながら超音波ホモジナイザーを用いて出力250Wで5時間超音波撹拌し、CNT分散液D(溶媒に対するCNT複合体濃度0.05g/l)を得た。得られたCNT分散液Dを遠心分離機(日立工機(株)製CT15E)を用いて、21000Gで60分間遠心分離し、上澄みの80%を取り出すことにより半導体溶液Dを得た。
 組成物の作製例1;ゲート絶縁層溶液A
 メチルトリメトキシシラン61.29g(0.45モル)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン12.31g(0.05モル)、およびフェニルトリメトキシシラン99.15g(0.5モル)をプロピレングリコールモノブチルエーテル(沸点170℃)203.36gに溶解し、これに、水54.90g、リン酸0.864gを撹拌しながら加えた。得られた溶液をバス温105℃で2時間加熱し、内温を90℃まで上げて、主として副生するメタノールからなる成分を留出せしめた。次いでバス温130℃で2.0時間加熱し、内温を118℃まで上げて、主として水とプロピレングリコールモノブチルエーテルからなる成分を留出せしめた後、室温まで冷却し、固形分濃度26.0重量%のポリシロキサン溶液Aを得た。得られたポリシロキサンの重量平均分子量は6000であった。
 得られたポリシロキサン溶液Aを10gはかり取り、プロピレングリコールモノエチルエーテルアセテート(以下、PGMEAという)54.4gを混合して、室温にて2時間撹拌し、ゲート絶縁層溶液Aを得た。
 組成物の作製例2;ゲート絶縁層溶液B
 ポリシロキサン溶液Aを10gはかり取り、アルミニウムビス(エチルアセトアセテート)モノ(2,4-ペンタンジオナート)(商品名「アルミキレートD」、川研ファインケミカル(株)製、以下アルミキレートDという)0.13gとプロピレングリコールモノエチルエーテルアセテート(以下、PGMEAという)54.4gを混合して、室温にて2時間撹拌し、ゲート絶縁層溶液Bを得た。本溶液中の上記ポリマーの含有量はアルミキレートD 100重量部に対して2000重量部であった。ゲート絶縁層溶液Bを大気中、室温で保存したところ、1ヶ月たっても析出物は観察されず安定であった。
 組成物の作製例3;ゲート絶縁層溶液C
 ポリシロキサン溶液Aを2.5g、アルミキレートDの代わりにインジウムトリス(2,4-ペンタンジオナート)(和光純薬工業(株)製)を13g、PGMEAを49.8gとしたこと以外は、ゲート絶縁層溶液Bと同様にして、ゲート絶縁層溶液Cを得た。本溶液中の上記ポリマーの含有量はインジウムトリス(2,4-ペンタンジオナート) 100重量部に対して5重量部であった。
 組成物の作製例4;ゲート絶縁層溶液D
 アルミキレートDの代わりにチタニウムテトラ(2,4-ペンタンジオナート)(商品名「オルガチックスTC-401」、マツモトファインケミカル(株)製)を5.2g、PEGMEAを49.8gとしたこと以外は、ゲート絶縁層溶液Bと同様にして、ゲート絶縁層溶液Dを得た。本溶液中の上記ポリマーの含有量はチタニウムテトラ(2,4-ペンタンジオナート) 100重量部に対して50重量部であった。
 組成物の作製例5;ゲート絶縁層溶液E
 アルミキレートDを13g、PGMEAを42gとしたこと以外は、ゲート絶縁層溶液Bと同様にして、ゲート絶縁層溶液Eを得た。本溶液中の上記ポリマーの含有量はアルミキレートD 100重量部に対して20重量部であった。
 組成物の作製例6;ゲート絶縁層溶液F
 アルミキレートDを13g、PGMEAを49.5gとしたこと以外は、ゲート絶縁層溶液Bと同様にして、ゲート絶縁層溶液Fを得た。本溶液中の上記ポリマーの含有量はアルミキレートD 100重量部に対して87重量部であった。
 組成物の作製例7;ゲート絶縁層溶液G
 ポリシロキサン溶液Aを2.5g、アルミキレートDを13g、PGMEAを49.5gとしたこと以外は、ゲート絶縁層溶液Bと同様にして、ゲート絶縁層溶液Gを得た。本溶液中の上記ポリマーの含有量はアルミキレートD 100重量部に対して5重量部であった。
 合成例1;化合物P1(有機成分)
 共重合比率(重量基準):エチルアクリレート(以下、「EA」)/メタクリル酸2-エチルヘキシル(以下、「2-EHMA」)/スチレン(以下、「St」)/グリシジルメタクリレート(以下、「GMA」)/アクリル酸(以下、「AA」)=20/40/20/5/15。
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、20gのSt、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、化合物P1を得た。
 合成例2;化合物P2(有機成分)
 共重合比率(重量基準):2官能エポキシアクリレートモノマー(エポキシエステル3002A;共栄社化学(株)製)/2官能エポキシアクリレートモノマー(エポキシエステル70PA;共栄社化学(株)製)/GMA/St/AA=20/40/5/20/15。
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのエポキシエステル3002A、40gのエポキシエステル70PA、20gのSt、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、化合物P2を得た。
 合成例3;化合物P3(有機成分)
 化合物P2のウレタン変性化合物
 窒素雰囲気の反応容器中に、100gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、感光性成分P2を10g、3.5gのn-ヘキシルイソシアネート及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに3時間反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、ウレタン結合を有する化合物P3を得た。
 調製例1;導電ペーストA
 100mlクリーンボトルに化合物P1を16g、化合物P3を4g、光重合開始剤OXE-01(BASFジャパン株式会社製)4g、酸発生剤SI-110(三新化学工業株式会社製)を0.6g、γ-ブチロラクトン(三菱ガス化学株式会社製)を10gいれ、自転-公転真空ミキサー“あわとり練太郎”(登録商標)(ARE-310;(株)シンキー製)で混合し、感光性樹脂溶液46.6g(固形分78.5重量%)を得た。得られた感光性樹脂溶液8.0gと平均粒子径0.2μmのAg粒子を42.0g混ぜ合わせ、3本ローラー“EXAKT M-50”(商品名、EXAKT社製)を用いて混練し、50gの導電ペーストAを得た。
 実施例1
 図1に示すn型半導体素子を作製した。ガラス製の基板1(膜厚0.7mm)上に、抵抗加熱法により、マスクを通してクロムを5nmおよび金を50nm真空蒸着し、n型駆動半導体素子のゲート電極2を形成した。次にエチルシリケート28(商品名、コルコート(株)製)を上記基板上にスピンコート塗布(2000rpm×30秒)し、窒素気流下200℃、1時間熱処理することによって、膜厚600nmのゲート絶縁層3を形成した。次に、抵抗加熱法により、マスクを通して金を膜厚50nmになるように真空蒸着し、n型駆動半導体素子のソース電極5およびドレイン電極6を形成した。次にソース電極5・ドレイン電極6間に上記半導体溶液Aを1μL滴下し、30℃で10分風乾した後、ホットプレート上で窒素気流下、150℃、30分の熱処理を行い、半導体層4を形成した。次に以下に示すF8BT(アルドリッチ製)を半導体層4上に半導体層4を覆うように50μL滴下し、窒素気流下150℃、1時間熱処理することによって第2絶縁層を形成し、n型駆動半導体素子を得た。
 このn型駆動半導体素子のソース・ドレイン電極の幅(チャネル幅)は200μm、ソース・ドレイン電極の間隔(チャネル長)は100μmとした。
 次に、上記n型駆動半導体素子のゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)-ソース・ドレイン間電圧(Vsd)特性を測定した。測定には半導体特性評価システム4200-SCS型(ケースレーインスツルメンツ株式会社製)を用い、大気中で測定した。Vg=+30~-30Vに変化させたときのVsd=-5VにおけるIdの値の変化から線形領域の移動度、またId-Vgグラフにおける線形部分の延長線とVg軸との交点からしきい値電圧を求めた。
Figure JPOXMLDOC01-appb-C000021
 実施例2~22、24~26、28~31
 表1に示す条件で実施例1と同様にしてn型半導体素子を作製した。得られたn型半導体素子について、移動度、しきい値電圧の評価を行った。結果を表1に示す。なお、第2絶縁層はポリビニルピロリドンK-30(商品名、ナカライテスク製)、ポリ(メラミン-co-ホルムアルデヒド)(アルドリッチ製、固形分濃度84重量%、1-ブタノール溶液)、N,N-ジメチルホルムアミド(アルドリッチ製、分子生物学用,99%以上)、ジイソプロピルエチルアミン(東京化成工業製、一級)、シクロドデシルアミン(東京化成工業製、一級)、ジシクロヘキシルメチルアミン(東京化成工業製、一級)、キヌクリジン(東京化成工業製、一級)、DBU(東京化成工業製、一級)、DBN(東京化成工業製、一級)、TBD(東京化成工業製、一級)、MTBD(東京化成工業製、一級)、尿素(アルドリッチ製、分子生物学用、99.5%以上)、ポリ(ビニルポリピロリドン)(アルドリッチ製、分子生物学用)のいずれかを用いた。
 実施例23
 ガラス製の基板1の代わりに膜厚50μmのPETフィルム上に、導電ペーストAをスクリーン印刷で塗布し、乾燥オーブンで100℃、10分間プリベークを行った。その後、露光装置“PEM-8M”(商品名、ユニオン光学(株)製)を用いて露光した後、0.5%Na-CO-溶液で30秒間浸漬現像し、超純水でリンス後、乾燥オーブンで140℃、30分間キュアを行い、n型駆動半導体素子のゲート電極2を形成した。次に上記ゲート絶縁層溶液Eを上記基板上にスピンコート塗布(2000rpm×30秒)し、窒素気流下200℃、1時間熱処理することによって、膜厚600nmのゲート絶縁層3を形成した。次に、導電ペーストAをスクリーン印刷で塗布し、乾燥オーブンで100℃、10分間プリベークを行った。その後、露光装置“PEM-8M”を用いて露光した後、0.5%Na-CO-溶液で30秒間浸漬現像し、超純水でリンス後、乾燥オーブンで140℃、30分間キュアを行い、n型駆動半導体素子のソース電極5およびドレイン電極6を形成した。次にn型駆動半導体素子のソース電極5・ドレイン電極6間に上記半導体溶液Bを1μL滴下し、30℃で10分風乾した後、ホットプレート上で窒素気流下、150℃、30分の熱処理を行いn型駆動半導体素子の半導体層4を形成した。次にポリビニルピロリドンK-30を半導体層4上に半導体層4を覆うように50μL滴下し、窒素気流下150℃、1時間熱処理することによって第2絶縁層を形成し、n型駆動半導体素子を得た。
 このn型駆動半導体素子のソース・ドレイン電極の幅および間隔は実施例1と同様である。
 次に、上記n型駆動半導体素子のゲート電圧(Vg)を変えたときのソース・ドレイン間電流(Id)-ソース・ドレイン間電圧(Vsd)特性を実施例1同様に測定し、移動度およびしきい値電圧を求めた。また電極の密着性評価を行ったところ、折り曲げ動作を100回繰り返しても剥がれ、欠けが見られず密着性は良好であった。
 実施例27
 表1に示す条件で、第2絶縁層の形成時、ポリビニルピロリドンK-30の代わりにDBUを用いる以外は、実施例23と同様にしてn型半導体素子を作製した。得られたn型半導体素子について、移動度、しきい値電圧の評価を行った。結果を表1に示す。また電極の密着性評価を行ったところ、折り曲げ動作を100回繰り返しても剥がれ、欠けが見られず密着性は良好であった。
 比較例1
 半導体溶液Aの代わりに半導体溶液Cを用いたこと以外は実施例1と同様にしてn型半導体素子を作成した。得られたn型半導体素子について、移動度およびしきい値電圧の評価を行ったが、リーク電流が大きく移動度、しきい値電圧ともに算出できなかった。
 比較例2
 半導体溶液Aの代わりに半導体溶液Dを用いたこと以外は実施例1と同様にしてn型半導体素子を作成した。得られたn型半導体素子について、移動度およびしきい値電圧の評価を行った。結果を表1に示す。 
 実施例32
 図6に示す相補型半導体装置を作製した。ガラス製の基板1(膜厚0.7mm)上に、抵抗加熱法により、マスクを通してクロムを5nmおよび金を50nm真空蒸着し、p型半導体素子のゲート電極2、n型半導体素子のゲート電極2を形成した。次に上記ゲート絶縁層溶液Gを上記基板上にスピンコート塗布(2000rpm×30秒)し、窒素気流下200℃、1時間熱処理することによって、膜厚600nmのゲート絶縁層3を形成した。次に、抵抗加熱法により、マスクを通して金を膜厚50nmになるように真空蒸着し、p型半導体素子のソース電極5およびドレイン電極6、n型半導体素子のソース電極5およびドレイン電極6を形成した。次にp型半導体素子のソース電極5・ドレイン電極6間およびn型半導体素子のソース電極5・ドレイン電極6間に上記半導体溶液Bを1μL滴下し、30℃で10分風乾した後、ホットプレート上で窒素気流下、150℃、30分の熱処理を行いp型半導体装置の半導体層4およびn型半導体素子の半導体層4を形成した。次にポリビニルピロリドンK-30をn型半導体素子の半導体層4上にn型半導体素子の半導体層4を覆うように50μL滴下し、窒素気流下150℃、1時間熱処理することによって第2絶縁層を形成し、p型半導体素子およびn型半導体素子を得た。
 これらp型半導体素子およびn型半導体素子それぞれのソース・ドレイン電極の幅(チャネル幅)は200μm、ソース・ドレイン電極の間隔(チャネル長)は100μmとした。
 上記p型半導体素子およびn型半導体素子の移動度、しきい値電圧の評価を行った。結果を表2に示す。
次に上記p型半導体素子およびn型半導体素子を結線して、図12に示す相補型半導体装置の評価を行った。なお、VDDは10V、GND端子は接地とした。Vinの0→10Vの変化に対するVoutの変化(ゲイン)を測定したところ、9であった。
 実施例33
 n型半導体素子の第2絶縁層を、ポリビニルピロリドンK-30の代わりにDBUを用いる以外は、実施例28と同様にp型半導体素子およびn型半導体素子を作製した。得られたp型半導体素子およびn型半導体素子について、移動度、しきい値電圧の評価を行った。結果を表2に示す。次に実施例32同様、図12に示す相補型半導体装置の評価を行った。Vinの0→10Vの変化に対するVoutの変化(ゲイン)を測定したところ、15であった。
 実施例34
 p型半導体素子の半導体層4上に、ポリスチレン(アルドリッチ社製、重量平均分子量(Mw):192000、以下PSという)の5質量%プロピレングリコール1-モノメチルエーテル2-アセタート溶液を10μLドロップキャストし、30℃で5分風乾した後、ホットプレート上で窒素気流下、120℃、30分の熱処理を行い、第2絶縁層を有するp型半導体素子を形成した以外は、実施例29と同様にp型半導体素子およびn型半導体素子を作製した。得られたp型半導体素子およびn型半導体素子について、移動度、しきい値電圧の評価を行った。結果を表2に示す。次に実施例32同様、図12に示す相補型半導体装置の評価を行った。Vinの0→10Vの変化に対するVoutの変化(ゲイン)を測定したところ、21であった。
 比較例4
 半導体溶液Bの代わりに半導体溶液Cを用い、ゲート絶縁層溶液Gの代わりにエチルシリケート28を用い、n型半導体素子の第2絶縁層を、ポリビニルピロリドンK-30の代わりにF8BTを用いたこと以外は実施例32と同様にしてp型半導体素子およびn型半導体素子を作製した。得られたp型半導体素子およびn型半導体素子について、移動度およびしきい値電圧の評価を行ったが、リーク電流が大きく移動度、しきい値電圧ともに算出できなかった。
 比較例5
 半導体溶液Bの代わりに半導体溶液Dを用い、ゲート絶縁層溶液Gの代わりにエチルシリケート28を用い、n型半導体素子の第2絶縁層を、ポリビニルピロリドンK-30の代わりにジイソプロピルエチルアミンを用いたこと以外は実施例32と同様にしてp型半導体素子およびn型半導体素子を作製した。得られたp型半導体素子およびn型半導体素子について、移動度およびしきい値電圧の評価を行った。結果を表2に示す。次に実施例32同様、図12に示す相補型半導体装置の評価を行った。Vinの0→10Vの変化に対するVoutの変化(ゲイン)を測定したが、Voutは変化せず、相補型半導体装置の動作が得られなかった。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
1 基材
2 ゲート電極
3 ゲート絶縁層
4 半導体層
5 ソース電極
6 ドレイン電極
7 カーボンナノチューブ複合体
8 n型半導体素子の第2絶縁層
100 金属円柱
101 基板

Claims (23)

  1. 基材と、
    ソース電極、ドレイン電極およびゲート電極と、
    前記ソース電極およびドレイン電極と接する半導体層と、
    前記半導体層を前記ゲート電極と絶縁するゲート絶縁層と、
    前記半導体層に対して前記ゲート絶縁層とは反対側で前記半導体層と接する第2絶縁層と、
    を備えたn型半導体素子であって、
    前記半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有し、
    前記第2絶縁層が、炭素原子と窒素原子の結合を含む有機化合物を含有する
    n型半導体素子。
  2. 前記共役系重合体が、環中に含窒素二重結合を有する縮合へテロアリールユニットとチオフェンユニットを繰り返し単位中に含む請求項1記載のn型半導体素子。
  3. 前記第2絶縁層が、下記一般式(1)~(2)から選ばれる一種類以上の化合物を含有する請求項1または2記載のn型半導体素子。
    Figure JPOXMLDOC01-appb-C000001
    (R~Rは、それぞれ独立して、水素原子、炭素原子、窒素原子、酸素原子、ケイ素原子、リン原子および硫黄原子から選ばれる一種類以上の原子により構成される基を示す。XおよびXは、それぞれ独立して、下記一般式(3)~(8)で表されるいずれかの基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (R~R13は、それぞれ独立して、水素原子、炭素原子、窒素原子、酸素原子、ケイ素原子、リン原子および硫黄原子から選ばれる一種類以上の原子により構成される基を示す。)
  4. 前記一般式(1)~(8)において、R~R13が炭化水素基である請求項3記載のn型半導体素子。
  5. 前記第2絶縁層が、環構造を有するアミン系化合物を含有する請求項1~4のいずれかに記載のn型半導体素子。
  6. 前記第2絶縁層が、前記一般式(1)または(2)の構造を有する有機化合物であって、一般式(1)または(2)式中に記載の窒素原子をヘテロ原子として含む環構造を含有する請求項3~5いずれかに記載のn型半導体素子。
  7. 前記第2絶縁層が、アミジン化合物およびグアニジン化合物から選ばれる一種類以上の化合物を含有する請求項3~6いずれかに記載のn型半導体素子。
  8. 前記ゲート絶縁層が、ケイ素原子と炭素原子の結合を含む有機化合物を含有する請求項1~7いずれかに記載のn型半導体素子。
  9. 前記ゲート絶縁層が、さらに金属原子と酸素原子の結合を含む金属化合物を含有する請求項1~8いずれかに記載のn型半導体素子。
  10. 前記金属原子が、アルミニウムである請求項9記載のn型半導体素子。
  11. 基材と、
    ソース電極、ドレイン電極およびゲート電極と、
    前記ソース電極およびドレイン電極と接する半導体層と、
    前記半導体層を前記ゲート電極と絶縁するゲート絶縁層と、
    前記半導体層に対して前記ゲート絶縁層とは反対側で前記半導体層と接する第2絶縁層と、
    を備えたn型半導体素子であって、
    前記半導体層が、カーボンナノチューブを含有し、
    前記第2絶縁層が、下記一般式(2)の構造を有する有機化合物を含有する
    n型半導体素子。
    Figure JPOXMLDOC01-appb-C000003
    (Rは、水素原子、炭素原子、窒素原子、酸素原子、ケイ素原子、リン原子および硫黄原子から選ばれる一種類以上の原子により構成される基を示す。XおよびXは、それぞれ独立して、下記一般式(3)~(8)で表されるいずれかの基を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (R~R13は、水素原子、炭素原子、窒素原子、酸素原子、ケイ素原子、リン原子および硫黄原子から選ばれる一種類以上の原子により構成される基を示す。)
  12. 前記第2絶縁層が、前記一般式(2)の構造を有する有機化合物であって、一般式(2)式中に記載の窒素原子をヘテロ原子として含む環構造を含有する請求項11記載のn型半導体素子。
  13. 前記半導体層1μm当たりに存在する前記カーボンナノチューブ複合体の総長さが1μm~50μmである請求項1~12いずれかに記載のn型半導体素子。
  14. 請求項1~13いずれかに記載のn型半導体素子と、p型半導体素子を備えた相補型半導体装置であって、前記p型半導体素子は、基材と、ソース電極、ドレイン電極およびゲート電極と、前記ソース電極およびドレイン電極と接する半導体層と、前記半導体層を前記ゲート絶縁層と絶縁するゲート絶縁層と、を備えたp型半導体素子であって、前記p型半導体素子の半導体層が、表面の少なくとも一部に、共役系重合体が付着したカーボンナノチューブ複合体を含有する相補型半導体装置。
  15. 前記p型半導体素子が、該p型半導体素子の半導体層に対して該p型半導体素子のゲート絶縁層とは反対側で該p型半導体素子の半導体層と接する第2絶縁層を備えた請求項14記載の相補型半導体装置。
  16. 前記p型半導体素子のソース電極およびドレイン電極、ならびに前記n型半導体素子のソース電極およびドレイン電極がすべて同一材料から構成される請求項14または15記載の相補型半導体装置
  17. 前記p型半導体素子の半導体層と前記n型半導体素子の半導体層が同一材料からなる請求項14~16いずれかに記載の相補型半導体装置。
  18. 前記p型半導体素子のゲート絶縁層と前記n型半導体素子のゲート絶縁層が同一材料からなる請求項14~17いずれかに記載の相補型半導体装置。
  19. 請求項1~13いずれかに記載のn型半導体素子の製造方法であって、n型半導体素子の半導体層を塗布および乾燥して形成する工程を含むn型半導体素子の製造方法。
  20. 請求項1~13いずれかに記載のn型半導体素子の製造方法であって、炭素原子と窒素原子の結合を含む有機化合物を含有する組成物を塗布および乾燥して第2絶縁層を形成する工程を含むn型半導体素子の製造方法。
  21. 以下の工程を含む、請求項14~18いずれかに記載の相補型半導体装置の製造方法;
    (1)p型半導体素子のソース電極およびドレイン電極と、n型半導体素子のソース電極およびドレイン電極と、を同一工程で形成する工程; 
    (2)前記p型半導体素子のゲート絶縁層と、前記n型半導体素子のゲート絶縁層と、を同一工程で形成する工程。
    (3)前記p型半導体素子の半導体層と、前記n型半導体素子の半導体層と、を同一工程で形成する工程。
  22. 請求項1~13いずれかに記載のn型半導体素子と、アンテナと、を少なくとも有する無線通信装置。
  23. 請求項14~18いずれかに記載の相補型半導体装置と、アンテナと、を少なくとも有する無線通信装置。
PCT/JP2017/001777 2016-01-25 2017-01-19 n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置 WO2017130836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/066,858 US10615352B2 (en) 2016-01-25 2017-01-19 n-Type semiconductor element, complementary type semiconductor device and method for manufacturing same, and wireless communication device in which same is used
EP17744066.6A EP3410468A4 (en) 2016-01-25 2017-01-19 N-TYPE SEMICONDUCTOR ELEMENT, COMPLEMENTARY SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF, AND WIRELESS COMMUNICATION DEVICE USING THE SAME
JP2017503970A JP6962189B2 (ja) 2016-01-25 2017-01-19 n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置
KR1020187022939A KR20180105166A (ko) 2016-01-25 2017-01-19 n형 반도체 소자와 상보형 반도체 장치 및 그의 제조 방법 그리고 그것을 사용한 무선 통신 장치
CN201780007670.8A CN108475642B (zh) 2016-01-25 2017-01-19 n型半导体元件和互补型半导体器件及其制造方法以及使用其的无线通信设备

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-011240 2016-01-25
JP2016011239 2016-01-25
JP2016011240 2016-01-25
JP2016-011239 2016-01-25
JP2016-239049 2016-12-09
JP2016239049 2016-12-09

Publications (1)

Publication Number Publication Date
WO2017130836A1 true WO2017130836A1 (ja) 2017-08-03

Family

ID=59397935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001777 WO2017130836A1 (ja) 2016-01-25 2017-01-19 n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置

Country Status (7)

Country Link
US (1) US10615352B2 (ja)
EP (1) EP3410468A4 (ja)
JP (1) JP6962189B2 (ja)
KR (1) KR20180105166A (ja)
CN (1) CN108475642B (ja)
TW (1) TWI713227B (ja)
WO (1) WO2017130836A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180146A1 (ja) * 2017-03-27 2018-10-04 東レ株式会社 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ
WO2019065561A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 電界効果型トランジスタ、その製造方法、それを用いた無線通信装置および商品タグ
WO2019087937A1 (ja) * 2017-11-02 2019-05-09 東レ株式会社 集積回路およびその製造方法ならびにそれを用いた無線通信装置
WO2019097978A1 (ja) * 2017-11-20 2019-05-23 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
CN111614406A (zh) * 2020-03-30 2020-09-01 西南电子技术研究所(中国电子科技集团公司第十研究所) Cni外场无线自动检测设备
WO2020184012A1 (ja) 2019-03-08 2020-09-17 東レ株式会社 カーボンナノチューブ組成物、半導体素子および無線通信装置
WO2020195708A1 (ja) 2019-03-26 2020-10-01 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
US11380852B2 (en) * 2018-12-12 2022-07-05 The Regents Of The University Of California N-type dopants for efficient solar cells
JP2022167911A (ja) * 2017-10-04 2022-11-04 東レ株式会社 断線検知デバイスおよび開封検知ラベル

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112672977B (zh) * 2018-09-25 2023-06-23 东丽株式会社 碳纳米管复合体及使用其的分散液、半导体元件及其制造方法
CN111247297B (zh) * 2018-09-27 2023-04-28 Toto株式会社 水栓零件
JP6999120B1 (ja) * 2021-03-19 2022-02-14 国立大学法人信州大学 整流素子の製造方法
KR20230043634A (ko) * 2021-09-24 2023-03-31 에스케이하이닉스 주식회사 강유전층 및 금속 입자가 내장된 절연층을 포함하는 반도체 장치
TWI818428B (zh) * 2022-01-27 2023-10-11 友達光電股份有限公司 通訊裝置及其通訊元件與此通訊元件的製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030122133A1 (en) 2001-12-28 2003-07-03 Choi Sung Yool Semiconductor device using single carbon nanotube and method of manufacturing of the same
WO2005057665A1 (ja) * 2003-12-08 2005-06-23 Matsushita Electric Industrial Co., Ltd. 電界効果トランジスタ及び電気素子アレイ、並びにそれらの製造方法
JP2008311594A (ja) 2007-06-18 2008-12-25 Hitachi Ltd 薄膜トランジスタの製造方法及び薄膜トランジスタ装置
WO2009139339A1 (ja) 2008-05-12 2009-11-19 東レ株式会社 カーボンナノチューブ複合体、有機半導体コンポジットならびに電界効果型トランジスタ
JP2009283924A (ja) * 2008-04-24 2009-12-03 Toray Ind Inc 電界効果型トランジスタ
JP2014116564A (ja) 2012-12-12 2014-06-26 Tohoku Univ 有機半導体素子及びそれを備えたcmis半導体装置
WO2014142105A1 (ja) * 2013-03-14 2014-09-18 東レ株式会社 電界効果型トランジスタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174101A (ja) * 2001-12-04 2003-06-20 Toshiba Corp 半導体装置および半導体装置の製造方法
US20050279987A1 (en) * 2002-09-05 2005-12-22 Alexander Star Nanostructure sensor device with polymer recognition layer
US7821079B2 (en) * 2005-11-23 2010-10-26 William Marsh Rice University Preparation of thin film transistors (TFTs) or radio frequency identification (RFID) tags or other printable electronics using ink-jet printer and carbon nanotube inks
GB2434692A (en) * 2005-12-29 2007-08-01 Univ Surrey Photovoltaic or electroluminescent devices with active region comprising a composite polymer and carbon nanotube material.
TWI428331B (zh) * 2007-01-26 2014-03-01 Toray Industries 有機半導體複合物、有機電晶體材料、及有機場效型電晶體
EP1970952A3 (en) * 2007-03-13 2009-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101450591B1 (ko) * 2008-06-05 2014-10-17 삼성전자주식회사 탄소나노튜브 엔 도핑 물질 및 방법, 이를 이용한 소자
WO2015012186A1 (ja) * 2013-07-25 2015-01-29 東レ株式会社 カーボンナノチューブ複合体、半導体素子およびそれを用いたセンサ
KR102237155B1 (ko) * 2015-03-11 2021-04-07 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030122133A1 (en) 2001-12-28 2003-07-03 Choi Sung Yool Semiconductor device using single carbon nanotube and method of manufacturing of the same
WO2005057665A1 (ja) * 2003-12-08 2005-06-23 Matsushita Electric Industrial Co., Ltd. 電界効果トランジスタ及び電気素子アレイ、並びにそれらの製造方法
JP2008311594A (ja) 2007-06-18 2008-12-25 Hitachi Ltd 薄膜トランジスタの製造方法及び薄膜トランジスタ装置
JP2009283924A (ja) * 2008-04-24 2009-12-03 Toray Ind Inc 電界効果型トランジスタ
WO2009139339A1 (ja) 2008-05-12 2009-11-19 東レ株式会社 カーボンナノチューブ複合体、有機半導体コンポジットならびに電界効果型トランジスタ
JP2014116564A (ja) 2012-12-12 2014-06-26 Tohoku Univ 有機半導体素子及びそれを備えたcmis半導体装置
WO2014142105A1 (ja) * 2013-03-14 2014-09-18 東レ株式会社 電界効果型トランジスタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NANO LETTERS, vol. 1, 2001, pages 453 - 456

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485593B2 (ja) * 2017-03-27 2019-03-20 東レ株式会社 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ
JPWO2018180146A1 (ja) * 2017-03-27 2019-04-04 東レ株式会社 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ
WO2018180146A1 (ja) * 2017-03-27 2018-10-04 東レ株式会社 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ
US11690237B2 (en) 2017-09-29 2023-06-27 Toray Industries, Inc. Field effect-transistor, method for manufacturing same, wireless communication device using same, and product tag
WO2019065561A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 電界効果型トランジスタ、その製造方法、それを用いた無線通信装置および商品タグ
CN111095566A (zh) * 2017-09-29 2020-05-01 东丽株式会社 场效应晶体管、其制造方法和使用它的无线通信装置和商品标签
JP7206912B2 (ja) 2017-09-29 2023-01-18 東レ株式会社 電界効果型トランジスタ、その製造方法、それを用いた無線通信装置および商品タグ
JPWO2019065561A1 (ja) * 2017-09-29 2020-09-03 東レ株式会社 電界効果型トランジスタ、その製造方法、それを用いた無線通信装置および商品タグ
JP2022167911A (ja) * 2017-10-04 2022-11-04 東レ株式会社 断線検知デバイスおよび開封検知ラベル
JP7318780B2 (ja) 2017-10-04 2023-08-01 東レ株式会社 断線検知デバイスおよび開封検知ラベル
WO2019087937A1 (ja) * 2017-11-02 2019-05-09 東レ株式会社 集積回路およびその製造方法ならびにそれを用いた無線通信装置
JPWO2019087937A1 (ja) * 2017-11-02 2020-09-24 東レ株式会社 集積回路およびその製造方法ならびにそれを用いた無線通信装置
US11616453B2 (en) 2017-11-02 2023-03-28 Toray Industries, Inc. Integrated circuit, method for manufacturing same, and radio communication device using same
JP7230509B2 (ja) 2017-11-02 2023-03-01 東レ株式会社 集積回路およびその製造方法ならびにそれを用いた無線通信装置
US20200244182A1 (en) * 2017-11-02 2020-07-30 Toray Industries, Inc. Integrated circuit, method for manufacturing same, and radio communication device using same
JPWO2019097978A1 (ja) * 2017-11-20 2020-10-01 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
WO2019097978A1 (ja) * 2017-11-20 2019-05-23 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
US11380852B2 (en) * 2018-12-12 2022-07-05 The Regents Of The University Of California N-type dopants for efficient solar cells
WO2020184012A1 (ja) 2019-03-08 2020-09-17 東レ株式会社 カーボンナノチューブ組成物、半導体素子および無線通信装置
KR20210143753A (ko) 2019-03-26 2021-11-29 도레이 카부시키가이샤 n형 반도체 소자, n형 반도체 소자의 제조 방법, 무선 통신 장치 및 상품 태그
KR20210144684A (ko) 2019-03-26 2021-11-30 도레이 카부시키가이샤 n형 반도체 소자, n형 반도체 소자의 제조 방법, 무선 통신 장치 및 상품 태그
CN113646899A (zh) * 2019-03-26 2021-11-12 东丽株式会社 n型半导体元件、n型半导体元件的制造方法、无线通信装置和商品标签
JP6841381B1 (ja) * 2019-03-26 2021-03-10 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
JP6841380B1 (ja) * 2019-03-26 2021-03-10 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
WO2020195707A1 (ja) 2019-03-26 2020-10-01 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
WO2020195708A1 (ja) 2019-03-26 2020-10-01 東レ株式会社 n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
TWI801727B (zh) * 2019-03-26 2023-05-11 日商東麗股份有限公司 n型半導體元件、n型半導體元件的製造方法、無線通訊裝置及商品標籤
CN113646899B (zh) * 2019-03-26 2024-03-12 东丽株式会社 n型半导体元件、n型半导体元件的制造方法、无线通信装置和商品标签
CN111614406B (zh) * 2020-03-30 2022-05-17 西南电子技术研究所(中国电子科技集团公司第十研究所) Cni外场无线自动检测设备
CN111614406A (zh) * 2020-03-30 2020-09-01 西南电子技术研究所(中国电子科技集团公司第十研究所) Cni外场无线自动检测设备

Also Published As

Publication number Publication date
US20190027700A1 (en) 2019-01-24
CN108475642A (zh) 2018-08-31
TWI713227B (zh) 2020-12-11
KR20180105166A (ko) 2018-09-27
TW201727922A (zh) 2017-08-01
EP3410468A4 (en) 2019-12-18
CN108475642B (zh) 2021-07-27
JP6962189B2 (ja) 2021-11-05
EP3410468A1 (en) 2018-12-05
US10615352B2 (en) 2020-04-07
JPWO2017130836A1 (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2017130836A1 (ja) n型半導体素子と相補型半導体装置およびその製造方法ならびにそれを用いた無線通信装置
JP6485593B2 (ja) 半導体素子、相補型半導体装置、半導体素子の製造方法、無線通信装置および商品タグ
US10490748B2 (en) Rectifying element, method for producing same, and wireless communication device
TWI806905B (zh) 場效電晶體與其製造方法、以及使用上述的無線通訊裝置和商品標籤
KR102456902B1 (ko) 카본 나노튜브 복합체 및 그것을 사용한 분산액, 반도체 소자 및 그의 제조 방법, 그리고 반도체 소자를 사용한 무선 통신 장치 및 상품 태그
JP7230509B2 (ja) 集積回路およびその製造方法ならびにそれを用いた無線通信装置
JP6954310B2 (ja) n型半導体素子、n型半導体素子の製造方法、無線通信装置および商品タグ
US20220185951A1 (en) n-TYPE SEMICONDUCTOR ELEMENT, METHOD FOR MANUFACTURING n-TYPE SEMICONDUCTOR ELEMENT, WIRELESS COMMUNICATION DEVICE, AND MERCHANDISE TAG
JP2021129107A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017503970

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022939

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017744066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744066

Country of ref document: EP

Effective date: 20180827