WO2017130584A1 - 光導波シート、光伝送モジュール及び光導波シートの製造方法 - Google Patents

光導波シート、光伝送モジュール及び光導波シートの製造方法 Download PDF

Info

Publication number
WO2017130584A1
WO2017130584A1 PCT/JP2016/086965 JP2016086965W WO2017130584A1 WO 2017130584 A1 WO2017130584 A1 WO 2017130584A1 JP 2016086965 W JP2016086965 W JP 2016086965W WO 2017130584 A1 WO2017130584 A1 WO 2017130584A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical waveguide
diameter portion
waveguide sheet
maximum diameter
Prior art date
Application number
PCT/JP2016/086965
Other languages
English (en)
French (fr)
Inventor
大鳥居 英
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/069,415 priority Critical patent/US10948654B2/en
Publication of WO2017130584A1 publication Critical patent/WO2017130584A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present technology relates to an optical waveguide sheet that can be used for optical communication, an optical transmission module, and a method for manufacturing the optical waveguide sheet.
  • an optical waveguide such as an optical fiber generally includes a core having a constant diameter. However, if the core diameter is constant, a trade-off relationship occurs when light is input and output.
  • the larger the core diameter the less vignetting or vignetting at the time of optical coupling. , Low loss.
  • the smaller the core diameter the less vignetting and leakage during optical coupling, and the lower the loss.
  • Patent Document 1 discloses an optical coupling device having a tapered shape in which the thickness and width are gradually reduced.
  • the optical coupling device described in Patent Document 1 is not easy to manufacture. If it is a shape (one-dimensional taper shape) in which either the thickness or the width is gradually reduced, it can be manufactured using a semiconductor process or the like, but both the thickness and the width are gradually reduced. The shape (two-dimensional taper shape) increases the manufacturing difficulty dramatically.
  • the wafer size or the glass panel size is the standard. For this reason, it is difficult to secure a device necessary for lengthening, and the cost is high. For example, there is no known report that has succeeded in producing an optical waveguide having a two-dimensional tapered shape with a level of 50 cm or more.
  • an object of the present technology is to provide an optical waveguide sheet, an optical transmission module, and a method for manufacturing the optical waveguide sheet that can realize low loss and low cost.
  • an optical waveguide sheet includes a core and a clad.
  • the core is a core extending along a first direction, and a cross-sectional area in a plane parallel to a second direction orthogonal to the first direction and a third direction orthogonal to the second direction. Is continuous to the maximum diameter part, the minimum diameter part having the smallest cross-sectional area in the plane parallel to the second direction and the third direction, the maximum diameter part and the minimum diameter part, A taper portion having a width gradually changing in both the second direction and the third direction along the first direction between the maximum diameter portion and the minimum diameter portion, and the first direction. The maximum diameter portion and the minimum diameter portion are alternately provided along the tapered portion.
  • the clad is provided around the core.
  • a periodic structure in which the maximum diameter portion and the minimum diameter portion are alternately provided via the tapered portion is formed in the core.
  • the core has a shape in which the width of the tapered portion gradually changes in the two directions of the second direction and the third direction, and has a two-dimensional tapered shape.
  • the core may include a plurality of cores arranged along the second direction via the cladding.
  • each of the plurality of cores can be used as an optical waveguide.
  • the plurality of cores may be provided so that the maximum diameter portions face each other and the minimum diameter portions face each other along the second direction.
  • the plurality of cores may be arranged so that the maximum diameter portion and the minimum diameter portion face each other along the second direction between adjacent cores.
  • the light transmission direction can be reversed between adjacent cores.
  • the maximum diameter portion and the minimum diameter portion may have a certain length along the first direction.
  • the maximum diameter portion and the minimum diameter portion have a certain length along the first direction, the light incident surface is formed at the maximum diameter portion, and the light emission surface is formed at the minimum diameter portion. In the formation, the light incident surface and the light emitting surface can be easily positioned in the first direction.
  • the optical waveguide sheet is It further comprises a sheet-like substrate, The core is formed on the substrate; The clad may be formed on the base material and the core.
  • the optical waveguide sheet is It further comprises a sheet-like substrate,
  • the clad may include a first clad formed on the base material and a second clad formed on the first clad and the core.
  • an optical transmission module includes an optical waveguide sheet, a first optical connector, and a second optical connector.
  • the optical waveguide sheet is a core extending along a first direction, in a plane parallel to a second direction orthogonal to the first direction and a third direction orthogonal to the second direction.
  • a maximum diameter portion having a maximum cross-sectional area; a minimum diameter portion having a minimum cross-sectional area in a plane parallel to the second direction and the third direction; and the maximum diameter portion and the minimum diameter portion.
  • the first optical connector causes light to enter the maximum diameter portion. The light emitted from the minimum diameter portion enters the second optical connector.
  • a method for manufacturing an optical waveguide sheet includes: Coating the core material on the sheet member, The shape of the groove is transferred to the core material by rotating a cylindrical master having grooves formed on the cylindrical surface while pressing the core material. The core material is cured to form a core, A clad material is applied on the sheet member and the core, A method of manufacturing an optical waveguide sheet in which the cladding material is cured to form a cladding, The groove has a cross-sectional area in a plane in which the core extends along a first direction and is parallel to a second direction orthogonal to the first direction and a third direction orthogonal to the second direction.
  • the minimum diameter part having the smallest cross-sectional area in the plane parallel to the second direction and the third direction, the maximum diameter part and the minimum diameter part, A taper portion having a width gradually changing in both the second direction and the third direction along the first direction between the maximum diameter portion and the minimum diameter portion, and the first direction. And the maximum diameter portion and the minimum diameter portion are alternately arranged through the tapered portion.
  • the method for manufacturing the optical waveguide sheet may further include a step of cutting the optical waveguide sheet so that the core includes at least one of the maximum diameter portion, the minimum diameter portion, and the taper portion.
  • the base material may be conveyed by roll-to-roll.
  • the sheet member is a base material
  • the core material may be applied on the substrate.
  • the sheet member includes a base material and a lower clad laminated on the base material, In the step of applying the core material on the sheet member, the core material may be applied on the lower clad.
  • an optical waveguide sheet As described above, according to the present technology, it is possible to provide an optical waveguide sheet, an optical transmission module, and a method for manufacturing an optical waveguide sheet that can realize low loss and low cost. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • optical transmission module It is a perspective view of an optical transmission module concerning an embodiment of this art. It is sectional drawing of the same optical transmission module. It is sectional drawing of the optical waveguide sheet with which the optical transmission module is provided. It is a top view of the optical waveguide sheet. It is a perspective view of the core of the optical waveguide sheet. It is a top view of the core of the optical waveguide sheet. It is a top view of the core of the optical waveguide sheet. It is sectional drawing of the largest diameter part which the core of the optical waveguide sheet has. It is sectional drawing of the minimum diameter part which the core of the optical waveguide sheet has. It is a top view of the taper part with which the core of the optical waveguide sheet is provided.
  • optical transmission module according to the embodiment of the present technology will be described.
  • FIG. 1 is a perspective view illustrating a configuration of an optical transmission module 100 according to an embodiment of the present technology
  • FIG. 2 is a cross-sectional view of the optical transmission module 100 and a connection object 130.
  • three directions orthogonal to each other are defined as an X direction, a Y direction, and a Z direction, respectively.
  • the optical transmission module 100 includes an optical waveguide sheet 110 and an optical connector 120.
  • the optical waveguide sheet 110 is extended in the Z direction, and one optical connector 120 is provided at each end of the optical waveguide sheet 110.
  • the optical connector 120 may be provided only at one end of the optical waveguide sheet 110.
  • the optical waveguide sheet 110 transmits an optical signal between the optical connectors 120.
  • FIG. 3 is a cross-sectional view of the optical waveguide sheet 110. As shown in the figure, the optical waveguide sheet 110 includes a base 111, a core 112, and a clad 113.
  • the base material 111 is a sheet-like member made of synthetic resin or the like, and is preferably flexible.
  • the base 111 is made of, for example, PET (polyethylene terephthalate).
  • the base material 111 can have a thickness (Y direction) of, for example, 100 ⁇ m and a width (X direction) of, for example, 300 mm.
  • the core 112 is provided on the base material 111.
  • FIG. 4 is a plan view showing the core 112, in which the cladding 113 is not shown. As shown in the figure, each of the plurality of cores 112 extends along the Z direction and is separated in a direction (X direction) orthogonal to the extending direction (Z direction).
  • the core 112 is made of a material having a high light transmittance and a higher refractive index than the base material 111 and the clad 113.
  • an ultraviolet curable resin can be used as the material of the core 112.
  • the diameter of the core 112 for example, the width (X direction) and the height (Y direction) can be 50 ⁇ m, and the interval (X direction) between the cores 112 can be 125 ⁇ m, for example.
  • the number of cores 112 is not limited to that shown in the figure, and may be 1 to several hundred.
  • the clad 113 is provided on the base material 111 and the core 112.
  • a material of the clad 113 for example, an ultraviolet curable resin having a refractive index smaller than that of the core 112 can be used.
  • the thickness (Y direction) of the clad 113 can be set to 100 ⁇ m, for example.
  • the optical waveguide sheet 110 has the above configuration.
  • the core 112 is covered with the base material 111 and the clad 113, and light incident on the core 112 is transmitted while being reflected at the interface between the core 112 and the base material 111 or the interface between the core 112 and the clad 113. That is, the core 112 functions as an optical waveguide.
  • the size of the optical waveguide sheet 110 is not particularly limited, but may be, for example, a width (X direction) of 10 mm and a length (Z direction) of 80 mm.
  • the optical connector 120 connects the optical waveguide sheet 110 and the connection object 130 (see FIG. 2).
  • the optical connector 120 can be made of a synthetic resin or the like having high light transmittance. As shown in FIGS. 1 and 2, the optical connector 120 includes a positioning hole 120 a and a lens 121.
  • a plurality of positioning holes 120 a are provided in the optical connector 120, and the optical connector 120 is positioned with respect to the connection target 130 by inserting a positioning pin included in the connection target 130.
  • the positioning hole 120 a is also used when the optical waveguide sheet 110 is joined to the optical connector 120.
  • a plurality of lenses 121 are provided on the surface on the side facing the connection target 130, and face the photoelectric conversion element 131 provided in the connection target 130.
  • the plurality of lenses 121 are arranged along the X direction.
  • the number of lenses 121 may be the same as the number of cores 112 or may be smaller than the number of cores 112. Since the core 112 located near the outer periphery of the base material 111 may be unstable in shape, several (for example, five) cores 112 located near the outer periphery can be used as dummy cores. It is possible that the lens 112 is not provided with the lens 112.
  • the lens 121 is, for example, a collimating lens that collimates incident light.
  • a plurality of photoelectric conversion elements 131 are arranged along the X direction in the same manner as the lens 121, and each photoelectric conversion element 131 faces the lens 121.
  • the photoelectric conversion element 131 can be a light emitting element, a light receiving element, or a combined light receiving and emitting element.
  • the structure of the connection target object 130 is not specifically limited.
  • the optical connector 120 includes an optical functional element that emits or enters parallel light mounted on an organic substrate, an optical connector that emits or enters parallel light mounted on an organic substrate, and a weak base similar to that of an organic substrate. It can be connected to a photoelectric conversion element, an optical functional element, an optical connector or the like that is mounted on the material and emits or enters parallel light. Further, the optical connectors 120 may be connected by the optical connectors 120.
  • the optical waveguide sheet 110 is joined to the optical connector 120 as shown in FIG.
  • the optical waveguide sheet 110 is provided with a reflecting surface 115.
  • the reflective surface 115 is a surface inclined with respect to the Z direction and having light reflectivity, as shown in FIG.
  • the reflecting surface 115 may be a cut surface obtained by cutting the clad 113 and the core 112 by laser processing or the like, or may be a surface formed by embedding a light reflecting member made of metal or the like in the optical waveguide sheet 110.
  • optical transmission module The operation of the optical transmission module 100 will be described.
  • the photoelectric conversion element 131 functions as a light emitting element or a light receiving element.
  • the photoelectric conversion element 131 When the photoelectric conversion element 131 (see FIG. 2) is a light emitting element, when an electric signal is input to the photoelectric conversion element 131, the photoelectric conversion element 131 converts the electric signal into an optical signal and emits light. The light emitted from the photoelectric conversion element 131 is collected by the lens 121. The collected light is reflected by the reflecting surface 115, enters the core 112, and is transmitted.
  • a plurality of photoelectric change elements 132 and lenses 121 are arranged along the X direction, and light emitted from each photoelectric conversion element 131 passes to each core 112 via the lens 121 facing the photoelectric conversion element 131. Incident and transmitted.
  • the photoelectric conversion element 131 When the photoelectric conversion element 131 (see FIG. 2) is a light receiving element, the light traveling through the core 112 is reflected by the reflecting surface 115 and collected by the lens 121. The condensed light enters the photoelectric conversion element 131, and the photoelectric conversion element 131 converts the optical signal into an electrical signal.
  • a plurality of photoelectric change elements 132 and lenses 121 are arranged along the X direction, and the light emitted from each core 112 is condensed through the lens 121, and the photoelectric conversion element 131 facing the lens 121. Is incident on.
  • the optical transmission module 100 has the above configuration.
  • the configuration of the optical transmission module 100 described above is an example of an optical transmission module using the optical waveguide sheet 110, and the optical waveguide sheet 110 according to the present technology may be connected to an optical connector having another configuration. It is.
  • the optical axis direction of the light incident on the core 112 and the light emitted from the core 112 may not be the Y direction as described above, but may be the Z direction.
  • FIG. 5 is a perspective view of a part of the core 112
  • FIG. 6 is a plan view of the core 112 viewed from the Y direction
  • FIG. 7 is a plan view of the core 112 viewed from the X direction.
  • the core 112 includes a maximum diameter portion 112a, a minimum diameter portion 112b, and a tapered portion 112c.
  • the maximum diameter portion 112a is the portion of the core 112 that has the largest cross-sectional area in the XY plane.
  • the maximum diameter portion 112a has a certain length along the X direction.
  • FIG. 8 is a cross-sectional view of the maximum diameter portion 112a in the XY plane. As shown in the figure, the cross section of the maximum diameter portion 112a can have a trapezoidal shape.
  • the width (X direction) of the maximum diameter portion 112a is defined as a width W1
  • the height (Y direction) of the maximum diameter portion 112a is defined as a height H1.
  • the minimum diameter portion 112b is a portion of the core 112 having the smallest cross-sectional area in the XY plane.
  • the minimum diameter portion 112b has a certain length along the X direction.
  • FIG. 9 is a cross-sectional view of the minimum diameter portion 112b in the XY plane. As shown in the figure, the cross section of the minimum diameter portion 112b may have a trapezoidal shape.
  • the width (X direction) of the minimum diameter portion 112b is defined as a width W2
  • the height (Y direction) of the minimum diameter portion 112b is defined as a height H2.
  • the cross section of the maximum diameter portion 112a and the minimum diameter portion 112b can be similar, the width W1 is greater than the width W2, and the height H1 is greater than the height H2. Moreover, the cross section of the largest diameter part 112a and the smallest diameter part 112b may not be a similar shape.
  • the tapered portion 112c is a tapered portion provided between the maximum diameter portion 112a and the minimum diameter portion 112b.
  • the tapered portion 112c has a width W1 and a height H1 at a position adjacent to the maximum diameter portion 112a, and has the same shape as the cross section of the maximum diameter portion 112a.
  • the tapered portion 112c has a width W2 and a height H2 at a position adjacent to the minimum diameter portion 112b, and has the same shape as the minimum diameter portion 112b. That is, the tapered portion 112c is continuous with the maximum diameter portion 112a and the minimum diameter portion 112b.
  • FIG. 10 is a view of the tapered portion 112c as viewed from the Z direction. As shown in the figure, in the tapered portion 112c, the width in the X direction (D1 in the drawing) gradually increases and the height in the Y direction (D2 in the drawing) gradually increases from the minimum diameter portion 112b to the maximum diameter portion 112a.
  • D1 in the drawing the width in the X direction
  • D2 in the drawing the height in the Y direction
  • the taper portion 112c gradually decreases in width in the X direction (D1 in the drawing) from the maximum diameter portion 112a to the minimum diameter portion 112b, and the height in the Y direction (D2 in the drawing). Has a gradually decreasing shape.
  • the tapered portion 112c has a two-dimensional tapered shape in which the width in both the X direction and the Y direction gradually changes along the Z direction.
  • the two-dimensional taper shape means that two-dimensional taper is formed as a result between the adjacent largest diameter portion 112a and smallest diameter portion 112b.
  • the tapered portion 112c is a portion where the width in the X direction gradually changes along the Z direction between the adjacent largest diameter portion 112a and the smallest diameter portion 112b, and the width in the Y direction gradually changes along the Z direction.
  • a part may be provided.
  • the core 112 includes a plurality of maximum diameter portions 112a and a plurality of minimum diameter portions 112b that are alternately positioned along the Z direction, and between the maximum diameter portion 112a and the minimum diameter portion 112b. It has a periodic structure in which the tapered portion 112c is located.
  • optical waveguide sheet 110 may include one maximum diameter portion 112a, one taper portion 112c, and one minimum diameter portion 112b.
  • FIG. 11 is a schematic diagram showing the core 112 and the light incident on the core 112 (arrows in the figure).
  • the core 112 can use the maximum diameter portion 112a as a light incident surface and the minimum diameter portion 112b as a light emission surface. Specifically, by providing the reflecting surface 115 as shown in FIG. 2 at the maximum diameter portion 112a and the minimum diameter portion 112b, the maximum diameter portion 112a is used as a light incident surface and the minimum diameter portion 112b is used as a light emission surface. It is possible.
  • the maximum diameter portion 112a and the minimum diameter portion 112b are cut by the XY plane, and a lens is provided on the cut surface, whereby the maximum diameter portion 112a is used as a light incident surface and the minimum diameter portion 112b is used as a light emission surface. It is also possible.
  • the light traveling through the core 112 is emitted from the minimum diameter portion 112 b and enters the photoelectric conversion element 131 through the lens 121. Since the cross-sectional area of the minimum diameter part 112b is small, the light source size at the time of emission becomes small. Thereby, the condensing spot size in the other party can also be made small. Therefore, there is little vignetting and leakage of incident light on the counterpart side, and the optical coupling loss between the core 112 and the photoelectric conversion element 131 can be reduced.
  • FIG. 12 is a schematic diagram of the core 112 and the core 300.
  • the core 112 having one tapered portion 112c is shown as a core 112A
  • the core 112 having three tapered portions 112c is shown as a core 112B
  • a core 112 having five tapered portions 112c is shown as a core 112C.
  • the core 300 is a two-dimensionally tapered core having the same maximum diameter as the maximum diameter portion 112a of the core 112 and the same minimum diameter as the minimum diameter portion 112b of the core 112.
  • a core 300 having the same length as the core 112A is shown as a core 300A
  • a core 300 having the same length as the core 112B is shown as a core 300B
  • a core 300 having the same length as the core 112C is shown as a core 300C.
  • the optical coupling loss of both cores is the same.
  • the cores 112B and 300B and the cores 112C and 300C have the same optical coupling loss.
  • each core cannot be produced by cutting a core having the same shape, and it is necessary to produce respective cores having different taper inclination angles depending on the length.
  • the core 112A, the core 112B, and the core 112C have a periodic structure as described above. Therefore, it is possible to create all the cores 112A, 112B, and 112C by creating a sufficiently long core and cutting it at an arbitrary position.
  • the core 112 according to the present embodiment has a periodic structure, so that the optical coupling loss is small and can have an arbitrary length.
  • the optical waveguide sheet 110 includes a plurality of cores 112 arranged along the X direction.
  • FIG. 13 is a plan view showing the arrangement of the cores 112 and the light incident direction (arrows in the figure). In FIG. 13, the cladding 113 is not shown.
  • the plurality of cores 112 can be arranged between adjacent cores 112 so that the maximum diameter portions 112a face each other and the minimum diameter portions 112b face each other along the X direction. . With this arrangement, the light transmission direction can be the same between the plurality of cores 112.
  • FIG. 14 is a plan view showing another arrangement of the cores 112 and the light incident direction (arrows in the figure).
  • the plurality of cores 112 can be arranged between the adjacent cores 112 so that the maximum diameter portion 112a and the minimum diameter portion 112b face each other along the X direction. With this arrangement, the light transmission direction can be reversed between adjacent cores 112.
  • FIG. 15 is a plan view showing another arrangement of the cores 112 and the light incident direction (arrows in the figure).
  • the core 112 forms two core groups arranged such that the maximum diameter portion 112a faces each other and the minimum diameter portion 112b faces each other along the X direction. Between core groups, it can arrange
  • the number of core groups is not limited to two, and the number of cores 112 included in each core group is also arbitrary.
  • FIG. 16 is a schematic diagram illustrating a method for manufacturing the optical waveguide sheet 110
  • FIGS. 17 to 20 are schematic diagrams in each manufacturing process of the optical waveguide sheet 110.
  • the optical waveguide sheet 110 can be manufactured by a roll imprint method using a roll imprint apparatus 500.
  • FIG. 17 is a schematic diagram of the base material 111 drawn from the base material roll 111a.
  • the base material 111 has a thickness (Y direction) of, for example, 100 ⁇ m and a width (X direction) of, for example, 300 mm.
  • FIG. 21 is a schematic diagram of the cylindrical master 502.
  • the cylindrical master 502 is a roll made of metal or the like, and has a width (X direction) of, for example, 300 mm and a diameter of, for example, 150 mm. As shown in the figure, a plurality of grooves 510 are formed in the cylindrical master 502 along the circumferential direction. The number of grooves 510 is actually 20 for example. The detailed shape of the groove 510 will be described later.
  • the elastic roll 503 is a roll made of an elastic material such as rubber.
  • the base material 111 and the core material C1 pass between the cylindrical master disk 502 and the elastic roll 503, and are pressed by the cylindrical master disk 502 and the elastic roll 503. As the core material C1 passes through the groove 510, the shape of the groove 510 is transferred to form the shape of the core 112.
  • the core material C1 is irradiated with ultraviolet rays at the same time as or immediately after passing between the cylindrical master disk 502 and the elastic roll 503. Thereby, the core material C1 is hardened and the core 112 is formed.
  • FIG. 18 is a schematic diagram of the base 111 and the core 112 that have passed between the cylindrical master 502 and the elastic roll 503.
  • the core 112 can have a width (X direction) and a height (Y direction) of 50 ⁇ m, and an interval (X direction) between the cores 112 can be, for example, 125 ⁇ m.
  • the clad material C2 is ejected from the core material ejection unit 504 onto the base material 111 and the core 112, and the clad material C2 is applied onto the base material 111 and the core 112.
  • the clad material C2 can be an ultraviolet curable resin.
  • the clad material C2 passes between the pressure roll 505 and the elastic roll 506 together with the base material 111 and the core 112.
  • the pressure roll 505 is a roll made of metal or the like
  • the elastic roll 506 is a roll made of an elastic material such as rubber.
  • the base material 111, the core 112, and the clad material C2 are pressed by a pressure roll 505 and an elastic roll 506.
  • the clad material C2 has a predetermined thickness due to pressurization or a set gap between the rolls, and is formed in the shape of the clad 113.
  • the clad material C2 is irradiated with ultraviolet rays at the same time as or immediately after passing between the pressure roll 505 and the elastic roll 506. Thereby, the clad material C2 is hardened and the clad 113 is formed.
  • FIG. 19 is a schematic diagram of the substrate 111, the core 112, and the clad 113 that have passed between the pressure roll 505 and the elastic roll 506.
  • the thickness (Y direction) of the clad 113 can be set to 100 ⁇ m from the base material 111, for example.
  • FIG. 20 is a schematic diagram of a plurality of optical waveguide sheets 110 formed by cutting.
  • FIGS. 17 to 20 show the manufacturing process of three optical waveguide sheets 110, but in actuality, a larger number of optical waveguide sheets 110 can be manufactured by the same process. For example, 30 optical waveguide sheets can be manufactured simultaneously.
  • the wave sheet 110 can be manufactured.
  • this manufacturing method is an example of a manufacturing method of the optical waveguide sheet 110, and the optical waveguide sheet 110 can be manufactured using a method other than the roll imprint method.
  • the roll imprint method has a relatively low manufacturing cost and apparatus cost, and can manufacture the optical waveguide sheet 110 at a low cost.
  • the cylindrical master 502 is formed with the groove 510 for forming the shape of the core 112.
  • 22 is a perspective view of the groove 510
  • FIG. 23 is a plan view of the groove 510 viewed from the Y direction
  • FIG. 24 is a plan view of the core 112 viewed from the X direction.
  • FIGS. 21 to 23 are diagrams in a state where the cylindrical surface of the cylindrical master 502 is developed in a planar shape.
  • the groove 510 includes a maximum diameter portion 510a, a minimum diameter portion 510b, and a tapered portion 510c.
  • the maximum diameter portion 510a is the portion of the groove 510 having the largest cross-sectional area in the XY plane.
  • FIG. 25 is a cross-sectional view of the maximum diameter portion 510a in the XY plane. As shown in the figure, the cross section of the maximum diameter portion 510a may have a trapezoidal shape.
  • the width (X direction) of the maximum diameter portion 510a is the same as the width W1 of the core 112, and the depth (Y direction) of the maximum diameter portion 510a is the same as the height H1 of the core 112.
  • the minimum diameter portion 510b is the portion of the groove 510 having the smallest cross-sectional area in the XY plane.
  • FIG. 26 is a cross-sectional view of the minimum diameter portion 510b in the XY plane. As shown in the figure, the cross section of the minimum diameter portion 510b may have a trapezoidal shape.
  • the width (X direction) of the minimum diameter portion 510b is the same as the width W2 of the core 112, and the depth (Y direction) of the minimum diameter portion 510b is the same as the height H2 of the core 112.
  • the cross section of the maximum diameter portion 510a and the minimum diameter portion 510b can be similar, the width W1 is greater than the width W2, and the height H1 is greater than the height H2.
  • the cross sections of the maximum diameter portion 510a and the minimum diameter portion 510b may not be similar.
  • the tapered portion 510c is a tapered portion provided between the maximum diameter portion 510a and the minimum diameter portion 510b.
  • the tapered portion 510c has a width W1 and a depth H1 at a position adjacent to the maximum diameter portion 510a, and has the same shape as the cross section of the maximum diameter portion 510a.
  • the tapered portion 510c has a width W2 and a depth H2 at a position adjacent to the minimum diameter portion 510b, and has the same shape as the cross section of the minimum diameter portion 510b. That is, the tapered portion 510c is continuous with the maximum diameter portion 510a and the minimum diameter portion 510b.
  • FIG. 27 is a view of the tapered portion 510c as seen from the Z direction. As shown in the figure, in the tapered portion 510c, the width in the X direction (D1 in the drawing) gradually increases and the depth in the Y direction (D2 in the drawing) gradually increases from the minimum diameter portion 510b to the maximum diameter portion 510a. Have a shape to
  • the taper portion 510c gradually decreases in the width in the X direction (D1 in the drawing) from the maximum diameter portion 510a to the minimum diameter portion 510b, and the depth in the Y direction (D2 in the drawing). Has a gradually decreasing shape.
  • the tapered portion 510c has a two-dimensional tapered shape in which the width in both the X direction and the Y direction gradually changes along the Z direction.
  • the maximum diameter portion 510a and the minimum diameter portion 510b are alternately positioned along the Z direction, and a tapered portion 510c is provided between the maximum diameter portion 510a and the minimum diameter portion 510b. It has a periodic structure.
  • the groove 510 has a structure in which the above-mentioned periodic structure is formed without interruption along the circumferential direction of the cylindrical master 502. That is, by using the roll imprint method, the above-described periodic structure of the core 112 can be formed infinitely.
  • the arrangement of the plurality of grooves 510 in the cylindrical master 502 can be such that the arrangement of the cores 112 as shown in FIGS. 13 to 15 can be formed. That is, the maximum diameter portion 510a and the minimum diameter portion 510b can be arranged to face each other in the X direction, or the maximum diameter portion 510a and the minimum diameter portion 510b can be arranged to face each other in the X direction.
  • the groove 510 can be formed by subjecting an unprocessed cylindrical master 502 to cutting using a cutting tool.
  • FIG. 28 is a cross-sectional view showing a processing method of the minimum diameter portion 510b
  • FIG. 29 is a cross-sectional view showing a processing method of the maximum diameter portion 510a
  • FIG. 30 is a plan view showing a method of processing the groove 510 and is a development view of the surface of the cylindrical master 502.
  • the minimum diameter portion 510b can be formed by inserting the cutting tool B into the cylindrical master 502 to a certain depth and cutting it. Further, as shown in FIG. 29, the maximum diameter portion 510a inserts the cutting tool B into the cylindrical master 502 to a deeper depth, and the cutting tool B has two paths such as the path G1 and the path G2 shown in FIG. It can be formed by cutting. That is, the groove 510 can be formed using one type of cutting tool B.
  • the core 112 has a periodic structure. Even when the core 112 is cut at an arbitrary length, the maximum diameter portion 112a can be used as a light incident surface and the minimum diameter portion 112b can be used as a light emission surface. .
  • the core 112 is formed using the cylindrical master disk 502. However, the core 112 can be formed over an infinite length using the groove 510 having a periodic structure. is there.
  • the optical waveguide sheet according to this embodiment is suitable for production by a roll imprint method.
  • a method for manufacturing the optical transmission module 100 will be described.
  • 31 to 40 are schematic views showing a method for manufacturing the optical transmission module 100.
  • FIG. 31 and 32 are plan views of a jig 600 used for manufacturing the optical transmission module 100.
  • the jig 600 includes positioning pins 601 and an optical waveguide sheet support 602.
  • the two optical connectors 120 are placed on the jig 600.
  • the optical connector 120 can be positioned on the jig 600 by inserting the positioning pins 601 into the positioning holes 120a.
  • an adhesive J is dropped on the optical connector 120.
  • the adhesive J is, for example, an ultraviolet curable resin.
  • the optical waveguide sheet 110 is pulled out onto the optical connector 120 from the optical waveguide sheet roll 110a around which the optical waveguide sheet 110 is wound, and the adhesive J is cured.
  • the adhesive J can be cured by irradiating with ultraviolet rays.
  • the optical waveguide sheet 110 can be positioned in the X direction using the optical waveguide sheet support 602.
  • the reflecting surface 115 can be provided on the maximum diameter portion 112a and the minimum diameter portion 112b facing the lens 121 in the Y direction.
  • the excess optical waveguide sheet 110 is cut by the blade 603.
  • the optical transmission module 100 can be manufactured.
  • the number of the maximum diameter part 112a, the minimum diameter part 112b, and the taper part 112c included in the optical waveguide sheet 110 constituting the optical transmission module 100 can be selected according to the distance between the optical connectors 120 (the length of the optical waveguide sheet 110). it can.
  • the optical waveguide sheet 110 only needs to include at least one of the maximum diameter portion 112a, the minimum diameter portion 112b, and the taper portion 112c.
  • the maximum diameter portion 112a and the minimum diameter portion 112b have a certain length in the X direction, but the present invention is not limited thereto.
  • 41 is a plan view of the core 112 according to the modification viewed from the Y direction
  • FIG. 42 is a plan view of the core 112 according to the modification viewed from the X direction.
  • the maximum diameter portion 112a and the minimum diameter portion 112b do not have a length in the X direction, and may be planar portions provided between the tapered portions 112c.
  • the maximum diameter portion 112a and the minimum diameter portion 112b have a certain length as in the above embodiment. However, positioning is easy.
  • the core 112 has a trapezoidal cross section along the XY plane, but is not limited thereto.
  • 43 and 44 are perspective views showing a core 112 according to a modification. As shown in FIG. 43, the core 112 may have a semicircular cross section along the XY plane, and may have a rectangular cross section along the XY plane as shown in FIG.
  • the cross section of the core 112 in the XY plane is not particularly limited as long as the tapered portion 112c has a two-dimensional tapered shape whose width changes in two directions of the X direction and the Y direction.
  • a shape having a width that decreases in the Z direction, such as a trapezoid, is preferable because the core 112 can be easily detached from the cylindrical master 502.
  • FIG. 45 is a cross-sectional view of an optical waveguide sheet 110 according to a modification.
  • the optical waveguide sheet 110 may include a lower layer cladding 114 in addition to the base material 111, the core 112 and the cladding 113.
  • the lower clad 114 can be formed on the base 111, and the core 112 and the clad 113 can be formed on the lower clad 113.
  • the lower clad 114 is made of an ultraviolet curable resin or the like having a refractive index similar to that of the clad 113. In this case, since the substrate 111 does not function as a clad, the material can be selected regardless of the refractive index.
  • the clad material may be applied to the base 111 and cured before the core material C1 is applied onto the base 111.
  • the lower cladding 114 is formed on the substrate 111.
  • the core 112 can be formed by coating the core material C1 on the lower cladding 114.
  • the core extends along the first direction, and has a maximum cross-sectional area in a plane parallel to the second direction orthogonal to the first direction and the third direction orthogonal to the second direction.
  • a maximum diameter portion a minimum diameter portion having a minimum cross-sectional area in a plane parallel to the second direction and the third direction, and the maximum diameter portion and the minimum diameter portion.
  • a taper part in which the width in both the second direction and the third direction gradually changes along the first direction between the minimum diameter parts, and the taper part changes along the first direction.
  • a core provided such that the maximum diameter portion and the minimum diameter portion alternate via the tapered portion;
  • An optical waveguide sheet comprising: a clad provided around the core.
  • the optical waveguide sheet according to any one of (1) to (5) above It further comprises a sheet-like substrate, The core is formed on the substrate;
  • the clad is an optical waveguide sheet formed on the base material and the core.
  • the optical waveguide sheet according to any one of (1) to (5) above It further comprises a sheet-like substrate,
  • the clad is an optical waveguide sheet including a first clad formed on the substrate, and a second clad formed on the first clad and the core.
  • the core extends along the first direction, and has a maximum cross-sectional area in a plane parallel to the second direction orthogonal to the first direction and the third direction orthogonal to the second direction.
  • a maximum diameter portion a minimum diameter portion having a minimum cross-sectional area in a plane parallel to the second direction and the third direction, and the maximum diameter portion and the minimum diameter portion.
  • An optical waveguide sheet comprising a core provided such that the maximum diameter portion and the minimum diameter portion alternate via the tapered portion, and a clad provided around the core; A first optical connector for allowing light to enter the maximum diameter portion; An optical transmission module comprising: a second optical connector into which light emitted from the minimum diameter portion is incident.
  • a taper portion having a width gradually changing in both the second direction and the third direction along the first direction between the maximum diameter portion and the minimum diameter portion, and the first direction.
  • the optical waveguide sheet according to any one of (9) to (11) above,
  • the sheet member includes a base material and a lower clad laminated on the base material, In the step of coating the core material on the sheet member, a method of manufacturing an optical waveguide sheet in which the core material is coated on the lower clad.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】低損失化と低コスト化を実現することが可能な光導波シート、光伝送モジュール及び光導波シートの製造方法を提供すること。 【解決手段】本技術に係る光導波シートは、コアとクラッドとを具備する。上記コアは、第1の方向に沿って延伸するコアであって、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となるように設けられている。上記クラッドは、上記コアの周囲に設けられている。

Description

光導波シート、光伝送モジュール及び光導波シートの製造方法
 本技術は、光通信に利用可能な光導波シート、光伝送モジュール及び光導波シートの製造方法に関する。
 光信号の伝送に利用される光接続ケーブルは、低損失化と低コスト化が共に求められている。ここで、光ファイバ等の光導波路は一般的に径が一定のコアを備えている。しかしながら、コアの径が一定であると、光の入出力の際にトレードオフの関係が生じる。
 具体的には、光導波路と光電変換素子の間の光結合において、光導波路に光が入射する場合には、コアの径が大きい方が光結合の際のケラレ(口径食)や漏洩が少なく、低損失である。一方で、光導波路から光が出射する場合には、コアの径が小さい方が光結合の際のケラレや漏洩が少なく、低損失である。
 そこで、光導波路の形状をテーパー形状とすることが検討されている。例えば、特許文献1には厚みと幅が次第に小さくなるテーパー形状を有する光結合デバイスが開示されている。
特開平07-063935号公報
 しかしながら、特許文献1に記載のような光結合デバイスは製造が容易ではない。厚みと幅のどちらかが次第に小さくなるような形状(一次元テーパー形状)であれば、半導体工程等を利用して製造することも可能であるが、厚みと幅の両方が次第に小さくなるような形状(二次元テーパー形状)は製造難易度が飛躍的に上昇する。
 また、半導体工程では、露光工程等が利用されるため、ウェハーサイズやガラスパネルサイズが基準となる。このため、長尺化に必要な装置の確保が困難であり、高コストである。例えば、50cm以上レベルの二次元テーパー形状を有する光導波路の作成に成功した報告例は知られていない。
 したがって、二次元テーパー形状を備える光導波路による低損失化と低コスト化を同時に満たすことは困難であった。
 以上のような事情に鑑み、本技術の目的は、低損失化と低コスト化を実現することが可能な光導波シート、光伝送モジュール及び光導波シートの製造方法を提供することにある。
 上記目的を達成するため、本技術の一形態に係る光導波シートは、コアとクラッドとを具備する。
 上記コアは、第1の方向に沿って延伸するコアであって、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となるように設けられている。
 上記クラッドは、上記コアの周囲に設けられている。
 この構成によれば、コアに、最大径部と最小径部がテーパー部を介して交互に設けられた周期的構造が形成されている。コアは、テーパー部が第2の方向と第3の方向の2方向において幅が次第に変化する形状を有しており、二次元テーパー形状を有する。このコアにおいて最大径部を光入射面として利用し、最小径部を光出射面として利用することにより、入射光と出射光の光結合損失を抑制することが可能である。また、コアが周期的構造を有しているため、光導波シートを任意の長さとしても、最大径部を光入射面として利用し、最小径部を光出射面として利用することが可能である。
 上記コアは、上記クラッドを介して上記第2の方向に沿って配列する複数のコアを含んでいてもよい。
 この構成によれば、複数のコアをそれぞれ光導波路として利用することができる。
 上記複数のコアは、上記第2の方向に沿って上記最大径部が互いに対向し、上記最小径部が互いに対向するように設けられていてもよい。
 この構成によれば、最大径部を光入射面として利用し、最小径部を光出射面として利用する上で複数のコアの間で光伝送方向を同一とすることが可能である。
 複数の上記コアは、隣接するコアの間で上記第2の方向に沿って上記最大径部と上記最小径部が対向するように配置されていてもよい。
 この構成によれば、最大径部を光入射面として利用し、最小径部を光出射面として利用する上で隣接するコアの間で光伝送方向を逆方向とすることが可能である。
 上記最大径部と上記最小径部は、上記第1の方向に沿って一定の長さを有していてもよい。
 この構成によれば、最大径部と最小径部が第1の方向に沿って一定の長さを有しているため、最大径部に光入射面を形成し、最小径部に光出射面を形成する上で光入射面と光出射面の第1の方向における位置決めが容易となる。
 上記光導波シートは、
 シート状の基材をさらに具備し、
 上記コアは上記基材上に形成され、
 上記クラッドは上記基材上及び上記コア上に形成されていてもよい。
 上記光導波シートは、
 シート状の基材をさらに具備し、
 上記クラッドは、上記基材上に形成された第1のクラッドと、上記第1のクラッド及び上記コア上に形成された第2のクラッドを含んでいてもよい。
 上記目的を達成するため、本技術の一形態に係る光伝送モジュールは、光導波シートと、第1の光コネクタと、第2の光コネクタとを具備する。
 上記光導波シートは、第1の方向に沿って延伸するコアであって、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となるように設けられているコアと、上記コアの周囲に設けられたクラッドとを備える。
 上記第1の光コネクタは、上記最大径部に光を入射させる。
 上記第2の光コネクタは、上記最小径部から出射した光が入射する。
 上記目的を達成するため、本技術の一形態に係る光導波シートの製造方法は、
 上記シート部材上にコア材料を塗工し、
 円筒面に溝が形成された円筒原盤を上記コア材料に押圧しながら回転させることによって上記溝の形状を上記コア材料に転写し、
 上記コア材料を硬化させてコアを形成し、
 上記シート部材及び上記コア上にクラッド材料を塗工し、
 上記クラッド材料を硬化させてクラッドを形成する
 光導波シートの製造方法であって、
 上記溝は、上記コアが、第1の方向に沿って延伸し、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となる形状を有する。
 この構成によれば、上記形状を有する溝が形成された円筒原盤を利用して、二次元テーパー形状を有するコアを連続的に形成することが可能である。コアは周期的構造を有しているため、円筒原盤を利用して無限の長さに形成することが可能である。
 上記光導波シートの製造方法は
 上記コアが、上記最大径部、上記最小径部及び上記テーパー部を少なくとも一つずつ含むように上記光導波シートを切断する工程
 をさらに具備してもよい。
 上記光導波シートの製造方法では
 上記基材をロールツーロールによって搬送してもよい。
 上記シート部材は、基材であり、
 上記シート部材上に上記コア材料を塗工する工程では、上記基材上に上記コア材料を塗工してもよい。
 上記シート部材は、基材と、上記基材に積層された下層クラッドを含み、
 上記シート部材上に上記コア材料を塗工する工程では、上記下層クラッド上に上記コア材料を塗工してもよい。
 以上のように、本技術によれば、低損失化と低コスト化を実現することが可能な光導波シート、光伝送モジュール及び光導波シートの製造方法を提供することが可能である。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施形態に係る光伝送モジュールの斜視図である。 同光伝送モジュールの断面図である。 同光伝送モジュールが備える光導波シートの断面図である。 同光導波シートの平面図である。 同光導波シートのコアの斜視図である。 同光導波シートのコアの平面図である。 同光導波シートのコアの平面図である。 同光導波シートのコアが有する最大径部の断面図である。 同光導波シートのコアが有する最小径部の断面図である。 同光導波シートのコアが備えるテーパー部の平面図である。 同光導波シートのコアに入射する光及びコアから出射する光の模式図である。 同光導波シートのコアの周期的構造を示す模式図である。 同光導波シートのコアの配列を示す模式図である。 同光導波シートのコアの配列を示す模式図である。 同光導波シートのコアの配列を示す模式図である。 同光導波シートの製造方法を示す模式図である。 同光導波シートの製造プロセスを示す模式図である。 同光導波シートの製造プロセスを示す模式図である。 同光導波シートの製造プロセスを示す模式図である。 同光導波シートの製造プロセスを示す模式図である。 同光導波シートの製造方法において用いられる円筒原盤を示す模式図である。 同光導波シートの製造方法において用いられる円筒原盤に設けられた溝の斜視図である。 同光導波シートの製造方法において用いられる円筒原盤に設けられた溝の平面図である。 同光導波シートの製造方法において用いられる円筒原盤に設けられた溝の平面図である。 同光導波シートの製造方法において用いられる円筒原盤に設けられた溝の最大径部の断面図である。 同光導波シートの製造方法において用いられる円筒原盤に設けられた溝の最小径部の断面図である。 同光導波シートの製造方法において用いられる円筒原盤に設けられた溝のテーパー部の模式図である。 同光導波シートの製造方法において用いられる円筒原盤における溝の形成方法を示す模式図である。 同光導波シートの製造方法において用いられる円筒原盤における溝の形成方法を示す模式図である。 同光導波シートの製造方法において用いられる円筒原盤における溝の形成方法を示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の実施形態に係る光伝送モジュールの製造プロセスを示す模式図である。 本技術の変形例に係る光導波シートのコアの平面図である。 本技術の変形例に係る光導波シートのコアの平面図である。 本技術の変形例に係る光導波シートのコアの斜視図である。 本技術の変形例に係る光導波シートのコアの斜視図である。 本技術の変形例に係る光導波シートの断面図である。
 本技術の実施形態に係る光伝送モジュールについて説明する。
 [光伝送モジュールの構成]
 図1は、本技術の実施形態に係る光伝送モジュール100の構成を示す斜視図であり、図2は光伝送モジュール100及び接続対象物130の断面図である。なお、以下の図において相互に直交する三方向をそれぞれX方向、Y方向及びZ方向とする。
 これらの図に示すように光伝送モジュール100は、光導波シート110及び光コネクタ120を備える。光導波シート110はZ方向に延伸されており、光コネクタ120は光導波シート110の両端に一つずつ設けられている。なお、光コネクタ120は光導波シート110の一端にのみ設けられてもよい。
 光導波シート110は、光コネクタ120の間で光信号を伝送する。図3は、光導波シート110の断面図である。同図に示すように、光導波シート110は、基材111、コア112及びクラッド113を備える。
 基材111は、合成樹脂等からなるシート状の部材であり、可撓性を有するものが好適である。基材111は、例えばPET(polyethylene terephthalate)からなる。基材111の厚み(Y方向)は例えば100μm、幅(X方向)は例えば300mmとすることができる。
 コア112は、基材111上に設けられている。図4は、コア112を示す平面図であり、クラッド113の図示を省略した図である。同図に示すように、複数のコア112はそれぞれZ方向に沿って延伸しており、延伸方向(Z方向)に対して直交する方向(X方向)において離間している。
 なお、ここで示すコア112の形状は簡略化されたものである。コア112の詳細な形状については後述する。
 コア112は、光透過性が高く、基材111及びクラッド113より屈折率が高い材料からなる。コア112の材料として例えば、紫外線硬化樹脂を利用することができる。コア112の径は例えば幅(X方向)及び高さ(Y方向)が50μmとすることができ、コア112の間隔(X方向)は例えば125μmとすることができる。コア112の数は図に示すものに限定されず、1本~数百本とすることができる。
 クラッド113は、基材111及びコア112上に設けられている。クラッド113の材料として例えば、コア112より小さい屈折率を有する紫外線硬化樹脂を利用することができる。クラッド113の厚み(Y方向)は例えば100μmとすることができる。
 光導波シート110は以上のような構成を有する。コア112は基材111及びクラッド113によって被覆されており、コア112に入射した光はコア112と基材111の界面又はコア112とクラッド113の界面で反射しながら伝送される。即ちコア112は光導波路として機能する。
 光導波シート110の大きさは特に限定されないが、例えば幅(X方向)10mm、長さ(Z方向)80mmとすることができる。
 光コネクタ120は光導波シート110と接続対象物130(図2参照)を接続する。光コネクタ120は光透過性が高い合成樹脂等からなるものとすることができる。光コネクタ120は、図1及び図2に示すように、位置決め孔120a及びレンズ121を備える。
 位置決め孔120aは、光コネクタ120に複数が設けられ、接続対象物130が備える位置決めピンが挿入されることにより光コネクタ120を接続対象物130に対して位置決めする。また、位置決め孔120aは、光導波シート110を光コネクタ120に接合する際にも利用される。
 レンズ121は接続対象物130と対向する側の面に複数が設けられ、接続対象物130が備える光電変換素子131と対向する。複数のレンズ121はX方向に沿って配列する。レンズ121の数はコア112と同数であってもよく、コア112より少なくてもよい。基材111の外周近傍に位置するコア112は形状が不安定になる可能性があるため、外周近傍に位置する数本(例えば5本)のコア112をダミーとすることができ、ダミーのコア112にはレンズ121が設けられないものとすることも可能である。レンズ121は例えば入射光を平行化(コリメート)するコリメートレンズである。
 光電変換素子131は、レンズ121と同様に複数がX方向に沿って配列し、各光電変換素子131はそれぞれレンズ121と対向する。光電変換素子131は、発光素子、受光素子又は受光発光兼用素子とすることができる。なお、接続対象物130の構成は特に限定されない。例えば、光コネクタ120は、有機基板上に搭載された平行光を出射もしくは入射する光機能素子、有機基板上に搭載された平行光を出射もしくは入射する光コネクタ、有機基板と同様の脆弱な基材に搭載され平行光を出射もしくは入射する光電変換素子、光機能素子又は光コネクタ等に接続されるものとすることができる。また、光コネクタ120は、光コネクタ120同士で接続されてもよい。
 光導波シート110は、図2に示すように光コネクタ120に接合され、光伝送モジュール100を構成する。光導波シート110には反射面115が設けられている。
 反射面115は、同図に示すように、Z方向に対して傾斜した面であり、光反射性を有する面である。反射面115はレーザー加工等によってクラッド113及びコア112を切削した切削面であってもよく、金属等からなる光反射部材を光導波シート110に埋設することによって形成した面であってもよい。
 [光伝送モジュールの動作]
 光伝送モジュール100の動作について説明する。上記のように光電変換素子131は発光素子又は受光素子として機能する。
 光電変換素子131(図2参照)が発光素子である場合には、光電変換素子131に電気信号が入力されると光電変換素子131は電気信号を光信号に変換し、発光する。光電変換素子131から出射された光はレンズ121によって集光される。集光された光は反射面115によって反射され、コア112に入射し、伝送される。
 上記のように光電変化素子132及びレンズ121は複数がX方向に沿って配列しており、各光電変換素子131の出射光はそれぞれ光電変換素子131が対向するレンズ121を介して各コア112に入射し、伝送される。
 光電変換素子131(図2参照)が受光素子である場合には、コア112を進行する光は反射面115によって反射され、レンズ121によって集光される。集光された光は光電変換素子131に入射し、光電変換素子131は光信号を電気信号に変換する。
 上記のように光電変化素子132及びレンズ121は複数がX方向に沿って配列しており、各コア112の出射光はそれぞれレンズ121を介して集光され、レンズ121に対向する光電変換素子131に入射する。
 光伝送モジュール100は以上のような構成を有する。なお、上述した光伝送モジュール100の構成は、光導波シート110を利用した光伝送モジュールの一例であり、本技術に係る光導波シート110は他の構成を有する光コネクタとに接続することも可能である。例えば、コア112への入射光及びコア112からの出射光の光軸方向は上記のようにY方向でなくてもよく、Z方向であってもよい。
 [コアの形状について]
 光導波シート110が備えるコア112の詳細な形状について説明する。図5は、コア112の一部の斜視図、図6はY方向からみたコア112の平面図、図7はX方向からみたコア112の平面図である。
 これらの図に示すように、コア112は、最大径部112a、最小径部112b及びテーパー部112cを備える。
 最大径部112aはコア112において、X-Y平面での断面積が最大の部分である。最大径部112aは、X方向に沿って一定の長さを有する。図8は、最大径部112aのX-Y平面における断面図である。同図に示すように、最大径部112aの断面は台形形状を有するものとすることができる。最大径部112aの幅(X方向)を幅W1とし、最大径部112aの高さ(Y方向)を高さH1とする。
 最小径部112bはコア112において、X-Y平面での断面積が最小の部分である。最小径部112bはX方向に沿って一定の長さを有する。図9は、最小径部112bのX-Y平面における断面図である。同図に示すように最小径部112bの断面は台形形状を有するものとすることができる。最小径部112bの幅(X方向)を幅W2とし、最小径部112bの高さ(Y方向)を高さH2とする。
 最大径部112aと最小径部112bの断面は相似形状とすることができ、幅W1は幅W2より大きく、高さH1は高さH2より大きい。また、最大径部112aと最小径部112bの断面は相似形状でなくてもよい。
 テーパー部112cは、最大径部112aと最小径部112bの間に設けられたテーパー状の部分である。テーパー部112cは、最大径部112aに隣接する位置では幅W1及び高さH1を有し、最大径部112aの断面と同一形状を有する。また、テーパー部112cは最小径部112bに隣接する位置では幅W2及び高さH2を有し、最小径部112bと同一形状を有する。即ち、テーパー部112cは最大径部112a及び最小径部112bに連続する。
 図10は、テーパー部112cをZ方向からみた図である。同図に示すように、テーパー部112cは、最小径部112bから最大径部112aにかけて、X方向(図中D1)の幅が次第に増加し、Y方向(図中D2)の高さが次第に増加する形状を有する。
 また、最大径部112a側からみれば、テーパー部112cは最大径部112aから最小径部112bにかけて、X方向(図中D1)の幅が次第に減少し、Y方向(図中D2)の高さが次第に減少する形状を有する。
 このように、テーパー部112cは、Z方向に沿ってX方向及びY方向の両方向における幅が次第に変化する二次元テーパー形状を有する。なお、二次元テーパー形状とは、隣り合う最大径部112aと最少径部112bの間にて、結果として二次元的にテーパー化していることを意味する。即ち、テーパー部112cは、隣り合う最大径部112aと最少径部112bの間でZ方向に沿ってX方向の幅が次第に変化する部分と、Z方向に沿ってY方向の幅が次第に変換する部分を備えるものであってもよい。
 図6及び図7に示すように、コア112は、複数の最大径部112aと複数の最小径部112bがZ方向に沿って交互に位置し、最大径部112aと最小径部112bの間にテーパー部112cが位置する周期的構造となっている。
 また、光導波シート110は、最大径部112a、テーパー部112c及び最小径部112bをそれぞれ一つずつ備えるものであってもよい。
 [コア形状による効果について]
 コア112の形状による効果について説明する。図11はコア112及びコア112に入射する光(図中矢印)を示す模式図である。
 同図に示すように、コア112は、最大径部112aを光入射面として、最小径部112bを光出射面として利用することができる。具体的には、図2に示すような反射面115を最大径部112aと最小径部112bに設けることによって、最大径部112aを光入射面として、最小径部112bを光出射面として利用することが可能である。
 また、X-Y平面によって最大径部112a及び最小径部112bを切断し、切断面にレンズを設けることにより、最大径部112aを光入射面として、最小径部112bを光出射面として利用することも可能である。
 この構成では、光電変換素子131(図2参照)から出射された光はレンズ121を介して集光され、最大径部112aに入射する。最大径部112aの断面積が大きいため、
入射光のケラレ(口径食)や漏洩が少なく、光電変換素子131とコア112の光結合損失を小さくすることができる。
 また、コア112を進行した光は最小径部112bから出射され、レンズ121を介して光電変換素子131に入射する。最小径部112bの断面積が小さいことにより、出射時の光源サイズが小さくなる。これにより、相手側における集光スポットサイズも小さくすることが出来る。ゆえに、相手側における入射光のケラレや漏洩が少なく、コア112と光電変換素子131の光結合損失を小さくすることができる。
 図12は、コア112及びコア300の模式図である。図12において1つのテーパー部112cを有するコア112をコア112Aとして示し、3つのテーパー部112cを有するコア112をコア112Bとして示す。また、5つのテーパー部112cを有するコア112をコア112Cとして示す。
 コア300は、コア112の最大径部112aと同じ最大径と、コア112の最小径部112bと同じ最小径を有する二次元テーパー形状のコアである。コア112Aと同一の長さを有するコア300をコア300Aとして示し、コア112Bと同一の長さを有するコア300をコア300Bとして示す。また、コア112Cと同一の長さを有するコア300をコア300Cとして示す。
 コア112Aとコア300Aは、光入射面の面積が同じであり、かつ光出射面の面積が同一であるから両コアの光結合損失は同等である。コア112Bとコア300B、コア112Cとコア300Cもそれぞれ光結合損失は同等である。
 しかしながら、コア300A、コア300B及びコア300Cは、互いに長さ(Z方向)が異なるため、各コアのテーパーの傾斜角度(Z方向に対する断面積の変化度合い)が異なる。したがって、同一形状のコアを切断して各コアを作成することができず、長さに応じてテーパーの傾斜角度が異なるそれぞれのコアを作成する必要がある。
 これに対し、コア112A、コア112B及びコア112Cは、上記のように周期的構造を有している。したがって、十分に長いコアを作成し、任意の箇所で切断することにより、コア112A、コア112B及びコア112Cの全てのコアを作成することが可能である。
 このように、本実施形態に係るコア112は、周期的構造を有していることにより、光結合損失が小さく、かつ任意の長さとすることが可能である。
 [コアの配列について]
 図3に示すように、光導波シート110はX方向に沿って配列する複数のコア112を備える。図13はコア112の配列及び光の入射方向(図中矢印)を示す平面図である。なお図13ではクラッド113の図示を省略する。同図に示すように複数のコア112は、隣接するコア112との間で、X方向に沿って最大径部112aが互いに対向し、最小径部112bが互いに対向するように配置することができる。この配列により、複数のコア112の間で光の伝送方向を同方向とすることができる。
 図14はコア112の他の配列及び光の入射方向(図中矢印)を示す平面図である。同図に示すように、複数のコア112は、隣接するコア112との間で、X方向に沿って最大径部112aと最小径部112bが対向するように配置することができる。この配列により、隣接するコア112の間で光の伝送方向を逆方向とすることができる。
 図15はコア112の他の配列及び光の入射方向(図中矢印)を示す平面図である。同図に示すように、コア112は、X方向に沿って最大径部112aが互いに対向し、最小径部112bが互いに対向するように配置されている二つのコア郡を形成する。コア群の間では、X方向に沿って最大径部112aと最小径部112bが対向するように配置することができる。この配列により、2つのコア群の間で光の伝送方向を逆方向とすることができる。コア群の数は二つに限られず、各コア群に含まれるコア112の数も任意である。
 [光導波シートの製造方法]
 光導波シート110の製造方法について説明する。図16は、光導波シート110の製造方法を示す模式図であり、図17乃至図20は、光導波シート110の各製造プロセスにおける模式図である。図16に示すように光導波シート110は、ロールインプリント装置500を用いたロールインプリント工法によって製造することが可能である。
 同図に示すように、基材111が巻回された基材ロール111aをロールインプリント装置500にセットし、基材111を基材ロール111aから搬送する。基材111はローツーロールによって搬送することができるが、他の方法で搬送してもよい。図17は基材ロール111aから引き出された基材111の模式図である。基材111の厚さ(Y方向)は例えば100μm、幅(X方向)は例えば300mmである。
 続いて、コア材料吐出部501から基材111上にコア材料C1を吐出し、基材111上にコア材料C1を塗工する。コア材料C1は紫外線硬化樹脂とすることができる。コア材料C1は、基材111と共に、円筒原盤502および弾性ロール503の間を通過する。図21は、円筒原盤502の模式図である。
 円筒原盤502は金属等からなるロールであり、幅(X方向)は例えば300mm、直径は例えば150mmである。同図に示すように、円筒原盤502には円周方向に沿って複数の溝510が形成されている。溝510の数は実際には例えば20本である。溝510の詳細な形状については後述する。弾性ロール503はゴム等の弾性材料からなるロールである。
 基材111及びコア材料C1は円筒原盤502及び弾性ロール503の間を通過し、円筒原盤502及び弾性ロール503によって加圧される。コア材料C1は溝510を通過することにより、溝510の形状が転写され、コア112の形状に形成される。コア材料C1には、円筒原盤502及び弾性ロール503の間を通過すると同時に、又は通過直後に紫外線が照射される。これにより、コア材料C1が硬化され、コア112が形成される。
 図18は、円筒原盤502及び弾性ロール503の間を通過した基材111及びコア112の模式図である。コア112は幅(X方向)及び高さ(Y方向)が50μmとすることができ、コア112の間隔(X方向)は例えば125μmとすることができる。
 続いて、コア材料吐出部504から基材111及びコア112上にクラッド材料C2を吐出し、基材111及びコア112上にクラッド材料C2を塗工する。クラッド材料C2は紫外線硬化樹脂とすることができる。クラッド材料C2は基材111、及びコア112と共に加圧ロール505および弾性ロール506の間を通過する。加圧ロール505は金属等からなるロールであり、弾性ロール506はゴム等の弾性材料からなるロールである。
 基材111、コア112及びクラッド材料C2は加圧ロール505及び弾性ロール506によって加圧される。クラッド材料C2は加圧、もしくは設定されたロール間の隙間によって所定の厚みとなり、クラッド113の形状に形成される。クラッド材料C2には、加圧ロール505及び弾性ロール506の間を通過すると同時に、又は通過直後に紫外線が照射される。これにより、クラッド材料C2が硬化され、クラッド113が形成される。
 図19は、加圧ロール505及び弾性ロール506の間を通過した基材111、コア112及びクラッド113の模式図である。クラッド113の厚み(Y方向)は例えば、基材111から100μmとすることができる。
 続いて、基材111、コア112及びクラッド113は刃507及びロール508からなる切断機構によってコア112の延伸方向(Z方向)に沿って切断される。これによって、複数の光導波シート110が形成される。図20は、切断により形成された複数の光導波シート110の模式図である。なお、図17乃至図20では3枚の光導波シート110の製造プロセスについて示すが、実際にはより多数の光導波シート110を同一プロセスで製造することが可能であり、例えば同時に30枚の光導波シート110を製造することが可能である。
 なお、この製造方法は光導波シート110の製造方法の一例であり、ロールインプリント工法以外の工法を用いて光導波シート110を製造することも可能である。一方で、ロールインプリント工法は、製造コストや装置コストが比較的低く、光導波シート110を低コストで製造することが可能である。
 [溝の形状について]
 上記のように円筒原盤502にはコア112の形状を形成するための溝510が形成されている。図22は、溝510の斜視図、図23はY方向からみた溝510の平面図、図24はX方向からみたコア112の平面図である。なお、円筒原盤502は円筒形状であるが、図21乃至図23は円筒原盤502の円筒面を平面状に展開した状態の図である。
 これらの図に示すように、溝510は、最大径部510a、最小径部510b及びテーパー部510cを備える。
 最大径部510aは溝510において、X-Y平面での断面積が最大の部分である。図25は、最大径部510aのX-Y平面における断面図である。同図に示すように、最大径部510aの断面は台形形状を有するものとすることができる。最大径部510aの幅(X方向)は、コア112の幅W1と同一であり、最大径部510aの深さ(Y方向)は、コア112の高さH1と同一である。
 最小径部510bは溝510において、X-Y平面での断面積が最小の部分である。図26は、最小径部510bのX-Y平面における断面図である。同図に示すように最小径部510bの断面は台形形状を有するものとすることができる。最小径部510bの幅(X方向)は、コア112の幅W2と同一であり、最小径部510bの深さ(Y方向)は、コア112の高さH2と同一である。
 最大径部510aと最小径部510bの断面は相似形状とすることができ、幅W1は幅W2より大きく、高さH1は高さH2より大きい。なお、最大径部510aと最小径部510bの断面は相似形状でなくてもよい。
 テーパー部510cは、最大径部510aと最小径部510bの間に設けられたテーパー状の部分である。テーパー部510cは、最大径部510aに隣接する位置では幅W1及び深さH1を有し、最大径部510aの断面と同一形状を有する。また、テーパー部510cは最小径部510bに隣接する位置では幅W2及び深さH2を有し、最小径部510bの断面と同一形状を有する。即ち、テーパー部510cは最大径部510a及び最小径部510bに連続する。
 図27は、テーパー部510cをZ方向からみた図である。同図に示すように、テーパー部510cは、最小径部510bから最大径部510aにかけて、X方向(図中D1)の幅が次第に増加し、Y方向(図中D2)の深さが次第に増加する形状を有する。
 また、最大径部510a側からみれば、テーパー部510cは最大径部510aから最小径部510bにかけて、X方向(図中D1)の幅が次第に減少し、Y方向(図中D2)の深さが次第に減少する形状を有する。
 このように、テーパー部510cは、Z方向に沿ってX方向及びY方向の両方向における幅が次第に変化する二次元テーパー形状を有する。
 図23及び図24に示すように、溝510は、最大径部510aと最小径部510bがZ方向に沿って交互に位置し、最大径部510aと最小径部510bの間にテーパー部510cが位置する周期的構造となっている。
 溝510は円筒原盤502の周方向に沿って上記の周期的構造が途切れなく形成された構造となっている。即ち、上記ロールインプリント工法を利用することにより、上述したコア112の周期的構造を無限に形成することが可能である。
 円筒原盤502における複数の溝510の配列は、図13乃至図15に示すようなコア112の配列が形成可能と配列とすることができる。即ち、最大径部510aと最小径部510bがX方向において対向する配列や、最大径部510a及び最小径部510bがX方区において互いに対向する配列とすることができる。
 [溝の形成方法]
 円筒原盤502における溝510の形成方法について説明する。溝510は、無加工の円筒原盤502に対し、切削具を用いた切削加工を施すことにより形成することが可能である。
 図28は最小径部510bの加工方法を示す断面図であり、図29は最大径部510aの加工方法を示す断面図である。図30は溝510の加工方法を示す平面図であり、円筒原盤502表面の展開図である。
 図28に示すように、最小径部510bは切削具Bを一定の深さまで円筒原盤502に挿入して切削することにより形成することができる。また、図29に示すように、最大径部510aは切削具Bをより深い深さまで円筒原盤502に挿入し、かつ図30に示す経路G1及び経路G2のように切削具Bを2通りの経路で切削することにより形成することができる。即ち、溝510は一種類の切削具Bを利用して形成することができる。
 [製造方法におけるコア形状の効果]
 上記のようにコア112は周期的構造を有しており、任意の長さで切断しても、最大径部112aを光入射面として、最小径部112bを光出射面として利用することができる。また、ロールインプリント工法では上記のように、円筒原盤502を利用してコア112を形成するが、周期的構造を有する溝510を用いて無限の長さにわたってコア112を形成することが可能である。
 これに対し、上記コア300のような形状を有するコアをロールインプリント工法で形成する場合には、円筒原盤の円周がテーパー形状の長さの上限となるため、テーパー形状を有するコアを一定の長さ以上に形成することができない。したがって、本実施形態に係る光導波シートはロールインプリント工法での製造に好適である。
 [光伝送モジュールの製造方法]
 光伝送モジュール100の製造方法について説明する。図31乃至図40は光伝送モジュール100の製造方法を示す模式図である。
 図31及び図32は、光伝送モジュール100の製造に利用される治具600の平面図である。同図に示すように、治具600は、位置決めピン601、光導波シート支持部602を備える。
 図33及び図34に示すように、二つの光コネクタ120を治具600に載置する。位置決めピン601を位置決め孔120aに挿入することによって、光コネクタ120を治具600に位置決めすることができる。
 続いて、図35及び図36に示すように、光コネクタ120上に接着剤Jを滴下する。接着剤Jは例えば紫外線硬化樹脂である。
 続いて、図37及び図38に示すように、光導波シート110を巻回した光導波シートロール110aから光導波シート110を光コネクタ120上に引き出し、接着剤Jを硬化させる。接着剤Jは、紫外線を照射することにより硬化させることができる。光導波シート110は光導波シート支持部602を利用してX方向における位置決めを行うことができる。
 続いて、反射面115(図2照)を形成する。反射面115は、Y方向においてレンズ121と対向する最大径部112a及び最小径部112bに設けることができる。
 続いて、図39及び図40に示すように、刃603によって余剰の光導波シート110を切断する。以上のようにして、光伝送モジュール100を製造することができる。
 光伝送モジュール100を構成する光導波シート110に含まれる最大径部112a、最小径部112b及びテーパー部112cの数は、光コネクタ120の間隔(光導波シート110の長さ)によって選択することができる。光導波シート110は最大径部112a、最小径部112b及びテーパー部112cを少なくとも一つずつ含むものであればよい。
 (変形例)
 上記実施形態において、最大径部112a及び最小径部112bはX方向に一定の長さを有するとしたがこれに限られない。図41は変形例に係るコア112のY方向からみた平面図、図42は変形例に係るコア112のX方向からみた平面図である。
 これらの図に示すように最大径部112a及び最小径部112bはX方向に長さを有さず、テーパー部112cの間に設けられた面状の部分とすることも可能である。一方で、最大径部112a及び最小径部112bに光入射面又は光出射面を形成する際には、上記実施形態のように最大径部112a及び最小径部112bが一定の長さを有する方が位置決めが容易である。
 また、上記実施形態において、コア112は、X-Y平面による断面が台形状としたがこれに限られない。図43及び図44は変形例に係るコア112を示す斜視図である。図43に示すように、コア112はX-Y平面による断面が半円形状であってもよく、図44に示すようにX-Y平面による断面が矩形状であってもよい。
 この他にもコア112のX-Y平面による断面は特に限定されず、テーパー部112cがX方向及びY方向の2方向で幅が変化する二次元テーパー形状となるものであればよい。一方で、上記ロールインプリント工法でコア112を形成する場合、台形のようにZ方向において幅が減少する形状の方がコア112を円筒原盤502から取り外しやすく、好適である。
 また、上記実施形態において、コア112は基材111上に形成される(図3参照)としたが、これに限られない。図45は変形例に係る光導波シート110の断面図である。同図に示すように、光導波シート110は、基材111、コア112及びクラッド113に加え、下層クラッド114を備えていてもよい。
 下層クラッド114は、基材111上に形成され、コア112及びクラッド113は下層クラッド113上に形成されるものとすることができる。下層クラッド114は、クラッド113と同程度の屈折率を有する紫外線硬化樹脂等からなる。この場合、基材111はクラッドとして機能しないため、屈折率に係わらず、材料を選択することができる。
 光導波シート110の製造工程(図16参照)においては、コア材料C1を基材111上に塗工する前に、クラッド材料を基材111に塗工し、硬化させればよい。これにより、基材111上に下層クラッド114が形成される。コア材料C1を下層クラッド114上に塗工することによって、コア112を形成することができる。
 なお、本技術は以下のような構成もとることができる。
 (1)
 第1の方向に沿って延伸するコアであって、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となるように設けられているコアと、
 上記コアの周囲に設けられたクラッドと
 を具備する光導波シート。
 (2)
 上記(1)に記載の光導波シートであって、
 上記コアは、上記クラッドを介して上記第2の方向に沿って配列する複数のコアを含む
 光導波シート。
 (3)
 上記(2)に記載の光導波シートであって、
 上記複数のコアは、上記第2の方向に沿って上記最大径部が互いに対向し、上記最小径部が互いに対向するように設けられている
 光導波シート。
 (4)
 上記(2)に記載の光導波シートであって、
 複数の上記コアは、隣接するコアの間で上記第2の方向に沿って上記最大径部と上記最小径部が対向するように設けられている
 光導波シート。
 (5)
 上記(1)から(4)のうちいずれか一つに記載の光導波シートであって、
 上記最大径部と上記最小径部は、上記第1の方向に沿って一定の長さを有する
 光導波シート。
 (6)
上記(1)から(5)のうちいずれか一つに記載の光導波シートであって、
 シート状の基材をさらに具備し、
 上記コアは上記基材上に形成され、
 上記クラッドは上記基材上及び上記コア上に形成されている
 光導波シート。
 (7)
 上記(1)から(5)のうちいずれか一つに記載の光導波シートであって、
 シート状の基材をさらに具備し、
 上記クラッドは、上記基材上に形成された第1のクラッドと、上記第1のクラッド及び上記コア上に形成された第2のクラッドを含む
 光導波シート。
 (8)
 第1の方向に沿って延伸するコアであって、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となるように設けられているコアと、上記コアの周囲に設けられたクラッドとを備える光導波シートと、
 上記最大径部に光を入射させる第1の光コネクタと、
 上記最小径部から出射した光が入射する第2の光コネクタと
 を具備する光伝送モジュール。
 (9)
 シート部材上にコア材料を塗工し、
 円筒面に溝が形成された円筒原盤を上記コア材料に押圧しながら回転させることによって上記溝の形状を上記コア材料に転写し、
 上記コア材料を硬化させてコアを形成し、
 上記シート部材及び上記コア上にクラッド材料を塗工し、
 上記クラッド材料を硬化させてクラッドを形成する
 光導波シートの製造方法であって、
 上記溝は、上記コアが、第1の方向に沿って延伸し、上記第1の方向に直交する第2の方向及び上記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、上記第2の方向及び上記第3の方向に平行な平面における断面積が最小である最小径部と、上記最大径部及び上記最小径部に連続し、上記最大径部と上記最小径部の間で上記第1の方向に沿って上記第2の方向及び上記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、上記第1の方向に沿って上記最大径部と上記最小径部が上記テーパー部を介して交互となる形状を有する
 光導波シートの製造方法。
 (10)
 上記(9)に記載の光導波シートの製造方法であって、
 上記コアが、上記最大径部、上記最小径部及び上記テーパー部を少なくとも一つずつ含むように上記光導波シートを切断する工程
 をさらに具備する光導波シートの製造方法。
 (11)
 上記(9)又は(10)に記載の光導波シートの製造方法であって、
 上記シート部材を、ロールツーロールによって搬送する
 光導波シートの製造方法。
 (12)
 上記(9)から(11)のうちいずれか一つに記載の光導波シートであって
 上記シート部材は、基材であり、
 上記シート部材上に上記コア材料を塗工する工程では、上記基材上に上記コア材料を塗工する
 光導波シートの製造方法
 (13)
 上記(9)から(11)のうちいずれか一つに記載の光導波シートであって、
 上記シート部材は、基材と、上記基材に積層された下層クラッドを含み、
 上記シート部材上に上記コア材料を塗工する工程では、上記下層クラッド上に上記コア材料を塗工する
 光導波シートの製造方法。
 100…光伝送モジュール
 110…光導波シート
 111…基材
 112…コア
 112a…最大径部
 112b…最小径部
 112c…テーパー部
 113…クラッド
 114…下層クラッド
 500…ロールインプリント装置
 502…円筒原盤
 510…溝
 510a…最大径部
 510b…最小径部
 510c…テーパー部

Claims (13)

  1.  第1の方向に沿って延伸するコアであって、前記第1の方向に直交する第2の方向及び前記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、前記第2の方向及び前記第3の方向に平行な平面における断面積が最小である最小径部と、前記最大径部及び前記最小径部に連続し、前記最大径部と前記最小径部の間で前記第1の方向に沿って前記第2の方向及び前記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、前記第1の方向に沿って前記最大径部と前記最小径部が前記テーパー部を介して交互となるように設けられているコアと、
     前記コアの周囲に設けられたクラッドと
     を具備する光導波シート。
  2.  請求項1に記載の光導波シートであって、
     前記コアは、前記クラッドを介して前記第2の方向に沿って配列する複数のコアを含む
     光導波シート。
  3.  請求項2に記載の光導波シートであって、
     前記複数のコアは、前記第2の方向に沿って前記最大径部が互いに対向し、前記最小径部が互いに対向するように設けられている
     光導波シート
  4.  請求項2に記載の光導波シートであって、
     複数の前記コアは、隣接するコアの間で前記第2の方向に沿って前記最大径部と前記最小径部が対向するように設けられている
     光導波シート
  5.  請求項1に記載の光導波シートであって、
     前記最大径部と前記最小径部は、前記第1の方向に沿って一定の長さを有する
     光導波シート。
  6.  請求項1に記載の光導波シートであって、
     シート状の基材をさらに具備し、
     前記コアは前記基材上に形成され、
     前記クラッドは前記基材上及び前記コア上に形成されている
     光導波シート。
  7.  請求項1に記載の光導波シートであって、
     シート状の基材をさらに具備し、
     前記クラッドは、前記基材上に形成された第1のクラッドと、前記第1のクラッド及び前記コア上に形成された第2のクラッドを含む
     光導波シート。
  8.  第1の方向に沿って延伸するコアであって、前記第1の方向に直交する第2の方向及び前記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、前記第2の方向及び前記第3の方向に平行な平面における断面積が最小である最小径部と、前記最大径部及び前記最小径部に連続し、前記最大径部と前記最小径部の間で前記第1の方向に沿って前記第2の方向及び前記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、前記第1の方向に沿って前記最大径部と前記最小径部が前記テーパー部を介して交互となるように設けられているコアと、前記コアの周囲に設けられたクラッドとを備える光導波シートと、
     前記最大径部に光を入射させる第1の光コネクタと、
     前記最小径部から出射した光が入射する第2の光コネクタと
     を具備する光伝送モジュール。
  9.  シート部材上にコア材料を塗工し、
     円筒面に溝が形成された円筒原盤を前記コア材料に押圧しながら回転させることによって前記溝の形状を前記コア材料に転写し、
     前記コア材料を硬化させてコアを形成し、
     前記シート部材及び前記コア上にクラッド材料を塗工し、
     前記クラッド材料を硬化させてクラッドを形成する
     光導波シートの製造方法であって、
     前記溝は、前記コアが、第1の方向に沿って延伸し、前記第1の方向に直交する第2の方向及び前記第2の方向に直交する第3の方向に平行な平面における断面積が最大である最大径部と、前記第2の方向及び前記第3の方向に平行な平面における断面積が最小である最小径部と、前記最大径部及び前記最小径部に連続し、前記最大径部と前記最小径部の間で前記第1の方向に沿って前記第2の方向及び前記第3の方向の両方向における幅が次第に変化するテーパー部とを有し、前記第1の方向に沿って前記最大径部と前記最小径部が前記テーパー部を介して交互となる形状を有する
     光導波シートの製造方法。
  10.  請求項9に記載の光導波シートの製造方法であって、
     前記コアが、前記最大径部、前記最小径部及び前記テーパー部を少なくとも一つずつ含むように前記光導波シートを切断する工程
     をさらに具備する光導波シートの製造方法。
  11.  請求項9に記載の光導波シートの製造方法であって、
     前記シート部材を、ロールツーロールによって搬送する
     光導波シートの製造方法。
  12.  請求項9に記載の光導波シートの製造方法であって、
     前記シート部材は、基材であり、
     前記シート部材上に前記コア材料を塗工する工程では、前記基材上に前記コア材料を塗工する
     光導波シートの製造方法。
  13.  請求項9に記載の光導波シートの製造方法であって、
     前記シート部材は、基材と、前記基材に積層された下層クラッドを含み、
     前記シート部材上に前記コア材料を塗工する工程では、前記下層クラッド上に前記コア材料を塗工する
     光導波シートの製造方法。
PCT/JP2016/086965 2016-01-29 2016-12-13 光導波シート、光伝送モジュール及び光導波シートの製造方法 WO2017130584A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/069,415 US10948654B2 (en) 2016-01-29 2016-12-13 Optical waveguide sheet, optical transmission module, and manufacturing method for an optical waveguide sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016214 2016-01-29
JP2016016214A JP2017134348A (ja) 2016-01-29 2016-01-29 光導波シート、光伝送モジュール及び光導波シートの製造方法

Publications (1)

Publication Number Publication Date
WO2017130584A1 true WO2017130584A1 (ja) 2017-08-03

Family

ID=59398102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086965 WO2017130584A1 (ja) 2016-01-29 2016-12-13 光導波シート、光伝送モジュール及び光導波シートの製造方法

Country Status (3)

Country Link
US (1) US10948654B2 (ja)
JP (1) JP2017134348A (ja)
WO (1) WO2017130584A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279105B2 (en) * 2018-06-22 2022-03-22 Incom, Inc. Forming polymer optical devices by mold-constrained relaxation expansion
US20220066092A1 (en) * 2020-08-25 2022-03-03 Rohm And Haas Electronic Materials Llc Waveguide with trapezoidal core
CN116643350B (zh) * 2023-07-27 2023-10-10 之江实验室 端面耦合器及光芯片系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272275B1 (en) * 1999-06-25 2001-08-07 Corning Incorporated Print-molding for process for planar waveguides
JP2009500668A (ja) * 2005-07-07 2009-01-08 ノキア コーポレイション ロール掛けによって溝をエンボス加工することによる光導波路の製造
WO2009151045A1 (ja) * 2008-06-10 2009-12-17 住友ベークライト株式会社 電子機器、携帯電話機、フレキシブルケーブル、光導波路形成体の製造方法
JP2010271371A (ja) * 2009-05-19 2010-12-02 Hitachi Chem Co Ltd フレキシブル光導波路
JP2011221195A (ja) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd 光導波路構造体および電子機器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850996B2 (ja) 1993-08-30 1999-01-27 日本電信電話株式会社 光結合デバイス
JP3883901B2 (ja) * 2002-04-23 2007-02-21 三菱電機株式会社 光路変換デバイスおよびその製造方法
JP4140475B2 (ja) * 2003-07-25 2008-08-27 富士ゼロックス株式会社 高分子光導波路作製用原盤及び高分子光導波路の製造方法
US7856163B2 (en) * 2004-08-02 2010-12-21 Nippon Telegraph And Telephone Corporation Planar lightwave circuit, design method for wave propagation circuit, and computer program
JPWO2008066160A1 (ja) * 2006-12-01 2010-03-11 日本電気株式会社 光変換器およびその製造方法
US8126301B2 (en) * 2007-03-14 2012-02-28 Nec Corporation Optical waveguide and method for producing the same
CN101903816A (zh) * 2007-12-17 2010-12-01 日立化成工业株式会社 可见光波导用光波导
US20120039563A1 (en) * 2009-01-28 2012-02-16 Hitachi Chemical Company, Ltd. Method for producing optical waveguide, optical waveguide, and photoelectric composite wiring board
JP2011039489A (ja) * 2009-07-17 2011-02-24 Nitto Denko Corp 光導波路装置の製造方法
TW201222034A (en) 2010-04-06 2012-06-01 Sumitomo Bakelite Co An optical waveguide structure and an electronic device
JP5888883B2 (ja) * 2011-06-15 2016-03-22 日本オクラロ株式会社 スポットサイズ変換器、半導体光素子、及びそれらの製造方法
JP5145443B2 (ja) * 2011-06-23 2013-02-20 株式会社日立製作所 熱アシスト記録用磁気ヘッド及び磁気記録装置
US9952388B2 (en) * 2012-09-16 2018-04-24 Shalom Wertsberger Nano-scale continuous resonance trap refractor based splitter, combiner, and reflector
KR20160032031A (ko) * 2013-05-21 2016-03-23 람다 가드 테크놀로지스 엘티디 플라즈몬 격자 구조에 커플링된 테이퍼 광 웨이브가이드
JP6372112B2 (ja) * 2014-03-14 2018-08-15 住友電気工業株式会社 半導体光導波路素子を作製する方法
JP6492437B2 (ja) * 2014-07-22 2019-04-03 沖電気工業株式会社 方向性結合器及びその設計方法、光導波路素子、並びに波長フィルタ
US20160054216A1 (en) * 2014-08-25 2016-02-25 David W. Sokol Fiber delivery for laser bond inspection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272275B1 (en) * 1999-06-25 2001-08-07 Corning Incorporated Print-molding for process for planar waveguides
JP2009500668A (ja) * 2005-07-07 2009-01-08 ノキア コーポレイション ロール掛けによって溝をエンボス加工することによる光導波路の製造
WO2009151045A1 (ja) * 2008-06-10 2009-12-17 住友ベークライト株式会社 電子機器、携帯電話機、フレキシブルケーブル、光導波路形成体の製造方法
JP2010271371A (ja) * 2009-05-19 2010-12-02 Hitachi Chem Co Ltd フレキシブル光導波路
JP2011221195A (ja) * 2010-04-07 2011-11-04 Sumitomo Bakelite Co Ltd 光導波路構造体および電子機器

Also Published As

Publication number Publication date
US20190018190A1 (en) 2019-01-17
JP2017134348A (ja) 2017-08-03
US10948654B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
US6810160B2 (en) Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring
US8876401B2 (en) Optical device and method of manufacturing optical device including transparent member between optical waveguide core and optical waveguide insertion hole
US7529439B2 (en) Optical printed circuit board and fabricating method thereof
WO2017134985A1 (ja) 光導波シート、光伝送モジュール及び光導波シートの製造方法
US9470846B2 (en) Wavelength division multiplexing with multi-core fiber
US7720327B2 (en) Optical waveguide mounted substrate and method of producing the same
KR20110117271A (ko) 패터닝된 상부 클래딩을 구비한 광 도파관 디바이스의 제조 방법
DE102016221806B4 (de) Wellenlängen-Multiplexeinheit, Wellenlängen-Multiplexsystem und Verfahren zum Bilden einer Wellenlängen-Multiplexeinheit
JP2010072435A (ja) 光導波路フィルム
WO2017130584A1 (ja) 光導波シート、光伝送モジュール及び光導波シートの製造方法
JP5225211B2 (ja) 光導波路及びその製造方法並びに光導波路搭載基板
JP2007183467A (ja) ミラー付光導波路及びその製造方法
TW201634965A (zh) 光波導和其製造方法、及使用該光波導的光學器件
JP2017142352A (ja) 光分岐部材及びそれを用いた光デバイス
KR101317365B1 (ko) 마이크로 렌즈 제조 방법
JP4469289B2 (ja) 光路変換ミラーの製法
JP2009300562A (ja) 多チャンネル直角光路変換素子
JP2004258076A (ja) 光配線層およびその製造方法
JP2014206598A (ja) 光導波路、光配線部品および電子機器
JP2010122456A (ja) 光導波路、及び光モジュール
JP2004233982A (ja) 光導波路部品およびその製造方法
JP2004264339A (ja) 光導波路および光送受信モジュール
JP2006184758A (ja) 光導波路及び光導波路モジュール
JP2005164886A (ja) 光ファイバガイド、光素子モジュール
JP2010145938A (ja) 光モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888168

Country of ref document: EP

Kind code of ref document: A1