WO2017130251A1 - 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置 - Google Patents

厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置 Download PDF

Info

Publication number
WO2017130251A1
WO2017130251A1 PCT/JP2016/004734 JP2016004734W WO2017130251A1 WO 2017130251 A1 WO2017130251 A1 WO 2017130251A1 JP 2016004734 W JP2016004734 W JP 2016004734W WO 2017130251 A1 WO2017130251 A1 WO 2017130251A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
temperature
depth
theoretical
measurement
Prior art date
Application number
PCT/JP2016/004734
Other languages
English (en)
French (fr)
Inventor
入江 庸介
裕嗣 井上
翔吾 徳永
悠 黒川
琢也 新岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP16887840.3A priority Critical patent/EP3410106B1/en
Priority to JP2017563402A priority patent/JP6628113B2/ja
Publication of WO2017130251A1 publication Critical patent/WO2017130251A1/ja
Priority to US16/047,373 priority patent/US11054252B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present disclosure relates to a method and apparatus for measuring the thickness of a measurement object, and a method and apparatus for detecting a defect in an inspection object.
  • Patent Document 1 discloses a defect diagnosis method (defect detection method) that can measure the depth from the surface of a defect such as a peeling or a cavity inside a structure (inspection object) using an infrared thermography method.
  • the infrared thermography method detects the depth of defects by capturing changes in the surface temperature caused by heat transfer being hindered by the heat insulation of defects such as internal delamination and cavities in the structure, using an infrared camera (imaging device). It is a method to do.
  • Infrared thermography requires heating or cooling of the structure in order to cause heat transfer within the structure. Heating / cooling methods include an active method using a heating device such as a heater or a lamp, and a passive method using solar radiation or natural air cooling.
  • defect diagnosis method for measuring the defect depth inside the structure (inspection object) can be applied to a thickness measurement method for measuring the thickness of the measurement object.
  • the passive method relies on solar radiation and natural air cooling, it takes a long time to obtain the temperature difference on the surface of the inspection object.
  • the active method in general, after heating sufficiently to grasp the temperature difference in the thermal image generated by the infrared camera, the inside of the inspection object is based on the thermal image obtained by photographing the temperature difference generated during natural cooling. Since the depth of the defect is measured, it takes a relatively long time.
  • the present disclosure provides a thickness measuring method and thickness measuring apparatus, a defect detecting method and a defect detecting apparatus capable of reducing the measuring time.
  • the thickness measurement method in the present disclosure is a thickness measurement method for measuring the thickness of a measurement object, the step of heating the surface of the measurement object by a heating device, and the measurement target heated by the imaging device at a predetermined time interval
  • a theoretical curve showing the change over time in the temperature of the surface of the measurement object is obtained by fitting a theoretical equation obtained from the heat conduction equation including the parameters related to the thickness of the measurement object to the temperature curve.
  • the thickness measurement device is a thickness measurement device that measures the thickness of a measurement target, and inputs thermal image data generated by photographing the surface of the heated measurement target at a predetermined time interval.
  • the defect detection method in the present disclosure is a defect detection method for measuring the depth of defects inside an inspection object, the step of heating the surface of the inspection object by a heating device, and a predetermined time interval by an imaging device, The step of photographing the surface of the heated inspection object and generating thermal image data corresponding to the temperature of the surface of the inspection object, and the time-dependent change of the temperature of the surface of the inspection object based on the thermal image data
  • a theory that shows the change over time in the temperature of the surface of the object to be measured by fitting a theoretical equation obtained from the heat conduction equation including parameters related to the defect depth of the object to be inspected to the temperature curve.
  • a defect detection apparatus is a defect detection apparatus that measures the depth of defects inside an inspection object, and is a thermal image generated by photographing the surface of a heated inspection object at a predetermined time interval.
  • An input unit for inputting data, a first calculation unit for obtaining a temperature curve indicating a temporal change in the temperature of the surface of the measurement object based on the thermal image data, and a parameter related to the depth of the defect of the inspection object Fitting the theoretical formula obtained from the heat conduction equation, including the equation, to the temperature curve, and to obtain a theoretical curve indicating the change over time of the temperature of the surface of the measurement object, and the value of the parameter included in the theoretical formula corresponding to the theoretical curve And a second calculation unit for determining the depth of the defect of the inspection object.
  • the thickness measurement method and apparatus can measure the thickness of a measurement object in a short time.
  • the defect detection method and apparatus in this indication measure defects, such as peeling inside a test object, or a cavity, and can measure a defect in a short time.
  • FIG. Diagram for explaining the outline of defect detection The figure which shows an example of the thermal image according to the temperature of the surface of the test subject image
  • Diagram showing output of halogen lamp The figure which shows an example of the display of the measurement result of the defect depth by a display part The figure which shows the measurement operation
  • FIG. The figure which shows the measurement operation
  • FIG. The figure which shows the defect detection operation
  • Diagram for explaining the outline of thickness measurement (A) The figure which shows the temperature curve obtained from the measured thermal image data in Example 1, and the theoretical curve obtained by fitting a theoretical formula to the measured temperature curve, (b) Inspection in Example 1 The figure which shows the measurement result of the depth of the defect of the object (A) The figure which shows the temperature curve obtained from the measured thermal image data in Example 2, and the theoretical curve obtained by fitting a theoretical formula to the measured temperature curve, (b) The theory in Example 2 The figure which shows the fitting result using a type
  • the figure which shows the temperature curve obtained from the measured thermal image data in Example 3, and the theoretical curve obtained by fitting the theoretical formula which considered heat conduction and heat transfer to the measured temperature curve The figure which shows the temperature curve obtained from the measured thermal image data in Example 3, and the theoretical curve obtained by fitting the theoretical formula which considered heat conduction and heat transfer to the measured temperature curve.
  • the figure which shows the measurement result of the depth of the defect of the test target object in Example 3 The figure which shows the measurement result of the depth of the defect of the test target object in Example 1 for comparison
  • FIG. 1 is a diagram illustrating a configuration of a defect detection system 1 according to the first embodiment. As shown in FIG. 1, the defect detection system 1 performs defect detection by measuring the depth of a defect such as a peeling or a cavity inside an inspection object.
  • the defect detection system 1 includes a halogen lamp 10, a lamp driving unit 11, an infrared camera 20, and a defect detection device 30.
  • the halogen lamp 10 is a heating device that heats the surface of the inspection object.
  • the halogen lamp 10 includes a shutter for starting and stopping the heating output.
  • the lamp driving unit 11 is a device that drives the halogen lamp 10.
  • the lamp driving unit 11 controls the start and stop of the heating output of the halogen lamp 10 according to the control of the control unit 35 of the defect detection device 30. For this reason, the lamp driving unit 11 controls the opening and closing of the shutter of the halogen lamp 10.
  • the lamp driving unit 11 may control the start and stop of the heating output of the halogen lamp 10 by starting and stopping power supply to the halogen lamp 10.
  • the infrared camera 20 is a photographing device that photographs the surface of the inspection object.
  • the infrared camera 20 has a plurality of pixels, and generates thermal image data corresponding to the temperature of the surface of the inspection object at a predetermined frame rate.
  • the defect detection device 30 controls the start and stop of the heating output of the halogen lamp 10 by controlling the lamp driving unit 11. Further, the defect detection device 30 controls the photographing operation of the infrared camera 20. Further, the defect detection device 30 performs defect detection by measuring the depth of the defect inside the inspection object based on the thermal image data from the infrared camera 20.
  • the configuration of the defect detection apparatus 30 will be described.
  • the defect detection device 30 is configured by a computer, for example. As shown in FIG. 1, the defect detection device 30 includes first to third communication units 31, 32, 33, a storage unit 34, a control unit 35, a display unit 36, and an operation unit 37.
  • the first to third communication units 31, 32, and 33 are each configured with, for example, a communication interface (for example, USB, HDMI (registered trademark)).
  • the first communication unit 31 is an input unit that sequentially receives thermal image data captured at a predetermined frame rate from the infrared camera 20.
  • the second communication unit 32 receives lamp control information related to the start and stop of heating of the halogen lamp 10 from the control unit 35 and transmits the lamp control information to the lamp driving unit 11.
  • the third communication unit 33 receives camera control information related to the start and end of shooting of the infrared camera 20 from the control unit 35 and transmits the camera control information to the infrared camera 20.
  • the storage unit 34 is a recording medium, and includes, for example, an HDD or an SSD.
  • the storage unit 34 sequentially stores the thermal image data received by the first communication unit 31.
  • the storage unit 34 stores various setting values that are input from the operation unit 37 to be described later, and are necessary for measuring the depth of the defect of the inspection object.
  • the storage unit 34 stores various programs for the control unit 35.
  • the control unit 35 includes a CPU, an MPU, and the like, and controls the entire defect detection device 30 by executing various programs stored in the storage unit 34.
  • the control unit 35 controls the start and stop of the heating output of the halogen lamp 10 by controlling the lamp driving unit 11.
  • the control unit 35 controls shooting operations such as shooting start and shooting stop of the infrared camera 20.
  • the control unit 35 obtains the defect depth of the inspection object based on the thermal image data stored in the storage unit 34.
  • the control unit 35 functions as a first calculation unit, a fitting unit, and a second calculation unit. Details of these functions will be described in the operation description to be described later.
  • the display unit 36 is configured by, for example, a display, and displays the depth of the defect obtained by the control unit 35 as, for example, color information or gradation information.
  • the operation unit 37 is composed of, for example, a keyboard or a touch panel.
  • the operation unit 37 is a device that is operated by the user when setting various setting values necessary for measuring the depth of the defect of the inspection object.
  • the object to be inspected is naturally cooled.
  • the surface temperature of the object 100 is imaged by an imaging device such as an infrared camera, and a thermal image corresponding to the surface temperature of the inspection object 100 is generated.
  • a defect is detected based on a temperature difference indicated by a thermal image.
  • FIG. 16 shows the change over time of the surface temperature of the defective part and the change over time of the surface temperature of the healthy part during natural cooling after heating.
  • Curve 330 is the time change of the surface temperature of the healthy part
  • curve 331 is the time change of the surface temperature of the defective part.
  • the temperature difference ⁇ T2 between the surface temperature of the defective part and the surface temperature of the healthy part that occurs during natural cooling is the temperature between the surface temperature of the defective part and the surface temperature of the healthy part that occurs during heating. It becomes larger than the difference ⁇ T1.
  • this phenomenon is used to detect a defect using a thermal image during natural cooling after heating.
  • an imaging device such as an infrared camera is used to determine the surface temperature of the inspection object 100 while the surface of the inspection object 100 is heated by the heating device 10. 20, the thermal image data corresponding to the surface temperature of the inspection object 100 is generated. And the defect detection method of this indication performs a defect detection using this thermal image data and the theoretical formula (formula (1) mentioned later) obtained from a heat conduction equation.
  • FIG. 3 is a diagram showing an example of a thermal image corresponding to the temperature of the surface of the inspection object photographed by the infrared camera.
  • FIG. 4 is a diagram showing an example of a temperature curve showing the change with time of temperature in a partial region P of the thermal image shown in FIG.
  • the broken line 200 is a temperature curve of the temperature change of the inspection object surface obtained from the actually measured thermal image data
  • the solid line 201 is a theoretical expression of the equation (1) described later, and the temperature of the temperature change of the broken line 200. It is the theoretical curve of the temperature change of the surface of the test object obtained by curve fitting to a curve.
  • a theoretical equation (1) described later obtained from the heat conduction equation is curve-fitted to the temperature curve 200 obtained from the actually measured thermal image data.
  • the theoretical curve 201 is obtained.
  • the defect depth of the inspection object is calculated from the value of the parameter a or b in the theoretical formula corresponding to the theoretical curve 201 using the formula (2) or formula (3) described later. Find L.
  • FIG. 5 is a diagram showing an example of a temperature curve of a healthy part in an inspection object and an example of a temperature curve of a defective part.
  • a curve 300 is a temperature curve showing the temperature change of the healthy part
  • a curve 301 is a temperature curve showing the temperature change of the defective part.
  • the temperature curves 300 and 301 in FIG. 5 are results calculated using a theoretical formula of formula (1) described later.
  • FIG. 5 is a diagram showing an example of a temperature curve of a healthy part in an inspection object and an example of a temperature curve of a defective part.
  • a curve 300 is a temperature curve showing the temperature change of the healthy part
  • a curve 301 is a temperature curve showing the temperature change of the defective part.
  • the temperature curves 300 and 301 in FIG. 5 are results calculated using a theoretical formula of formula (1) described later.
  • the value of mortar (concrete) is used as each material constant (the thermal diffusivity ⁇ is 1.21 ⁇ 10 ⁇ 6 m 2 / s, which is the general thermal diffusivity of concrete), and the defect portion
  • a difference begins to appear between the surface temperature of the healthy part and the surface temperature of the defective part from the heating time of about 120 seconds.
  • fitting measurement is possible if there is thermal image data for a time (ie, heating time) to the extent that a difference appears between the surface temperature of the healthy part and the surface temperature of the defective part. Therefore, in the defect detection method of the present disclosure, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened compared to the conventional case (example of FIG. 5). (Several minutes to several tens of minutes).
  • the heating time at which the surface temperature difference starts to appear is related to the defect depth, and becomes longer as the defect depth becomes deeper.
  • T (x, t) is the surface temperature [K] of the inspection object
  • x is the position [m] in the depth direction with respect to the surface of the inspection object (0 ⁇ x ⁇ L )
  • T is the time [s]
  • F 0 is the heat flux [W / m 2 ]
  • is the density [kg / m 3 ] of the inspection object
  • c is the specific heat [J of the inspection object] / (Kg ⁇ K)]
  • ⁇ c is the volume specific heat [J / (m 3 ⁇ K)] of the inspection object
  • k is the thermal conductivity [W / (m ⁇ K)] of the inspection object.
  • the inventor of the present application tried to curve-fit the above theoretical formula into a temperature curve obtained from actually measured thermal image data.
  • there are four fitting parameters F 0 , ⁇ c, k, and L and a plurality of combinations exist as solutions of F 0 , ⁇ c, k, and L.
  • the inventor of the present application converts the four parameters F 0 , ⁇ c, k, and L into two parameters a and b as shown in the following formula (2) and the following formula (3), It was found that this can be dealt with by reducing the fitting parameters.
  • the defect detection method of the present disclosure performs fitting on the actually measured temperature curve using the above equations (1) to (3).
  • control unit 35 acquires the maximum heating time Tm, the maximum measurement depth Lm, the measurement range W, and the unit measurement range P as set values (S10). These set values are input by the user using the operation unit 37 and stored in the storage unit 34 in advance.
  • the maximum measurement depth Lm is the maximum value of the depth to be measured in this defect detection, and is set according to the depth of the defect to be detected. For example, in the detection of defects on highways and the like, the outermost steel frame is 50 cm from the surface, so it is required to detect whether there are defects such as delamination or cavities up to a depth of about 50 cm from the surface. ing. In such a case, the maximum measurement depth Lm is set to 50 cm.
  • the maximum heating time Tm is set in relation to the maximum measurement depth Lm.
  • the maximum heating time Tm is set to a heating time at which a difference appears sufficiently between the surface temperature of the defective portion and the surface temperature of the healthy portion at the maximum measurement depth Lm.
  • the measurement range W is a range in which measurement is performed in the imaging range of the infrared camera 20, as shown in FIG.
  • the unit measurement range P is a range in which measurement is performed at once in the measurement range W, as shown in FIG.
  • the unit measurement range P is set for each pixel of the infrared camera 20, and may be one pixel unit or a plurality of pixel units. When the unit measurement range P is a unit of a plurality of pixels, the thermal image data corresponding to these pixels may be averaged.
  • control unit 35 controls the lamp driving unit 11 to open the shutter of the halogen lamp 10 and heat the surface of the inspection object so that the heat flux Fo is constant as shown in FIG. It starts in a step shape (S11). That is, heating is performed so that the heating input becomes a step input.
  • control unit 35 controls the infrared camera 20 simultaneously with the start of heating of the inspection object, and starts photographing the surface of the inspection object (S11).
  • the above equation (1) is a theoretical equation of the heat conduction equation at the time of step response. Therefore, in order to actually measure the temperature curve for fitting to this theoretical formula, heating is started in a step-like manner.
  • the control unit 35 supplies power to the halogen lamp 10 in advance, and controls the opening and closing of the shutter of the halogen lamp 10 to start heating the surface of the inspection object in a stepped manner. To do.
  • control unit 35 acquires thermal image data corresponding to the surface temperature of the inspection object from the infrared camera 20 (S12).
  • the acquired thermal image data is stored in the storage unit 34.
  • control unit 35 determines whether or not the heating time t from the start of heating exceeds the maximum heating time Tm (S13), and acquires thermal image data until the heating time t exceeds the maximum heating time Tm. Continue (S12).
  • the control unit 35 controls the infrared camera 20 and ends the imaging of the surface of the inspection object (S14). Moreover, the control part 35 controls the lamp drive part 11, closes the shutter of the halogen lamp 10, and complete
  • control unit 35 measures the defect depth (S15). This process will be described later.
  • FIG. 8 is a diagram illustrating an example of display of the measurement result of the defect depth.
  • FIG. 8 shows that a defect having a defect depth L exists in the region A.
  • the control unit 35 may display the defect depth L information as color information as shown in FIG. 8, or may display it as gradation information.
  • the control unit 35 for each unit measurement range P, the control unit 35, as shown in FIG. 4, based on the thermal image data acquired during the maximum heating time Tm, a temperature curve indicating the change over time of the surface temperature of the inspection object. 200 is obtained (S150).
  • control unit 35 fits the theoretical equation of the above equation (1) obtained from the heat conduction equation to the obtained temperature curve 200 to obtain a theoretical curve 201 indicating the change over time in the temperature of the surface of the inspection object.
  • the control unit 35 changes the parameters a and b in the theoretical formula of the above formula (1), and performs fitting so that the residual is minimized by using the nonlinear least square method.
  • the control unit 35 obtains the defect depth L of the inspection object using the above equation (3) from the value of the parameter b in the theoretical equation of the above equation (1) corresponding to the theoretical curve 201 (S152). .
  • the thermal diffusivity ⁇ in the above equation (3) for example, a substance constant based on the material information of the inspection object may be used.
  • the control unit 35 calculates the defect depth L of the inspection object from the value of the parameter a, the heat flux F 0 based on the material information of the inspection object, and the thermal conductivity k using the above equation (2). You may ask for it.
  • control unit 35 determines whether or not the defect depth measurement has been completed for all the unit measurement ranges P in the measurement range W (S153). If there is a unit measurement range P that has not been measured yet, the control unit 35 repeats the above processing until the above-described steps S150 to S153 are performed on all the unit measurement ranges P. On the other hand, when the defect depth measurement is completed for all the unit measurement ranges P in step S153, the control unit 35 ends the defect depth measurement operation.
  • the defect detection method is a defect detection method for measuring the depth of the defect inside the inspection object.
  • the surface of the inspection object is heated by the halogen lamp (heating device) 10 and the inspection object heated by the infrared camera (imaging device) 20 at the maximum heating time interval (predetermined time interval) Tm.
  • a step of photographing the surface of the object and generating thermal image data corresponding to the temperature of the surface of the inspection object, and a temperature curve 200 indicating a change with time of the temperature of the surface of the inspection object is obtained based on the thermal image data.
  • the surface of the measurement object is obtained by fitting a theoretical formula (formula (1)) obtained from the heat conduction equation including the steps and parameters a and b related to the defect depth L of the inspection object to the temperature curve 200. Based on the step of obtaining the theoretical curve 201 indicating the change in temperature of the sample over time and the value of the parameter b included in the heat conduction equation corresponding to the theoretical curve 201, And a step of determining the depth of Recessed.
  • the defect detection apparatus 30 is the defect detection apparatus 30 which measures the depth of the defect inside a test target object, Comprising: The 1st communication part (input part) 31 and a control part ( A first calculation unit, a fitting unit, and a second calculation unit) 35.
  • the first communication unit 31 inputs thermal image data generated by photographing the surface of the heated inspection object at the maximum heating time interval (predetermined time interval) Tm.
  • the control unit 35 obtains a temperature curve 200 indicating the change over time of the temperature of the surface of the measurement object.
  • control unit 35 fits a theoretical equation (the above equation (1)) obtained from a heat conduction equation including parameters a and b related to the depth of defects of the inspection object to the temperature curve 200, and then measures the measurement object.
  • a theoretical curve 201 indicating a change with time in the temperature of the surface of the object is obtained.
  • the control unit 35 obtains the defect depth L of the inspection object based on the value of the parameter b included in the heat conduction equation corresponding to the theoretical curve 201.
  • the defect detection system 1 is a defect detection system 1 that measures the depth of a defect inside an inspection object, and includes a halogen lamp (heating device) 10 and an infrared camera (imaging device). 20 and the defect detection apparatus 30 described above.
  • the halogen lamp 10 heats the surface of the inspection object.
  • the infrared camera 20 images the surface of the heated inspection object and generates thermal image data corresponding to the temperature of the surface of the inspection object.
  • the defect detection device 30 measures the depth of the defect inside the inspection object based on the thermal image data.
  • the defect depth can be obtained by using the thermal image data during heating corresponding to the theoretical formula at the time of step response of the above equation (1) obtained from the heat conduction equation.
  • the theoretical formula (1) is fitted to the temperature curve obtained from the measured thermal image data, thermal image data with a relatively small temperature difference, that is, acquired in a relatively short heating time from the start of heating.
  • the defect depth can be obtained from the obtained thermal image data. Therefore, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened.
  • the defect depth at the maximum measurement depth Lm is measured only once using all the thermal image data acquired during the maximum heating time Tm.
  • the defect depth is measured while changing the depth to be measured stepwise using a part of the thermal image data acquired stepwise during the maximum heating time Tm.
  • control unit 35 sets the measurement depth interval Sm and the measurement time interval S in addition to the above-described maximum heating time Tm, maximum measurement depth Lm, measurement range W, and unit measurement range P. Obtained as a set value (S20).
  • steps S21, S22, S23, and S24 are performed.
  • the operations in steps S21, S22, S23, and S24 are the same as the operations in steps S11, S12, S13, and S14, respectively.
  • the control part 35 acquires the thermal image data in the maximum heating time Tm, before performing defect depth measurement.
  • control unit 35 first sets n to an initial value 1 when measuring the defect depth in stages at the n measurement depths n ⁇ Sm with respect to the maximum measurement depth Lm (S25). .
  • control unit 35 uses the thermal image data measured up to the measurement time n ⁇ S among the thermal image data acquired during the maximum heating time Tm, and uses the measurement depth of the maximum measurement depth Lm.
  • the depth of defects existing up to n ⁇ Sm is measured (S26). Details of the defect depth measurement process will be described later.
  • control unit 35 increases n by 1 in order to change the depth of the measurement target (S27).
  • the control unit 35 determines whether or not the measurement depth n ⁇ Sm exceeds the maximum measurement depth Lm, or whether or not the measurement time n ⁇ S exceeds the maximum heating time Tm (S28). .
  • the process returns to step S26, and the control unit 35 uses thermal image data corresponding to the measurement time increased by the measurement time interval S.
  • the depth of the defect existing up to the measurement depth increased by the measurement depth interval Sm is measured.
  • step S28 when n ⁇ Sm exceeds Lm or n ⁇ S exceeds Tm in step S28, the control unit 35 displays the measurement result of the defect depth in the measurement range W on the display unit 36. (S29), and the defect detection operation is terminated.
  • step S26 of FIG. 10 will be described with reference to the flowchart of FIG.
  • the control unit 35 uses the thermal image data measured up to the measurement time n ⁇ S among the thermal image data acquired during the maximum heating time Tm, as shown in FIG. As described above, the temperature curve 200 indicating the change with time of the surface temperature of the inspection object is obtained (S260).
  • the control unit 35 does not measure the defect depth for the unit measurement range P corresponding to the thermal pixel data for which the measurement end flag is set in step S263 to be described later.
  • the measurement end flag is a flag indicating that the measurement of the defect depth has ended.
  • the control part 35 performs the redundant measurement about the unit measurement range P in which the measurement of the defect depth has already been completed by the step of the last measurement depth nxS in step S262 mentioned later. Can be avoided.
  • steps S261 and S262 are performed.
  • the operations in steps S261 and S262 are the same as the operations in steps S151 and S152 described above, respectively. Thereby, it is possible to measure the depth of the defect existing up to the measurement depth n ⁇ S.
  • control unit 35 sets a measurement end flag for the thermal image data of the unit measurement range P for which the defect depth L is obtained (S263).
  • the theoretical formula of the above formula (1) is fitted to the temperature curve obtained from the thermal image data actually measured during heating, so that it is acquired in a relatively short heating time from the start of heating.
  • the defect depth can be obtained from the obtained thermal image data. Therefore, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened.
  • the defect depth is measured stepwise after acquiring all the thermal image data over the maximum heating time Tm.
  • the defect depth is measured step by step during the acquisition of the thermal image data.
  • steps S30 and S31 are performed.
  • the operations in steps S30 and S31 are the same as the operations in steps S20 and S21 described above, respectively. Thereby, heating of the surface of the inspection object is started, and imaging of the surface of the inspection object is started.
  • control unit 35 sets n to an initial value 1 at this time (S32).
  • step S33 is performed.
  • the operation in step S33 is the same as that in steps S22 and S12 described above. Thereby, acquisition of thermal image data is started.
  • control unit 35 determines whether or not the heating time t has reached the measurement time n ⁇ S from the start of heating (S34), and if the heating time t has not reached n ⁇ S, Returning to S33, the acquisition of the thermal image data is continued.
  • the defect depth is measured using the thermal image data measured by the time nxS (S35).
  • the defect depth measurement (S35) is the same as the above-described step S26, that is, the defect depth measurement operation in FIG.
  • control unit 35 displays the measurement result of the defect depth on the display unit 36 in real time when the measurement of the defect depth is completed at each stage of the measurement depth nxS (S36).
  • control unit 35 increases n by 1 in order to change the depth of the measurement target (S37).
  • the control unit 35 determines whether or not the measurement depth n ⁇ Sm exceeds the maximum measurement depth Lm, or whether or not the measurement time n ⁇ S exceeds the maximum heating time Tm (S28). If n ⁇ Sm does not exceed Lm and n ⁇ S does not exceed Tm, the process returns to step S33, and measurement is performed step by step with respect to the measurement depth n ⁇ Sm while acquiring thermal image data. Measurement of the depth of defects existing up to the depth n ⁇ Sm is performed in real time.
  • step S38 when n ⁇ Sm exceeds Lm or n ⁇ S exceeds Tm, the control unit 35 determines that the heating time t has exceeded the maximum heating time Tm, and is described above. Similar to steps S24 and S14, imaging of the surface of the inspection object is terminated, heating of the surface of the inspection object is terminated (S14), and the defect detection process is terminated.
  • the theoretical formula of the above formula (1) is fitted to the temperature curve obtained from the thermal image data actually measured during heating, so that it is acquired in a relatively short heating time from the start of heating.
  • the defect depth can be obtained from the obtained thermal image data. Therefore, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened.
  • the defect depth information measured in real time step by step at the measurement depth interval Sm with respect to the maximum measurement depth Lm can be displayed in real time step by step.
  • the theoretical formula of Formula (1) obtained from the heat conduction equation is used as a theoretical formula for fitting to the temperature curve of the temperature change of the actually measured surface of the inspection object.
  • the theoretical formula of the following formula (1a) is used instead of the formula (1).
  • a function with a hat symbol “ ⁇ ” in the formula indicates that a function without a hat is a Laplace transform function with respect to time t.
  • thermohydrodynamics there are three heat transfer phenomena in thermohydrodynamics: heat conduction, heat conduction, and heat radiation.
  • Thermal conduction refers to a phenomenon in which heat moves inside a solid from a high temperature side to a low temperature side.
  • Heat transfer refers to a phenomenon in which heat is transferred between a solid wall and a fluid (eg, air).
  • Thermal radiation refers to a phenomenon in which heat is released from a solid.
  • FIG. 17A is a schematic diagram for explaining heat conduction.
  • F 0 a constant heat flux
  • F 0 a constant heat flux
  • L the depth of the defect 101 from the front surface 102 to the back surface 103 of the inspection object 100.
  • the position x of the back surface 103 is 0, and the position x of the front surface 102 is L.
  • FIG. 17B and FIG. 17C are schematic diagrams for explaining heat transfer. As shown in FIG. 17B, heat transfer occurs in which heat is transferred from the surface 102 of the inspection object 100 to the air in contact with the surface 102 with heat flux h 1 T (L, s) (hat symbol omitted). Further, as shown in FIG. 17B, heat transfer occurs in which heat is transferred from the surface 102 of the inspection object 100 to the air in contact with the surface 102 with heat flux h 1 T (L, s) (hat symbol omitted). Further, as shown in FIG.
  • heat transfer is generated in which heat is transferred from the back surface 103 of the inspection object 100 to the air in contact with the back surface 103 with a heat flux h 2 T (L, s) (hat symbol omitted).
  • h 1 and h 2 are heat transfer coefficients (heat transfer coefficients) [W / (m 2 ⁇ K)].
  • a theoretical equation for temperature change is derived in consideration of only heat transfer on the surface 102 of the inspection object 100.
  • the above equation (13a) is the same as the above equation (13).
  • the heat flux of heat transfer on the surface 102 of the inspection object 100 H 1 T (L, s)
  • the following equation (15a) is derived as a theoretical equation (s function) in the step response. Is done.
  • the configurations of the defect detection device 30 and the defect detection system 1 of the present embodiment are basically the same as those of the first embodiment described with reference to FIG. 1, and the function of the control unit 30 of the defect detection device 30.
  • the operation is basically the same as that of the first embodiment described with reference to FIGS.
  • the control unit 30 of the defect detection apparatus 30 uses the theoretical expressions (1a) to (3a) instead of the theoretical expressions (1) to (3) in steps S151 and S152 of FIG. Different from that.
  • step S151 in FIG. 9 the control unit 35 fits the theoretical formula of the formula (1a) obtained from the heat conduction equation to the temperature curve 200 of the actually measured temperature change of the test object surface, and thereby the surface of the test object.
  • the theoretical curve 201 showing the change with time of the temperature is obtained (see FIG. 4).
  • step S152 the control unit 35 obtains the defect depth L of the inspection object using the equation (3s) from the value of the parameter b in the theoretical equation of the equation (1a) corresponding to the theoretical curve 201.
  • the theoretical formula of the formula (1a) is fitted to the temperature curve obtained from the thermal image data measured during heating, so that it was acquired in a relatively short heating time from the start of heating. Defect depth can be determined from thermal image data. Therefore, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened.
  • the measured temperature curve is fitted to obtain a theoretical curve, and the value of the parameter b in the theoretical formula corresponding to the theoretical curve
  • the depth of the defect of the inspection object is obtained from the above, there are the following problems. That is, when the depth of the defect of the inspection object is deepened, the depth of the defect is measured deeper than the actual depth as the heating time (number of measurement data) increases (see Example 3 described later).
  • the heat flux (h 2 T (0, s)) of heat transfer on the back surface 103 of the inspection object 100 is taken into consideration as compared with the above equations (13) and (13a). (Hat symbol omitted).
  • the above equation (14b) is the same as the above equation (14a).
  • the configurations of the defect detection device 30 and the defect detection system 1 of the present embodiment are basically the same as those of the first embodiment described with reference to FIG. 1, and the function of the control unit 30 of the defect detection device 30.
  • the operation is basically the same as that of the first embodiment described with reference to FIGS.
  • the control unit 30 of the defect detection apparatus 30 uses the theoretical expressions (1b) to (5b) instead of the theoretical expressions (1) to (3) in steps S151 and S152 of FIG. Different from that.
  • step S151 in FIG. 9 the control unit 35 fits the theoretical equation of the equation (1b) obtained from the heat conduction equation to the temperature curve 200 of the temperature change of the actually measured inspection object surface, and thereby the surface of the inspection object.
  • the theoretical curve 201 showing the change with time of the temperature is obtained (see FIG. 4).
  • step S152 the control unit 35 obtains the defect depth L of the inspection object from the value of the parameter b in the theoretical formula of the formula (1b) corresponding to the theoretical curve 201 using the formula (3b).
  • the theoretical formula of Formula (1b) is fitted to the temperature curve obtained from the thermal image data measured during heating, and therefore, obtained in a relatively short heating time from the start of heating. Defect depth can be determined from thermal image data. Therefore, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened.
  • the inspection object 100 in addition to the above-described expression (13b), in addition to the heat flux (h 2 T (0, s)) of heat transfer on the back surface 103 of the inspection object 100, the inspection object 100 The heat flux ( ⁇ (T 1 4 (0, s) ⁇ T 0 4 )) of heat radiation on the back surface 103 is taken into consideration (hat symbol omitted).
  • T 0 is an initial temperature (temperature before heat radiation)
  • T 1 (0, s) is a temperature after heat radiation (hat symbol omitted).
  • Equation (13c) is similar to Equation (13b).
  • h ′ 2 T (0, s) indicates the heat flux of heat transfer and heat radiation on the back surface 103 of the inspection object 100 (hat symbol omitted), and h ′ 2 indicates heat transfer of these heat transfer and heat radiation.
  • the rate [W / (m 2 ⁇ K)] is shown.
  • the heat conduction F 0 / s and the heat flux (h 1 T (L, s)) of heat transfer on the surface 102 of the inspection object 100 are obtained.
  • the heat flux ( ⁇ (T 1 4 (L , s) -T 0 4)) of the thermal radiation at the surface 102 of the inspection object 100 is considered (circumflex omitted).
  • T 1 (L, s) is the temperature after heat radiation (hat symbol omitted).
  • the configurations of the defect detection device 30 and the defect detection system 1 of the present embodiment are basically the same as those of the first embodiment described with reference to FIG. 1, and the function of the control unit 30 of the defect detection device 30.
  • the operation is basically the same as that of the first embodiment described with reference to FIGS.
  • the control unit 30 of the defect detection apparatus 30 uses the theoretical expressions (1c) to (5c) in place of the theoretical expressions (1) to (3) in steps S151 and S152 of FIG. Different from that.
  • step S151 in FIG. 9 the control unit 35 fits the theoretical equation of the equation (1c) obtained from the heat conduction equation to the temperature curve 200 of the actually measured temperature change of the object to be inspected, and thereby the surface of the object to be inspected.
  • the theoretical curve 201 showing the change with time of the temperature is obtained (see FIG. 4).
  • step S152 the control unit 35 obtains the defect depth L of the inspection object using the equation (3c) from the value of the parameter b in the theoretical equation of the equation (1c) corresponding to the theoretical curve 201.
  • the theoretical formula of formula (1c) is fitted to the temperature curve obtained from the thermal image data measured during heating, and thus was acquired in a relatively short heating time from the start of heating. Defect depth can be determined from thermal image data. Therefore, the heating time of the surface of the inspection object and the measurement time from the heating to the measurement of the defect depth can be shortened.
  • the theoretical formula of the equation (1c) that considers heat radiation is also used. Then, fitting to the actually measured temperature curve is performed to obtain a theoretical curve, and from the value of the parameter b in the theoretical formula corresponding to the theoretical curve, the defect depth of the inspection object obtained using the equation (3c) is obtained. . Thereby, even if the depth of the defect of the inspection object becomes deep, the defect depth L can be obtained with higher accuracy.
  • Embodiments 1 to 3 have been described as examples of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the method and apparatus for measuring the depth of defects inside the inspection object have been described.
  • the idea of the present disclosure can be applied not only to the measurement of the depth of defects inside the inspection object but also to a method and apparatus for measuring the thickness of the measurement object.
  • the distance from the surface of the inspection object to the internal defect (cavity, separation) is obtained as the depth of the defect.
  • measuring the distance from the surface of the inspection object to the internal cavity or peeling is the same as measuring the thickness of the measurement object. Therefore, it is clear that the method for measuring the defect depth of the inspection object shown in the first to sixth embodiments can be applied to the method for measuring the thickness of the measurement object.
  • the heating device 10 such as a halogen lamp
  • heat reflection occurs on the back surface of the measurement object 100.
  • the change depends on the thickness of the measurement object 100. From this, also in thickness measurement, if the surface of the measuring object 100 is imaged by the imaging device 20 such as an infrared camera while the surface of the inspection object 100 is heated by the heating device 10, the first embodiment will be described.
  • the thickness can be determined in the same way as the defect detection method.
  • “defect detection device”, “defect detection system”, “inspection object”, “defect depth”, “defect detection operation, defect depth measurement operation”, The “maximum measurement depth” may be read as “thickness measurement device”, “thickness measurement system”, “measurement object”, “thickness”, “thickness measurement operation”, and “maximum measurement thickness”, respectively.
  • Example 1 Using the defect detection system 1 of Embodiment 1, the depth from the front surface to the back surface of the mortar plate (275 mm ⁇ 210 mm, thickness 11.1 mm) was measured as the defect depth.
  • an earthquake-proof dimmable work lamp CTW-050 manufactured by CUSTOM KOBO was used.
  • FIG. 14 (a) shows a temperature curve obtained from actually measured thermal image data and a theoretical curve obtained from the theoretical formula of the above equation (1).
  • a broken line 210 is a temperature curve of a temperature change of the surface of the inspection object obtained from the actually measured thermal image data
  • a solid line 211 is an inspection obtained by curve fitting the theoretical expression of the above equation (1) to the temperature curve 210. It is a theoretical curve of the temperature change of the target object surface.
  • FIG. 14B shows the defect depth L of the inspection object obtained from the value of the parameter b in the theoretical formula corresponding to the theoretical curve 211 using the formula (3).
  • a white triangle mark 411 is a measurement result of the depth L of the defect when the irradiation distance of the heating device 10 to the mortar plate is 30 cm
  • a white square mark 412 has an irradiation distance of 40 cm.
  • the black mark 413 is the measurement result of the defect depth L when the irradiation distance is 50 cm.
  • FIG. 14B shows the measurement result of the defect depth L when the heating time is changed from 30 seconds to 300 seconds in increments of 30 seconds at each irradiation distance.
  • the solid line 410 indicates the actual thickness of 11.1 mm.
  • the defect depth L can be accurately obtained while reducing the measurement time by setting the heating time to about 60 seconds without depending on the irradiation distance, that is, the heating intensity.
  • FIG. 14B shows a temperature curve 310 of the healthy part and a temperature curve 311 of the defective part obtained from the theoretical formula of the expression (1).
  • Example 2 Using the defect detection system 1 of the first embodiment, the thickness of an aluminum plate (30 mm ⁇ 165 mm, thickness 15 mm) was measured.
  • the heating device 10 the same one as in Example 1 was used.
  • the irradiation distance of the heating device 10 to the aluminum plate was 30 cm, and the heating time was 60 seconds.
  • FIG. 15A shows a temperature curve 220 obtained from the actually measured thermal image data and a theoretical curve obtained from the theoretical formula of the above formula (1).
  • the broken line 220 is a temperature curve of the temperature change of the surface of the inspection object obtained from the measured thermal image data
  • the solid line 221 is an inspection obtained by curve fitting the theoretical expression of the above equation (1) to the temperature curve 220. It is a theoretical curve of the temperature change of the target object surface.
  • the thickness L can be accurately obtained while shortening the measurement time by setting the heating time to about 60 seconds. Recognize.
  • Example 3 Using the defect detection system 1 of the fourth embodiment, the depth from the front surface to the back surface of three mortar plates (275 mm ⁇ 210 mm, thickness 11.1 mm, 22.1 mm, 30.5 mm) having different thicknesses is determined as the defect depth. As measured. As the heating device 10, the same one as in Example 1 was used.
  • 18A to 18C show the temperature curve obtained from the thermal image data obtained by actually measuring the plate material of each thickness, and the theory of the formula (1a) in consideration of heat conduction and heat transfer (heat radiation) on the surface (heating surface) of the plate material.
  • the theoretical curve obtained from the equation is shown.
  • the broken line 230 is a temperature curve of the temperature change of the surface (heating surface) of the plate material obtained from the actually measured thermal image data, and the solid line 231 is obtained by curve fitting the theoretical expression of the above equation (1a) to the temperature curve 230. It is the theoretical curve of the temperature change of the surface (heating surface) of the calculated
  • FIG. 19A shows the theoretical curve obtained by fitting the measured temperature curve using the formula (1a), and the value of the parameter b in the theoretical formula corresponding to the theoretical curve, using the formula (3). Defect depth L is shown.
  • FIG. 19B uses the equation (1) that does not consider the heat transfer (heat radiation) on the surface (heating surface) of the plate material instead of the equation (1a), and similarly fits the measured temperature curve.
  • the theoretical curve is obtained and the depth L of the defect of the plate material obtained using the equation (3) from the value of the parameter b in the theoretical formula corresponding to the theoretical curve is shown.
  • a black circle mark 431 is a measurement result of a defect depth L of a plate material having a thickness (defect depth) of 11.1 mm
  • a black triangle mark 432 is a thickness (defect depth) 22.
  • This is a measurement result of a defect depth L of a plate material of 1 mm
  • a black square mark 433 is a measurement result of a defect depth L of a plate material having a thickness (defect depth) of 30.5 mm.
  • the solid lines 431r, 432r, and 433r indicate actual thicknesses of 11.1 mm, 22.1 mm, and 30.5 mm, respectively.
  • the value of the measurement result increases as the heating time becomes longer as a whole.
  • the measurement result (431) of the defect depth L of the plate material having a thickness of 11.1 mm it is saturated to a value close to 11.1 mm in the vicinity of the heating time of 200 s (asymptotic to the solid line 431r indicating 11.1 mm). , Become flat characteristics). From this, the depth L of the defect can be obtained from the value of the heating time zone that is saturated in the measurement result (431).
  • the measurement result (431) of the defect depth L of the plate material having a thickness of 11.1 mm is saturated to a value close to 11.1 mm in the vicinity of the heating time of 200 s to 300 s. (It becomes asymptotic to a solid line 431r indicating 11.1 mm and has a flat characteristic). Also, the measurement result (432) of the defect depth L of the plate material having a thickness of 22.1 mm is saturated to a value close to 22.1 mm in the vicinity of the heating time of 300 s to 500 s (in the solid line 432r indicating 22.1 mm). Asymptotic and flat characteristics).
  • the measurement result (433) of the defect depth L of the plate material having a thickness of 30.5 mm is saturated to a value close to 30.5 mm in the vicinity of the heating time of 400 s to 600 s (indicated by a solid line 433r indicating 30.5 mm). Asymptotic and flat characteristics). As a result, even when the depth of the defect is deeper than 22.1 mm, the depth L of the defect can be obtained from the saturated heating time zone value in the measurement result, and the depth of the defect can be determined with high accuracy. It can be measured.
  • Example 4 Using the defect detection system 1 of the fifth embodiment, the depth from the front surface to the back surface of three mortar plates (275 mm ⁇ 210 mm, thickness 11.1 mm, 22.1 mm, 30.5 mm) having different thicknesses is determined as the defect depth. As measured. As the heating device 10, the same one as in Example 1 was used.
  • FIGS. 20A to 20c show temperature curves obtained from thermal image data obtained by actually measuring plate materials of various thicknesses, heat conduction, heat transfer (heat radiation) on the surface (heating surface) and back surface (defect side) of the plate material, and heat.
  • a theoretical curve obtained from the theoretical formula (1c) in consideration of radiation is shown.
  • a broken line 240 is a temperature curve of a temperature change of the surface (heated surface) of the plate material obtained from actually measured thermal image data, and a solid line 241 is obtained by curve fitting the theoretical expression of the equation (1c) to the temperature curve 240. It is a theoretical curve of the temperature change of the surface (heated surface) of the plate material.
  • FIG. 21 shows the theoretical curve obtained by fitting the measured temperature curve using the formula (1c), and the value of the parameter b in the theoretical formula corresponding to the theoretical curve, using the formula (3).
  • Defect depth L is shown.
  • a black circle mark 441 is a measurement result of a defect depth L of a plate material having a thickness (defect depth) of 11.1 mm
  • a black triangle mark 442 is a thickness (defect depth) of 22.1 mm.
  • This is a measurement result of the defect depth L of the plate material
  • a black square mark 443 is a measurement result of the defect depth L of the plate material having a thickness (defect depth) of 30.5 mm.
  • the solid lines 441r, 442r, and 443r indicate actual thicknesses of 11.1 mm, 22.1 mm, and 30.5 mm, respectively.
  • the whole in the measurement result (441) of the defect depth L of the plate material having a thickness of 11.1 mm, the whole is saturated to a value close to 11.1 mm regardless of the heating time (11. It becomes asymptotic to a solid line 441r indicating 1 mm, and has a flat characteristic).
  • the measurement result (442) of the defect depth L of the plate material having a thickness of 22.1 mm it is saturated to a value close to 22.1 mm after a heating time of 400 s or more (asymptotic to the solid line 442r indicating 22.1 mm). , Become flat characteristics).
  • the defect depth L of the plate material having a thickness of 30.5 mm is saturated to a value close to 30.5 mm after a heating time of 600 s or more (asymptotic to a solid line 433r indicating 30.5 mm). , Become flat characteristics).
  • the depth L of the defect can be obtained from the saturated heating time zone value in the measurement result, and the depth of the defect can be determined with high accuracy. It can be measured.
  • the defect depth exceeding about 15 mm indicates that the heat conduction and the inspection object do not take into account heat transfer (heat radiation) and heat radiation on the back surface (defect side) of the inspection object. It can be seen that the depth of the defect can be measured with relatively high accuracy by using the theoretical formula of the formula (1a) in consideration of heat transfer (heat radiation) on the surface (heating surface).
  • the present disclosure can be applied to a thickness measurement method, a thickness measurement apparatus, and a thickness measurement system that measure the thickness of a measurement object. Further, the present disclosure is applicable to a defect detection method, a defect detection apparatus, and a defect detection system that measure the depth of a defect such as an internal peeling or a cavity of an inspection object.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

欠陥検出方法は、検査対象物の内部の欠陥の深さを計測する欠陥検出方法である。この欠陥検出方法は、加熱装置により検査対象物の表面を加熱するステップと、撮影装置により所定時間間隔において、加熱された検査対象物の表面を撮影して検査対象物の表面の温度に応じた熱画像データを生成するステップと、熱画像データに基づいて、検査対象物の表面の温度の経時変化を示す温度曲線を求めるステップS150と、検査対象物の欠陥の深さに関連したパラメータを含む熱伝導方程式から得られる理論式を温度曲線にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線を求めるステップS151と、理論曲線に対応する理論式に含まれるパラメータの値に基づいて、検査対象物の欠陥の深さを求めるステップS152とを備える。

Description

厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
 本開示は、計測対象物の厚みを計測する方法及び装置、並びに検査対象物の欠陥を検出する方法及び装置に関する。
 特許文献1は、赤外線サーモグラフィ法を用いて、構造物(検査対象物)内部の剥離又は空洞等の欠陥の表面からの深さを計測することが可能な欠陥診断方法(欠陥検出方法)を開示する。赤外線サーモグラフィ法は、構造物内部の剥離や空洞などの欠陥の断熱性によって熱の移動が妨げられることで生じる表面温度の変化を赤外線カメラ(撮影装置)で捉えることにより、欠陥の深さを検知する方法である。赤外線サーモグラフィ法では、構造物内部に熱の移動を生じさせるために構造物に対する加熱又は冷却が必要である。加熱/冷却の方法としては、ヒーター又はランプ等の加熱装置を用いるアクティブ法と、日射や自然空冷を用いるパッシブ法とがある。
 なお、構造物(検査対象物)内部の欠陥深さを計測する上記欠陥診断方法(欠陥検出方法)は、計測対象物の厚みを計測する厚み計測方法に適用できる。
特開2011-122859号公報
Horatio Scott Carslaw and John Conrad Jaeger、"CONDUCTION OF HEAT IN SOLIDS"、Second Edition、Oxford University Press、1959、p.112
 パッシブ法では、日射や自然空冷に頼るので、検査対象物の表面の温度差を得るために長い時間を要する。また、アクティブ法では、一般に、赤外線カメラで生成される熱画像において温度差が把握できる程度に十分に加熱した後、自然冷却時に生じる温度差を撮影した熱画像に基づいて、検査対象物内部の欠陥の深さを計測するので、やはり比較的に長い時間を要する。
 本開示は、計測時間を短縮することが可能な厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置を提供する。
 本開示における厚み計測方法は、計測対象物の厚みを計測する厚み計測方法であって、加熱装置により計測対象物の表面を加熱するステップと、撮影装置により所定時間間隔において、加熱された計測対象物の表面を撮影して計測対象物の表面の温度に応じた熱画像データを生成するステップと、撮影装置により生成された熱画像データに基づいて、計測対象物の表面の温度の経時変化を示す温度曲線を求めるステップと、計測対象物の厚みに関連したパラメータを含む熱伝導方程式から得られる理論式を温度曲線にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線を求めるステップと、理論曲線に対応する理論式に含まれるパラメータの値に基づいて、計測対象物の厚みを求めるステップとを備える。
 本開示における厚み計測装置は、計測対象物の厚みを計測する厚み計測装置であって、所定時間間隔において、加熱された計測対象物の表面を撮影して生成された熱画像データを入力する入力部と、熱画像データに基づいて、計測対象物の表面の温度の経時変化を示す温度曲線を求める第1演算部と、計測対象物の厚みに関連したパラメータを含む熱伝導方程式から得られる理論式を温度曲線にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線を求めるフィッティング部と、理論曲線に対応する理論式に含まれるパラメータの値に基づいて、計測対象物の厚みを求める第2演算部とを備える。
 本開示における欠陥検出方法は、検査対象物の内部の欠陥の深さを計測する欠陥検出方法であって、加熱装置により検査対象物の表面を加熱するステップと、撮影装置により所定時間間隔において、加熱された検査対象物の表面を撮影して検査対象物の表面の温度に応じた熱画像データを生成するステップと、熱画像データに基づいて、検査対象物の表面の温度の経時変化を示す温度曲線を求めるステップと、検査対象物の欠陥の深さに関連したパラメータを含む熱伝導方程式から得られる理論式を温度曲線にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線を求めるステップと、理論曲線に対応する理論式に含まれるパラメータの値に基づいて、検査対象物の欠陥の深さを求めるステップとを備える。
 本開示における欠陥検出装置は、検査対象物の内部の欠陥の深さを計測する欠陥検出装置であって、所定時間間隔において、加熱された検査対象物の表面を撮影して生成された熱画像データを入力する入力部と、熱画像データに基づいて、計測対象物の表面の温度の経時変化を示す温度曲線を求める第1演算部と、検査対象物の欠陥の深さに関連したパラメータを含む熱伝導方程式から得られる理論式を温度曲線にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線を求めるフィッティング部と、理論曲線に対応する理論式に含まれるパラメータの値に基づいて、検査対象物の欠陥の深さを求める第2演算部とを備える。
 本開示における厚み計測方法及び装置は、計測対象物の厚みを短時間で計測することができる。また、本開示における欠陥検出方法及び装置は、検査対象物の内部の剥離又は空洞等の欠陥を計測するものであり、短時間で欠陥を計測することができる。
実施の形態1にかかる欠陥検出システム及び欠陥検出装置の構成を示す図 欠陥検出の概要を説明するための図 赤外線カメラで撮影した検査対象物の表面の温度に応じた熱画像の一例を示す図 図3に示す熱画像の一部の領域における温度の経時変化を示す温度曲線の一例を示す図 検査対象物における健全部の温度曲線の一例と欠陥部の温度曲線の一例とを示す図 実施の形態1にかかる欠陥検出装置の制御部による欠陥検出動作を示す図 ハロゲンランプの出力を示す図 表示部による欠陥深さの計測結果の表示の一例を示す図 実施の形態1にかかる欠陥検出装置の制御部による欠陥深さの計測動作を示す図 実施の形態2にかかる欠陥検出装置の制御部による欠陥検出動作を示す図 実施の形態2にかかる欠陥検出装置の制御部による欠陥深さの計測動作を示す図 実施の形態3にかかる欠陥検出装置の制御部による欠陥検出動作を示す図 厚さ計測の概要を説明するための図 (a)実施例1における実測した熱画像データから得られた温度曲線と、実測した温度曲線に理論式をフィッティングすることにより得られた理論曲線とを示す図、(b)実施例1における検査対象物の欠陥の深さの計測結果を示す図 (a)実施例2における実測した熱画像データから得られた温度曲線と、実測した温度曲線に理論式をフィッティングすることにより得られた理論曲線とを示す図、(b)実施例2における理論式を用いたフィッティング結果を示す図、(c)実施例2における計測対象物の厚みの計測結果を示す図 加熱した後に自然冷却する際の欠陥部の表面温度の時間変化と健全部の表面温度の時間変化とを示す図 熱伝導を説明するための模式図 熱伝達を説明するための模式図 熱伝達を説明するための模式図 実施例3における実測した熱画像データから得られた温度曲線と、実測した温度曲線に、熱伝導及び熱伝達を考慮した理論式をフィッティングすることにより得られた理論曲線とを示す図 実施例3における実測した熱画像データから得られた温度曲線と、実測した温度曲線に、熱伝導及び熱伝達を考慮した理論式をフィッティングすることにより得られた理論曲線とを示す図 実施例3における実測した熱画像データから得られた温度曲線と、実測した温度曲線に、熱伝導及び熱伝達を考慮した理論式をフィッティングすることにより得られた理論曲線とを示す図 実施例3における検査対象物の欠陥の深さの計測結果を示す図 比較のための実施例1における検査対象物の欠陥の深さの計測結果を示す図 実施例4における実測した熱画像データから得られた温度曲線と、実測した温度曲線に、熱伝導、熱伝達及び熱輻射を考慮した理論式をフィッティングすることにより得られた理論曲線とを示す図 実施例4における実測した熱画像データから得られた温度曲線と、実測した温度曲線に、熱伝導、熱伝達及び熱輻射を考慮した理論式をフィッティングすることにより得られた理論曲線とを示す図 実施例4における実測した熱画像データから得られた温度曲線と、実測した温度曲線に、熱伝導、熱伝達及び熱輻射を考慮した理論式をフィッティングすることにより得られた理論曲線とを示す図 実施例4における検査対象物の欠陥の深さの計測結果を示す図
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
(実施の形態1)
 以下、実施の形態1の欠陥検出システムを図1~図9を用いて説明する。
[1-1.構成]
[1-1-1.欠陥検出システム]
 図1は、実施の形態1にかかる欠陥検出システム1の構成を示す図である。図1に示すように、欠陥検出システム1は、検査対象物の内部にある剥離又は空洞等の欠陥の深さを計測して、欠陥検出を行う。欠陥検出システム1は、ハロゲンランプ10と、ランプ駆動部11と、赤外線カメラ20と、欠陥検出装置30とを備える。
 ハロゲンランプ10は、検査対象物の表面を加熱する加熱装置である。ハロゲンランプ10は、加熱出力の開始及び停止を行うためのシャッタを備える。
 ランプ駆動部11は、ハロゲンランプ10を駆動する装置である。ランプ駆動部11は、欠陥検出装置30の制御部35の制御にしたがい、ハロゲンランプ10の加熱出力の開始及び停止を制御する。このため、ランプ駆動部11は、ハロゲンランプ10のシャッタの開閉を制御する。なお、ランプ駆動部11は、ハロゲンランプ10への電力供給の開始及び停止により、ハロゲンランプ10の加熱出力の開始及び停止を制御してもよい。
 赤外線カメラ20は、検査対象物の表面を撮影する撮影装置である。赤外線カメラ20は、複数の画素を有し、所定のフレームレートで、検査対象物の表面の温度に応じた熱画像データを生成する。
 欠陥検出装置30は、ランプ駆動部11を制御することにより、ハロゲンランプ10の加熱出力の開始及び停止を制御する。また、欠陥検出装置30は、赤外線カメラ20の撮影動作を制御する。また、欠陥検出装置30は、赤外線カメラ20からの熱画像データに基づいて、検査対象物の内部の欠陥の深さを計測して、欠陥検出を行う。以下、欠陥検出装置30の構成を説明する。
 [1-1-2.欠陥検出装置]
 欠陥検出装置30は、例えばコンピュータで構成される。欠陥検出装置30は、図1に示すように、第1~第3の通信部31、32、33と、格納部34と、制御部35と、表示部36と、操作部37とを備える。
 第1~第3の通信部31、32、33はそれぞれ、例えば通信インタフェース(例えば、USB、HDMI(登録商標))で構成される。第1の通信部31は、赤外線カメラ20から、所定のフレームレートで撮影された熱画像データを順次に受信する入力部である。
 第2の通信部32は、ハロゲンランプ10の加熱開始及び加熱停止等に関するランプ制御情報を制御部35から受信し、ランプ駆動部11に送信する。第3の通信部33は、赤外線カメラ20の撮影開始及び撮影終了等に関するカメラ制御情報を制御部35から受信し、赤外線カメラ20に送信する。
 格納部34は、記録媒体であり、例えばHDD、SSDで構成される。格納部34は、第1の通信部31で受信した熱画像データを順次格納する。また、格納部34は、後述する操作部37から入力される各種設定値であって、検査対象物の欠陥の深さを計測するために必要な各種設定値を格納する。また、格納部34は、制御部35のための各種プログラムを格納する。
 制御部35は、CPU、MPU等で構成され、格納部34に格納された各種プログラムを実行することにより、欠陥検出装置30の全体を制御する。制御部35は、ランプ駆動部11を制御することにより、ハロゲンランプ10の加熱出力の開始及び停止を制御する。また、制御部35は、赤外線カメラ20の撮影開始及び撮影停止等の撮影動作を制御する。また、制御部35は、格納部34に格納された熱画像データに基づいて、検査対象物の欠陥の深さを求める。このとき、制御部35は、第1演算部、フィッティング部、及び、第2演算部として機能する。これらの機能の詳細については、後述する動作説明において説明する。
 表示部36は、例えばディスプレイで構成され、制御部35で求められた欠陥の深さを例えば色情報又は諧調情報として表示する。
 操作部37は、例えばキーボード又はタッチパネルで構成される。操作部37は、検査対象物の欠陥の深さを計測するために必要な各種設定値を設定する際にユーザにより操作される装置である。
[1-2.動作]
 以上のように構成された欠陥検出システム1及び欠陥検出装置30について、その動作を以下に説明する。
[1-2-1.欠陥検出の概要]
 まず、本開示の欠陥検出の概要について、図2~5を参照して説明する。
(1)従来の欠陥検出の概要
 図2を参照し、検査対象物100の表面をハロゲンランプ等の加熱装置で加熱すると、検査対象物100の表面(高温側)から内部(低温側)に向けて熱伝導が生じる。その際、検査対象物100の内部に剥離又は空洞等の欠陥101があると、熱伝導が欠陥101によって妨げられ、熱反射が生じる。これにより、欠陥101が内部に存在する欠陥部110の表面温度は、欠陥が内部に存在しない健全部120の表面温度よりも高くなる。この表面の温度差を利用して欠陥検出を行う方法が知られている。
 従来の欠陥検出方法では、検査対象物100の表面を加熱装置で十分に加熱した後(例えば、高速道路等のコンクリートの場合には数十分~1時間程度)自然冷却する際に、検査対象物100の表面温度を赤外線カメラ等の撮影装置で撮影して、検査対象物100の表面温度に応じた熱画像を生成する。この欠陥検出方法は、熱画像が示す温度差により欠陥検出を行う。図16に、加熱した後に自然冷却する際の欠陥部の表面温度の時間変化と健全部の表面温度の時間変化とを示す。曲線330は健全部の表面温度の時間変化であり、曲線331は欠陥部の表面温度の時間変化である。図16に示すように、自然冷却時に生じる欠陥部の表面温度と健全部の表面温度との間の温度差ΔT2は、加熱時に生じる欠陥部の表面温度と健全部の表面温度との間の温度差ΔT1よりも大きくなる。従来の欠陥検出方法では、この現象を利用し、加熱後の自然冷却時の熱画像を用いて欠陥検出を行う。この従来の欠陥検出方法では、熱画像において温度差が現れるように、検査対象物100の表面を十分に加熱する必要があり、検出に時間がかかっていた。
(2)本開示の欠陥検出の概要
 本開示の欠陥検出方法は、検査対象物100の表面を加熱装置10で加熱している間に、検査対象物100の表面温度を赤外線カメラ等の撮影装置20で撮影して、検査対象物100の表面温度に応じた熱画像データを生成する。そして、本開示の欠陥検出方法は、この熱画像データと、熱伝導方程式から得られる理論式(後述の式(1))とを用いて欠陥検出を行う。
 図3は、赤外線カメラで撮影した検査対象物の表面の温度に応じた熱画像の一例を示す図である。図4は、図3に示す熱画像の一部の領域Pにおける温度の経時変化を示す温度曲線の一例を示す図である。
 図4において、破線200は、実測した熱画像データから得られる検査対象物表面の温度変化の温度曲線であり、実線201は、後述の式(1)の理論式を破線200の温度変化の温度曲線にカーブフィッティングすることで得られる検査対象物表面の温度変化の理論曲線である。本開示の欠陥深さ計測方法では、図4に示すように、実測した熱画像データから得られる温度曲線200に、熱伝導方程式から得られる後述の式(1)の理論式をカーブフィッティングして、理論曲線201を求める。そして、本開示の欠陥深さ計測方法では、理論曲線201に対応する理論式におけるパラメータa又はbの値から、後述の式(2)又は式(3)を用いて検査対象物の欠陥の深さLを求める。
 図5は、検査対象物における健全部の温度曲線の一例と欠陥部の温度曲線の一例とを対比して示した図である。図5において、曲線300は健全部の温度変化を示す温度曲線であり、曲線301は欠陥部の温度変化を示す温度曲線である。図5の温度曲線300、301は、後述の式(1)の理論式を用いて計算した結果である。図5において、各物質定数としてモルタル(コンクリート)の値(熱拡散率αは、一般的なコンクリートの熱拡散率である1.21×10-6/sを使用)を用い、欠陥部の欠陥深さとしてL=19.6mmとし、健全部では欠陥部の欠陥深さに対して十分に大きなL値とした。
 図5において、加熱時間約120秒から、健全部の表面温度と欠陥部の表面温度との間に差が現れ始める。本開示の欠陥検出方法では、健全部の表面温度と欠陥部の表面温度とに差が現れる程度の時間(すなわち加熱時間)の熱画像データがあればフィッティング計測が可能である。そのため、本開示の欠陥検出方法では、従来と比較して、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる(図5の例では数分~数十分程度)。
 なお、表面温度差が現れ始める加熱時間は、欠陥深さに関連し、欠陥深さが深いほど長くなる。
(3)熱伝導方程式から得られる温度変化の理論式の導出
 以下、熱伝導方程式から得られる温度変化の理論式の導出について説明する。1次元非定常熱伝導方程式は次式で表される。
Figure JPOXMLDOC01-appb-M000001
 この熱伝導方程式から、ステップ応答における理論式として次式が導出される(非特許文献1の112ページの式(3)参照)。
Figure JPOXMLDOC01-appb-M000002
上式において、T(x,t)は検査対象物の表面温度[K]であり、xは検査対象物の表面を基準とした深さ方向の位置[m]であり(0<x<L)、tは時間[s]であり、Fは熱流束[W/m]であり、ρは検査対象物の密度[kg/m]であり、cは検査対象物の比熱[J/(kg・K)]であり、ρcは検査対象物の容積比熱[J/(m・K)]であり、kは検査対象物の熱伝導率[W/(m・K)]であり、α=k/ρcは検査対象物の熱拡散率[m/s]である。
 上式において、検査対象物の表面からの深さLの位置に欠陥が存在する場合、x=Lとなり、次式が導出される。
Figure JPOXMLDOC01-appb-M000003
上式において、T(L,t)は検査対象物の表面の温度[K]であり、Lは検査対象物の表面からの欠陥の深さ[m]である。
 ここで、本願発明者は、上式の理論式を、実測した熱画像データから得られる温度曲線にカーブフィッティングすることを試みた。しかし、上式の理論式では、フィッティングパラメータがF、ρc、k、Lの4つであり、F、ρc、k、Lの解として複数の組み合わせが存在してしまう。この問題点に関し、本願発明者は、下式(2)及び下式(3)に示されるように、4つのパラメータF、ρc、k、Lを2つのパラメータa、bに変換して、フィッティングパラメータを削減することで対応できることを見出した。
 これにより、本願発明者は、熱伝導方程式の理論式として次式(1)~(3)を導出した。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 本開示の欠陥検出方法は、上式(1)~(3)を用いて、実測した温度曲線に対するフィッティングを行う。
[1-2-2.欠陥検出動作]
 以下、本実施の形態1にかかる欠陥検出装置30の制御部35による欠陥検出動作について、図6のフローチャートを参照して説明する。
 図6に示すように、まず、制御部35は、最大加熱時間Tm、最大計測深さLm、計測範囲W、単位計測範囲Pを設定値として取得する(S10)。これらの設定値は、ユーザによって操作部37を用いて入力され、格納部34に予め格納されている。
 最大計測深さLmは、この欠陥検出において計測対象とする深さの最大値であり、どの深さまでの欠陥を検出したいかに応じて設定される。例えば、高速道路等の欠陥検出では、最表面の鉄骨が表面から50cmに存在するため、表面から約50cmの深さまでに剥離又は空洞等の欠陥が存在するか否かを検出することが求められている。このような場合には、最大計測深さLmは50cmに設定される。
 最大加熱時間Tmは、最大計測深さLmに関連して設定される。最大加熱時間Tmは、例えば、図5に示すように、最大計測深さLmにおける欠陥部の表面温度と健全部の表面温度との間に差が十分に表れるような加熱時間に設定される。
 計測範囲Wは、図3に示すように、赤外線カメラ20の撮影範囲において、計測を行う範囲である。単位計測範囲Pは、図3に示すように、計測範囲Wにおいて一度に計測を行う範囲である。単位計測範囲Pは、赤外線カメラ20の画素単位で設定され、1画素単位であってもよいし、複数画素単位であってもよい。単位計測範囲Pが複数画素単位である場合、これらの画素に対応する熱画像データを平均化すればよい。
 次に、制御部35は、ランプ駆動部11を制御して、ハロゲンランプ10のシャッタを開き、図7に示すように、熱流束Foが一定となるように、検査対象物の表面の加熱をステップ状に開始する(S11)。すなわち、加熱入力がステップ入力となるように加熱を行う。また、制御部35は、検査対象物の加熱開始と同時に、赤外線カメラ20を制御し、検査対象物の表面の撮影を開始する(S11)。
 ここで、上式(1)は、ステップ応答時の熱伝導方程式の理論式である。よって、この理論式にフィッティングを行う温度曲線を実測するために、加熱をステップ状に開始する。しかし、ハロゲンランプは、一般に、電力が供給され始めてから出力が安定するまでに比較的に長い時間を要するので、電力供給制御ではステップ状の加熱を実現することが難しい。そのため、本実施の形態では、制御部35は、予めハロゲンランプ10に電力を供給しておき、ハロゲンランプ10のシャッタの開閉を制御することにより、検査対象物の表面の加熱をステップ状に開始する。
 次に、制御部35は、赤外線カメラ20から、検査対象物の表面温度に応じた熱画像データを取得する(S12)。取得された熱画像データは格納部34に格納される。
 次に、制御部35は、加熱開始からの加熱時間tが最大加熱時間Tmを超えたか否かの判断を行い(S13)、加熱時間tが最大加熱時間Tmを超えるまで、熱画像データの取得(S12)を継続する。
 一方、ステップS13において、加熱時間tが最大加熱時間Tmを超えた場合には、制御部35は、赤外線カメラ20を制御して、検査対象物の表面の撮影を終了する(S14)。また、制御部35は、ランプ駆動部11を制御して、ハロゲンランプ10のシャッタを閉じ、検査対象物の表面の加熱を終了する(S14)。これにより、格納部34には、最大加熱時間Tmの間に取得した熱画像データが蓄積される。
 次に、制御部35は、欠陥深さの計測を行う(S15)。この処理については後述する。
 そして、制御部35は、欠陥深さの計測結果を表示部36に表示させ(S16)、欠陥検出動作を終了する。図8は、欠陥深さの計測結果の表示の一例を示す図である。図8には、領域Aに欠陥深さLの欠陥が存在することが示されている。制御部35は、図8に示すように欠陥深さL情報を色情報として表示してもよいし、階調情報として表示してもよい。
 以下、図6における欠陥深さの計測動作について、図9のフローチャートを参照して説明する。
 まず、制御部35は、単位計測範囲Pごとに、最大加熱時間Tmの間に取得した熱画像データに基づいて、図4に示すように、検査対象物の表面温度の経時変化を示す温度曲線200を求める(S150)。
 次に、制御部35は、求めた温度曲線200に、熱伝導方程式から得られる上式(1)の理論式をフィッティングして、検査対象物の表面の温度の経時変化を示す理論曲線201を求める(S151)。このとき、制御部35は、上式(1)の理論式におけるパラメータa、bを変化させ、非線形最小二乗法を用いて残差が最小となるようにフィッティングを行う。
 次に、制御部35は、理論曲線201に対応する上式(1)の理論式におけるパラメータbの値から、上式(3)を用いて検査対象物の欠陥深さLを求める(S152)。上式(3)における熱拡散率αとしては、例えば、検査対象物の材料情報に基づく物質定数が用いられればよい。なお、制御部35は、パラメータaの値、及び、検査対象物の材料情報に基づく熱流束F、熱伝導率kから、上式(2)を用いて検査対象物の欠陥深さLを求めてもよい。
 次に、制御部35は、計測範囲Wにおける全ての単位計測範囲Pに対して欠陥深さの計測が終了したか否かの判断を行う(S153)。まだ計測していない単位計測範囲Pがある場合には、制御部35は、全ての単位計測範囲Pに対して上述したステップS150~S153の処理が行われるまで、上記の処理を繰り返す。一方、ステップS153において、全ての単位計測範囲Pに対して欠陥深さの計測が終了した場合には、制御部35は、欠陥深さの計測動作を終了する。
[1-3.効果等]
 以上のように、本実施の形態において、欠陥検出方法は、検査対象物の内部の欠陥の深さを計測する欠陥検出方法である。この欠陥検出方法は、ハロゲンランプ(加熱装置)10により検査対象物の表面を加熱するステップと、赤外線カメラ(撮影装置)20により最大加熱時間間隔(所定時間間隔)Tmにおいて、加熱された検査対象物の表面を撮影して検査対象物の表面の温度に応じた熱画像データを生成するステップと、熱画像データに基づいて、検査対象物の表面の温度の経時変化を示す温度曲線200を求めるステップと、検査対象物の欠陥の深さLに関連したパラメータa、bを含む熱伝導方程式から得られる理論式(上式(1))を温度曲線200にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線201を求めるステップと、理論曲線201に対応する熱伝導方程式に含まれるパラメータbの値に基づいて、検査対象物の欠陥の深さを求めるステップとを備える。
 また、本実施の形態において、欠陥検出装置30は、検査対象物の内部の欠陥の深さを計測する欠陥検出装置30であって、第1の通信部(入力部)31と、制御部(第1演算部、フィッティング部、第2演算部)35とを備える。第1の通信部31は、最大加熱時間間隔(所定時間間隔)Tmにおいて、加熱された検査対象物の表面を撮影して生成された熱画像データを入力する。制御部35は、熱画像データに基づいて、計測対象物の表面の温度の経時変化を示す温度曲線200を求める。また、制御部35は、検査対象物の欠陥の深さに関連したパラメータa、bを含む熱伝導方程式から得られる理論式(上式(1))を温度曲線200にフィッティングして、計測対象物の表面の温度の経時変化を示す理論曲線201を求める。また、制御部35は、理論曲線201に対応する熱伝導方程式に含まれるパラメータbの値に基づいて、検査対象物の欠陥の深さLを求める。
 また、本実施の形態において、欠陥検出システム1は、検査対象物の内部の欠陥の深さを計測する欠陥検出システム1であって、ハロゲンランプ(加熱装置)10と、赤外線カメラ(撮影装置)20と、上記の欠陥検出装置30とを備える。ハロゲンランプ10は、検査対象物の表面を加熱する。赤外線カメラ20は、加熱された検査対象物の表面を撮影して検査対象物の表面の温度に応じた熱画像データを生成する。上記の欠陥検出装置30は、熱画像データに基づいて検査対象物の内部の欠陥の深さを計測する。
 これにより、熱伝導方程式から得られる上式(1)のステップ応答時の理論式に対応して、加熱中の熱画像データを用いて欠陥深さを求めることができる。また、実測した熱画像データから得られる温度曲線に上式(1)の理論式をフィッティングするので、比較的に小さい温度差の熱画像データ、すなわち、加熱開始から比較的に短い加熱時間において取得された熱画像データから欠陥深さを求めることができる。そのため、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる。
(実施の形態2)
 実施の形態1では、最大加熱時間Tmの間に取得した全ての熱画像データを用いて、最大計測深さLmにおける欠陥深さの計測を1回だけ行った。本実施の形態では、最大加熱時間Tmの間に段階的に取得した一部の熱画像データを用いて、段階的に計測する深さを変化させながら、欠陥深さ計測を行う。
 以下、実施の形態2にかかる欠陥検査装置30の制御部35による欠陥検出動作について、図10及び図11のフローチャートを参照して説明する。
 図10に示すように、まず、制御部35は、上述した最大加熱時間Tm、最大計測深さLm、計測範囲W、単位計測範囲Pに加えて、計測深さ間隔Sm及び計測時間間隔Sを設定値として取得する(S20)。
 計測深さ間隔Smは、最大計測深さLmに対して段階的に計測を行うための深さ間隔である。例えば、最大計測深さLm=50cmに対して10段階の計測を行う場合、計測深さ間隔Smは5cmに設定される。
 計測時間間隔Sは、計測深さ間隔Sm及び最大加熱時間Tmに連動して設定される。例えば、最大計測深さLmに対してn段階の計測を行う場合、計測深さ間隔SmはSm=Lm/nに、計測時間間隔SはS=Tm/nに設定される。
 次に、ステップS21、S22、S23、S24の動作が行われる。ステップS21、S22、S23、S24の動作は、それぞれ、上述したステップS11、S12、S13、S14の動作と同一である。これにより、制御部35は、欠陥深さ計測を行う前に、最大加熱時間Tmにおける熱画像データを取得する。
 次に、制御部35は、最大計測深さLmに対してn段階の計測深さn×Smで段階的に欠陥深さの計測を行うにあたって、まずnを初期値1に設定する(S25)。
 次に、制御部35は、最大加熱時間Tmの間に取得した熱画像データのうちの計測時間n×Sまでに測定された熱画像データを用いて、最大計測深さLmのうちの計測深さn×Smまでに存在する欠陥の深さの計測を行う(S26)。欠陥深さの計測処理の詳細は後述する。
 次に、制御部35は、計測対象の深さを変化させるため、nを1だけ増加させる(S27)。
 次に、制御部35は、計測深さn×Smが最大計測深さLmを超えたか否か、又は、計測時間n×Sが最大加熱時間Tmを超えたか否かの判断を行う(S28)。n×SmがLmを超えておらず、n×SがTmを超えていない場合にはステップS26に戻り、制御部35は、計測時間間隔Sだけ増加した計測時間に対応する熱画像データを用いて、計測深さ間隔Smだけ増加した計測深さまでに存在する欠陥の深さの計測を行う。
 一方、ステップS28において、n×SmがLmを超えたか、又は、n×SがTmを超えた場合には、制御部35は、計測範囲Wにおける欠陥深さの計測結果を表示部36に表示させ(S29)、欠陥検出動作を終了する。
 以下、図10のステップS26における欠陥深さの計測動作について、図11のフローチャートを参照して説明する。
 まず、制御部35は、単位計測範囲Pごとに、最大加熱時間Tmの間に取得した熱画像データのうちの計測時間n×Sまでに測定された熱画像データを用いて、図4に示すように、検査対象物の表面温度の経時変化を示す温度曲線200を求める(S260)。
 このとき、制御部35は、後述するステップS263において計測終了フラグが設定された熱画素データに対応する単位計測範囲Pについて、欠陥深さの計測を行わないこととする。ここで、計測終了フラグは、欠陥深さの計測が終了したことを示すフラグである。これにより、制御部35は、後述するステップS262において、前回の計測深さn×Sの段階までに欠陥深さの計測がすでに終了している単位計測範囲Pについて、重複した計測を行うことを回避できる。
 次に、ステップS261、S262の動作が行われる。ステップS261、S262の動作は、それぞれ、上述したステップS151、S152の動作と同一である。これにより、計測深さn×Sまでに存在する欠陥の深さを計測することができる。
 次に、制御部35は、欠陥深さLが求められた単位計測範囲Pの熱画像データに対して計測終了フラグを設定する(S263)。
 以上の処理を全ての単位計測範囲Pについて行う(S264)。
 以上のように、本実施の形態でも、加熱中に実測した熱画像データから得られる温度曲線に上式(1)の理論式をフィッティングするので、加熱開始から比較的に短い加熱時間において取得された熱画像データから欠陥深さを求めることができる。そのため、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる。
(実施の形態3)
 実施の形態2では、最大加熱時間Tmにわたって全ての熱画像データを取得した後に、段階的に欠陥深さ計測を行った。これに対して、本実施の形態では、熱画像データの取得中に、段階的に欠陥深さ計測を行う。
 以下、実施の形態3にかかる欠陥検査装置30の制御部35による欠陥検出動作について、図12のフローチャートを参照して説明する。
 まず、ステップS30、S31の動作が行われる。ステップS30、S31の動作は、それぞれ、上述したステップS20、S21の動作と同一である。これにより、検査対象物の表面の加熱が開始され、検査対象物の表面の撮影が開始される。
 次に、制御部35は、この時点で、nを初期値1に設定する(S32)。
 次に、ステップS33の動作が行われる。ステップS33の動作は、上述したステップS22、S12の動作と同一である。これにより、熱画像データの取得が開始される。
 次に、制御部35は、加熱開始から加熱時間tが計測時間n×Sに達したか否かの判断を行い(S34)、加熱時間tがn×Sに達していない場合には、ステップS33に戻り、熱画像データの取得を継続する。
 一方、加熱時間tがn×Sに達した場合、時間n×Sまでに測定された熱画像データを用いて欠陥深さの計測を行う(S35)。欠陥深さの計測(S35)は、上述したステップS26、すなわち図11の欠陥深さの計測動作と同一である。
 次に、制御部35は、計測深さn×Sの各段階において欠陥深さの計測が終了した時点で、欠陥深さの計測結果を表示部36にリアルタイムに表示させる(S36)。
 次に、制御部35は、計測対象の深さを変化させるため、nを1だけ増加させる(S37)。
 次に、制御部35は、計測深さn×Smが最大計測深さLmを超えたか否か、又は、計測時間n×Sが最大加熱時間Tmを超えたか否かの判断を行い(S28)、n×SmがLmを超えておらず、n×SがTmを超えていない場合にはステップS33に戻り、熱画像データの取得を行いながら、計測深さn×Smについて段階的に、計測深さn×Smまでに存在する欠陥の深さの計測をリアルタイムに行う。
 一方、ステップS38において、n×SmがLmを超えたか、又は、n×SがTmを超えた場合には、制御部35は、加熱時間tが最大加熱時間Tmを超えたと判断し、上述したステップS24、S14と同様に、検査対象物の表面の撮影を終了し、検査対象物の表面の加熱を終了し(S14)、欠陥検出処理を終了する。
 以上のように、本実施の形態でも、加熱中に実測した熱画像データから得られる温度曲線に上式(1)の理論式をフィッティングするので、加熱開始から比較的に短い加熱時間において取得された熱画像データから欠陥深さを求めることができる。そのため、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる。
 さらに、本実施の形態では、最大計測深さLmに対して計測深さ間隔Smで段階的にリアルタイムに計測された欠陥深さ情報を、段階的にリアルタイムに表示することができる。
(実施の形態4)
 実施の形態1では、実測した検査対象物表面の温度変化の温度曲線にフィッティングを行う理論式として、熱伝導方程式から得られる式(1)の理論式を用いた。本実施の形態では、式(1)に代えて次式(1a)の理論式を用いる。以下、式中においてハット記号「^」を付した関数は、ハット無しの関数を時間tについてラプラス変換した関数であることを示す。
Figure JPOXMLDOC01-appb-M000006
 ここで、熱流体力学における伝熱(heat transfer)現象として、熱伝導(heat conduction)、熱伝達(heat convection)、熱輻射(heat radiation)の3つの現象がある。熱伝導とは、固体内部を高温側から低温側へ熱が移動する現象をいう。熱伝達とは、固体壁と流体(例えば、空気)間で熱が移動する現象をいう。熱輻射とは、固体から熱が放出される現象をいう。
 実施の形態1の式(1)の理論式では、熱伝達及び熱輻射が考慮されていなかった。これに対して、本実施の形態では、式(1a)の理論式に示すように、熱伝導に加えて熱伝達も考慮する。
 式(1)の理論式は、時間関数(t関数)で表現したが、処理の簡単化のため、式(1a)の理論式は、時間関数(t関数)をラプラス変換したs関数で表現する。
(1)式(1)の理論式(s関数)の導出(熱伝導のみを考慮した温度変化の理論式の導出)
 まず、式(1a)の理論式との比較のために、式(1)の時間関数の理論式をs関数の理論式(下式(1s))で表現し直す。図17Aは、熱伝導を説明するための模式図である。図17Aに示すように、検査対象物100の表面102に一定の熱流束F(図7参照)を与えると、検査対象物100の内部において表面102から欠陥101側の裏面103へ熱が移動する熱伝導が生じる。図17Aにおいて、検査対象物100の表面102から裏面103までの欠陥101の深さをLとする。また、裏面103の位置xを0とし、表面102の位置xをLとする。
 上記した時間関数(t関数)の1次元非定常熱伝導方程式である前述の式(0)をラプラス変換して、次式(10)のようにs関数の熱伝導方程式を導出する。
Figure JPOXMLDOC01-appb-M000007
 上式(10)のs関数の熱伝導方程式の一般解は、次式(11)のように導出される。
Figure JPOXMLDOC01-appb-M000008
上式(11)において、C、Cは係数である。
 上式(11)をxで偏微分すると、次式(12)が導出される。
Figure JPOXMLDOC01-appb-M000009
 上式(12)において、図17Aにおける検査対象物100の裏面103の位置x=0の境界条件として次式(13)が導出される。
Figure JPOXMLDOC01-appb-M000010
また、上式(12)において、図17Aにおける検査対象物100の表面102の位置x=Lの境界条件として次式(14)が導出される。
Figure JPOXMLDOC01-appb-M000011
上式(12)、(13)及び(14)よりC、Cを求め、上式(11)に代入することにより、ステップ応答における理論式(s関数)として次式(15)が導出される。
Figure JPOXMLDOC01-appb-M000012
 上式(15)において、検査対象物100の表面102からの深さLの位置に欠陥101が存在する場合、x=Lとなり、次式(16)が導出される。
Figure JPOXMLDOC01-appb-M000013
 上式(16)において、4つのパラメータF0、α、k、Lを2つのパラメータa、bに変換することにより、s関数の熱伝導方程式の理論式として次式(1s)、(2s)及び(3s)が導出される。s関数の次式(1s)、(2s)及び(3s)の理論式は、時間関数(t関数)の式(1)、(2)及び(3)に対応する。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
(2)検査対象物の表面における熱伝達を考慮した温度変化の理論式の導出
 次に、熱伝導方程式から得られる温度変化の理論式であって、検査対象物の表面(加熱面)における熱伝達(放熱)を考慮した温度変化の理論式の導出について説明する。図17B及び図17Cは、熱伝達を説明するための模式図である。図17Bに示すように、検査対象物100の表面102から、表面102に接する空気へ熱流束hT(L,s)で熱が移動する熱伝達が生じる(ハット記号省略)。また、図17Cに示すように、検査対象物100の裏面103から、裏面103に接する空気へ熱流束hT(L,s)で熱が移動する熱伝達が生じる(ハット記号省略)。h、hは熱伝達率(熱伝達係数)[W/(m・K)]である。なお、本実施の形態では、図17Bに示すように、検査対象物100の表面102における熱伝達のみを考慮した温度変化の理論式を導出する。
 上述の式(12)において、図17Bにおける検査対象物100の裏面103の位置x=0の境界条件として次式(13a)が導出される。
Figure JPOXMLDOC01-appb-M000016
上式(13a)は上述の式(13)と同様である。
また、上述の式(12)において、図17Aにおける検査対象物100の表面102の位置x=Lの境界条件として次式(14a)が導出される。
Figure JPOXMLDOC01-appb-M000017
上式(14a)では、上述の式(14)と比較して、熱伝導のための加熱による熱流束(F/s)に加えて、検査対象物100の表面102における熱伝達の熱流束(hT(L,s))が考慮されている(ハット記号省略)。
式(12)、(13a)及び(14a)よりC、Cを求め、上述の式(11)に代入することにより、ステップ応答における理論式(s関数)として次式(15a)が導出される。
Figure JPOXMLDOC01-appb-M000018
 上式(15a)において、検査対象物100の表面102からの深さLの位置に欠陥101が存在する場合、x=Lとなり、次式(16a)が導出される。
Figure JPOXMLDOC01-appb-M000019
上式(16a)では、上述の式(16)と比較して、熱伝導のための加熱による熱流束(式(16a)の上段の右辺における乗算記号「×」の右側の項)に加えて、検査対象物100の表面102における熱伝達の熱流束(式(16a)の上段の右辺における乗算記号「×」の左側の項)が考慮されている。
 上式(16a)において、4つのパラメータF0、α、k、Lを2つのパラメータa、bに変換することにより、s関数の熱伝導方程式の理論式として次式(1a)、(2a)、(3a)が導出される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 本実施の形態の欠陥検出装置30及び欠陥検出システム1の構成は、図1を参照して説明した実施の形態1のものと基本的に同様であり、欠陥検出装置30の制御部30の機能及び動作も図6及び図9を参照して説明した実施の形態1のものと基本的に同様である。しかし、欠陥検出装置30の制御部30は、図9のステップS151、S152において式(1)~(3)の理論式に代えて式(1a)~(3a)の理論式を用いる点で前述のものと異なる。
 図9のステップS151において、制御部35は、実測した検査対象物表面の温度変化の温度曲線200に、熱伝導方程式から得られる式(1a)の理論式をフィッティングして、検査対象物の表面の温度の経時変化を示す理論曲線201を求める(図4参照)。次に、ステップS152において、制御部35は、理論曲線201に対応する式(1a)の理論式におけるパラメータbの値から、式(3s)を用いて検査対象物の欠陥深さLを求める。
 以上のように、本実施の形態でも、加熱中に実測した熱画像データから得られる温度曲線に式(1a)の理論式をフィッティングするので、加熱開始から比較的に短い加熱時間において取得された熱画像データから欠陥深さを求めることができる。そのため、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる。
 ここで、熱伝導のみを考慮した式(1)~(3)の理論式を用いて、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から検査対象物の欠陥の深さを求めると、次のような問題がある。すなわち、検査対象物の欠陥の深さが深くなると、加熱時間(測定データ数)の増加に伴い、欠陥の深さが実際よりも深く測定されてしまう(後述の実施例3を参照)。
 これは、図5において上述したように、検査対象物の欠陥の深さが深いほど、加熱時間を長くする必要があることに起因する。加熱時間を長くすると、熱伝達(放熱)の影響を無視できなくなる。
 これに対して、本実施の形態では、熱伝導に加えて、検査対象物の表面(加熱面)における熱伝達(放熱)も考慮した式(1a)の理論式を用いて、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から、式(3s)を用いて求めた検査対象物の欠陥の深さを求める。これにより、検査対象物の欠陥の深さが深くなっても、欠陥深さLをより高い精度で求めることができる。
(実施の形態5)
 実施の形態4では、実測した検査対象物表面の温度変化の温度曲線にフィッティングを行う理論式として、熱伝導、及び検査対象物の表面(加熱面)における熱伝達(放熱)も考慮した式(1a)の理論式を用いた。本実施の形態では、式(1a)に代えて、検査対象物の裏面(欠陥側)における熱伝達(放熱)も考慮した次式(1b)の理論式を用いる。
Figure JPOXMLDOC01-appb-M000022
 以下、熱伝導方程式から得られる温度変化の理論式であって、図17Cに示すように、検査対象物の表面(加熱面)及び裏面(欠陥側)における熱伝達(放熱)を考慮した温度変化の理論式(1b)の導出について説明する。
 上述の式(12)において、図17Cにおける検査対象物100の裏面103の位置x=0の境界条件として次式(13b)が導出される。
Figure JPOXMLDOC01-appb-M000023
上式(13b)では、上述の式(13)及び式(13a)と比較して、検査対象物100の裏面103における熱伝達の熱流束(hT(0,s))が考慮されている(ハット記号省略)。
また、上述の式(12)において、図17Cにおける検査対象物100の表面102の位置x=Lの境界条件として次式(14b)が導出される。
Figure JPOXMLDOC01-appb-M000024
上式(14b)は上述の式(14a)と同様である。
式(12)、(13b)及び(14b)よりC、Cを求め、上述の式(11)に代入することにより、ステップ応答における理論式(s関数)として次式(15b)が導出される。
Figure JPOXMLDOC01-appb-M000025
 上式(15b)において、x=0とすると、次式(17)が導出される。
Figure JPOXMLDOC01-appb-M000026
 上式(15b)において、検査対象物100の表面102からの深さLの位置に欠陥101が存在する場合、x=Lとなり、次式(18)が導出される。
Figure JPOXMLDOC01-appb-M000027
 上式(17)及び上式(18)より、次式(16b)が導出される。
Figure JPOXMLDOC01-appb-M000028
 上式(16b)において、6つのパラメータF0、α、k、L、h、hを4つのパラメータa、b、d、eに変換することにより、s関数の熱伝導方程式の理論式として次式(1b)及び(2b)~(5b)が導出される。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 本実施の形態の欠陥検出装置30及び欠陥検出システム1の構成は、図1を参照して説明した実施の形態1のものと基本的に同様であり、欠陥検出装置30の制御部30の機能及び動作も図6及び図9を参照して説明した実施の形態1のものと基本的に同様である。しかし、欠陥検出装置30の制御部30は、図9のステップS151、S152において式(1)~(3)の理論式に代えて式(1b)~(5b)の理論式を用いる点で前述のものと異なる。
 図9のステップS151において、制御部35は、実測した検査対象物表面の温度変化の温度曲線200に、熱伝導方程式から得られる式(1b)の理論式をフィッティングして、検査対象物の表面の温度の経時変化を示す理論曲線201を求める(図4参照)。次に、ステップS152において、制御部35は、理論曲線201に対応する式(1b)の理論式におけるパラメータbの値から、式(3b)を用いて検査対象物の欠陥深さLを求める。
 以上のように、本実施の形態でも、加熱中に実測した熱画像データから得られる温度曲線に式(1b)の理論式をフィッティングするので、加熱開始から比較的に短い加熱時間において取得された熱画像データから欠陥深さを求めることができる。そのため、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる。
 さらに、本実施の形態では、熱伝導、及び検査対象物の表面(加熱面)における熱伝達(放熱)に加えて、検査対象物の裏面(欠陥側)における熱伝達(放熱)も考慮した式(1b)の理論式を用いて、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から、式(3b)を用いて求めた検査対象物の欠陥の深さを求める。これにより、検査対象物の欠陥の深さが深くなっても、欠陥深さLをより高い精度で求めることができる。
(実施の形態6)
 実施の形態5では、実測した検査対象物表面の温度変化の温度曲線にフィッティングを行う理論式として、熱伝導、及び検査対象物の表面(加熱面)及び裏面(欠陥側)における熱伝達(放熱)も考慮した式(1b)の理論式を用いた。本実施の形態では、式(1b)に代えて、熱輻射も考慮した次式(1c)の理論式を用いる。
Figure JPOXMLDOC01-appb-M000031
 以下、熱伝導方程式から得られる温度変化の理論式であって、検査対象物の表面(加熱面)及び裏面(欠陥側)における熱伝達(放熱)、及び熱輻射を考慮した温度変化の理論式(1c)の導出について説明する。
 上述の式(12)において、検査対象物100の裏面103の位置x=0の境界条件として次式(13c)が導出される。
Figure JPOXMLDOC01-appb-M000032
上式(13c)では、上述の式(13b)と比較して、検査対象物100の裏面103における熱伝達の熱流束(hT(0,s))に加えて、検査対象物100の裏面103における熱輻射の熱流束(δ(T (0,s)-T ))が考慮されている(ハット記号省略)。Tは初期温度(熱輻射前の温度)であり、T(0,s)は熱輻射後の温度である(ハット記号省略)。
ここで、(-hT(0,s)-δ(T (0,s)-T ))を(-h’T(0,s))とすると(ハット記号省略)、式(13c)は式(13b)と同様となる。h’T(0,s)は、検査対象物100の裏面103における熱伝達及び熱輻射の熱流束を示し(ハット記号省略)、h’は、これらの熱伝達及び熱輻射の熱伝達率[W/(m・K)]を示す。
 また、上述の式(12)において、検査対象物100の表面102の位置x=Lの境界条件として次式(14c)が導出される。
Figure JPOXMLDOC01-appb-M000033
上式(14c)では、上述の式(14b)と比較して、熱伝導F/s、及び検査対象物100の表面102における熱伝達の熱流束(hT(L,s))に加えて、検査対象物100の表面102における熱輻射の熱流束(δ(T (L,s)-T ))が考慮されている(ハット記号省略)。T(L,s)は熱輻射後の温度である(ハット記号省略)。
ここで、(hT(L,s)+δ(T (L,s)-T ))を(h’T(L,s))とすると(ハット記号省略)、式(14c)は式(13b)と同様となる。h’T(L,s)は、検査対象物100の表面102における熱伝達及び熱輻射のトータルの熱流束を示し(ハット記号省略)、h’は、これらの熱伝達及び熱輻射の熱伝達率[W/(m・K)]を示す。
 これより、式(12)、(13c)及び(14c)よりC、Cを求め、上述の式(11)に代入し、上記の実施の形態5と同様の演算を行うことにより、s関数の熱伝導方程式の理論式として次式(1c)及び(2c)~(5c)が導出される。
Figure JPOXMLDOC01-appb-M000034
(h’≠h’のとき)
Figure JPOXMLDOC01-appb-M000035
なお、検査対象物100の表面102の熱伝達及び熱輻射の熱伝達率と裏面103の熱伝達及び熱輻射の熱伝達率が等しいとき(h’=h’のとき)、e=dであるので、上式(1c)は次式(1c’)のように表される。
Figure JPOXMLDOC01-appb-M000036
 本実施の形態の欠陥検出装置30及び欠陥検出システム1の構成は、図1を参照して説明した実施の形態1のものと基本的に同様であり、欠陥検出装置30の制御部30の機能及び動作も図6及び図9を参照して説明した実施の形態1のものと基本的に同様である。しかし、欠陥検出装置30の制御部30は、図9のステップS151、S152において式(1)~(3)の理論式に代えて式(1c)~(5c)の理論式を用いる点で前述のものと異なる。
 図9のステップS151において、制御部35は、実測した検査対象物表面の温度変化の温度曲線200に、熱伝導方程式から得られる式(1c)の理論式をフィッティングして、検査対象物の表面の温度の経時変化を示す理論曲線201を求める(図4参照)。次に、ステップS152において、制御部35は、理論曲線201に対応する式(1c)の理論式におけるパラメータbの値から、式(3c)を用いて検査対象物の欠陥深さLを求める。
 以上のように、本実施の形態でも、加熱中に実測した熱画像データから得られる温度曲線に式(1c)の理論式をフィッティングするので、加熱開始から比較的に短い加熱時間において取得された熱画像データから欠陥深さを求めることができる。そのため、検査対象物の表面の加熱時間、及び、加熱から欠陥深さを計測するまでの計測時間を短縮することができる。
 さらに、本実施の形態では、熱伝導、及び検査対象物の表面(加熱面)及び裏面(欠陥側)における熱伝達(放熱)に加えて、熱輻射も考慮した式(1c)の理論式を用いて、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から、式(3c)を用いて求めた検査対象物の欠陥の深さを求める。これにより、検査対象物の欠陥の深さが深くなっても、欠陥深さLをより高い精度で求めることができる。
(他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1~3を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1~3で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施の形態を例示する。
 実施の形態1~6では、検査対象物の内部の欠陥の深さを計測する方法及び装置を説明した。本開示の思想は、検査対象物の内部の欠陥の深さの計測のみならず、計測対象物の厚みを計測する方法及び装置にも適用できる。実施の形態1~6では、検査対象物表面から内部の欠陥(空洞、剥離)までの距離を、欠陥の深さとして求めていた。ここで、検査対象物表面から内部の空洞や剥離までの距離を計測することは、計測対象物の厚みを計測することと同じである。よって、実施の形態1~6で示した検査対象物の欠陥深さの計測方法を、計測対象物の厚みの計測方法にも適用できることは明らかである。
 つまり、図13に示すように、計測対象物100の表面をハロゲンランプ等の加熱装置10で加熱すると、計測対象物100の裏面で熱反射が生じるので、計測対象物100の表面の温度の経時変化は、計測対象物100の厚みによって異なる。これより、厚み計測においても、検査対象物100の表面を加熱装置10で加熱している間に、計測対象物100の表面を赤外線カメラ等の撮影装置20で撮影すれば、実施の形態1の欠陥検出方法と同様の考え方で厚みをすることができる。この場合、上述した実施の形態1の説明において、「欠陥検出装置」、「欠陥検出システム」、「検査対象物」、「欠陥の深さ」、「欠陥検出動作、欠陥深さ計測動作」、「最大計測深さ」をそれぞれ、「厚み計測装置」、「厚み計測システム」、「計測対象物」、「厚み」、「厚み計測動作」、「最大計測厚み」と読み替えればよい。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
(実施例1)
 実施の形態1の欠陥検出システム1を用いて、モルタル板材(275mm×210mm、厚み11.1mm)の表面から裏面までの深さを欠陥深さとして計測した。加熱装置10としては、耐震型調光式ワークランプCTW-050(CUSTOM KOBO製)を使用した。
 図14(a)に、実測した熱画像データから得られた温度曲線と、上式(1)の理論式から得られた理論曲線とを示す。破線210は、実測した熱画像データから得られた検査対象物表面の温度変化の温度曲線であり、実線211は、温度曲線210に上式(1)の理論式をカーブフィッティングして求めた検査対象物表面の温度変化の理論曲線である。
 図14(b)に、理論曲線211に対応する理論式におけるパラメータbの値から、式(3)を用いて求めた検査対象物の欠陥の深さLを示す。図14(b)において、白三角のマーク411は、モルタル板材に対する加熱装置10の照射距離が30cmのときの欠陥の深さLの計測結果であり、白四角のマーク412は照射距離が40cmのときの欠陥の深さLの計測結果であり、黒丸のマーク413は照射距離が50cmのときの欠陥の深さLの計測結果である。また、図14(b)には、各照射距離において、加熱時間を30秒から300秒まで30秒刻みで変化させたときの欠陥の深さLの計測結果が示されている。なお、実線410は実際の厚み11.1mmを示す。
 図14(b)より、照射距離、すなわち加熱の強さに依存することなく、加熱時間を60秒程度に設定することにより、計測時間を短縮しつつ、欠陥の深さLを精度よく求めることができることがわかる。
 さらに、図14(b)において、式(1)の理論式から求められた健全部の温度曲線310と欠陥部の温度曲線311とを示している。欠陥部の欠陥深さとしてL=11.1mmとし、健全部では欠陥部の欠陥深さに対して十分に大きなL値とした。これより、健全部の表面温度と欠陥部の表面温度とに差が現れる60秒程度を加熱時間として設定することが適切であることがわかる。
(実施例2)
 実施の形態1の欠陥検出システム1を用いて、アルミニウム板材(30mm×165mm、厚み15mm)の厚みを計測した。加熱装置10としては、実施例1と同一のものを使用した。アルミニウム板材に対する加熱装置10の照射距離を30cmとし、加熱時間を60秒とした。
 図15(a)に、実測した熱画像データから得られた温度曲線220と、上式(1)の理論式から得られた理論曲線とを示す。破線220は、実測した熱画像データから得られた検査対象物表面の温度変化の温度曲線であり、実線221は、温度曲線220に上式(1)の理論式をカーブフィッティングして求めた検査対象物表面の温度変化の理論曲線である。
 図15(b)に、カーブフィッティングして求めた理論曲線221に対応する理論式におけるパラメータa、bの値(フィッティング結果)、及び、アルミニウムの物質定数αとL=15mmとから式(3)を用いて計算したb(計算値)を示す。
 図15(c)に、図15(b)のフィッティング結果のb値から、式(3)を用いて求めた検査対象物の欠陥の深さL(計測結果)、及び、実際の値15mmを示す。これより、実施の形態1の欠陥検出システム1を厚み計測システムとして用いても、加熱時間を60秒程度に設定することにより、計測時間を短縮しつつ、厚みLを精度よく求めることができることがわかる。
(実施例3)
 実施の形態4の欠陥検出システム1を用いて、厚みが異なる3つのモルタル板材(275mm×210mm、厚み11.1mm、22.1mm、30.5mm)の表面から裏面までの深さを欠陥深さとして計測した。加熱装置10としては、実施例1と同一のものを使用した。
 図18A~図18Cに、各厚みの板材を実測した熱画像データから得られた温度曲線と、熱伝導及び板材の表面(加熱面)における熱伝達(放熱)を考慮した式(1a)の理論式から得られた理論曲線とを示す。破線230は、実測した熱画像データから得られた板材の表面(加熱面)の温度変化の温度曲線であり、実線231は、温度曲線230に上式(1a)の理論式をカーブフィッティングして求めた板材の表面(加熱面)の温度変化の理論曲線である。
 図19Aは、式(1a)を用い、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から、式(3)を用いて求めた板材の欠陥の深さLを示す。
 これに対して、図19Bは、式(1a)に代えて、板材の表面(加熱面)における熱伝達(放熱)を考慮しない式(1)を用い、同様に、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から、式(3)を用いて求めた板材の欠陥の深さLを示す。図19A及び図19Bにおいて、黒丸のマーク431は厚み(欠陥の深さ)11.1mmの板材の欠陥の深さLの計測結果であり、黒三角のマーク432は厚み(欠陥の深さ)22.1mmの板材の欠陥の深さLの計測結果であり、黒四角のマーク433は厚み(欠陥の深さ)30.5mmの板材の欠陥の深さLの計測結果である。なお、実線431r、432r、433rのそれぞれは実際の厚み11.1mm、22.1mm、30.5mmを示す。
 図19Bによれば、全体的に、加熱時間が長くなるにつれて計測結果の値が大きくなってしまう。しかし、厚さ11.1mmの板材の欠陥の深さLの計測結果(431)では、加熱時間200s近傍で11.1mmに近い値に飽和している(11.1mmを示す実線431rに漸近し、フラットな特性になる)。これより、計測結果(431)における飽和している加熱時間帯の値から欠陥の深さLを求めることができる。一方、厚さ22.1mm、30.5mmの板材の欠陥の深さLの計測結果(432、433)では、飽和する加熱時間帯がなく、加熱時間の増加に伴い欠陥の深さが実際よりも深く測定されてしまうので、欠陥の深さを求めることが困難である。
 これに対して、図19Aによれば、厚さ11.1mmの板材の欠陥の深さLの計測結果(431)では、加熱時間200s~300s近傍で11.1mmに近い値に飽和している(11.1mmを示す実線431rに漸近し、フラットな特性になる)。また、厚さ22.1mmの板材の欠陥の深さLの計測結果(432)でも、加熱時間300s~500s近傍で22.1mmに近い値に飽和している(22.1mmを示す実線432rに漸近し、フラットな特性になる)。さらに、厚さ30.5mmの板材の欠陥の深さLの計測結果(433)でも、加熱時間400s~600s近傍で30.5mmに近い値に飽和している(30.5mmを示す実線433rに漸近し、フラットな特性になる)。これより、欠陥の深さが22.1mm以上に深くなっても、計測結果における飽和している加熱時間帯の値から欠陥の深さLを求めることができ、欠陥の深さを高い精度で計測することができる。
(実施例4)
 実施の形態5の欠陥検出システム1を用いて、厚みが異なる3つのモルタル板材(275mm×210mm、厚み11.1mm、22.1mm、30.5mm)の表面から裏面までの深さを欠陥深さとして計測した。加熱装置10としては、実施例1と同一のものを使用した。
 図20A~図20cに、各厚みの板材を実測した熱画像データから得られた温度曲線と、熱伝導、板材の表面(加熱面)及び裏面(欠陥側)における熱伝達(放熱)、及び熱輻射を考慮した式(1c)の理論式から得られた理論曲線とを示す。破線240は、実測した熱画像データから得られた板材の表面(加熱面)の温度変化の温度曲線であり、実線241は、温度曲線240に式(1c)の理論式をカーブフィッティングして求めた板材の表面(加熱面)の温度変化の理論曲線である。
 図21は、式(1c)を用い、実測した温度曲線に対するフィッティングを行って理論曲線を求め、理論曲線に対応する理論式におけるパラメータbの値から、式(3)を用いて求めた板材の欠陥の深さLを示す。図21において、黒丸のマーク441は厚み(欠陥の深さ)11.1mmの板材の欠陥の深さLの計測結果であり、黒三角のマーク442は厚み(欠陥の深さ)22.1mmの板材の欠陥の深さLの計測結果であり、黒四角のマーク443は厚み(欠陥の深さ)30.5mmの板材の欠陥の深さLの計測結果である。なお、実線441r、442r、443rのそれぞれは実際の厚み11.1mm、22.1mm、30.5mmを示す。
 図21によれば、厚さ11.1mmの板材の欠陥の深さLの計測結果(441)では、加熱時間によらず、全体的に11.1mmに近い値に飽和している(11.1mmを示す実線441rに漸近し、フラットな特性になる)。また、厚さ22.1mmの板材の欠陥の深さLの計測結果(442)では、加熱時間400s以上で22.1mmに近い値に飽和している(22.1mmを示す実線442rに漸近し、フラットな特性になる)。さらに、厚さ30.5mmの板材の欠陥の深さLの計測結果(443)では、加熱時間600s以上で30.5mmに近い値に飽和している(30.5mmを示す実線433rに漸近し、フラットな特性になる)。これより、欠陥の深さが22.1mm以上に深くなっても、計測結果における飽和している加熱時間帯の値から欠陥の深さLを求めることができ、欠陥の深さを高い精度で計測することができる。
(実施例1~4のまとめ)
 実施例1及び2の結果より、約15mm以下の欠陥深さであれば、熱伝導のみを考慮した式(1)~(3)を用いても、欠陥の深さを比較的に精度よく計測することができることがわかる。また、実施例4の結果より、約15mmを超える欠陥深さは、熱伝導に加えて、検査対象物の表面(加熱面)及び裏面(欠陥側)における熱伝達(放熱)、及び熱輻射を考慮した式(1c)の理論式を用いることにより、欠陥の深さを精度よく計測することができることがわかる。しかし、実施例3の結果より、約15mmを超える欠陥深さは、検査対象物の裏面(欠陥側)における熱伝達(放熱)、及び熱輻射まで考慮せずとも、熱伝導と、検査対象物の表面(加熱面)における熱伝達(放熱)を考慮した式(1a)の理論式を用いることにより、欠陥の深さを比較的に精度よく計測することができることがわかる。
 本開示は、計測対象物の厚みを計測する厚み計測方法、厚み計測装置、及び、厚み計測システムに適用可能である。また、本開示は、検査対象物の内部の剥離又は空洞等の欠陥の深さを計測する欠陥検出方法、欠陥検出装置、及び、欠陥検出システムに適用可能である。

Claims (12)

  1.  計測対象物の厚みを計測する厚み計測方法であって、
     加熱装置により前記計測対象物の表面を加熱するステップと、
     撮影装置により所定時間間隔において、加熱された前記計測対象物の表面を撮影して前記計測対象物の表面の温度に応じた熱画像データを生成するステップと、
     前記撮影装置により生成された熱画像データに基づいて、前記計測対象物の表面の温度の経時変化を示す温度曲線を求めるステップと、
     前記計測対象物の厚みに関連したパラメータを含む熱伝導方程式から得られる理論式を前記温度曲線にフィッティングして、前記計測対象物の表面の温度の経時変化を示す理論曲線を求めるステップと、
     前記理論曲線に対応する前記理論式に含まれる前記パラメータの値に基づいて、前記計測対象物の厚みを求めるステップと、
     を備える厚み計測方法。
  2.  前記加熱装置による前記計測対象物の表面の加熱を、ステップ状に開始し、
     前記計測対象物の加熱開始と同時に、前記撮影装置により、前記計測対象物の表面の撮影を開始して、前記熱画像データの生成を開始する、
     請求項1に記載の厚み計測方法。
  3.  前記理論式は、ステップ応答に基づく式である、
     請求項1又は2に記載の厚み計測方法。
  4.  前記理論式は、少なくとも2つの独立したパラメータを含む、
     請求項3に記載の厚み計測方法。
  5.  前記理論式は下記(1)式で表され、
    Figure JPOXMLDOC01-appb-M000037
    T(L,t)は前記計測対象物の表面の温度[K]であり、Lは前記計測対象物の厚み[m]であり、tは時間[s]であり、a,bはそれぞれ前記パラメータであり、
     2つの前記パラメータa,bはそれぞれ下記(2)式及び(3)式で表され、
    Figure JPOXMLDOC01-appb-M000038
    は熱流束[W/m]であり、ρは前記計測対象物の密度[kg/m]であり、cは前記計測対象物の比熱[J/(kg・K)]であり、ρcは前記計測対象物の容積比熱[J/(m・K)]であり、kは前記計測対象物の熱伝導率[W/(m・K)]であり、α=k/ρcは前記計測対象物の熱拡散率[m/s]である、
     請求項4に記載の厚み計測方法。
  6.  前記理論曲線は、非線形最小二乗法を用いて残差が最小となるようにフィッティングを行うことにより求められる、
     請求項1~5の何れか1項に記載の厚み計測方法。
  7.  前記理論式は、前記計測対象物の表面から、当該表面に接する流体に熱が移動する熱伝達に関する熱伝達係数を含む、
     請求項1~3の何れか1項に記載の厚み計測方法。
  8.  計測対象物の厚みを計測する厚み計測装置であって、
     所定時間間隔において、加熱された前記計測対象物の表面を撮影して生成された熱画像データを入力する入力部と、
     前記熱画像データに基づいて、前記計測対象物の表面の温度の経時変化を示す温度曲線を求める第1演算部と、
     前記計測対象物の厚みに関連したパラメータを含む熱伝導方程式から得られる理論式を前記温度曲線にフィッティングして、前記計測対象物の表面の温度の経時変化を示す理論曲線を求めるフィッティング部と、
     前記理論曲線に対応する前記理論式に含まれる前記パラメータの値に基づいて、前記計測対象物の厚みを求める第2演算部と、
     を備える厚み計測装置。
  9.  計測対象物の厚みを計測する厚み計測システムであって、
     前記計測対象物の表面を加熱する加熱装置と、
     加熱された前記計測対象物の表面を撮影して前記計測対象物の表面の温度に応じた熱画像データを生成する撮影装置と、
     前記熱画像データに基づいて前記計測対象物の厚みを計測する請求項7に記載の厚み計測装置と、
     を備える厚み計測システム。
  10.  検査対象物の内部の欠陥の深さを計測する欠陥検出方法であって、
     加熱装置により前記検査対象物の表面を加熱するステップと、
     撮影装置により所定時間間隔において、加熱された前記検査対象物の表面を撮影して前記検査対象物の表面の温度に応じた熱画像データを生成するステップと、
     前記熱画像データに基づいて、前記検査対象物の表面の温度の経時変化を示す温度曲線を求めるステップと、
     前記検査対象物の欠陥の深さに関連したパラメータを含む熱伝導方程式から得られる理論式を前記温度曲線にフィッティングして、前記計測対象物の表面の温度の経時変化を示す理論曲線を求めるステップと、
     前記理論曲線に対応する前記理論式に含まれる前記パラメータの値に基づいて、前記検査対象物の欠陥の深さを求めるステップと、
     を備える欠陥検出方法。
  11.  検査対象物の内部の欠陥の深さを計測する欠陥検出装置であって、
     所定時間間隔において、加熱された前記検査対象物の表面を撮影して生成された熱画像データを入力する入力部と、
     前記熱画像データに基づいて、前記計測対象物の表面の温度の経時変化を示す温度曲線を求める第1演算部と、
     前記検査対象物の欠陥の深さに関連したパラメータを含む熱伝導方程式から得られる理論式を前記温度曲線にフィッティングして、前記計測対象物の表面の温度の経時変化を示す理論曲線を求めるフィッティング部と、
     前記理論曲線に対応する前記理論式に含まれる前記パラメータの値に基づいて、前記検査対象物の欠陥の深さを求める第2演算部と、
     を備える欠陥検出装置。
  12.  検査対象物の内部の欠陥の深さを計測する欠陥検出システムであって、
     前記検査対象物の表面を加熱する加熱装置と、
     加熱された前記検査対象物の表面を撮影して前記検査対象物の表面の温度に応じた熱画像データを生成する撮影装置と、
     前記熱画像データに基づいて前記検査対象物の内部の欠陥の深さを計測する請求項10に記載の欠陥検出装置と、
     を備える欠陥検出システム。
PCT/JP2016/004734 2016-01-29 2016-10-27 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置 WO2017130251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16887840.3A EP3410106B1 (en) 2016-01-29 2016-10-27 Thickness measurement method, thickness measurement device, defect detection method, and defect detection device
JP2017563402A JP6628113B2 (ja) 2016-01-29 2016-10-27 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
US16/047,373 US11054252B2 (en) 2016-01-29 2018-07-27 Thickness measurement method, thickness measurement device, defect detection method, and defect detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016251 2016-01-29
JP2016016251 2016-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/047,373 Continuation US11054252B2 (en) 2016-01-29 2018-07-27 Thickness measurement method, thickness measurement device, defect detection method, and defect detection device

Publications (1)

Publication Number Publication Date
WO2017130251A1 true WO2017130251A1 (ja) 2017-08-03

Family

ID=59397600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004734 WO2017130251A1 (ja) 2016-01-29 2016-10-27 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置

Country Status (4)

Country Link
US (1) US11054252B2 (ja)
EP (1) EP3410106B1 (ja)
JP (1) JP6628113B2 (ja)
WO (1) WO2017130251A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506886B1 (ja) * 2017-12-07 2019-04-24 三菱電機株式会社 表示データ生成装置および表示データ生成方法
WO2020162121A1 (ja) 2019-02-06 2020-08-13 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
RU2806259C1 (ru) * 2020-10-16 2023-10-30 Арселормиттал Способ оценки температуры и толщины оксида полосовой стали

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3710813B1 (en) * 2017-11-13 2023-09-20 Illumina, Inc. System and method for large sample analysis of thin film
CL2018002477A1 (es) * 2018-08-30 2018-10-19 SL CAPITAL SpA Sistema y método para la detección y digitalización del hormigón en estado fresco usando tecnología infraroja y funciones matemáticas de tendencia.
CN110246118B (zh) * 2019-05-07 2021-06-01 中国人民解放军陆军工程大学 一种缺陷深度检测方法
CN110320236B (zh) * 2019-07-19 2021-09-14 沈阳工业大学 大型风力机叶片内部缺陷深度的红外测量方法
CN110880170B (zh) * 2019-10-22 2023-10-31 四川沐迪圣科技有限公司 一种复合材料缺陷的深度预测方法
CN110806427A (zh) * 2019-11-27 2020-02-18 云南电网有限责任公司电力科学研究院 一种线路复合绝缘子内部缺陷的在线检测方法和系统
CN112162011B (zh) * 2020-09-16 2023-05-02 南方电网科学研究院有限责任公司 一种复合绝缘子缺陷检测方法、设备及存储介质
CN113138207B (zh) * 2021-04-22 2022-04-19 安徽理工大学 一种正交各向异性固体材料热扩散系数测试系统及方法
CN113237920B (zh) * 2021-05-17 2022-04-22 西南交通大学 一种特高压换流变压器阀侧套管故障热源检测方法
CN114354689B (zh) * 2021-12-30 2023-09-26 首都师范大学 方波激励红外热波成像测量样品缺陷深度的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566209A (ja) * 1991-09-09 1993-03-19 Nitto Chem Ind Co Ltd 構造物の表面または内部欠陥の検知方法
US20070041422A1 (en) * 2005-08-01 2007-02-22 Thermal Wave Imaging, Inc. Automated binary processing of thermographic sequence data

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542849B2 (en) * 2001-01-19 2003-04-01 The University Of Chicago Method for determining defect depth using thermal imaging
US7220966B2 (en) * 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
JP2011122859A (ja) 2009-12-08 2011-06-23 Kyoto Institute Of Technology 欠陥診断方法および欠陥診断システム
CN102221339B (zh) * 2011-06-09 2012-09-05 首都师范大学 脉冲红外热波技术测厚方法
JP2014032160A (ja) 2012-08-06 2014-02-20 Japan Aerospace Exploration Agency 探傷方法及び探傷装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566209A (ja) * 1991-09-09 1993-03-19 Nitto Chem Ind Co Ltd 構造物の表面または内部欠陥の検知方法
US20070041422A1 (en) * 2005-08-01 2007-02-22 Thermal Wave Imaging, Inc. Automated binary processing of thermographic sequence data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410106A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506886B1 (ja) * 2017-12-07 2019-04-24 三菱電機株式会社 表示データ生成装置および表示データ生成方法
WO2020162121A1 (ja) 2019-02-06 2020-08-13 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
CN113412424A (zh) * 2019-02-06 2021-09-17 松下知识产权经营株式会社 厚度测量方法、厚度测量装置、缺陷检测方法以及缺陷检测装置
JPWO2020162121A1 (ja) * 2019-02-06 2021-11-25 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
JP7209270B2 (ja) 2019-02-06 2023-01-20 パナソニックIpマネジメント株式会社 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
US11965735B2 (en) 2019-02-06 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Thickness measurement method, thickness measurement device, defect detection method, and defect detection device
RU2806259C1 (ru) * 2020-10-16 2023-10-30 Арселормиттал Способ оценки температуры и толщины оксида полосовой стали

Also Published As

Publication number Publication date
EP3410106B1 (en) 2023-11-29
JPWO2017130251A1 (ja) 2018-12-13
EP3410106A1 (en) 2018-12-05
EP3410106A4 (en) 2018-12-05
JP6628113B2 (ja) 2020-01-08
US20180372487A1 (en) 2018-12-27
US11054252B2 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2017130251A1 (ja) 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
US11519852B2 (en) Gas detection-use image processing device, and gas detection-use image processing method
KR101290137B1 (ko) 열화상을 이용한 결함 검출 장치 및 검출 방법
Carrascal et al. Determination of the Paris' law constants by means of infrared thermographic techniques
JP2018017600A (ja) 熱源探知装置、熱源探知方法、及び熱源探知プログラム
Wang et al. Hybrid multiview correlation for measuring and monitoring thermomechanical fatigue test
JP2011122859A (ja) 欠陥診断方法および欠陥診断システム
JP2018179814A (ja) 情報処理装置、温度測定システム、情報処理装置の制御方法、および制御プログラム
WO2020162121A1 (ja) 厚み計測方法及び厚み計測装置、並びに欠陥検出方法及び欠陥検出装置
JP2012008058A (ja) 温度測定装置
JP6230786B2 (ja) 鉄筋画像生成方法と装置、鉄筋腐食性状診断方法と装置、鉄筋画像生成用のプログラム及び当該プログラムを記録する記録媒体
Whitenton An introduction for machining researchers to measurement uncertainty sources in thermal images of metal cutting
JP2009141951A5 (ja)
JP2014032160A (ja) 探傷方法及び探傷装置
JP2013228306A (ja) 配管検査装置及びそれを用いた配管検査方法
JP5956935B2 (ja) 画像処理方法及び画像処理装置
CN108896189A (zh) 一种用于自动确定红外成像仪的最小可辨温差的方法及系统
JP6558951B2 (ja) トンネル壁面の損傷検出装置及びトンネル壁面の損傷検出プログラム
JP6539139B2 (ja) 赤外線画像データの画像処理方法及び赤外線画像処理装置
Koshti Infrared Contrast Analysis Technique for Flash Thermography Nondestructive Evaluation
WO2020095630A1 (ja) 温度推定装置、温度推定方法及び温度推定プログラム
JP7176356B2 (ja) 計測装置、計測方法、及びプログラム
KR101007405B1 (ko) 열상 검출기의 화소 보정 장치 및 방법
CN115060723A (zh) 一种金属温度场测量装置和测量方法
RU2577793C1 (ru) Способ тепловизионного определения характеристик турбулентности неизотермического потока

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563402

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016887840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016887840

Country of ref document: EP

Effective date: 20180829