WO2017130758A1 - 燃焼ガス供給システム - Google Patents

燃焼ガス供給システム Download PDF

Info

Publication number
WO2017130758A1
WO2017130758A1 PCT/JP2017/001153 JP2017001153W WO2017130758A1 WO 2017130758 A1 WO2017130758 A1 WO 2017130758A1 JP 2017001153 W JP2017001153 W JP 2017001153W WO 2017130758 A1 WO2017130758 A1 WO 2017130758A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion gas
compressor
compressed air
heat
Prior art date
Application number
PCT/JP2017/001153
Other languages
English (en)
French (fr)
Inventor
秀志 渋谷
明久 矢野
辰哉 岡
隆仁 秋田
大雅 山本
祐之 亀岡
佑介 武内
晃樹 安居
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP17743989.0A priority Critical patent/EP3410013B1/en
Priority to CN201780005880.3A priority patent/CN108474555B/zh
Priority to CA3010257A priority patent/CA3010257C/en
Priority to DK17743989.0T priority patent/DK3410013T3/da
Publication of WO2017130758A1 publication Critical patent/WO2017130758A1/ja
Priority to US16/006,961 priority patent/US20180292085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/06Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for completing combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/30Premixing fluegas with combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/50Control of recirculation rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • This disclosure relates to a combustion gas supply system for supplying combustion gas generated by burning fuel as a heat source.
  • Combustion gas generated by burning fuel is used in various devices and facilities as an energy source for supplying thermal energy or power energy.
  • the combustion gas is used as a power source, and the flow pressure of the combustion gas is converted into driving force or electric power.
  • the combustion gas is used as a heat source, and the heat energy of the combustion gas is transferred to the target substance by heat exchange, heating the target substance, changing the state (vaporization, etc.), chemical reaction The progress etc. are performed.
  • Combustors that generate combustion gas generally burn by adding fuel to air used as an oxygen source.
  • the combustion efficiency in the combustor is closer to the theoretical value when the pressure and temperature of the air is higher, so the combustion efficiency is increased by compressing the air and supplying it to the combustor and burning it in the compressed air. Hot pressurized combustion gas is produced.
  • the oxygen content of the gas discharged from the combustion device is equal to or higher than the set value. It is sometimes described that combustion efficiency is improved by adjusting the oxygen content during combustion by recirculating exhaust gas to the intake pipe.
  • the amount of heat that can be supplied by the combustion gas depends on the combustion conditions in the combustor, and the combustion condition of the combustor is adjusted by adjusting the amount of compressed air supplied to the combustor, so that the desired amount of heat is supplied from the combustion gas. Can be adjusted.
  • the power consumption of the air compressor is large, and the ratio of the power consumption of the compressor to the total power consumption of Japan is high. That is, the reduction of power consumption related to the air compressor is an important problem in terms of energy saving. For this reason, it is necessary to improve the technology to adjust the combustion conditions of the combustor by freely adjusting the supply amount of compressed air while suppressing an increase in power consumption.
  • the present disclosure solves such problems and provides a combustion gas supply system capable of suitably supplying combustion gas by increasing the supply amount of compressed air as necessary while suppressing an increase in power consumption. With the goal.
  • the present inventors have conducted intensive research on the addition of a compressor and the use of power, and are capable of suppressing an increase in energy consumption by using a used gas after being used as a heat source.
  • the configuration has been found and the technology of the present disclosure has been achieved.
  • a combustion gas supply system includes an air compressor that supplies compressed air, a fuel supply device that supplies fuel, fuel supplied by the fuel supply device, and the air compressor.
  • a combustor that combusts compressed air to generate pressurized combustion gas, and supplies the compressed combustion gas generated by the combustor to a calorie consumption device.
  • a gas supply recovery unit for recovery, and a recompression compression that compresses a part of the used gas recovered by the gas supply recovery unit and supplies the compressed gas to the compressed air supplied by the air compressor The main point is to have a machine.
  • the repressurizing compressor compresses the part of the used gas supplementarily so as to pressurize to the same pressure as the compressed air, and the remaining part of the used gas is discharged to the outside.
  • the repressurizing compressor has a cooler that cools the part of the used gas, and a condensation separator that separates moisture condensed by cooling from the part of the used gas, and the repressurizing compressor includes the condensing unit When the part of the used gas from which moisture has been removed by the separator is additionally compressed, it is suitable for reuse in combustion. And a heat exchanger for exchanging heat with the part of the used gas that is supplementarily compressed by the repressurizing compressor before the part of the used gas is cooled by the cooler. From the viewpoint of thermal efficiency.
  • the repressurizing compressor further includes an oxygen concentration meter for detecting an oxygen concentration in the compressed air to which the part of the used gas is supplied, and the flow rate adjusting valve is a detection value of the oxygen concentration meter. It is good to comprise so that it may be controlled based on.
  • the fuel supply device may include a fuel compressor, and supplies the compressed fuel pressurized to the same pressure as the compressed air.
  • the residual pressure can be effectively used to reduce the power of the compressor as a whole system.
  • An adjustable and energy-saving combustion gas supply system can be provided.
  • the compression ratio (pressure ratio) in the compressor can be set low, power consumption by the compressor can be reduced. That is, if the pressure of the air introduced into the compressor is high, compressed air having a target pressure can be obtained while reducing power consumption.
  • the pressure if the used gas after using the combustion gas as a heat source is recovered as it is without releasing the pressure, it is suitable for repressurization with a compressor having a low compression ratio.
  • a combustion gas is used as a heat source such as a boiler or a reactor, the temperature is lowered when the pressure of the supplied combustion gas is decreased, which is not preferable as a heat source.
  • an apparatus that consumes heat hereinafter referred to as a heat consumption apparatus
  • the pressure of high-temperature pressurized combustion gas generated using compressed air to increase combustion efficiency is maintained in the heat consumption device, and the exhausted spent gas excludes pressure drop due to flow resistance etc.
  • the exhaust gas is in a pressurized state in which the pressure of the combustion gas before use is substantially maintained. Therefore, if this is re-pressurized and used as a raw material for compressed air, it is extremely effective in reducing power consumption in the compressor of the entire system. Moreover, although the oxygen content of combustion gas falls by the oxygen consumption by combustion, it is about half of the oxygen concentration of air, and it can fully utilize as compressed air by mixing with normal air.
  • the used gas after being used as a heat source is recovered while maintaining the pressure, and compressed by a re-pressurizing compressor so as to return to a pressure equivalent to compressed air. Supplied to the combustor as compressed air. Therefore, the power consumed by the repressurizing compressor is the power required to replenish only the pressure lost by the combustion gas during the supply of heat as a heat source.
  • FIG. 1 shows a combustion gas supply system according to an embodiment of the present disclosure.
  • the combustion gas supply system 1 is a system that supplies pressurized combustion gas generated by combustion of compressed air containing fuel to the calorie consumption device C1.
  • the heat consumption device C1 is a device having a heat exchange function for transferring the heat amount of the combustion gas to the target substance by using the combustion gas as a heat source, consuming the heat amount of the supplied pressurized combustion gas, Pressurized combustion gas that has consumed heat is discharged as spent gas.
  • the calorie consumption device C1 for example, a device that causes heating of a target substance such as a steam generator, a hot water generator, a thermal fluid heater, an air heater, a high-temperature gas generator, etc.
  • a reaction device for advancing a chemical reaction by heating the target substance is included.
  • a reaction apparatus using a catalyst containing an active metal such as Ni, Co, Fe, Pt, Ru, Rh, or Pd as a component may be used.
  • the type of the target substance to be heated and the purpose of heating differ, and the temperature and supply flow rate of the combustion gas are appropriately adjusted accordingly.
  • the combustion gas supply system 1 includes an air compressor 3, a fuel supply device 5, a combustor 7, a gas supply / recovery unit 9, and a repressurization compressor 11.
  • the air compressor 3 compresses air and supplies the compressed air to the combustor 7 through the flow path L1.
  • the fuel supply device 5 supplies fuel to the compressed air through the flow path L2.
  • the combustor 7 receives fuel and compressed air supplied by the air compressor 3 and the fuel supply device 5 and burns them to generate pressurized combustion gas.
  • the fuel supply device 5 includes a fuel source 5a and a fuel compressor 5b.
  • the gaseous fuel supplied from the fuel source 5a is pressurized and compressed by the fuel compressor 5b, supplied from the flow path L2 at substantially the same pressure as the compressed air, and added and mixed with the compressed air in the flow path L1.
  • the fuel source 5a may be one that contains fuel in a fuel container, or one that supplies fuel using a connection line using an external fuel supply system as a supply source. Further, when the fuel source is fuel stored in a container such as a pressure cylinder having a pressure adjusting means capable of adjusting the fuel take-out pressure such as a pressure adjusting valve, the fuel compressor 5b can be omitted. is there.
  • the pressurized combustion gas of the combustor 7 is supplied from the flow path L3 through the gas supply / recovery unit 9 to the heat quantity consuming device C1, and as the used gas, the pressurized combustion gas that has consumed the amount of heat is supplied from the heat quantity consuming device C1.
  • the gas supply / recovery unit 9 includes a supply connection member 9a at the end of the flow path L3 and a recovery connection member 9b at the end of the flow path L4, which can attach and detach the flow paths L3 and L4 and the heat consumption device C1.
  • the combustion gas supply system 1 and the heat consumption device C1 are connected to each other without loss of pressure.
  • the pressurized combustion gas generated by the combustor 7 is supplied from the flow path L3 to the heat quantity consuming device C1 through the gas supply and recovery unit 9 while maintaining the pressure thereof, and the pressurized combustion gas (heat quantity consumed) ( The used gas) is recirculated from the heat consumption device C1 to the flow path L4 while substantially maintaining the pressure except for the pressure loss due to the flow resistance.
  • Used gas (pressurized exhaust gas) recovered by the gas supply recovery unit 9 is discharged from the flow path L4 to the outside through the flow path L5.
  • a pressure gauge 13 is provided in the flow path L4, and the pressure regulating valve 15 on the flow path L5 is controlled based on the detected value so that the pressure in the combustion gas supply system 1 is maintained at a predetermined pressure.
  • the discharge of spent gas to the outside is controlled. Since the pressure gauge 13 in the flow path L4 detects the pressure of the used gas that is lower than the pressurized combustion gas by the amount of pressure loss, a pressure considering the pressure loss is set as the predetermined pressure.
  • the pressure gauge 13 may be provided in the flow path L3. In this case, the pressure of the pressurized combustion gas is set as the predetermined pressure.
  • Air contains about 20vol% oxygen. However, even compressed air having an oxygen concentration lower than this can be used for combustion, and combustion can be performed even when used gas is mixed with compressed air. Therefore, as a route for branching from the flow path L4 and joining the flow path L1, flow paths L6 to L9 are provided, and part of the used gas recovered by the gas supply and recovery unit 9 is transferred from the flow path L9 to the flow path L1. To be reused for combustion, and the remainder is discharged to the outside. However, the pressure of the used gas recovered from the heat consumption device C1 is reduced due to the flow resistance.
  • the used gas recovered from the used gas recovered from the flow path L4 is supplemented by the repressurizing compressor 11 and increased to a pressure equivalent to the compressed air, and then supplied to the compressed air and mixed.
  • the used gas supplemented with pressure is supplied to the combustor 7 as a mixed gas together with the compressed air. Since the oxygen concentration of the compressed air supplied to the combustor 7 has a preferable range from the viewpoint of combustion efficiency, the mixing ratio of the compressed air and the used gas has a preferable range.
  • the flow path L1 includes an oxygen concentration meter 17 for detecting the oxygen concentration of the mixed gas supplied to the combustor 7, and a flow meter 3a electrically connected thereto.
  • a flow rate adjusting valve 3b is installed.
  • the flow rate adjusting valve 3b is a valve that is controlled in accordance with the detection value of the flow meter 3a, and the flow rate of the compressed air in the flow path L1 is adjusted based on the detected value of the oxygen concentration of the mixed gas by the oxygen concentration meter 17.
  • the used gas and the compressed air are adjusted so as to be mixed at a ratio that provides a suitable oxygen concentration.
  • the fuel supply device 5 has a flow meter 5c and a flow rate adjusting valve 5d on the flow path L2.
  • the flow meter 5c and the flow rate adjustment valve 5d are electrically connected to a thermometer 19 installed in the flow path L3 in order to detect the temperature of the combustion gas.
  • the flow rate adjusting valve 5d is controlled based on the temperature detected by the thermometer 19, and the flow rate of the compressed fuel is adjusted by the flow rate adjusting valve 5d.
  • the flow rate of the fuel added to the mixed gas of the compressed air and the used gas is adjusted to an appropriate amount by the flow rate adjusting valve 5d, so that the temperature of the combustion gas is adjusted to a desired temperature.
  • a gas supply / recovery unit 21 having a connection member 21a for supply and a connection member 21b for recovery similar to the gas supply / recovery unit 9 is provided in the flow path L6 and is lower than the heat consumption device C1.
  • Another heat consumption device C2 using a heat source of temperature is configured to be connectable. As a result, a part of the recovered used gas is further recovered and reused before the remaining gas is reused for combustion in the combustor 7.
  • the attachment of the gas supply / recovery unit 21 is arbitrary and may be omitted, or may be provided continuously downstream of the gas supply / recovery unit 9 on the flow path L4.
  • the gas supply / recovery unit 21 is configured so that the connection member 21a for supply and the connection member 21b for recovery can be directly connected, connected to the heat consumption device C2 or switched, and connected to the heat consumption device C2. Further, it may be possible to arbitrarily select the separation.
  • the combustion gas supply system 1 includes a heat exchanger 23, a cooler 25, and a condensing separator 27, and moisture is removed from the used gas by gas-liquid separation using cooling condensation of water vapor. Specifically, a part of the collected used gas is supplied from the flow path L6 to the cooler 25 of the flow path L7 to be cooled, and the temperature is lowered to a temperature that can be supplied to the repressurizing compressor 11. To the condenser separator 27. The water condensed from the water vapor by the cooling of the used gas is separated from the used gas by the condensation separator 27 and removed to the outside.
  • the spent gas from which the water vapor has been removed is introduced from the condenser separator 27 into the repressurizing compressor 11 through the flow path L8, and is compressed in a supplemental manner to replenish the loss pressure due to the flow resistance, so that the same pressure as the compressed air is obtained. Pressurized. Furthermore, in order to reduce the amount of heat required for the cooler 25, a heat exchanger 23 is provided on the upstream side of the cooler 25, and used gas reused in the flow path L6 is cooled by the cooler 25. Before being heated, the heat exchanger 23 exchanges heat with the used gas in the flow path L8 that is supplementarily compressed by the repressurizing compressor 11.
  • the used gas compressed in the flow path L8 is lower in temperature than the used gas in the flow path L6, is heated by the heat exchanger 23 in response to the residual heat of the used gas in the flow path L6, and is used in the flow path L6. It approaches the temperature of the spent gas. Therefore, the used gas that has been dried and pressurized to the same pressure as the compressed air joins the compressed air in the flow path L1 through the flow path L9 at a temperature close to the time of recovery from the heat consumption device. That is, the residual heat of the used gas in the flow path L6 is transmitted to the supplemented compressed gas by the heat exchanger 23 and is effectively used.
  • a suitable oxygen concentration in the compressed air supplied to the combustor 7 is preferably about 13 to 14 vol% from the viewpoint of energy saving. Since the oxygen concentration of air is about 20 vol%, it is preferable to mix the used gas to be reused at a ratio (volume ratio) that is about 1.5 to 1.8 times that of compressed air. At this time, the volume ratio of the compressed air in the mixed gas supplied to the combustor 7 is about 35 to 40%, and the volume ratio of the used gas is about 60 to 65%. Therefore, in a state where the combustion gas supply system 1 of the present disclosure is in a steady operation, about 60 to 65% of the used gas recovered from the heat consumption device C1 is reused, and the remaining 35 to 40%. The degree is discharged from the flow path L5.
  • the combustion gas supply system 1 in FIG. 1 may be configured to attach an expander to the flow path L5 so that the energy of the used gas discharged from the flow path L5 is recovered and reused as power. This further improves energy efficiency.
  • the combustor 7 is a pressure combustor having a pressure resistance capable of combusting fuel in compressed air, and an ignition method is used as long as it generates combustion air using a combustion reaction. And any combustion method of catalytic combustion method may be used.
  • the catalytic combustion type combustor is preferable from the viewpoint of the stability of the combustion reaction, and examples of the combustion catalyst include platinum and palladium catalysts. Since the temperature and supply amount required for the combustion gas differ depending on the use and use conditions of the combustion gas in the heat consumption device C1, it is sufficient to select and use one having supply ability and heat resistance depending on the use and use conditions. .
  • the fuel used for combustion is a combustible gas, that is, a gas having a combustible component such as carbon monoxide, hydrogen, or a hydrocarbon compound (such as methane).
  • the combustible component of the fuel may be a single component or a mixed composition. May be.
  • gaseous fuels used in gas turbines and the like can be suitably used, and examples thereof include fuels such as natural gas, coal gasification fuel, and biogas.
  • the amount of heat generated per unit volume of fuel varies depending on the content of combustible components, and the appropriate supply amount of compressed air also varies.
  • the air compressor 3 may be any compressor that can generally be used for supplying combustion gas, such as a centrifugal compressor, an axial flow compressor, a reciprocating compressor, a diaphragm compressor, a twin screw compressor, a single compressor. A screw compressor, a scroll compressor, etc. are mentioned.
  • a compressor capable of compressing air at a compression ratio (pressure ratio) of about 2.9 to 20.7 can be preferably used as the air compressor 3.
  • the fuel compressor 5b may be a compressor capable of compressing the fuel gas to a pressure equivalent to that of compressed air, and has a capacity corresponding to the fuel supply flow rate. When the fuel is stored in a cylinder having a pressure regulating valve or the like, the fuel compressor 5b can be omitted.
  • the re-pressurizing compressor 11 pressurizes in order to compensate for the loss pressure, the required pressure ratio is lower than that of the air compressor 3.
  • the pressure loss due to the flow resistance varies depending on the flow state of the heat consumption devices C1 and C2
  • the pressure loss per unit is generally in the range of about 1.5 to 15% of the supply pressure (gauge pressure) of the combustion gas.
  • a compressor capable of compressing air at a pressure ratio of about 1.8 to 19.6 can be suitably used.
  • the heat exchanger 23 can be appropriately selected from generally used gas-gas heat exchangers.
  • a static heat exchanger, a rotary regenerative heat exchanger, a periodic flow heat storage heat exchanger, and the like can be cited, and any of these methods may be used.
  • the cooler 25 is a so-called heat exchanger, and there is no limitation on the cooling method or the type of refrigerant, and the temperature of the used gas can be lowered to a temperature that can be supplied to the repressurizing compressor 11. As long as it has durability, it is sufficient.
  • a gas-liquid type heat exchanger is preferable in terms of cooling efficiency and the like, and a commonly used water-cooled type cooler can be suitably used.
  • the condensing separator 27 can also be appropriately selected from generally used gas-liquid separators, and those having durability against the pressure of the used gas are used.
  • the combustion gas supply system 1 is described as a system capable of selecting and replacing a heat consumption device as necessary.
  • this embodiment can be understood as a combustion gas supply system in which the heat supply and consumption of the combustion gas are integrally performed. That is, according to one aspect of the present disclosure, the combustion gas supply system 1 includes an air compressor 3 that supplies compressed air, a fuel supply device 5 that supplies fuel, and fuel and air that the fuel supply device supplies.
  • a combustor 7 that generates compressed combustion gas by burning compressed air supplied by a compressor, and consumes the amount of heat of the compressed combustion gas, and the compressed combustion gas that has consumed the amount of heat is discharged as a used gas.
  • the gas supply / recovery unit 9 that allows the heat consumption device to be attached and detached can be omitted, and the heat consumption device C1 may be directly connected to the flow paths L3 and L4. The same applies to the heat consumption device C2 and the gas supply / recovery unit 21.
  • the steady state in which operation is stabilized by adjusting the mixing ratio of spent gas and compressed air and the amount of fuel supplied is, for example, as follows.
  • the flow rate of the fuel is adjusted.
  • the combustion gas having a temperature of about 800 to 900 ° C., a pressure of about 1.7 to 2.0 MPaG, and an oxygen concentration of about 8 to 10 vol% is supplied from the combustor 7 to the heat consumption device C1.
  • the pressure of the used gas recovered from the heat consumption device C1 is generally reduced to about 1.6 to 1.9 MPa, and the temperature becomes about 500 to 600 ° C.
  • a part of the used gas is consumed by the secondary use in the heat consumption device C2, and decreases to a temperature of about 450 to 550 ° C. and a pressure of about 1.5 to 1.8 MPaG.
  • This used gas can be cooled to about 120 to 145 ° C. by heat exchange with the used gas after moisture removal in the heat exchanger 23, and further cooled to about 70 to 90 ° C. in the cooler 25. Condensate separates from spent gas.
  • the used gas dried by gas-liquid separation in the condenser / separator 27 has a pressure of 1.8 to 2.1 MPaG by the repressurizing compressor 11 so as to have the same pressure as the compressed air supplied from the air compressor 3.
  • the temperature rises to about 90-110 ° C.
  • the compressed used gas is heated in the heat exchanger 23 and approaches the temperature of the used gas that has passed through the heat consumption device C2, and the temperature is about 480 to 580 ° C. and the pressure is about 1.8 to 2.1 MPaG.
  • Oxygen concentration A used gas which has been dried and compressed with a concentration of about 8 to 10 vol% can be obtained.
  • This used gas is mixed with compressed air and fuel supplied from the air compressor 3 having a temperature of about 150 to 170 ° C., a pressure of about 1.8 to 2.1 MPaG, and an oxygen concentration of about 17 to 19 vol%. (Used gas: 60 to 65 vol%, compressed air: 35 to 40 vol%). As a result, a mixed gas having a pressure of about 1.8 to 2.1 MPaG and an oxygen concentration of about 11 to 15 vol% is prepared, and the temperature is about 140 to 180 ° C. This is supplied to the combustor 7 to produce the same combustion gas as described above. The amount of the remaining used gas discharged from the flow path L4 to the outside through the flow path L5 without being reused corresponds to the amount of compressed air supplied by the air compressor 3.
  • combustion gas supply system 1 of FIG. 1 An embodiment in which the combustion gas supply system 1 of FIG. 1 is operated will be described below by simulation, taking as an example the case where combustion gas is used to advance a chemical reaction by heating at about 800 ° C. in the reaction apparatus.
  • the reaction apparatus is connected to the gas supply / recovery unit 9 as a heat consumption device C1, and a relatively small steam generator is used as the heat consumption device C2 for the gas supply / recovery unit 21 for secondary use of the remaining heat amount. Connecting.
  • the pressure regulating valve 15 of the flow path L5 is set so that the internal pressure is maintained at 1.75 MPaG, and 1.95 MPaG, 161 ° C. compressed air supplied from the air compressor 3 (oxygen concentration: 17.9 vol%) ) Is supplied with compressed fuel from the fuel supply device 5 and supplied to the combustor 7 for combustion. During this time, the amount of fuel supplied is adjusted so that the temperature of the combustion gas discharged from the combustor 7 is 800 ° C. or higher. adjust.
  • combustion gas having a temperature of 875 ° C., a pressure of 1.82 MPaG, and an oxygen concentration of 9.52 vol% is supplied to the heat consumption device C1, and the temperature: 576 ° C., pressure: 1.74 MPaG, oxygen from the heat consumption device C1. Concentration: 9.52 vol% of used gas is recovered. A part thereof is supplied to the heat consumption device C2, and the used gas having a temperature of 556 ° C., a pressure of 1.71 MPaG, and an oxygen concentration of 9.52 vol% is cooled to 136 ° C. in the heat exchanger 23, and further, the cooler 25 To 80 ° C.
  • Condensed water is removed from the used gas by the condensing separator 27, and the temperature becomes 80 ° C., the pressure becomes 1.65 MPaG, and the oxygen concentration becomes 9.93 vol%.
  • the used gas is compressed by the re-pressurizing compressor 11 at a pressure ratio of 1.2, and the used gas dried and compressed at a temperature of 103 ° C. and a pressure of 1.98 MPaG is converted into a heat exchanger 23. To be supplied.
  • the dried and compressed used gas flowing out of the heat exchanger 23 has a temperature of 546 ° C., a pressure of 1.95 MPaG, an oxygen concentration of 9.93 vol%, and compressed air and fuel supplied from the air compressor 3. Mixed with.
  • the control of the flow rate adjusting valve 3b based on the oxygen concentration meter 17 is started, and the flow rate of the compressed air is adjusted so that the oxygen concentration of the mixed gas becomes 13 vol%.
  • the ratio of spent gas and compressed air to the mixed gas is 61.5% and 38.5%, respectively.
  • the flow rate of the compressed air supplied from the air compressor 3 decreases and becomes constant.
  • the used gas begins to be discharged from the flow path L5 to the outside. The proportion is 38.5%.
  • the combustion gas supply system of the present disclosure is a system that can supply combustion gas by appropriately adjusting the temperature and supply amount, and can stably supply high-temperature combustion gas as a heat source. is there. Therefore, a reaction device or a processing device that handles chemical synthesis by various thermal reactions (endothermic reaction) or processing in which alteration control by temperature control is important when proceeding with melting or dissolution of a substance is a heat consumption device. This is particularly useful.
  • a reaction apparatus include a reaction apparatus that performs synthesis using various thermal decomposition reactions such as a steam reforming reaction of methane, a dry reforming reaction of methane, and a reforming reaction of methanol.
  • the heat consumption device is a device that uses the supplied combustion gas only as a heat source and not directly as a power source.
  • the heat consumption device is a device that uses the supplied combustion gas only as a heat source and not directly as a power source.
  • the technology of the present disclosure can be applied to a system that supplies combustion gas, and can contribute to reduction of used gas emissions and power consumption.
  • combustion gas as a heat source, it is possible to contribute to the stable supply of target reaction products and processed products and the reduction of manufacturing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Air Supply (AREA)
  • Chimneys And Flues (AREA)

Abstract

燃焼ガス供給システム1は、空気圧縮機3、燃料供給装置5、燃料供給装置が供給する燃料及び圧縮空気を燃焼させて加圧燃焼ガスを生成する燃焼器7、加圧燃焼ガスを熱量消費装置へ供給して、熱量が消費された加圧燃焼ガスを使用済みガスとして回収するためのガス供給回収部9、及び、回収される使用済みガスの一部を補足的に圧縮して圧縮空気へ供給する再加圧圧縮機11を有する。再加圧圧縮機は、使用済みガスを圧縮空気と同圧力に加圧して再利用し、使用済みガスの残部は外部へ排出する。

Description

燃焼ガス供給システム
 本開示は、燃料を燃焼して発生させた燃焼ガスを熱源として供給するための燃焼ガス供給システムに関する。
 燃料を燃焼して発生させた燃焼ガスは、熱エネルギー又は動力エネルギーを供給するエネルギー源として様々な機器及び設備において利用されている。例えば、エンジン等の内燃機関や発電施設のタービン等においては、燃焼ガスを動力源として利用して、燃焼ガスの流動圧が駆動力や電力に変換される。化学処理施設のボイラーや反応装置等においては、燃焼ガスを熱源として使用して、熱交換によって燃焼ガスの熱エネルギーが対象物質に伝達され、対象物質の加熱、状態変化(気化等)、化学反応の進行等が行われる。
 燃焼ガスを発生させる燃焼器は、一般的に、酸素源として用いる空気に燃料を添加して燃焼する。燃焼器における燃焼効率は、空気の圧力及び温度が高い方が理論値に近くなることから、空気を圧縮して燃焼器に供給して圧縮空気中で燃焼させることによって燃焼効率を高めており、高温の加圧燃焼ガスが生成される。
 燃焼ガスを利用するシステムにおいては、省エネルギーの観点から、エネルギーの利用効率を高める工夫が試みられる。燃焼ガスを動力源として発電するガスタービン等では、燃焼ガスのエネルギーが発電用動力に変換された後の使用済みガスを回収してその残余熱を利用するコジェネレーションシステムの構築が提案されている。
 又、燃焼器における燃焼効率は、燃焼条件によって変動することから、実用新案登録第3179432号公報(特許文献1)においては、燃焼装置から排出されるガスの酸素含有量が設定値以上になったときに、排出されるガスを吸気管へ還流させて燃焼時の酸素含有量を調整することによって燃焼効率を高めることが記載される。
実用新案登録第3179432号公報
 上記特許文献1の技術では、燃焼条件を調整するために燃焼後の排ガスが再度使用される。しかし、これは、燃焼ガスをエネルギー源として使用した後の使用済みガスに含まれるエネルギーの回収やエネルギー効率の改善に関するものではない。つまり、燃焼器の燃焼ガスを熱源として使用する際に排出される、熱供給後の使用済みガスについては、エネルギーの回収及び再利用に関して改善の余地がある。
 又、燃焼ガスによって供給可能な熱量は、燃焼器における燃焼条件に依存し、燃焼器の燃焼条件は、燃焼器へ供給する圧縮空気の量を調整することによって、所望の熱量が燃焼ガスから供給されるように調整することができる。しかし、空気圧縮機の消費電力は大きい上に、日本の総消費電力において圧縮機の消費電力が占める割合は高い。つまり、空気圧縮機に関する消費電力の削減は、省エネルギーの点で重要な問題となっている。このようなことから、消費電力の増加を抑制しつつ、圧縮空気の供給量を自在に調整して燃焼器の燃焼条件を調整可能にする技術改善が必要である。
 本開示は、このような課題を解決し、消費電力の増加を抑制しつつ、必要に応じて圧縮空気の供給量を増加させて好適に燃焼ガスを供給可能な燃焼ガス供給システムを提供することを目的とする。
 上記課題を解決するために、本発明者等は、圧縮機の追加及び動力使用について鋭意研究を行い、熱源として使用した後の使用済みガスを利用してエネルギー消費の増加を抑制可能な簡便な構成を見出し、本開示の技術を成すに至った。
 本開示の一態様によれば、燃焼ガス供給システムは、圧縮空気を供給する空気圧縮機と、燃料を供給する燃料供給装置と、前記燃料供給装置が供給する燃料及び前記空気圧縮機が供給する圧縮空気を燃焼させて加圧燃焼ガスを生成する燃焼器と、前記燃焼器が生成する加圧燃焼ガスを熱量消費装置へ供給して、熱量が消費された加圧燃焼ガスを使用済みガスとして回収するためのガス供給回収部と、前記ガス供給回収部によって回収される前記使用済みガスの一部を補足的に圧縮して、前記空気圧縮機が供給する圧縮空気へ供給する再加圧圧縮機とを有することを要旨とする。
 上記において、前記再加圧圧縮機は、前記一部の使用済みガスを、前記圧縮空気と同圧力に加圧するように補足的に圧縮し、前記使用済みガスの残部は、外部へ排出される。更に、前記一部の使用済みガスを冷却する冷却器と、冷却によって凝縮する水分を前記一部の使用済みガスから分離する凝縮分離器とを有し、前記再加圧圧縮機は、前記凝縮分離器によって水分が除去された前記一部の使用済みガスを補足的に圧縮すると、燃焼に再利用する上で好適である。更に、前記一部の使用済みガスを、前記冷却器によって冷却する前に、前記再加圧圧縮機によって補足的に圧縮された前記一部の使用済みガスと熱交換する熱交換器を有すると、熱効率の点で好適である。
 更に、前記空気圧縮機が供給する圧縮空気の流量を調整する流量調整弁を有し、前記流量調整弁を用いて、前記空気圧縮機が供給する圧縮空気と、前記再加圧圧縮機が供給する前記一部の使用済みガスとの割合が調整されるように構成することによって、燃焼条件が好適に調整される。又、更に、前記再加圧圧縮機が前記一部の使用済みガスを供給した前記圧縮空気における酸素濃度を検出する酸素濃度計を有し、前記流量調整弁は、前記酸素濃度計の検出値に基づいて制御されるように構成すると良い。前記燃料供給装置は、燃料圧縮機を有してもよく、前記圧縮空気と同圧力に加圧された圧縮燃料を供給する。
 本開示の実施形態によれば、熱量が消費された使用済みガスを再利用することによって、その残留圧力を有効利用してシステム全体としての圧縮機の動力を削減できるので、燃焼条件を好適に調整可能で省エネルギー型の燃焼ガス供給システムが提供できる。
本開示の一実施形態に係る燃焼ガス供給システムの構成を示す概略図。
 圧縮機における圧縮比(圧力比)を低く設定可能であれば、圧縮機による消費電力を削減することが可能である。つまり、圧縮機に導入される空気の圧力が高ければ、消費電力を削減しつつ目的の圧力の圧縮空気が得られる。
 圧力に関して、燃焼ガスを熱源として使用した後の使用済みガスは、圧力を放出せずにそのまま回収されるならば、低圧縮比の圧縮機で再加圧して使用するのに適している。ボイラーや反応装置等のように燃焼ガスを熱源として利用する場合、供給される燃焼ガスの圧力が減少すると温度が低下して熱源として好ましくない。このため、熱量を消費する装置(以下、熱量消費装置と称する)では、燃焼ガスから熱が供給される間の燃焼ガスの圧力が維持されるように構成される。つまり、燃焼効率を高めるために圧縮空気を用いて発生させた高温の加圧燃焼ガスは、熱量消費装置中で圧力が維持され、排出される使用済みガスは、流通抵抗等による圧力低下を除いて実質的に使用前の燃焼ガスの圧力が維持された加圧状態の排ガスである。従って、これを再加圧して圧縮空気の原料として使用すると、システム全体の圧縮機における消費電力の削減に極めて有効である。又、燃焼ガスの酸素含有量は、燃焼による酸素消費によって低下するが、空気の酸素濃度の半分程度であり、通常の空気と混合することで、圧縮空気として十分に利用できる。
 上述に従って、本開示においては、熱源として使用した後の使用済みガスを、圧力を維持したまま回収し、圧縮空気と同等の圧力に戻すように再加圧用の圧縮機によって圧縮して、補充の圧縮空気として燃焼器へ供給する。従って、再加圧圧縮機によって消費される電力は、熱源として熱量供給中に燃焼ガスが損失した圧力のみを補充するのに要する電力となる。
 又、本開示においては、燃焼ガスを熱源として使用した後の使用済みガスからエネルギーを効率的に回収して、圧縮空気の供給増加に伴うコスト増加を抑制すると共に、用途に応じて好適な燃焼ガスを供給可能なように圧縮空気の供給を通じて燃焼条件を自在に調整することが可能な燃焼ガス供給システムを提供可能である。
 以下に、単に例として、本開示の実施形態について図面を参照して詳細に説明する。尚、実施形態において示す寸法、材料、その他、具体的な数値等は、開示内容の理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。又、本開示に直接関係のない要素は図示を省略する。
 図1は、本開示の一実施形態に係る燃焼ガス供給システムを示す。燃焼ガス供給システム1は、燃料を含む圧縮空気の燃焼によって生成する加圧燃焼ガスを熱量消費装置C1に供給するシステムである。熱量消費装置C1は、燃焼ガスを熱源として利用して、燃焼ガスの熱量を対象物質に伝達するための熱交換機能を有する装置であり、供給される加圧燃焼ガスの熱量を消費して、熱量が消費された加圧燃焼ガスを使用済みガスとして排出する。熱量消費装置C1としては、例えば、蒸気発生器、熱水発生器、熱流体ヒーター、空気ヒーター、高温ガス発生器等のような対象物質の加熱又はそれによる状態変化(気化等)を生じる装置や、対象物質の加熱によって化学反応を進行させる反応装置が含まれる。Ni、Co、Fe、Pt、Ru、Rh、Pd等の活性金属を成分とする触媒を用いる反応装置であっても良い。熱量消費装置C1の用途によって加熱する対象物質の種類や加熱目的が異なり、それに応じて燃焼ガスの温度及び供給流量が適正に調整される。
 燃焼ガス供給システム1は、空気圧縮機3と、燃料供給装置5と、燃焼器7と、ガス供給回収部9と、再加圧圧縮機11とを有する。空気圧縮機3は、空気を圧縮して圧縮空気を流路L1を通じて燃焼器7へ供給する。燃料供給装置5は、流路L2を通じて圧縮空気に燃料を供給する。燃焼器7は、空気圧縮機3及び燃料供給装置5によって供給された燃料及び圧縮空気を受け、これを燃焼させて加圧燃焼ガスを生成する。燃料供給装置5は、燃料源5a及び燃料圧縮機5bを有する。燃料源5aから供給される気体燃料は、燃料圧縮機5bによって加圧圧縮されて、圧縮空気と実質的に同圧力で流路L2から供給され、流路L1の圧縮空気に添加混合される。燃料源5aは、燃料容器に燃料を収容したものであっても、外部の燃料供給システムを供給源として接続ラインを用いて燃料を供給するものであってもよい。又、燃料源が、調圧弁等の燃料の取り出し圧を調節可能な調圧手段を有する加圧ボンベ等のような容器に収容される燃料である場合には、燃料圧縮機5bは省略可能である。
 燃焼器7の加圧燃焼ガスは、流路L3からガス供給回収部9を介して熱量消費装置C1へ供給され、使用済みガスとして、熱量が消費された加圧燃焼ガスが熱量消費装置C1から回収される。ガス供給回収部9は、流路L3末端の供給用接続部材9a及び流路L4末端の回収用接続部材9bを有し、これらは、流路L3,L4と熱量消費装置C1とを着脱可能に接続して、燃焼ガス供給システム1と熱量消費装置C1とを圧力を損失せずに連通させる。従って、燃焼器7によって生成される加圧燃焼ガスは、ガス供給回収部9を通じて、その圧力を維持したまま流路L3から熱量消費装置C1へ供給され、熱量が消費された加圧燃焼ガス(使用済みガス)は、流通抵抗による圧力損失を除いて、実質的にその圧力を維持して熱量消費装置C1から流路L4へ還流される。ガス供給回収部9によって回収される使用済みガス(加圧状態の排ガス)は、流路L4から流路L5を通じて外部へ排出される。流路L4には圧力計13が設けられ、この検出値に基づいて流路L5上の圧力調整弁15が制御されて、燃焼ガス供給システム1内の圧力が所定圧力に維持されるように、使用済みガスの外部への排出が制御される。流路L4の圧力計13は、加圧燃焼ガスより圧力損失分だけ低い使用済みガスの圧力を検出するので、所定圧力として圧力損失を考慮した圧力が設定される。圧力計13は流路L3に設けても良く、その場合、所定圧力として加圧燃焼ガスの圧力が設定される。
 空気は20vol%程度の酸素を含む。しかし、酸素濃度がこれより低い圧縮空気であっても燃焼に使用することができ、圧縮空気に使用済みガスを混合しても燃焼することが可能である。そこで、流路L4から分岐して流路L1へ合流するルートとして、流路L6~L9が設けられ、ガス供給回収部9によって回収される使用済みガスの一部が流路L9から流路L1へ供給されて燃焼に再利用され、残部は外部へ排出される。但し、熱量消費装置C1から回収される使用済みガスの圧力は、流通抵抗により圧力が低下する。故に、本開示では、流路L4から回収される使用済みガスにおける損失圧力を再加圧圧縮機11によって補って圧縮空気と同等の圧力に上昇させた使用済みガスを圧縮空気に供給して混合する。つまり、圧力を補った使用済みガスを圧縮空気と共に、混合ガスとして燃焼器7へ供給する。燃焼器7へ供給する圧縮空気の酸素濃度には、燃焼効率の点から好適な範囲があるので、圧縮空気と使用済みガスの混合割合には好適な範囲がある。このため、混合割合を調整するために、流路L1には、燃焼器7に供給される混合ガスの酸素濃度を検出する酸素濃度計17と、これに電気的に接続される流量計3a及び流量調整弁3bとが設置される。流量調整弁3bは、流量計3aの検出値に応じて制御される弁であり、流路L1の圧縮空気の流量は、酸素濃度計17による混合ガスの酸素濃度の検出値に基づいた流量調整弁3bの制御によって、好適な酸素濃度になる割合で使用済みガスと圧縮空気とが混合されるように調整される。
 更に、燃料供給装置5は、流量計5c及び流量調整弁5dを流路L2上に有する。流量計5c及び流量調整弁5dは、燃焼ガスの温度を検出するために流路L3に設置される温度計19と電気的に接続される。流量調整弁5dは、温度計19の検出温度に基づいて制御され、圧縮された燃料の流量は、流量調整弁5dによって調節される。圧縮空気と使用済みガスとの混合ガスに添加される燃料の流量が流量調整弁5dによって適量に調整されることによって、燃焼ガスの温度は所望の温度に調節される。
 熱量消費装置C1へ高温の加圧燃焼ガスを供給した時に、熱量消費装置C1から回収される使用済みガスの温度がさほど低くない場合、使用済みガスの残余熱量を二次的に利用できるとエネルギー効率上好ましい。このため、図1の実施形態では、ガス供給回収部9と同様の供給用接続部材21a及び回収用接続部材21bを有するガス供給回収部21が流路L6に設けられ、熱量消費装置C1より低い温度の熱源を利用する別の熱量消費装置C2が接続可能なように構成される。これにより、回収される使用済みガスの一部は、燃焼器7での燃焼に再利用する前に、その残余熱量が更に回収再利用される。ガス供給回収部21の付設は任意であり、省略してもよく、また、流路L4上においてガス供給回収部9の下流側に連続して設けても良い。或いは、供給用接続部材21a及び回収用接続部材21b間を直接接続したり、熱量消費装置C2へ接続したり接続を切り換えられるようにガス供給回収部21を構成して、熱量消費装置C2の接続及び離隔を任意に選択できるようにしても良い。
 燃焼ガスは、燃焼によって生じる水蒸気を含むので、流路L6の再利用する使用済みガスは、圧縮空気に混合する前に水分が除去される。このために、燃焼ガス供給システム1は、熱交換器23、冷却器25及び凝縮分離器27を有し、水蒸気の冷却凝縮を利用した気液分離によって使用済みガスから水分が除去される。具体的には、回収される使用済みガスの一部は、流路L6から流路L7の冷却器25に供給されて冷却され、再加圧圧縮機11に供給可能な温度に温度が低下して凝縮分離器27へ供給される。使用済みガスの冷却によって水蒸気から凝縮した水分は、凝縮分離器27において使用済みガスから分離して外部へ除去される。水蒸気が除去された使用済みガスは、凝縮分離器27から流路L8を通じて再加圧圧縮機11へ導入されて補足的に圧縮されて流通抵抗による損失圧力が補充され、圧縮空気と同圧力に加圧される。更に、冷却器25で必要とされる冷熱量を削減するために、冷却器25の上流側に熱交換器23が設けられ、流路L6の再利用する使用済みガスは、冷却器25で冷却される前に、熱交換器23において、再加圧圧縮機11で補足的に圧縮された流路L8の使用済みガスと熱交換する。流路L8の圧縮された使用済みガスは、流路L6の使用済みガスより低温であり、熱交換器23において流路L6の使用済みガスの残余熱を受けて加熱され、流路L6の使用済みガスの温度に近づく。従って、乾燥され、圧縮空気と同圧力に加圧された使用済みガスが、熱量消費装置からの回収時に近い温度で、流路L9を通じて流路L1の圧縮空気に合流する。つまり、熱交換器23によって、流路L6の使用済みガスの残余熱が、補足的に圧縮された使用済みガスに伝達されて有効利用される。
 燃焼器7へ供給する圧縮空気における好適な酸素濃度は、省エネルギーの観点から、13~14vol%程度が好適である。空気の酸素濃度は20vol%程度であるので、再利用する使用済みガスは、圧縮空気の1.5~1.8倍程度となる割合(容積比)で混合すると好適である。この時、燃焼器7へ供給される混合ガス中に占める圧縮空気の容積比率は35~40%程度、使用済みガスの容積比率は60~65%程度となる。従って、本開示の燃焼ガス供給システム1が定常的に稼動する状態においては、熱量消費装置C1から回収される使用済みガスのうちの60~65%程度が再利用され、残部の35~40%程度が流路L5から排出される。これは、使用済みガスを排気する従来の燃焼ガス供給システムと比較すると、燃焼器7へ圧縮空気を供給する空気圧縮機3の処理量が格段に減少することを意味する。従って、再加圧圧縮機11に必要とされる圧縮比が小さく消費電力が少ないことを考慮すると、空気圧縮機3における消費エネルギーの大幅削減によってシステム全体としてのエネルギー消費が節減される。
 尚、図1の燃焼ガス供給システム1は、流路L5に膨張器を付設して、流路L5から排出される使用済みガスのエネルギーを動力として回収再利用するように構成してもよく、これによってエネルギー効率が更に向上する。
 燃焼ガス供給システム1において、燃焼器7は、圧縮空気中で燃料を燃焼可能な耐圧性を有する加圧燃焼器であり、燃焼反応を利用して燃焼空気を発生させるものであれば、点火方式及び触媒燃焼方式の何れの燃焼方式であっても良い。触媒燃焼方式の燃焼器は、燃焼反応の安定性等の観点から好ましく、燃焼用触媒として、例えば白金、パラジウム系の触媒が挙げられる。熱量消費装置C1における燃焼ガスの用途及び使用条件によって燃焼ガスに求められる温度及び供給量は異なるので、用途及び使用条件に応じて供給能力及び耐熱性を備えるものを適宜選択して使用すればよい。
 燃焼に使用する燃料は、可燃性ガス、つまり、一酸化炭素、水素、炭化水素化合物(メタン等)などの可燃性成分を有するガスであり、燃料の可燃性成分は単成分でも混合組成であってもよい。一般的にガスタービン等において使用される気体燃料を好適に使用でき、例えば、天然ガス、石炭ガス化燃料、バイオガス等の燃料が挙げられる。可燃性成分の含有量によって燃料の単位容積当たりの発熱量が異なり、圧縮空気の適正な供給量も異なる。
 空気圧縮機3は、一般的に燃焼ガスの供給において使用可能な圧縮機であればよく、遠心式圧縮機、軸流式圧縮機、往復圧縮機、ダイアフラム式圧縮機、ツインスクリュー圧縮機、シングルスクリュー圧縮機、スクロール圧縮機などが挙げられる。概して、2.9~20.7程度の圧縮比(圧力比)で空気を圧縮可能な圧縮機が空気圧縮機3として好適に使用できる。燃料圧縮機5bは、圧縮空気と同等の圧力に燃料ガスを圧縮可能な圧縮機であれば良く、燃料の供給流量に応じた容量のものが使用される。燃料が調圧弁等を有するボンベ等に収容される場合には燃料圧縮機5bを省略可能である。再加圧圧縮機11は、損失圧力を補うために補足的に加圧するので、必要とされる圧力比は、空気圧縮機3より低い。流通抵抗による圧力損失は、熱量消費装置C1,C2の流通状態によって異なるが、概して、装置一台当たりの圧力損失は、燃焼ガスの供給圧力(ゲージ圧)の1.5~15%程度の範囲に想定可能である。従って、再加圧圧縮機11として、1.8~19.6程度の圧力比で空気を圧縮可能な圧縮機を好適に使用できる。
 熱交換器23は、一般的に使用される気-気型熱交換器から適宜選択して使用することができる。例えば、静止型熱交換器、回転再生式熱交換器、周期流蓄熱式熱交換器などが挙げられ、このような方式の何れであっても良い。冷却器25は、いわゆる熱交換器であり、冷却方式や冷媒の種類に制限はなく、使用済みガスの温度を再加圧圧縮機11に供給可能な温度に低下可能で、使用済みガスの圧力に耐久性を有するものであれば良い。冷却効率等の点において気-液型熱交換器が好ましく、一般的に使用される水冷式の冷却器が好適に使用できる。凝縮分離器27についても、一般的に使用される気液分離器から適宜選択することができ、使用済みガスの圧力に耐久性を有するものが使用される。
 上述において、燃焼ガス供給システム1は、必要に応じて熱量消費装置の選択及び置換が可能なシステムとして説明している。熱量消費装置の変更が不要な場合、この実施形態は、燃焼ガスの熱量の供給及び消費が一体的に行われる燃焼ガス供給システムとして理解することができる。つまり、本開示の一態様によれば、燃焼ガス供給システム1は、圧縮空気を供給する空気圧縮機3と、燃料を供給する燃料供給装置5と、前記燃料供給装置が供給する燃料及び前記空気圧縮機が供給する圧縮空気を燃焼させて加圧燃焼ガスを生成する燃焼器7と、前記加圧燃焼ガスの熱量を消費して、熱量が消費された加圧燃焼ガスを使用済みガスとして排出する熱量消費装置C1と、前記熱量消費装置から排出される前記使用済みガスの一部を補足的に加圧して、前記空気圧縮機が供給する圧縮空気へ供給する再加圧圧縮機11とを有すると理解される。この場合、熱量消費装置の着脱を可能にするガス供給回収部9は省略可能であり、熱量消費装置C1は、流路L3,L4に直接接続してよい。熱量消費装置C2及びガス供給回収部21についても同様である。
 使用済みガスと圧縮空気との混合割合及び燃料の供給量の調節によって稼動が安定した定常状態は、例えば、次のようになる。熱源に対する温度要件が600~900℃程度である熱量消費装置C1、及び、温度要件が500~600℃程度である熱量消費装置C2を接続した燃焼ガス供給システム1において、燃料の流量を調節して、温度:800~900℃程度、圧力:1.7~2.0MPaG程度、酸素濃度:8~10vol%程度の燃焼ガスを燃焼器7から熱量消費装置C1へ供給する。すると、熱量消費装置C1から回収される使用済みガスの圧力は、概して1.6~1.9MPa程度に低下し、温度が500~600℃程度となる。使用済みガスの一部は、熱量消費装置C2での二次利用によって熱量が消費されて、温度:450~550℃程度、圧力:1.5~1.8MPaG程度に低下する。この使用済みガスは、熱交換器23において、水分除去後の使用済みガスとの熱交換によって120~145℃程度に冷却可能であり、更に冷却器25において70~90℃程度に冷却されて、凝縮水が使用済みガスから分離する。凝縮分離器27における気液分離によって乾燥した使用済みガスは、空気圧縮機3から供給される圧縮空気と同圧力になるように、再加圧圧縮機11によって圧力:1.8~2.1MPaG程度に圧縮され、その温度は90~110℃程度に上昇する。この圧縮された使用済みガスは、熱交換器23において加熱されて、熱量消費装置C2を経た使用済みガスの温度に近づき、温度:480~580℃程度、圧力:1.8~2.1MPaG程度、酸素濃度:8~10vol%程度の乾燥し圧縮された使用済みガスが得られる。この使用済みガスが、温度:150~170℃程度、圧力:1.8~2.1MPaG程度、酸素濃度:17~19vol%程度の空気圧縮機3から供給される圧縮空気及び燃料と混合される(使用済みガス:60~65vol%、圧縮空気:35~40vol%)。その結果、圧力:1.8~2.1MPaG程度、酸素濃度:11~15vol%程度の混合ガスが調製され、その温度は140~180℃程度となる。これは、燃焼器7に供給されて、上述と同様の燃焼ガスを生成する。再利用されずに流路L4から流路L5を通じて外部へ排出される残部の使用済みガスの量は、空気圧縮機3によって供給される圧縮空気の量に相当する。
 反応装置において800℃程度の加熱によって化学反応を進行させるために燃焼ガスを利用する場合を例として、図1の燃焼ガス供給システム1を稼動する一実施形態をシミュレーションによって以下に記載する。この例においては、反応装置を熱量消費装置C1としてガス供給回収部9に接続し、残余熱量の二次利用のために比較的小型の蒸気発生器を熱量消費装置C2としてガス供給回収部21に接続する。
 流路L5の圧力調整弁15を内部圧力が1.75MPaGに維持されるように設定して、空気圧縮機3から供給される1.95MPaG、161℃の圧縮空気(酸素濃度:17.9vol%)に燃料供給装置5から圧縮燃料を添加して燃焼器7へ供給して燃焼させ、この間に、燃焼器7から排出される燃焼ガスの温度が800℃以上になるように燃料の供給量を調整する。これにより、温度:875℃、圧力:1.82MPaG、酸素濃度:9.52vol%の燃焼ガスが熱量消費装置C1へ供給され、熱量消費装置C1から温度:576℃、圧力:1.74MPaG、酸素濃度:9.52vol%の使用済みガスが回収される。その一部は熱量消費装置C2に供給され、温度:556℃、圧力:1.71MPaG、酸素濃度:9.52vol%の使用済みガスが熱交換器23において136℃に冷却され、更に冷却器25によって80℃に冷却される。この使用済みガスは、凝縮分離器27によって凝縮水が除去されて、温度:80℃、圧力:1.65MPaG、酸素濃度:9.93vol%となる。この使用済みガスは、再加圧圧縮機11によって、圧力比:1.2で圧縮されて、温度:103℃、圧力:1.98MPaGの乾燥し圧縮された使用済みガスが、熱交換器23に供給される。熱交換器23から流出する乾燥し圧縮された使用済みガスは、温度:546℃、圧力:1.95MPaG、酸素濃度:9.93vol%であり、空気圧縮機3から供給される圧縮空気及び燃料と混合される。流路L6において使用済みガスが供給され始めたら、酸素濃度計17に基づく流量調整弁3bの制御を開始し、混合ガスの酸素濃度が13vol%になるように圧縮空気の流量が調整され、使用済みガス及び圧縮空気が混合ガスを占める割合は、各々、61.5%及び38.5%となる。稼動開始から定常状態に至る間に、空気圧縮機3から供給される圧縮空気の流量は減少して一定になり、定常状態になると、使用済みガスが流路L5から外部へ排出され始め、その割合は38.5%となる。
 このように、本開示の燃焼ガス供給システムは、燃焼ガスを、温度及び供給量を適切に調節して供給することが可能であり、熱源として高温の燃焼ガスを安定的に供給可能なシステムである。故に、様々な熱的反応(吸熱反応)による化学合成や、物質の溶融又は溶解を進行させる際に温度制御による変質抑制が重要となる処理を扱うような反応装置又は処理装置を熱量消費装置とする場合に、特に有用性が高い。そのような反応装置として、例えば、メタンの水蒸気改質反応やメタンのドライリフォーミング反応、メタノールのリフォーミング反応など、各種熱分解反応を利用した合成を行う反応装置が挙げられる。尚、再加圧圧縮機11による電力消費を抑制するには、回収される使用済みガスの圧力損失は小さい方が好ましい。従って、熱量消費装置は、供給される燃焼ガスを熱源としてのみ利用し、直接的には動力源として利用しない装置であることが好ましい。勿論、熱源として得られる熱量を元にして、間接的に動力、電力等を発生するような場合は問題がない。
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示は上述の実施形態に限定されず、請求の範囲に記載された範疇において、当業者が想到し得る各種の変更例又は修正例についても当然に本開示の技術的範囲に属するものと理解される。
 本開示の技術は、燃焼ガスを供給するシステムに適用して、使用済みガスの排出量削減及び消費電力の削減に寄与することができる。又、燃焼ガスを熱源とする各種化学反応や処理を通して、目的とする反応生成物や処理加工品の安定供給及び製造コストの削減に寄与することができる。

Claims (10)

  1.  圧縮空気を供給する空気圧縮機と、
     燃料を供給する燃料供給装置と、
     前記燃料供給装置が供給する燃料及び前記空気圧縮機が供給する圧縮空気を燃焼させて加圧燃焼ガスを生成する燃焼器と、
     前記燃焼器が生成する前記加圧燃焼ガスを熱量消費装置へ供給して、熱量が消費された前記加圧燃焼ガスを使用済みガスとして回収するためのガス供給回収部と、
     前記ガス供給回収部によって回収される前記使用済みガスの一部を補足的に圧縮して、前記空気圧縮機が供給する圧縮空気へ供給する再加圧圧縮機と
     を有する燃焼ガス供給システム。
  2.  前記再加圧圧縮機は、前記一部の使用済みガスを、前記空気圧縮機が供給する圧縮空気と同圧力に加圧するように補足的に圧縮し、前記使用済みガスの残部は、外部へ排出される請求項1に記載の燃焼ガス供給システム。
  3.  更に、前記一部の使用済みガスを冷却する冷却器と、冷却によって凝縮する水分を前記一部の使用済みガスから分離する凝縮分離器とを有し、前記再加圧圧縮機は、前記凝縮分離器によって水分が除去された前記一部の使用済みガスを補足的に圧縮する請求項1又は2に記載の燃焼ガス供給システム。
  4.  更に、前記一部の使用済みガスを、前記冷却器によって冷却する前に、前記再加圧圧縮機によって補足的に圧縮された前記一部の使用済みガスと熱交換する熱交換器を有する請求項3に記載の燃焼ガス供給システム。
  5.  更に、前記空気圧縮機が供給する圧縮空気の流量を調整する流量調整弁を有し、前記流量調整弁を用いて、前記空気圧縮機が供給する圧縮空気と、前記再加圧圧縮機が供給する前記一部の使用済みガスとの割合が調整される請求項1~4の何れか一項に記載の燃焼ガス供給システム。
  6.  更に、前記再加圧圧縮機が前記一部の使用済みガスを供給した前記圧縮空気における酸素濃度を検出する酸素濃度計を有し、前記流量調整弁は、前記酸素濃度計の検出値に基づいて制御される請求項5に記載の燃焼ガス供給システム。
  7.  前記燃料供給装置は、燃料圧縮機を有し、前記圧縮空気と同圧力に加圧された圧縮燃料を供給する請求項1~6の何れか一項に記載の燃焼ガス供給システム。
  8.  前記ガス供給回収部は、前記熱量消費装置を着脱可能に接続するための供給用接続部材及び回収用接続部材を有する請求項1~7の何れか一項に記載の燃焼ガス供給システム。
  9.  圧縮空気を供給する空気圧縮機と、
     燃料を供給する燃料供給装置と、
     前記燃料供給装置が供給する燃料及び前記空気圧縮機が供給する圧縮空気を燃焼させて加圧燃焼ガスを生成する燃焼器と、
     前記加圧燃焼ガスの熱量を消費して、熱量が消費された前記加圧燃焼ガスを使用済みガスとして排出する熱量消費装置と、
     前記熱量消費装置から排出される前記使用済みガスの一部を補足的に加圧して、前記空気圧縮機が供給する圧縮空気へ供給する再加圧圧縮機と
     を有する燃焼ガス供給システム。
  10.  前記熱量消費装置は、前記加圧燃焼ガスを熱源として利用するための熱交換機能を有する請求項9に記載の燃焼ガス供給システム。
PCT/JP2017/001153 2016-01-25 2017-01-16 燃焼ガス供給システム WO2017130758A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17743989.0A EP3410013B1 (en) 2016-01-25 2017-01-16 Combustion gas supply system
CN201780005880.3A CN108474555B (zh) 2016-01-25 2017-01-16 燃烧气体供给系统
CA3010257A CA3010257C (en) 2016-01-25 2017-01-16 Combustion gas supply system
DK17743989.0T DK3410013T3 (da) 2016-01-25 2017-01-16 Forbrændingsgastilførselssystem
US16/006,961 US20180292085A1 (en) 2016-01-25 2018-06-13 Combustion gas supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-011368 2016-01-25
JP2016011368A JP6657996B2 (ja) 2016-01-25 2016-01-25 燃焼ガス供給システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/006,961 Continuation US20180292085A1 (en) 2016-01-25 2018-06-13 Combustion gas supply system

Publications (1)

Publication Number Publication Date
WO2017130758A1 true WO2017130758A1 (ja) 2017-08-03

Family

ID=59398713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001153 WO2017130758A1 (ja) 2016-01-25 2017-01-16 燃焼ガス供給システム

Country Status (8)

Country Link
US (1) US20180292085A1 (ja)
EP (1) EP3410013B1 (ja)
JP (1) JP6657996B2 (ja)
CN (1) CN108474555B (ja)
CA (1) CA3010257C (ja)
DK (1) DK3410013T3 (ja)
TW (1) TWI629411B (ja)
WO (1) WO2017130758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584807A (zh) * 2018-08-29 2021-03-30 尤妮佳股份有限公司 吸收性物品

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145755A (ja) * 1993-11-25 1995-06-06 Mitsubishi Heavy Ind Ltd 高圧噴霧燃焼装置
JP2004071279A (ja) * 2002-08-05 2004-03-04 Central Res Inst Of Electric Power Ind 溶融炭酸塩形燃料電池発電システム及びこの発電システムにおける発電方法
JP2004360694A (ja) * 2003-06-02 2004-12-24 Alstom Technology Ltd ガスタービンを有するエネルギ発生設備にてエネルギを発生させる方法並びに該方法を実施するエネルギ発生設備
JP2010065694A (ja) * 2008-09-11 2010-03-25 General Electric Co <Ge> 排気ガス再循環システム、排気ガス再循環システムを有するターボ機械システム、及び排気ガス再循環制御方法
WO2010058750A1 (ja) * 2008-11-18 2010-05-27 東京瓦斯株式会社 水素リサイクル型mcfc発電システム
JP2011014497A (ja) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd 燃料電池
JP2012007213A (ja) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd 直接還元製鉄法およびそのための還元ガス製造装置
JP2013537596A (ja) * 2010-07-02 2013-10-03 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼
JP2013221501A (ja) * 2012-04-12 2013-10-28 General Electric Co <Ge> 排出ガス再循環を備えた再熱燃焼タービンエンジンに関連するシステム及び装置
JP2014105593A (ja) * 2012-11-26 2014-06-09 Central Research Institute Of Electric Power Industry Co2回収型ガス化ガス発電プラント
JP2014515084A (ja) * 2011-03-22 2014-06-26 エクソンモービル アップストリーム リサーチ カンパニー 低エミッションタービンガス再循環回路を変化させる方法並びに関連のシステム及び装置
US20140338901A1 (en) * 2011-12-20 2014-11-20 Exxonmobil Upstream Research Compay Enhanced Coal-Bed Methane Production

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH587444A5 (ja) * 1975-12-15 1977-04-29 Fascione Pietro
DE3729910A1 (de) * 1987-09-07 1989-03-16 Steinmueller Gmbh L & C Druckaufgeladen betreibbare wirbelschichtfeuerung
US4854381A (en) * 1988-04-11 1989-08-08 Paul Mikula Heat exchanger device
US5297729A (en) * 1992-08-28 1994-03-29 Combustion Concepts, Inc. Furnace apparatus
NO308400B1 (no) * 1997-06-06 2000-09-11 Norsk Hydro As Kraftgenereringsprosess omfattende en forbrenningsprosess
NO308399B1 (no) * 1997-06-06 2000-09-11 Norsk Hydro As Prosess for generering av kraft og/eller varme
FR2837263B1 (fr) * 2002-03-12 2004-09-24 Air Liquide Procede de mise en oeuvre d'une chaudiere de recuperation de chaleur
US7490472B2 (en) * 2003-02-11 2009-02-17 Statoil Asa Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows
US7726114B2 (en) * 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
TWI563164B (en) * 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated systems incorporating inlet compressor oxidant control apparatus and related methods of generating power
JP5789146B2 (ja) * 2011-07-13 2015-10-07 株式会社神戸製鋼所 微粉炭焚きボイラ設備の運転方法および微粉炭焚きボイラ設備
TWM448642U (zh) * 2012-06-22 2013-03-11 Sheng Zhun Entpr Co Ltd 燃燒裝置廢氣回流再使用控制系統

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145755A (ja) * 1993-11-25 1995-06-06 Mitsubishi Heavy Ind Ltd 高圧噴霧燃焼装置
JP2004071279A (ja) * 2002-08-05 2004-03-04 Central Res Inst Of Electric Power Ind 溶融炭酸塩形燃料電池発電システム及びこの発電システムにおける発電方法
JP2004360694A (ja) * 2003-06-02 2004-12-24 Alstom Technology Ltd ガスタービンを有するエネルギ発生設備にてエネルギを発生させる方法並びに該方法を実施するエネルギ発生設備
JP2010065694A (ja) * 2008-09-11 2010-03-25 General Electric Co <Ge> 排気ガス再循環システム、排気ガス再循環システムを有するターボ機械システム、及び排気ガス再循環制御方法
WO2010058750A1 (ja) * 2008-11-18 2010-05-27 東京瓦斯株式会社 水素リサイクル型mcfc発電システム
JP2011014497A (ja) * 2009-07-06 2011-01-20 Mitsubishi Heavy Ind Ltd 燃料電池
JP2012007213A (ja) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd 直接還元製鉄法およびそのための還元ガス製造装置
JP2013537596A (ja) * 2010-07-02 2013-10-03 エクソンモービル アップストリーム リサーチ カンパニー 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼
JP2014515084A (ja) * 2011-03-22 2014-06-26 エクソンモービル アップストリーム リサーチ カンパニー 低エミッションタービンガス再循環回路を変化させる方法並びに関連のシステム及び装置
US20140338901A1 (en) * 2011-12-20 2014-11-20 Exxonmobil Upstream Research Compay Enhanced Coal-Bed Methane Production
JP2013221501A (ja) * 2012-04-12 2013-10-28 General Electric Co <Ge> 排出ガス再循環を備えた再熱燃焼タービンエンジンに関連するシステム及び装置
JP2014105593A (ja) * 2012-11-26 2014-06-09 Central Research Institute Of Electric Power Industry Co2回収型ガス化ガス発電プラント

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112584807A (zh) * 2018-08-29 2021-03-30 尤妮佳股份有限公司 吸收性物品
CN112584807B (zh) * 2018-08-29 2022-05-03 尤妮佳股份有限公司 吸收性物品

Also Published As

Publication number Publication date
CN108474555A (zh) 2018-08-31
CA3010257C (en) 2020-06-16
CN108474555B (zh) 2021-04-06
EP3410013B1 (en) 2021-06-02
JP2017133701A (ja) 2017-08-03
DK3410013T3 (da) 2021-07-26
JP6657996B2 (ja) 2020-03-04
TW201730428A (zh) 2017-09-01
CA3010257A1 (en) 2017-08-03
EP3410013A4 (en) 2019-07-17
US20180292085A1 (en) 2018-10-11
TWI629411B (zh) 2018-07-11
EP3410013A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US7726114B2 (en) Integrated combustor-heat exchanger and systems for power generation using the same
US9399950B2 (en) Systems and methods for exhaust gas extraction
US7926292B2 (en) Partial oxidation gas turbine cooling
CN113544372A (zh) 氨分解设备、具备该氨分解设备的燃气轮机成套设备、氨分解方法
US8375725B2 (en) Integrated pressurized steam hydrocarbon reformer and combined cycle process
JPH07201349A (ja) 燃料電池サイクルに基づく間接燃焼型のガスタービンサイクル
CN105518258B (zh) 燃气涡轮装置及其操作方法
US9273607B2 (en) Generating power using an ion transport membrane
RU2443040C2 (ru) Система топливных элементов
JP5905933B2 (ja) 廃熱回収装置および廃熱回収方法
WO2017130758A1 (ja) 燃焼ガス供給システム
EP4230847B1 (en) Combined power generation system and driving method thereof
JP2004018343A (ja) 炭化水素燃料からの電力と水素の併産方法とそのプラント及びその排熱回収型改質器
JP2001085036A (ja) 燃料電池装置及びタービン設備
JPH07208200A (ja) タービンコンプレッサ用燃焼装置と燃焼方法
JP2011163294A (ja) 石炭ガス化ガス供給プラント
KR20220054825A (ko) 수소 연료 가스 터빈 전력 시스템 및 그 작동 방법
JP4172740B2 (ja) 水素発生装置とその運転方法
CN114542223B (zh) 一种发电方法及系统
JP2004196617A (ja) 水素製造方法および水素製造装置
US20240359134A1 (en) Combustion system having a fuel cell and a carbon capture system
JP4101627B2 (ja) ガスタービンシステム
CN116771505A (zh) 一种木质生物质微型燃气轮机及其运行的控制方法
KR20240130203A (ko) 신재생 에너지를 이용한 복합 화력 발전 장치
CN118855590A (zh) 具有燃料电池和碳捕获系统的燃烧系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3010257

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017743989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017743989

Country of ref document: EP

Effective date: 20180827