WO2017126233A1 - α,α-ジフルオロアセトアルデヒドの製造方法 - Google Patents

α,α-ジフルオロアセトアルデヒドの製造方法 Download PDF

Info

Publication number
WO2017126233A1
WO2017126233A1 PCT/JP2016/085665 JP2016085665W WO2017126233A1 WO 2017126233 A1 WO2017126233 A1 WO 2017126233A1 JP 2016085665 W JP2016085665 W JP 2016085665W WO 2017126233 A1 WO2017126233 A1 WO 2017126233A1
Authority
WO
WIPO (PCT)
Prior art keywords
difluoroacetaldehyde
represented
hemiacetal
ethoxide
reaction
Prior art date
Application number
PCT/JP2016/085665
Other languages
English (en)
French (fr)
Inventor
麻美 稲津
絵里 西澤
進也 秋葉
亮 灘野
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN201680079314.2A priority Critical patent/CN108473403A/zh
Priority to EP16886472.6A priority patent/EP3398929A4/en
Priority to US16/071,829 priority patent/US10351502B2/en
Publication of WO2017126233A1 publication Critical patent/WO2017126233A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/30Compounds having groups
    • C07C43/317Compounds having groups having groups, X being hydrogen or metal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/14Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/82Metals of the platinum group
    • B01J2523/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing ⁇ , ⁇ -difluoroacetaldehyde.
  • Non-patent Document 1 a method of reducing ⁇ , ⁇ -difluoroacetic acid esters with a hydride reducing agent such as lithium aluminum hydride is known.
  • Patent Document 1 a method of reducing ⁇ , ⁇ -difluoroacetic acid esters with a hydride reducing agent such as lithium aluminum hydride is known.
  • Patent Document 1 the present applicant has filed a patent application for a similar technique regarding a method for producing ⁇ , ⁇ -difluoroacetaldehyde by partial reduction using a ruthenium catalyst of ⁇ , ⁇ -difluoroacetic acid esters.
  • the ruthenium catalyst used in the present invention has been reported to be reduced to alcohols by reduction of esters (Patent Document 2, Non-Patent Document 2).
  • Non-Patent Document 1 the method of using a hydride reducing agent in a stoichiometric manner is that the reducing agent is expensive and needs to be handled with care, and a by-product of ⁇ , ⁇ -difluoroethanol by excessive reduction. In order to suppress this, extremely low temperature conditions ( ⁇ 78 ° C.) are required, and further, post-treatment is complicated and waste is large, so that it is not suitable for production on an industrial scale. Further, the method described in Patent Document 1 is an invention using a specific ruthenium catalyst.
  • Patent Document 2 the ruthenium catalyst used in the present invention has been reported as an example of reducing an ester consisting of only hydrocarbons to alcohol.
  • reduced aldehyde and hemiacetal of the aldehyde are formed as intermediates, there is no evidence that they exist in the 1 H-NMR analysis of the reaction solution. It was unclear whether aldehyde and hemiacetal of the aldehyde could be obtained with high selectivity.
  • the problem to be solved by the present invention is that the reduction of ⁇ , ⁇ -difluoroacetate makes it possible to produce the target product with high conversion and high selectivity while suppressing by-products due to excessive reduction.
  • An object of the present invention is to provide an industrial production method with a small amount of material.
  • Ru-SNS A ruthenium complex represented by the following (hereinafter sometimes referred to as “Ru-SNS”) is represented by the general formula [1]:
  • R 1 represents an alkyl group or a substituted alkyl group.
  • the conversion rate is 80% or more, and ⁇ , ⁇ -difluoroacetaldehyde
  • the selectivity of the produced ⁇ , ⁇ -difluoroethanol is 90% or more and 10% or less (depending on the conditions, the conversion rate is 100% and the selectivity of ⁇ , ⁇ -difluoroacetaldehyde is 100%).
  • the present invention has been completed by obtaining the knowledge that the desired product ⁇ , ⁇ -difluoroacetaldehyde can be produced under conditions.
  • the production method of the present invention can be an alternative to the hydride reduction method which is difficult to implement industrially, and the hydrogenation reaction of the present invention has a high substrate / catalyst ratio and is mainly distilled after the reaction.
  • the target product can be easily obtained by the operation.
  • the conversion rate and selectivity of the reaction are both high, it is possible to reduce the burden of purification such as recovery of starting materials and separation of by-product ⁇ , ⁇ -difluoroethanol.
  • the advantage of the present invention is very high in that an industrial production method of ⁇ , ⁇ -difluoroacetaldehyde capable of solving the problems of the prior art can be provided.
  • the present invention provides a method for producing ⁇ , ⁇ -difluoroacetaldehyde comprising [Invention 1] to [Invention 5].
  • [Invention 1] The ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [1] is reacted with hydrogen (H 2 ) in the presence of the ruthenium complex represented by the formula [2] and a base to obtain the formula [3]:
  • R 2 is the same as R 1 in the general formula [1].
  • An alkali metal alkoxide is used as a base, and the amount of the alkali metal alkoxide used is 0.001 mol or more with respect to 1 mol of ⁇ , ⁇ -difluoroacetic acid ester,
  • the hydrogen pressure is set to 1.0 MPa to 10 MPa (absolute pressure)
  • the conversion rate of ⁇ , ⁇ -difluoroacetic acid esters in the reaction is 80% or more
  • the selectivity to by-product ⁇ , ⁇ -difluoroethanol is ⁇ , ⁇ -
  • Alkali metal alkoxide is lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, lithium tert-butoxide, sodium
  • Sodium ethoxide is used as the base, and the amount of the ethoxide used is 0.01 to 5.0 moles per mole of ethyl ⁇ , ⁇ -difluoroacetate
  • the hydrogen pressure is set to 2.0 MPa to 6.0 MPa (absolute pressure)
  • the conversion rate of ethyl ⁇ , ⁇ -difluoroacetate in the reaction was 90% or more
  • ⁇ , ⁇ -difluoroaldehydes can be efficiently produced with a high conversion rate and a high selectivity by using raw materials that are easily available as compared with the prior art.
  • ⁇ , ⁇ -difluoroacetic acid esters represented by the general formula [1] are reacted with hydrogen (H 2 ) in the presence of a ruthenium complex represented by the formula [2] and a base, and ⁇ ,
  • the invention is produced under the reaction conditions described above (in this specification, the product The ⁇ , ⁇ -difluoroacetaldehyde or ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal which is the above is sometimes simply referred to as “ ⁇ , ⁇ -difluoroacetaldehyde”.
  • R 1 of the ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [1] represents a substituted or unsubstituted alkyl group.
  • the unsubstituted alkyl group is a linear or branched or cyclic group (having 3 or more carbon atoms) having 1 to 18 carbon atoms.
  • the linear or branched alkyl group is preferably an alkyl group having 1 to 10 carbon atoms
  • the cyclic alkyl group is preferably an alkyl group having 3 to 12 carbon atoms.
  • the unsubstituted alkyl group includes methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n- Examples include pentyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, norbornyl group, adamantyl group and the like.
  • the substituted alkyl group represents an alkyl group having a substituent in any number and in any combination on any carbon atom of the unsubstituted alkyl group.
  • substituents include halogen atoms such as fluorine, chlorine and bromine, lower alkyl groups such as methyl, ethyl and propyl, lower haloalkyl groups such as fluoromethyl, chloromethyl and bromomethyl, methoxy and ethoxy And lower alkoxy group such as propoxy group, lower haloalkoxy group such as fluoromethoxy group, chloromethoxy group and bromomethoxy group, lower alkoxycarbonyl group such as cyano group, methoxycarbonyl group, ethoxycarbonyl group and propoxycarbonyl group, carboxyl group A protected group of a carboxyl group, an amino group, a protected body of an amino group, a hydroxyl group, and a protected body of a hydroxyl group.
  • substituents include
  • lower means a linear or branched chain or cyclic group having 1 to 6 carbon atoms (in the case of 3 or more carbon atoms).
  • protecting groups for carboxyl, amino and hydroxyl groups are described in Protective Groups in Organic Synthesis, Third Edition, 1999, John Wiley & Sons, Inc. Specifically, an alkyl group and a methyl group are preferable.
  • ⁇ , ⁇ -difluoroacetates represented by the general formula [1] methyl ⁇ , ⁇ -difluoroacetate or ethyl ⁇ , ⁇ -difluoroacetate is preferable and is easily available on a large scale.
  • the ruthenium complex used in the present invention can be prepared, for example, by the method described in Patent Document 2 or the like, and commercially available products can also be used.
  • the amount of the ruthenium complex represented by the formula [2] may be 0.000001 mol or more with respect to 1 mol of the ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [1]. 0.005 mol is preferable, and 0.00003 to 0.002 mol is particularly preferable.
  • Bases are lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide, lithium tert-butoxide, sodium tert- Alkali metal alkoxides such as butoxide and potassium tert-butoxide are used.
  • lithium methoxide, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, potassium ethoxide, lithium isopropoxide, sodium isopropoxide, potassium isopropoxide are preferable, and lithium methoxide, sodium methoxide Potassium methoxide, lithium ethoxide, sodium ethoxide and potassium ethoxide are particularly preferred.
  • the amount of the base used may be 0.001 mol or more, preferably 0.005 to 10 mol, preferably 0.01 to 5 mol with respect to 1 mol of the ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [1]. Particularly preferred.
  • catalytically active species is derived from the ruthenium complex represented by the formula [2] in the presence of a base as necessary. Therefore, even when a catalytically active species is prepared in advance (including an isolated species) and subjected to hydrogenation, it is treated as being included in the scope of claims.
  • the amount of hydrogen (H 2 ) used may be 1 mol or more with respect to 1 mol of ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [1], and a large excess is preferable. It is particularly preferred to use a large excess under the conditions.
  • the hydrogen pressure is usually 1.0 to 10 MPa (absolute pressure reference, hereinafter the same in this specification), preferably 2.0 to 6.0 MPa, particularly preferably 2.0 to 5.0 MPa.
  • a solvent can be used in the production method of the present invention.
  • the solvent is not particularly limited.
  • aliphatic hydrocarbons eg, n-pentane, n-hexane, n-heptane, etc.
  • aromatic hydrocarbons eg, benzene, toluene, xylene, etc.
  • nitriles eg, acetonitrile, propionitrile, phenylacetonitrile, isobutyronitrile, benzonitrile, etc.
  • halogens such as methylene chloride, 1,2-dichloroethane, acid amides (eg, dimethylformamide, dimethylacetamide, methylformamide, Formamide, hexamethylphosphoric triamide, N-methylpyrrolidone, etc.), lower ethers (eg, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane
  • ethers and alcohols are preferable, and alcohols are particularly preferable.
  • These reaction solvents can be used alone or in combination.
  • ⁇ -difluoroacetaldehydes, methanol, ethanol and n-propanol, which are easily separated by fractional distillation, are very preferable.
  • the amount of the reaction solvent used may be 0.03 L (liter) or more per 1 mol of ⁇ , ⁇ -difluoroacetic acid ester represented by the general formula [1], preferably 0.05 to 10 L, Particularly preferred is 07-7L.
  • the reaction temperature may be + 30 ° C. or less, preferably +25 to ⁇ 30 ° C., particularly preferably +25 to ⁇ 10 ° C., and extremely preferably +25 to 0 ° C.
  • a solvent of aliphatic hydrocarbons, aromatic hydrocarbons, halogens or ethers it may be carried out at + 50 ° C. or less, preferably +45 to ⁇ 30 ° C., particularly preferably +40 to ⁇ 20 ° C., +35 to -10 ° C is very preferred.
  • the amount of water derived from the solvent or the base is small because it affects the hydrolysis of the starting ⁇ , ⁇ -difluoroacetic acid esters.
  • the water content in the reaction system in which the catalyst, solvent, base and raw materials are mixed may be in the range of 10 to 0.001% by mass, preferably 5 to 0.001% by mass, more preferably 0.5 to 0.001. % By mass.
  • ⁇ , ⁇ -difluoroacetaldehyde represented by the formula [3] is an aldehyde directly linked with a strong electron-attracting group, it is actually often obtained as a hemiacetal form of the aldehyde (of course, depending on the case) It can also be obtained in the form of an aldehyde).
  • ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal represented by the general formula [4] is obtained as an equivalent of ⁇ , ⁇ -difluoroacetaldehyde as the “hemiacetal body” referred to herein.
  • the alcohol constituting the hemiacetal body is derived from an alkali metal alkoxide used as a base, an alcohol used as a reaction solvent, an ester site of a raw material substrate, and the like.
  • the present invention reacts with hydrogen (H 2 ) in the presence of a ruthenium complex represented by the formula [2] and a base to produce ⁇ , ⁇ -difluoroacetaldehyde or ⁇ , ⁇ -difluoro represented by the general formula [4].
  • a ruthenium complex represented by the formula [2] and a base to produce ⁇ , ⁇ -difluoroacetaldehyde or ⁇ , ⁇ -difluoro represented by the general formula [4].
  • the conversion rate of ⁇ , ⁇ -difluoroacetic acid esters is 80% or more, and ⁇ , ⁇ -difluoroacetaldehydes formed from ⁇ , ⁇ -difluoroacetic acid esters;
  • the target ⁇ , ⁇ -difluoroacetaldehyde can be produced under good conditions such that the selectivity to by-product ⁇ , ⁇ -difluoroethanol is 90% or more and 10% or less, respectively (however, ⁇ , ⁇ -difluoro The sum of both acetaldehyde and ⁇ , ⁇ -difluoroethanol is 100).
  • sodium ethoxide or potassium ethoxide is used as the alkali metal alkoxide, the amount of the alkoxide used is 0.005 to 10 mol per mol of ⁇ , ⁇ -difluoroacetic acid ester, and the hydrogen pressure is 2.
  • the conversion rate of ⁇ , ⁇ -difluoroacetic acid esters is 90% or more, and ⁇ , ⁇ -difluoroacetaldehydes formed from ⁇ , ⁇ -difluoroacetic acid esters; ⁇ , ⁇ -difluoroacetaldehydes can be produced under the condition that the selectivity of by-product ⁇ , ⁇ -difluoroethanol is 93% or more and 7% or less.
  • sodium ethoxide or potassium ethoxide is used as the alkali metal alkoxide
  • the amount of the alkoxide used is 0.01 to 5 moles per mole of ⁇ , ⁇ -difluoroacetic acid ester
  • the hydrogen pressure is 2
  • the conversion rate of ⁇ , ⁇ -difluoroacetic acid esters is 93% or more by reacting under conditions of 0.0 MPa to 5.0 MPa
  • the selectivity of ⁇ , ⁇ -difluoroacetaldehydes produced from ⁇ , ⁇ -difluoroacetates and the by-product ⁇ , ⁇ -difluoroethanol is 95% or more and 5% or less, respectively.
  • Certain ⁇ , ⁇ -difluoroacetaldehydes can be produced (Examples 1 to 5, Examples 7 to 9, and Examples 11 to 14 described later).
  • the conversion rate and selectivity can be calculated according to the progress of the reaction by means of analysis such as gas chromatography, liquid chromatography, nuclear magnetic resonance, etc., and it is preferable that the end point is when the decrease in the raw material substrate can hardly be confirmed. .
  • the reaction time may be approximately 72 hours or less, but since the reaction time varies depending on the raw material substrate and reaction conditions, as described above, the progress of the reaction is traced by various analytical means, and almost no decrease in the raw material substrate is recognized.
  • the reaction should be carried out until the time until it is no longer possible.
  • the conversion rate is 80% or more
  • the selectivity for ⁇ , ⁇ -difluoroacetaldehydes and ⁇ , ⁇ -difluoroethanol by-produced is 90% or more, respectively.
  • the target product can be produced under the condition of 10% or less, but if the target ⁇ , ⁇ -difluoroacetaldehyde can be obtained with high purity, a purification step for high purification, for example, a high theoretical plate number No fractional distillation is required.
  • a purification step for high purification for example, a high theoretical plate number No fractional distillation is required.
  • achieving the selectivity disclosed in the examples described later can simultaneously reduce the labor of the purification process described later, so that the advantages of the present invention are very high as industrial production.
  • the reaction vessel used in the present invention may be made of a material having heat resistance and corrosion resistance to hydrogen fluoride, hydrogen chloride, etc., and stainless steel, hastelloy, monel, platinum, etc. are preferable. It can also be made from materials lined with these metals.
  • ⁇ , ⁇ -ziloloacetaldehydes can be obtained by employing general operations in organic synthesis.
  • ⁇ , ⁇ -difluoroacetaldehydes can be purified to high purity by treatment with activated carbon, fractional distillation, recrystallization, column chromatography, etc., if necessary.
  • the boiling point of the target product is low, the operation of directly collecting and distilling the reaction end solution is simple.
  • the target product having a relatively high acidity (such as a self-polymer, hydrate or hemiacetal) will be converted to a salt or complex with the base used. It tends to form and remain in the pot residue.
  • the reaction completion solution is preliminarily prepared with organic acids such as formic acid, acetic acid, citric acid, oxalic acid, benzoic acid, methanesulfonic acid, paratoluenesulfonic acid, or hydrogen chloride, hydrogen bromide, nitric acid, sulfuric acid, etc.
  • the target product can be obtained in good yield by neutralizing with an inorganic acid and then recovering and distilling (including recovery and washing of the residue with an organic solvent such as diisopropyl ether).
  • ⁇ , ⁇ -difluoroacetaldehydes, ⁇ , ⁇ -difluoroacetaldehyde alkyl hemiacetal can be said to be an equivalent of ⁇ , ⁇ -difluoroacetaldehyde as a hemiacetal form of ⁇ , ⁇ -difluoroacetaldehyde.
  • ⁇ -difluoroacetaldehyde it may be obtained as a self-polymer of the aldehyde, a hydrate, a compound in which these structures are combined, or the like.
  • the general formula [5] As a stable equivalent of ⁇ , ⁇ -difluoroacetaldehyde represented by the formula [3] in the post-treatment process, the general formula [5]:
  • R 2 is the same as R 2 in the general formula [4].
  • a purification operation for bringing the dimer into contact with methanol or ethanol to converge to the hemiacetal of ⁇ , ⁇ -difluoroacetaldehyde is also possible.
  • a predetermined amount (1 eq) of ethyl ⁇ , ⁇ -difluoroacetate represented by the following formula:
  • a predetermined amount of a ruthenium complex (Ru-MACHO TM : purity> 90%, manufactured by Takasago International Corporation), a predetermined amount of a base, and a predetermined amount of a reaction solvent are added, and the reaction vessel is filled with hydrogen.
  • the gas was replaced three times, the hydrogen pressure was set to a predetermined pressure, and stirring was performed at a predetermined reaction temperature and a predetermined reaction time. From the 19 F-NMR analysis of the reaction completed solution, the conversion rate and the following formula:
  • the ⁇ , ⁇ -difluoroacetaldehydes obtained by the production method of the present invention can be used as an intermediate for medical and agricultural chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

開示されているのは、α,α-ジフルオロアセトアルデヒド類の効率的な工業的製造方法である。本発明で開示するα,α-ジフルオロアセトアルデヒド類の製造方法は、α,α-ジフルオロ酢酸エステル類をルテニウム触媒および塩基の存在下、水素ガス(H2)と反応させることにより達成できる。特定の反応条件(触媒、塩基、圧力等)を採用することにより、α,α-ジフルオロアセトアルデヒド類を高変換率で、かつ高選択率で製造できる。

Description

α,α-ジフルオロアセトアルデヒドの製造方法
 本発明は、α,α-ジフルオロアセトアルデヒドの製造方法に関する。
発明の背景
 従来、2,2-ジフルオロアセトアルデヒドの製造方法としては、α、α-ジフルオロ酢酸エステル類を、水素化リチウムアルミニウム等のヒドリド還元剤によって還元する方法が知られている(非特許文献1)。これに対し、本出願人は、α,α-ジフルオロ酢酸エステル類のルテニウム触媒を用いた部分還元によるα,α-ジフルオロアセトアルデヒドの製造方法について、類似技術の特許出願を行っている(特許文献1)。
 また、本発明に用いたルテニウム触媒についてはエステル類の還元によるアルコール類までの還元が報告されている(特許文献2、非特許文献2)。
国際公開2014/115801号公報 国際公開2014/036650号公報
Journal of Organic Chemistry, 1993, 58, p.2302-2312. Angew.Chem.Int.Ed., 2013, 52, p.2538-2542.
 非特許文献1に記載の方法は、ヒドリド還元剤を量論的に用いる方法は、該還元剤が高価であり取り扱いに注意が必要であること、過剰還元によるβ,β-ジフルオロエタノールの副生を抑制するには極低温条件(-78℃)を必要とすること、さらに後処理が煩雑で廃棄物が多いことから、工業的な規模での生産には不向きであった。また、特許文献1に記載の方法は、特定のルテニウム触媒を用いた発明であるが、目的物のアルデヒドと、該アルデヒドと逐次的に生成する過剰還元によるβ,β-ジフルオロエタノール類とが、変換率によって大きく左右される傾向があるため、高い反応変換率および過剰還元によるβ,β-ジフルオロエタノールの副生抑制の両方を好適に達成するまでには至っていない。
 一方、本願発明に用いたルテニウム触媒は、特許文献2や非特許文献2によれば、炭化水素のみからなるエステルをアルコールまで還元する例は報告されている。しかし、還元されたアルデヒドや該アルデヒドのヘミアセタールについては中間体として生成している旨の推測はされてはいるものの、反応液の1H-NMR分析においてそれが存在しているといった確証は得られなかったという記載があり、アルデヒドや該アルデヒドのヘミアセタールが高い選択性で得られるかどうかは不明であった。
 本発明が解決しようとする課題は、α,α-ジフルオロ酢酸エステルの還元において、過剰還元による副生物を抑制しつつ、高い変換率かつ高い選択率で目的物を製造することを可能にし、無駄の少ない工業的製造方法を提供することにある。
 本発明者らは上記の課題を踏まえて鋭意検討した結果、式[2]:
Figure JPOXMLDOC01-appb-C000008
[式中、Phはフェニル基を表す。]
で表されるルテニウム錯体(以下、本明細書で「Ru-SNS」と書くことがある。)が、一般式[1]:
Figure JPOXMLDOC01-appb-C000009
[式中、R1はアルキル基または置換アルキル基を表す。]
で表されるα,α-ジフルオロ酢酸エステル類の還元において、高い変換率のみならず、該エステル類の過剰還元によるβ,β-ジフルオロエタノール(詳細は後述する)の副生を抑制した高い選択率をも可能にし、極めて無駄の少ない工業的製造方法を提供できる非常に有効な水素化触媒または前駆体になる事を見出した。
 本発明と特許文献1に記載の方法との明確な違いは、反応変換率と選択率の両方を良好な結果で得られる事にある。特許文献1に記載の方法では、α,α-ジフルオロアセトアルデヒド(詳細は後述する)とβ,β-ジフルオロエタノールの選択率が92:8の場合、反応変換率は28%であり、α,α-ジフルオロアセトアルデヒドとβ,β-ジフルオロエタノールの選択率が66:34の場合、反応変換率は94%であった。α,α-ジフルオロアセトアルデヒドを得る事が出来るが、20~60%程度の収率であった(比較例1、比較例4)。
 これに対して、本発明では、特定の反応条件(特に触媒、塩基、反応温度および水素圧力等)を採用することにより、変換率が80%以上であって、α,α-ジフルオロアセトアルデヒドと副生するβ,β-ジフルオロエタノールの選択率がそれぞれ90%以上、10%以下(条件により変換率が100%で、α,α-ジフルオロアセトアルデヒドの選択率が100%となる)という、極めて良好な条件で目的物であるα,α-ジフルオロアセトアルデヒドを製造出来る知見を得、本発明を完成した。
 本発明の製造方法は、工業的な実施が困難なヒドリド還元方法の代替になり得るものであり、また、本発明の水素化反応は、基質/触媒比が高く、また、反応後は主として蒸留操作により簡便に目的生成物を得ることができる。
さらに、反応の変換率と選択率が共に高いため、出発原料の回収や副生するβ,β-ジフルオロエタノールの分離といった精製の負荷を軽減することも可能である。
従来技術の課題を解決できるα,α-ジフルオロアセトアルデヒドの工業的な製造方法を提供することができる点で、本発明の優位性は非常に高いものである。
 すなわち本発明は[発明1]~[発明5]を含む、α,α-ジフルオロアセトアルデヒド類の製造方法を提供する。
[発明1]
一般式[1]で表されるα,α-ジフルオロ酢酸エステル類を、式[2]で表されるルテニウム錯体および塩基の存在下、水素(H2)と反応させ、式[3]:
Figure JPOXMLDOC01-appb-C000010
で表されるα,α-ジフルオロアセトアルデヒド、または一般式[4]:
Figure JPOXMLDOC01-appb-C000011
[式中、R2は一般式[1]のR1と同じ。]
で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールを製造する方法において、
塩基としてアルカリ金属アルコキシドを用い、該アルカリ金属アルコキシドの使用量をα,α-ジフルオロ酢酸エステル類1モルに対して0.001モル以上、
水素圧を1.0MPa~10MPa(絶対圧)とし、
該反応におけるα,α-ジフルオロ酢酸エステル類の変換率を80%以上で、
かつ、
α,α-ジフルオロ酢酸エステル類から生成するα,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールと、
副生するβ,β-ジフルオロエタノールとの選択率が、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタール:β,β-ジフルオロエタノール=90%以上:10%以下となるように反応させることを特徴とする、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールの製造方法。
[発明2]
アルカリ金属アルコキシドが、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシドまたはカリウムtert-ブトキシドである、発明1に記載の製造方法。
[発明3]
アルカリ金属アルコキシドが、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシドまたはカリウムエトキシドである、発明1または2に記載の製造方法。
 [発明4]
α,α-ジフルオロ酢酸エチルを、式[2]で表されるルテニウム錯体および塩基の存在下、水素(H2)と反応させ、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドエチルヘミアセタールを製造する方法において、
塩基としてナトリウムエトキシドを用い、該エトキシドの使用量をα,α-ジフルオロ酢酸エチル1モルに対して0.01~5.0モル、
水素圧を2.0MPa~6.0MPa(絶対圧)とし、
該反応におけるα,α-ジフルオロ酢酸エチルの変換率を90%以上で、
かつ、
α,α-ジフルオロ酢酸エチルから生成するα,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドエチルヘミアセタールと、
副生するβ,β-ジフルオロエタノールとの選択率を、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドエチルヘミアセタール:β,β-ジフルオロエタノール=93%以上:7%以下となるように反応させることを特徴とする、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドエチルヘミアセタールの製造方法。
[発明5]
反応を、アルコール類の溶媒を用い、かつ、反応温度を30℃以下で行うことを特徴とする、発明1乃至4の何れかに記載の製造方法。
 本発明によれば、従来技術と比べて入手が容易な原料を用い、高い変換率で、かつ、高い選択率で効率良くα,α-ジフルオロアルデヒド類を製造できるという効果を奏する。
詳細な説明
 以下、本発明について説明する。本発明は以下の実施の態様に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良が加えられたものも本発明の範囲に含まれるものとして扱う。
 本発明は、一般式[1]で表されるα,α-ジフルオロ酢酸エステル類を、式[2]で表されるルテニウム錯体および塩基の存在下、水素(H2)と反応させ、α,α-ジフルオロアセトアルデヒドまたは一般式[4]で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールを製造する方法において、前述した反応条件にて製造する発明である(なお、本明細書において、生成物であるα,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールを、単に「α,α-ジフルオロアセトアルデヒド類」と言うときがある)。
 一般式[1]で表されるα,α-ジフルオロ酢酸エステル類のR1は、置換もしくは非置換のアルキル基を表す。非置換のアルキル基は、炭素数1~18の、直鎖状もしくは分枝状または環式(炭素数3以上の場合)のものである。これらのうち、直鎖状または分枝状のアルキル基としては、炭素数1~10のアルキル基が好ましく、環状のアルキル基としては、炭素数3~12が好ましい。具体的には、非置換アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基などが挙げられる。
 置換アルキル基は、前記非置換のアルキル基の任意の炭素原子上に、任意の数および任意の組み合わせで、置換基を有するアルキル基を示す。係る置換基は、フッ素、塩素および臭素等のハロゲン原子、メチル基、エチル基およびプロピル基等の低級アルキル基、フルオロメチル基、クロロメチル基およびブロモメチル基等の低級ハロアルキル基、メトキシ基、エトキシ基およびプロポキシ基等の低級アルコキシ基、フルオロメトキシ基、クロロメトキシ基およびブロモメトキシ基等の低級ハロアルコキシ基、シアノ基、メトキシカルボニル基、エトキシカルボニル基およびプロポキシカルボニル基等の低級アルコキシカルボニル基、カルボキシル基、カルボキシル基の保護体、アミノ基、アミノ基の保護体、ヒドロキシル基、ならびにヒドロキシル基の保護体等である。置換基の種類に依っては置換基自体が副反応に関与する場合もあるが、好適な反応条件を採用することにより最小限に抑えることができる。
 なお、本明細書において、"低級"とは、炭素数1~6の、直鎖状もしくは分枝状の鎖式または環式(炭素数3以上の場合)であるものを意味する。さらに、カルボキシル基、アミノ基およびヒドロキシル基の保護基は、Protective Groups in Organic Synthesis,Third Edition,1999,John Wiley & Sons,Inc.等に記載された保護基であるが、具体的には、アルキル基、メチル基が好ましい。
 一般式[1]で表されるα,α-ジフルオロ酢酸エステル類のうち、α,α-ジフルオロ酢酸メチルまたはα,α-ジフルオロ酢酸エチルが好ましく、大量規模での入手が容易である。
 本発明で用いるルテニウム錯体は、例えば、特許文献2等に記載された方法で調製することができ、また、商業的に市販されているものを利用することもできる。
 式[2]で表されるルテニウム錯体の使用量は、一般式[1]で表されるα,α-ジフルオロ酢酸エステル類1molに対して0.000001mol以上を用いれば良く、0.00001~0.005molが好ましく、0.00003~0.002molが特に好ましい。
 塩基は、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシドおよびカリウムtert-ブトキシド等のアルカリ金属のアルコキシドを用いる。その中でもリチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシドが好ましく、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシドおよびカリウムエトキシドが特に好ましい。
 塩基の使用量は、一般式[1]で表されるα,α-ジフルオロ酢酸エステル類1molに対して0.001mol以上を用いれば良く、0.005~10molが好ましく、0.01~5molが特に好ましい。
 真の触媒活性種は、式[2]で表されるルテニウム錯体から必要に応じて塩基の存在下に誘導されるものと考えられている。よって、触媒活性種を予め調製してから(単離したものも含む)水素化に供する場合も、特許請求の範囲に含まれるものとして扱う。
 水素(H2)の使用量は、一般式[1]で表されるα,α-ジフルオロ酢酸エステル類1molに対して1mol以上を用いれば良く、大過剰が好ましく、下記に示す通り、加圧条件下、大過剰で用いるのが特に好ましい。
 水素圧は、通常、1.0~10MPa(絶対圧基準。以下、本明細書で同じ)で行えば良く、2.0~6.0MPaが好ましく、2.0~5.0MPaが特に好ましい。
 本発明の製造方法において溶媒を用いることができる。溶媒は特に限定はされないが、例えば、脂肪族炭化水素類(例えば、n-ペンタン、n-ヘキサン、n-ヘプタン等)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン等)、ニトリル類(例えば、アセトニトリル、プロピオニトリル、フェニルアセトニトリル、イソブチロニトリル、ベンゾニトリル等)、塩化メチレン、1,2-ジクロロエタン等のハロゲン類、酸アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、ホルムアミド、ヘキサメチルリン酸トリアミド、N-メチルピロリドン等)、低級エーテル類(例えば、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、1,2-エポキシエタン、1、4-ジオキサン、ジブチルエーテル、t-ブチルメチルエーテル、置換テトラヒドロフラン等)、アルコール類(メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、n-ペンタノール、n-ヘキサノールおよびシクロヘキサノール等)が用いられる。中でも、エーテル類およびアルコール類が好ましく、アルコール類が特に好ましい。これらの反応溶媒は、単独でまたは組み合わせて用いることができる。目的物であるα,α-ジフルオロアセトアルデヒド類の製造において、分別蒸留での分離が容易なメタノール、エタノールおよびn-プロパノールが極めて好ましい。
 反応溶媒の使用量は、一般式[1]で表されるα,α-ジフルオロ酢酸エステル類1molに対して0.03L(リットル)以上を用いれば良く、0.05~10Lが好ましく、0.07~7Lが特に好ましい。
 反応温度は、アルコール類の溶媒を用いる場合、+30℃以下で行えば良く、+25~-30℃が好ましく、+25~-10℃が特に好ましく、+25~0℃が極めて好ましい。
脂肪族炭化水素類、芳香族炭化水素類、ハロゲン類またはエーテル類の溶媒を用いる場合、+50℃以下で行えば良く、+45~-30℃が好ましく、+40~-20℃が特に好ましく、+35~-10℃が極めて好ましい。
本発明の有用性を最大限に発揮させるには、アルコール類の溶媒を用いて、反応温度を25℃以下で行うことが特に好ましい。
 また、本発明において、溶媒や塩基由来の水分は、原料であるα,α-ジフルオロ酢酸エステル類の加水分解に影響を及ぼすため、少ない方が好ましい。触媒、溶媒、塩基、原料を混合した反応系中の水分は10~0.001質量%の範囲で行えば良く、好ましくは5~0.001質量%、より好ましくは0.5~0.001質量%である。
 式[3]で表されるα,α-ジフルオロアセトアルデヒドは、強力な電子求引基が直結したアルデヒドであるため、実際、該アルデヒドのヘミアセタール体として得られる場合が多い(当然、場合によってはアルデヒドの形で得ることもできる)。例えば、本発明では、ここで言う「ヘミアセタール体」として、一般式[4]で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールが、α,α-ジフルオロアセトアルデヒドの等価体として得られる。
 ヘミアセタール体を構成するアルコールは、塩基として用いたアルカリ金属のアルコキシドや反応溶媒として用いたアルコール、および原料基質のエステル部位等に由来する。
 本発明は、式[2]で表されるルテニウム錯体および塩基の存在下、水素(H2)と反応させ、α,α-ジフルオロアセトアルデヒドまたは一般式[4]で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールを製造する際、特定の反応条件、すなわち、塩基としてアルカリ金属アルコキシドを用い、該アルカリ金属アルコキシドの使用量をα,α-ジフルオロ酢酸エステル類1モルに対して0.001モル以上、水素圧を1.0MPa~10MPaで反応させることで、
α,α-ジフルオロ酢酸エステル類の変換率が80%以上で、かつ、
α,α-ジフルオロ酢酸エステル類から生成するα,α-ジフルオロアセトアルデヒド類と、
副生するβ,β-ジフルオロエタノールとの選択率がそれぞれ90%以上、10%以下といった、良好な条件で目的物であるα,α-ジフルオロアセトアルデヒド類を製造できる(但し、α,α-ジフルオロアセトアルデヒド類とβ,β-ジフルオロエタノール、両方の和を100とする)。
 また、好ましい態様として、アルカリ金属アルコキシドとしてナトリウムエトキシドまたはカリウムエトキシドを用い、該アルコキシドの使用量をα,α-ジフルオロ酢酸エステル類1モルに対し0.005~10モル、水素圧を2.0MPa~6.0MPaで反応させることで、
α,α-ジフルオロ酢酸エステル類の変換率が90%以上で、かつ、
α,α-ジフルオロ酢酸エステル類から生成するα,α-ジフルオロアセトアルデヒド類と、
副生するβ,β-ジフルオロエタノールの選択率が93%以上、7%以下の条件でα,α-ジフルオロアセトアルデヒド類を製造できる。
 更に、より好ましい態様として、アルカリ金属アルコキシドとしてナトリウムエトキシドまたはカリウムエトキシドを用い、該アルコキシドの使用量をα,α-ジフルオロ酢酸エステル類1モルに対し0.01~5モル、水素圧を2.0MPa~5.0MPaの条件で反応させることで、α,α-ジフルオロ酢酸エステル類の変換率が93%以上で、かつ、
α,α-ジフルオロ酢酸エステル類から生成するα,α-ジフルオロアセトアルデヒド類と副生するβ,β-ジフルオロエタノールの選択率がそれぞれ95%以上、5%以下といった、極めて良好な条件で目的物であるα,α-ジフルオロアセトアルデヒド類を製造できる(後述の実施例1~5、実施例7~9、実施例11~14)。
 なお、ガスクロマトグラフィー、液体クロマトグラフィー、核磁気共鳴等の分析手段により反応の進行状況により変換率並びに選択率を算出でき、原料基質の減少が殆ど確認できなくなった時点を終点とするのが好ましい。
 反応時間については、概ね72時間以内で行えば良いが、原料基質および反応条件により反応時間が異なるため、前記したように各種分析手段により反応の進行状況を追跡し、原料基質の減少が殆ど認められなくなった時点までの時間まで反応を行うのが良い。
なお、本発明は、前述した条件を採用することにより、変換率が80%以上であって、α,α-ジフルオロアセトアルデヒド類と副生するβ,β-ジフルオロエタノールの選択率がそれぞれ90%以上、10%以下といった条件で目的物を製造することができるが、目的物であるα,α-ジフルオロアセトアルデヒド類を高い純度で得ることができれば、高純度化するための精製工程、例えば高い理論段数の分別蒸留を必要としない。例えば、後述の実施例で開示している選択率を達成することは、同時に後述する精製工程の手間を軽減できる為、工業的な製造としても本発明の優位性は非常に高い。
 本発明で用いる反応容器は、耐熱性とフッ化水素、塩化水素等に対する耐食性を有する材質で作られれば良く、ステンレス鋼、ハステロイ、モネル、白金などが好ましい。また、これらの金属でライニングされた材料で作ることもできる。
 本発明における後処理は、有機合成における一般的な操作を採用することにより、α,α-ジルオロアセトアルデヒド類を得ることができる。反応後の後処理について、α,α-ジフルオロアセトアルデヒド類は必要に応じて活性炭処理、分別蒸留、再結晶、カラムクロマトグラフィー等により高い純度に精製することができる。目的物の沸点が低い場合は、反応終了液を直接、回収蒸留する操作が簡便である。塩基の存在下での反応においては、上記の回収蒸留を行うと比較的酸性度の高い目的物(自己重合体、水和体またはヘミアセタール体等)は用いた塩基との塩または錯体等を形成して釜残に残留する傾向がある。この様な場合には、反応終了液を予めギ酸、酢酸、クエン酸、シュウ酸、安息香酸、メタンスルホン酸、パラトルエンスルホン酸等の有機酸または塩化水素、臭化水素、硝酸、硫酸等の無機酸で中和してから回収蒸留(ジイソプロピルエーテル等の有機溶媒による釜残の回収洗浄も含まれる)することにより目的物を収率良く得ることができる。
 なお、α,α-ジフルオロアセトアルデヒド類のうち、α,α-ジフルオロアセトアルデヒドアルキルヘミアセタールはα,α-ジフルオロアセトアルデヒドのヘミアセタール体として、α,α-ジフルオロアセトアルデヒドの等価体と言えるが、当然、α,α-ジフルオロアセトアルデヒドのヘミアセタール以外にも該アルデヒドの自己重合体、水和体、およびこれらの構造が組み合わされた化合物等で得られる場合がある。
前記後処理過程にて、式[3]で表されるα,α-ジフルオロアセトアルデヒドの、該アルデヒドの安定等価体として、特に一般式[5]:
Figure JPOXMLDOC01-appb-C000012
[式中、R2は一般式[4]のR2と同じ。]
で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタール体由来の二量体が得られる場合、それをメタノールまたはエタノールと接触させることにより、α,α-ジフルオロアセトアルデヒドのヘミアセタール体に収束させる精製操作も可能である。
 実施例により本発明の実施の形態を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。略記号/Ph;フェニル基、Et;エチル基。
[実施例1~14]および[比較例1~8]
実施例1~14および比較例1~8の一般的製造方法を以下に示す。
ステンレス鋼(SUS)製耐圧反応容器に、下記式:
Figure JPOXMLDOC01-appb-C000013
で表されるα,α-ジフルオロ酢酸エチルの所定の量(1eq)、下記式:
Figure JPOXMLDOC01-appb-C000014
で表されるルテニウム錯体(純度97%、シグマ-アルドリッチ(株)製)、
または下記式:
Figure JPOXMLDOC01-appb-C000015
で表されるルテニウム錯体(Ru-MACHOTM:純度>90%、高砂香料工業株式会社製)の所定の量、塩基の所定の量、及び反応溶媒の所定の量を加え、反応容器内を水素ガスで3回置換し、水素圧を所定の圧力に設定し、所定の反応温度および所定の反応時間で攪拌を行った。反応終了液の19F-NMR分析より、変換率と、下記式:
Figure JPOXMLDOC01-appb-C000016
で表されるα,α-ジフルオロアセトアルデヒドエチルヘミアセタール(α,α-ジフルオロアセトアルデヒドの安定等価体)と、過剰に還元された下記式:
Figure JPOXMLDOC01-appb-C000017
で表されるβ,β-ジフルオロエタノールの選択率を算出した。得られたα,α-ジフルオロアセトアルデヒドエチルヘミアセタールは、1Hと19F-NMR分析およびガスクロマトグラフィー分析において標品と一致した。
 [比較例9]
ステンレス鋼(SUS)製耐圧反応容器に、下記式:
Figure JPOXMLDOC01-appb-C000018
で表される3,3,3-トリフルオロプロピオン酸エチル50g(320mmol,1eq)、下記式:
Figure JPOXMLDOC01-appb-C000019
で表されるルテニウム錯体0.027g(純度97%、0.043mmol、0.0001eq、アルドリッチ製)、ナトリウムエトキシド5.4g(80mmol,0.25eq)とエタノール64mL(5.0mol/L)を加え、反応容器内を水素ガスで3回置換し、水素圧を3.0MPaに設定した後に30℃で6時間攪拌した。反応終了液の19F-NMR分析より、原料である3,3,3-トリフルオロプロピオン酸エチルのみを確認した。
以上、実施例1~14及び比較例1~8について、表として以下にまとめる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-T000021
 本発明の製造方法により得られるα,α-ジフルオロアセトアルデヒド類は、医農薬中間体として利用できる。

Claims (5)

  1. 一般式[1]:
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1はアルキル基または置換アルキル基を表す。]
    で表されるα,α-ジフルオロ酢酸エステル類を、式[2]:
    Figure JPOXMLDOC01-appb-C000002
    [式中、Phはフェニル基を表す。]
    で表されるルテニウム錯体および塩基の存在下、水素(H2)と反応させ、式[3]:
    Figure JPOXMLDOC01-appb-C000003
    で表されるα,α-ジフルオロアセトアルデヒド、または一般式[4]:
    Figure JPOXMLDOC01-appb-C000004
    [式中、R2は一般式[1]のR1と同じ。]
    で表されるα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールを製造する方法において、
    塩基としてアルカリ金属アルコキシドを用い、該アルカリ金属アルコキシドの使用量をα,α-ジフルオロ酢酸エステル類1モルに対して0.001モル以上、
    水素圧を1.0MPa~10MPa(絶対圧)とし、
    該反応におけるα,α-ジフルオロ酢酸エステル類の変換率を80%以上で、
    かつ、
    α,α-ジフルオロ酢酸エステル類から生成するα,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールと、
    副生するβ,β-ジフルオロエタノールとの選択率が、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタール:β,β-ジフルオロエタノール=90%以上:10%以下となるように反応させることを特徴とする、
    α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドアルキルヘミアセタールの製造方法。
  2. アルカリ金属アルコキシドが、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムイソプロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムtert-ブトキシドまたはカリウムtert-ブトキシドである、請求項1に記載の製造方法。
  3. アルカリ金属アルコキシドが、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシドまたはカリウムエトキシドである、請求項1または2に記載の製造方法。
  4. α,α-ジフルオロ酢酸エチルを、式[2]:
    Figure JPOXMLDOC01-appb-C000005
    [式中、Phはフェニル基を表す。]
    で表されるルテニウム錯体および塩基の存在下、水素(H2)と反応させ、式[3]:
    Figure JPOXMLDOC01-appb-C000006
    で表されるα,α-ジフルオロアセトアルデヒド、または一般式[4]:
    Figure JPOXMLDOC01-appb-C000007
    [式中、R2はエチル基を表す。]
    で表されるα,α-ジフルオロアセトアルデヒドエチルヘミアセタールを製造する方法において、
    塩基としてナトリウムエトキシドを用い、該エトキシドの使用量をα,α-ジフルオロ酢酸エチル1モルに対して0.01~5.0モル、
    水素圧を2.0MPa~6.0MPa(絶対圧)とし、
    該反応におけるα,α-ジフルオロ酢酸エステル類の変換率を90%以上で、
    かつ、
    α,α-ジフルオロ酢酸エチルから生成するα,α-ジフルオロアセトアルデヒドまたは
    α,α-ジフルオロアセトアルデヒドエチルヘミアセタールと、
    副生するβ,β-ジフルオロエタノールとの選択率を、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドエチルヘミアセタール:β,β-ジフルオロエタノール=93%以上:7%以下となるように反応させることを特徴とする、α,α-ジフルオロアセトアルデヒドまたはα,α-ジフルオロアセトアルデヒドエチルヘミアセタールの製造方法。
  5. 反応を、アルコール類の溶媒を用い、かつ、反応温度を30℃以下で行うことを特徴とする、請求項1乃至4の何れかに記載の製造方法。
PCT/JP2016/085665 2016-01-21 2016-12-01 α,α-ジフルオロアセトアルデヒドの製造方法 WO2017126233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680079314.2A CN108473403A (zh) 2016-01-21 2016-12-01 α,α-二氟乙醛的制造方法
EP16886472.6A EP3398929A4 (en) 2016-01-21 2016-12-01 PROCESS FOR PREPARING ALPHA-ALPHA-DIFLUORACETALDEHYDE
US16/071,829 US10351502B2 (en) 2016-01-21 2016-12-01 Method for producing α,α-difluoroacetaldehyde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009618 2016-01-21
JP2016009618A JP6669962B2 (ja) 2016-01-21 2016-01-21 α,α−ジフルオロアセトアルデヒドの製造方法

Publications (1)

Publication Number Publication Date
WO2017126233A1 true WO2017126233A1 (ja) 2017-07-27

Family

ID=59362586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085665 WO2017126233A1 (ja) 2016-01-21 2016-12-01 α,α-ジフルオロアセトアルデヒドの製造方法

Country Status (5)

Country Link
US (1) US10351502B2 (ja)
EP (1) EP3398929A4 (ja)
JP (1) JP6669962B2 (ja)
CN (1) CN108473403A (ja)
WO (1) WO2017126233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520403B (zh) * 2017-03-31 2022-07-12 中央硝子株式会社 α,α-二氟乙醛半缩醛的制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036650A1 (en) * 2012-09-04 2014-03-13 Goussev Dmitri Catalysts based on amino-sulfide ligands for hydrogenation and dehydrogenation processes
WO2014115801A1 (ja) * 2013-01-25 2014-07-31 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849710B2 (ja) * 2011-02-03 2016-02-03 セントラル硝子株式会社 β−フルオロアルコール類の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036650A1 (en) * 2012-09-04 2014-03-13 Goussev Dmitri Catalysts based on amino-sulfide ligands for hydrogenation and dehydrogenation processes
WO2014115801A1 (ja) * 2013-01-25 2014-07-31 セントラル硝子株式会社 α,α-ジフルオロアセトアルデヒドの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUB, PAVEL A. ET AL., ORGANOMETALLICS, vol. 34, 2015, pages 4464 - 4479, XP055400633 *
FAIRWEATHER, NEIL T. ET AL., ORGANOMETALLICS, vol. 34, 2015, pages 335 - 339, XP055400637 *
See also references of EP3398929A4 *
SPASYUK, DENIS ET AL.: "Replacing Phosphorus with Sulfur for the Efficient Hydrogenation of Esters", ANGEW. CHEM. INT. ED., vol. 52, no. 9, 2013, pages 2538 - 2542, XP055238766 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370736B2 (en) 2019-04-01 2022-06-28 Triad National Security, Llc Synthesis of fluoro hemiacetals via transition metal-catalyzed fluoro ester and carboxamide hydrogenation

Also Published As

Publication number Publication date
CN108473403A (zh) 2018-08-31
JP2017128536A (ja) 2017-07-27
JP6669962B2 (ja) 2020-03-18
US10351502B2 (en) 2019-07-16
US20190031587A1 (en) 2019-01-31
EP3398929A4 (en) 2019-09-04
EP3398929A1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP5849710B2 (ja) β−フルオロアルコール類の製造方法
JP2014523912A (ja) 2,2−ジフルオロエタノールの製造方法
JP6217653B2 (ja) α,α−ジフルオロアセトアルデヒドの製造方法
US9284248B2 (en) Process for producing α-fluoroaldehydes
JP5793996B2 (ja) フルオロ硫酸芳香環エステル類の製造方法
WO2017126233A1 (ja) α,α-ジフルオロアセトアルデヒドの製造方法
JP6643735B2 (ja) 含フッ素α−ケトカルボン酸エステル類の実用的な製造方法
JP5900182B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
US9409843B2 (en) Method for producing 1,1,1,5,5,5-hexafluoroacetylacetone
JP5853772B2 (ja) α,α−ジフルオロ芳香族化合物の製造方法
JP6806990B2 (ja) α−フルオロアルデヒド類の製造方法
JP6459709B2 (ja) 3,3−ジフルオロ−2−ヒドロキシプロピオン酸の実用的な製造方法
JP4386881B2 (ja) 3,3,3−トリフルオロプロピオン酸の製造方法
US11691938B2 (en) Process for preparing 2,6-dialkylphenylacetic acids
JP5003072B2 (ja) 3,3,3−トリフルオロプロピオンアルデヒドの製造方法
WO2017030074A1 (ja) α-フルオロアルデヒド類の製造方法
JP6723817B2 (ja) (トリフルオロメチル)マロン酸エステルの製造方法
JP2017149707A (ja) α,α−ジフルオロアセトアルデヒドの製造方法
WO2013018465A1 (ja) ジェミナルジフルオロ化合物の製造方法
JP2009013119A (ja) プロパン化合物の製造方法
JPH06340592A (ja) α,α−ジメチルベンジルアミン類の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016886472

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886472

Country of ref document: EP

Effective date: 20180801