WO2017124372A1 - 一种球形燃料元件成型的设备 - Google Patents

一种球形燃料元件成型的设备 Download PDF

Info

Publication number
WO2017124372A1
WO2017124372A1 PCT/CN2016/071573 CN2016071573W WO2017124372A1 WO 2017124372 A1 WO2017124372 A1 WO 2017124372A1 CN 2016071573 W CN2016071573 W CN 2016071573W WO 2017124372 A1 WO2017124372 A1 WO 2017124372A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
core ball
base powder
nuclear fuel
molding
Prior art date
Application number
PCT/CN2016/071573
Other languages
English (en)
French (fr)
Inventor
刘兵
张�杰
卢振明
周湘文
唐亚平
唐春和
张作义
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112018013396-5A priority Critical patent/BR112018013396B1/pt
Application filed by 清华大学 filed Critical 清华大学
Priority to CA2999588A priority patent/CA2999588C/en
Priority to EP16885645.8A priority patent/EP3407359B1/en
Priority to PCT/CN2016/071573 priority patent/WO2017124372A1/zh
Priority to RU2018111974A priority patent/RU2689333C1/ru
Priority to US15/768,676 priority patent/US20180315514A1/en
Priority to JP2018516001A priority patent/JP6611925B2/ja
Priority to KR1020187008200A priority patent/KR102088461B1/ko
Priority to PL16885645.8T priority patent/PL3407359T3/pl
Priority to HUE16885645A priority patent/HUE064574T2/hu
Publication of WO2017124372A1 publication Critical patent/WO2017124372A1/zh
Priority to SA518391202A priority patent/SA518391202B1/ar
Priority to ZA2018/03322A priority patent/ZA201803322B/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • G21C21/10Manufacture of fuel elements or breeder elements contained in non-active casings by extrusion, drawing, or stretching by rolling, e.g. "picture frame" technique
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/07Pebble-bed reactors; Reactors with granular fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/626Coated fuel particles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • G21C3/048Shape of pellets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear reactor fuel element preparation, and in particular relates to a device for forming a spherical fuel element.
  • the spherical fuel element used in the pebble bed type high temperature gas cooled reactor has a diameter of 60 mm, including a fuel zone and a fuelless zone.
  • the spherical fuel element is a graphite matrix as a whole, and the outer layer is a fuel-free zone having a thickness of about 5 mm.
  • the basic structure is a fuel-free graphite spherical shell filled with a dispersion fuel composed of a coated fuel particle and a graphite matrix.
  • the preparation process of the spherical fuel element comprises: preparation of the base graphite powder, coating of the coated particles, core ball pressing, green compact pressing, turning, carbonization, high temperature purification, wherein the formation of the spherical ball fuel zone and the fuelless zone is a spherical component manufacturing.
  • the process principle of the formation of spherical fuel element includes the mixing of the coated particles with the base graphite powder, the mixture is put into the rubber mold and pressed into the core ball, the shape of the fuel-free zone in the final pressure mold, and the final final pressure is slightly larger than the target size. Billet.
  • Chinese patent application CN201210177503 discloses a vacuum quasi-isostatic pressing machine for pressing green body of spherical fuel element, but other steps of forming the spherical fuel element include mixing of the coated particles with the base graphite powder, and no in the final pressure mold. What kind of process is used in the process of modeling the fuel zone, and what equipment is used is not disclosed. Therefore, it is very important to provide a spherical fuel element molding apparatus capable of reducing the cost of a fuel element, compact structure, and convenient operation.
  • the technical problem to be solved by the present invention is how to provide a device for forming a spherical fuel element which is compact and easy to operate.
  • the invention proposes a device for forming a spherical fuel element, comprising: a fuel zone forming system, a fuel-free zone modeling system, and a green ball pressing system;
  • the fuel zone forming system is used for uniformly mixing the core ball base powder and the nuclear fuel particles, and then pressing into a core ball;
  • the fuel-free zone modeling system for wrapping the fuel-free base powder to the core ball to form the spherical fuel element
  • the green ball pressing system is used to press the spherical fuel element into a green ball.
  • the fuel zone forming system comprises a core ball base powder quantitative conveying device, a nuclear fuel particle equalizing device, a nuclear fuel particle precise quantitative device, a primary stirring device, a discharge loading device, a secondary stirring device and a core ball. a pressing device; the core ball base powder quantitative conveying device, the nuclear fuel particle precise quantitative device, the primary stirring device and the unloading molding device are connected by a material tank station conveying device;
  • the core ball powder quantitative conveying device quantitatively transports the core ball base powder to the material tank station conveying device; the nuclear fuel particle sharing device and the nuclear fuel particle precise quantitative device accurately quantitatively transport the nuclear fuel to the material a tank station conveying device; the material tank station conveying device transports the core ball base powder and the nuclear fuel to the primary stirring device; the primary stirring device uniformly mixes the core ball base powder and the nuclear fuel The material tank station conveying device transports the core ball base powder and the nuclear fuel passing through the primary stirring device to the discharge molding device; the discharge molding device will uniformly stir the said The core ball base powder and the nuclear fuel are filled with a core ball mold; the secondary stirring device agitates the core ball base powder and the nuclear fuel in the core ball mold;
  • the core ball pressing device presses the core ball base powder and the nuclear fuel in the core ball mold into a core ball.
  • the core ball base powder quantitative conveying device comprises a first hopper for storing the core ball base powder and a screw feeder at the bottom of the hopper, and the conveying amount of the core ball base powder is passed through The feeding time of the screw feeder is controlled.
  • the nuclear fuel particle sharing device includes a second hopper for receiving rotation of nuclear fuel, a distribution pipe connected to the second hopper, and a plurality of columnars for receiving the nuclear fuel distributed by the distribution pipe Container
  • the nuclear fuel precise dosing device includes a balance having a bottom suspension function, a weighing hopper suspended at a bottom of the balance, and a vibrating feeder for adding nuclear fuel to the weighing hopper and capable of storing nuclear fuel;
  • the bottom of the columnar container is provided with a pipe through which the nuclear fuel in the cylindrical container rotated into position is conveyed to the weighing hopper through the rotation of the plurality of columnar containers.
  • the material tank station conveying device comprises an infrared positioning sensor, a motor-driven chain and a plurality of material tanks mounted on the chain; the infrared positioning sensor is configured to determine whether the tank ports of the plurality of material tanks are Corresponding to the delivery port of the core ball base powder quantitative conveying device, the discharge port of the weighing hopper of the nuclear fuel precise quantitative device, the primary stirring device and the discharge loading device.
  • the secondary stirring device includes a chassis for placing a core ball mold filled with the core ball base powder and the nuclear fuel, a bracket, and a rotatable stirring head mounted on the bracket; the stirring a head extending into the inner cavity of the core ball mold;
  • the stirring head drives the core ball base powder and the nuclear fuel in the core ball mold by a motor; the chassis is rotated by the motor, and the rotation direction of the chassis is The mixing head rotates in the opposite direction.
  • the core ball pressing device comprises an outer sleeve movable up and down, an upper punch fixed in the outer sleeve and a lower punch movable up and down;
  • the outer diameter of the core ball mold is respectively The inner diameter of the outer sleeve, the outer diameter of the upper punch, and the outer diameter of the lower punch are the same.
  • the fuel-free zone modeling system comprises a core ball positioning and conveying device, a core ball positioning and transferring device, a fuel-free zone base powder quantitative conveying device and a fuel-free zone molding device which are sequentially disposed;
  • the core ball positioning conveying device passes through the The core ball positioning and transferring device is connected to the fuel-free zone molding device;
  • the fuel-free zone base powder quantitative conveying device is connected to the fuel-free zone molding device;
  • the core ball positioning and transporting device and the core ball positioning and transferring device transfer the core ball to the fuel-free zone modeling device; the fuel-free zone base powder quantitative conveying device to the fuel-free zone modeling device
  • the base powder; the fuel-free zone molding device causes the base powder to wrap the core ball to form the spherical fuel element.
  • the core ball positioning and conveying device comprises a disc for positioning rotation, and a plurality of bosses for placing the core ball are evenly distributed on the disc;
  • the core ball positioning and transferring device includes a mechanical claw and a mechanical arm that drives the mechanical claw to move in a horizontal and vertical direction; the mechanical claw moves in a horizontal direction from a boss of the core ball positioning conveyor Directly above to the mold of the fuel-free zone molding device.
  • the fuel-free zone molding apparatus includes a movable chassis for placing a mold, a probe for detecting a base powder level, and a circular arc-shaped blade for molding the spherical fuel element;
  • the center of the arcuate blade is located on the vertical axis of the mold.
  • the device for forming spherical fuel element provided by the invention is distributed according to the process flow of the process flow, has compact structure, convenient operation, reasonable connection of each device, good logic relationship of equipment operation, and easy automation.
  • the spheroid of the ball after final pressure is better, only less processing margin is needed, the waste of the base graphite powder is reduced, and the cost of the fuel component is reduced.
  • the ratio of the nuclear fuel to the base powder obtained by the nuclear fuel equalizing device and the nuclear fuel particle precise positioning device is accurate, and therefore the yield of the spherical fuel element produced by the apparatus formed by the spherical fuel element of the present invention is high.
  • Figure 1 is a schematic view showing the structure of a fuel zone forming system and a fuelless zone molding system of the present invention
  • FIG. 2 is a schematic structural view of a fuel zone forming system according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing a nuclear fuel particle sharing device according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a material tank working conveyor of an embodiment of the present invention.
  • FIG. 5 is a schematic perspective structural view of a secondary stirring device according to an embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a core ball pressing device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a fuel-free zone modeling system according to an embodiment of the present invention.
  • Fig. 8 is a perspective view showing the structure of a fuel-free zone molding system according to an embodiment of the present invention.
  • a spherical fuel element molding apparatus includes: a fuel zone forming system sequentially connected, a fuelless zone molding system, and a green ball pressing system; and a fuel zone forming system for core ball powder and nuclear fuel.
  • the particles are uniformly mixed and pressed into a core ball; the fuel-free zone modeling system is used to wrap the core ball of the fuel-free base ball to form the spherical fuel element; and the green ball pressing system is used to press the spherical fuel element into a green body. ball.
  • the fuel zone forming system includes a core ball base powder quantitative conveying device, a nuclear fuel particle equalizing device 2, a nuclear fuel particle precise quantitative device 3, a primary stirring device 4, and a discharge device.
  • the mold device 5, the secondary stirring device 7 and the core ball pressing device 8; the core ball base powder quantitative conveying device 1, the nuclear fuel particle precise quantitative device 3, the primary stirring device 4 and the discharge loading device 5 pass through the material tank
  • the core transfer device 6 performs the connection; the core ball powder quantitative transfer device 1 quantitatively transports the core ball base powder to the material tank station transfer device 6; the nuclear fuel particle equalization device 2 and the nuclear fuel particles are accurately quantified
  • the device 3 accurately quantitatively transports the nuclear fuel to the material tank station conveying device 6; the material tank station conveying device 6 delivers the core ball base powder and the nuclear fuel to the primary stirring device 4; Stirring device 4 stirs the core ball base powder and the nuclear fuel uniformly; the material tank station conveying device 6 passes through the core ball base powder of the primary stirring device 4 and the core
  • the material is conveyed
  • the core ball base powder quantitative conveying device 1 comprises a first hopper for storing the core ball base powder and a screw feeder at the bottom of the hopper, and the conveying amount of the core ball base powder is passed The feed time of the screw feeder is controlled. As shown in FIG.
  • the nuclear fuel particle averaging device 2 includes a rotatable second hopper 2-1 for receiving nuclear fuel, a distribution pipe 2-2 connected to the second hopper 2-1, and a plurality of a columnar container 2-3 for receiving the nuclear fuel distributed by the distribution pipe, the plurality of columnar containers 2-3 being rotatable as a whole; preferably, the plurality of columnar containers 2-3 are 50, and are arranged On the distribution tray, the plurality of columnar containers 2-3 are rotated by the rotation of the distribution tray. As shown in FIG.
  • the nuclear fuel precise quantitative device 3 includes a balance 3-1 having a bottom suspension function, suspended from the balance a weighing hopper 3-2 at the bottom and a vibrating feeder 3-3 for adding nuclear fuel to the weighing hopper and capable of storing nuclear fuel; wherein the bottom of the cylindrical container 2-3 is provided with a pipe through The plurality of columnar containers 2-3 are rotatable, and the nuclear fuel in the cylindrical container 2-3 rotated into position is conveyed through the pipe to the weighing hopper 3-2.
  • the material tank station conveying device 6 comprises an infrared positioning sensor, a chain driven by a motor, and a plurality of material tanks 6-2 mounted on the chain; an infrared positioning sensor is used for Determining whether the cans of the plurality of material tanks 6-2 respectively correspond to the delivery ports 6-1 of the core ball powder quantitative delivery device, the discharge ports of the weighing buckets 3-2 of the nuclear fuel precise quantitative device 3, The primary stirring device 4 and the discharge molding device 5.
  • the plurality of material tanks 6-2 on the chain are transported from the delivery port 6-1 of the core ball base powder dosing device 1 and the discharge port of the weighing hopper 3-2 of the nuclear fuel precise quantitative device 3 by the motor driving the chain.
  • the mixing device 4 is first agitated, and the mixed material that has been initially stirred is transported to the discharge molding device 5.
  • the secondary stirring device 7 includes a chassis 7-1 for mounting a core ball mold 7-0 filled with the core ball base powder and the nuclear fuel, and a bracket 7- 3 and a rotatable stirring head 7-2 mounted on the bracket; the stirring head 7-2 extends into the inner cavity of the core ball mold; in operation, the stirring head 7-2 is driven by a motor The core ball base powder and the nuclear fuel in the core ball mold are stirred; the chassis 7-1 is rotatable by the motor, and the rotation direction of the chassis 7-1 and the stirring head 7- The direction of rotation of 2 is opposite.
  • the core ball pressing device 8 includes an outer sleeve 8-1 that can be moved up and down, an upper punch 8-2 fixed in the outer sleeve 8-1, and a lower punch 8-3 moving up and down; an outer diameter of the core ball mold and an inner diameter of the outer sleeve 8-1, an outer diameter of the upper punch 8-2, and the lower punch respectively
  • the outer diameter of 3 is the same.
  • the outer sleeve 8-1 can be slid up and down by the cylinder, the stroke is not more than 300 mm, and the lower punch 8-3 can be vertically slid by the hydraulic pressure, and the pressure on the punch can be 40-120 KPa.
  • the fuel-free zone modeling system includes a core ball positioning and transporting device 9, a core ball positioning and transferring device 12, a fuel-free zone base powder quantitative conveying device, and a fuel-free zone modeling device; Positioning conveyor 9 and core ball positioning transfer device 12 for transferring the core ball to the fuel-free zone modeling device; the fuel-free zone base powder dosing device for use to the incombustible
  • the material forming device transports the base powder; the fuel-free zone molding device is configured to wrap the base powder to form the spherical fuel element.
  • the core ball positioning and conveying device 9 comprises a positionally rotatable disk 9-1, and a plurality of bosses for placing the core ball are evenly distributed on the disk 9-1. 9-2; Preferably, the disk 9-1 is uniformly distributed with 12 bosses 9-2 for placing the core ball, and the positioning rotation of the disk 9-1 can be realized by the cylinder drive.
  • the core ball positioning and transferring device 12 includes a mechanical claw 12-1 and a mechanical arm 12-2 that moves the mechanical claw 12-1 in the horizontal and vertical directions; the mechanical claw 12-1 is movable in a horizontal direction to Directly above the boss 9-2 of the core ball positioning conveyor 9 and directly above the mold of the fuelless zone molding apparatus.
  • the fuel-free zone molding apparatus includes a lower hemisphere fuel-free zone molding device 11 and an upper hemisphere fuel-free zone molding device 14.
  • the fuel-free zone base powder quantitative conveying device comprises a lower hemisphere fuel-free zone base powder quantitative conveying device 10 and an upper hemisphere fuel-free zone base powder quantitative conveying device 13.
  • the mechanical claw 12-1 is located directly above the core ball positioning conveyor 9 at a position in the horizontal direction of the robot arm 12-2, and one end is located directly above the mold on the lower hemisphere fuelless zone molding device 14.
  • the device can perform the actions of grasping, lifting, horizontally moving, descending, placing, etc. of the core ball in sequence.
  • the fuel-free zone molding device comprises a movable chassis 11-1 for placing a mold, a probe for detecting a base powder level, and a circular arc scraping for shaping the spherical fuel element.
  • the sheet 11-3; the center of the circular arc-shaped blade 11-3 is located on the vertical axis of the mold.
  • the lower hemisphere fuel-free zone molding apparatus 11 includes a rotatable chassis 11-1 for placing a lower mold half mold, a bracket 11-2 that is movable up and down by a cylinder, and a vertical fixed to A circular arc blade 11-3 under the bracket, the chassis 11-1 is rotated by a motor drive.
  • a pair of probes for detecting the powder level of the base body are disposed under the moving bracket 11-2.
  • the lower hemisphere fuel-free area base powder quantitative conveying device 10 stops working while the cylinder pushes the movement.
  • the bracket is up.
  • the upper hemisphere fuel-free zone modeling device 13 may include a chassis 13-1 for placing a final mold upper mold half, and a pair of probes 13-2 for detecting a base powder level.
  • the chassis 13-1 is rotatable by a motor drive, and the probe is located at the final die filling port.
  • the upper hemisphere non-fuel zone substrate dosing device 13 stops working.
  • the upper and lower hemisphere fuel-free zone modeling devices are all four chassis, and the four chassis are evenly distributed on the turntable.
  • the four chassis can be used for the lower half-model fuel-free zone and the core ball. And cover the upper mold half, the upper mold half No fuel zone shape, mold replacement.
  • the final pressure die is finally pressed into a green ball having a diameter slightly larger than the target size by a green ball pressing system, wherein the green ball pressing system can be vacuum quasi- etc. Static pressure press.
  • the conveying chain of the material tank station conveying device transports the material tank containing the nuclear fuel particles and the graphite matrix powder to the station of the initial stirring device, and the primary stirring device stirs the nuclear fuel particles and the graphite matrix powder evenly;
  • the device for forming spherical fuel element provided by the invention is distributed according to the process flow of the process flow, has compact structure, convenient operation, reasonable connection of each device, good logic relationship of equipment operation, and easy automation.
  • the spheroid of the ball after final pressure is better, only less processing margin is needed, the waste of the base graphite powder is reduced, and the cost of the fuel component is reduced.
  • the ratio of the nuclear fuel to the base powder obtained by the nuclear fuel equalizing device and the nuclear fuel particle precise positioning device is accurate, and therefore the yield of the spherical fuel element produced by the apparatus formed by the spherical fuel element of the present invention is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种球形燃料元件成型的设备,包括:依次连接的燃料区成型系统、无燃料区造型系统和生坯球压制系统;燃料区成型系统用于将芯球基体粉与核燃料颗粒均匀混合后压制成芯球;无燃料区造型系统用于将无燃料的基体粉包裹芯球制成球形燃料元件;生坯球压制系统用于将球形燃料元件压制成生坯球。该球形燃料元件成型的设备,按照工艺流程流水线作业分布,结构紧凑、操作方便、每个装置衔接合理,设备运行有较好的逻辑关系,易于实现自动化,得到终压后的球坯的球形度较好,能够降低燃料元件成本,成品率高。

Description

一种球形燃料元件成型的设备 技术领域
本发明涉及核反应堆燃料元件制备技术领域,特别涉及一种球形燃料元件成型的设备。
背景技术
目前球床式高温气冷堆所使用的球形燃料元件直径为60mm,包括燃料区和无燃料区。球形燃料元件的整体为石墨基体,外层为厚约5mm左右的无燃料区,基本结构为无燃料的石墨球壳内填满由包覆燃料颗粒和石墨基体组成的弥散体燃料。
球形燃料元件的制备工艺包括:基体石墨粉制备、包覆颗粒穿衣、芯球压制、生坯压制、车削、碳化、高温纯化,其中生坯球燃料区和无燃料区的成型为球形元件制造工艺中核心技术。球形燃料元件成型的工艺原理包括穿衣颗粒与基体石墨粉的混合、混合物装入橡胶模具内并压制成芯球、终压模具中无燃料区的造型、最后终压得到略大于目标尺寸的生坯。但是具体如何使球形燃料元件成型,包括如何将穿衣颗粒与基体石墨粉进行混合,如何压制成芯球以及如何最终如何成型,现有技术中并没有公开。中国专利申请CN201210177503公开了一种真空准等静压压机,用于球形燃料元件生坯的压制,但是球形燃料元件成型的其他步骤包括穿衣颗粒与基体石墨粉的混合、终压模具中无燃料区的造型等过程中采用何种工艺、采用何种设备并没有公开。所以,提供一种能够降低燃料元件成本、结构紧凑且操作方便的球形燃料元件成型设备具有十分重要的意义。
发明内容
本发明所要解决的技术问题是如何提供一种结构紧凑、操作方便的球形燃料元件成型的设备。
为此目的,本发明提出了一种球形燃料元件成型的设备,包括:依次连 接的燃料区成型系统、无燃料区造型系统和生坯球压制系统;
所述燃料区成型系统用于将芯球基体粉与核燃料颗粒均匀混合后压制成芯球;
所述无燃料区造型系统用于将无燃料的基体粉包裹所述芯球制成所述球形燃料元件;
所述生坯球压制系统用于将所述球形燃料元件压制成生坯球。
优选地,所述燃料区成型系统包括依次设置的芯球基体粉定量输送装置、核燃料颗粒均分装置、核燃料颗粒精确定量装置、初次搅拌装置、卸料装模装置、二次搅拌装置和芯球压制装置;所述芯球基体粉定量输送装置、核燃料颗粒精确定量装置、初次搅拌装置和卸料装模装置之间通过物料罐工位传输装置进行连接;
所述芯球基体粉定量输送装置定量输送所述芯球基体粉至所述物料罐工位传输装置;所述核燃料颗粒均分装置和核燃料颗粒精确定量装置精确定量输送所述核燃料至所述物料罐工位传输装置;所述物料罐工位传输装置输送所述芯球基体粉和所述核燃料至所述初次搅拌装置;所述初次搅拌装置将所述芯球基体粉和所述核燃料搅拌均匀;所述物料罐工位传输装置将经过所述初次搅拌装置的所述芯球基体粉和所述核燃料输送至所述卸料装模装置;所述卸料装模装置将搅拌均匀的所述芯球基体粉和所述核燃料装满芯球模具;所述二次搅拌装置对所述芯球模具内的所述芯球基体粉和所述核燃料进行搅拌;
所述芯球压制装置将所述芯球模具内的所述芯球基体粉和所述核燃料压制成芯球。
优选地,所述芯球基体粉定量输送装置包括用于所述芯球基体粉存储的第一料斗和位于所述料斗底部的螺旋给料器,所述芯球基体粉的输送量是通过所述螺旋给料器的给料时间控制的。
优选地,所述核燃料颗粒均分装置包括用于接收核燃料的旋转的第二料斗、与所述第二料斗相连接的分配管和多个用于接收所述分配管分配的所述核燃料的柱状容器;
所述核燃料精确定量装置包括具有底部悬挂功能的天平、悬挂于所述天平的底部的称量斗和用于向所述称量斗中添加核燃料并能储存核燃料的振动给料器;
其中,所述柱状容器的底部设有管道,通过所述多个柱状容器的旋转,将旋转到位的所述柱状容器内的所述核燃料通过所述管道输送至所述称量斗。
优选地,所述物料罐工位传输装置包括红外线定位传感器、靠电机传动的链条和安装于所述链条上的若干物料罐;所述红外线定位传感器用于确定所述若干物料罐的罐口是否分别对应所述芯球基体粉定量输送装置的输送口、所述核燃料精确定量装置的称量斗的卸料口、所述初次搅拌装置和所述卸料装模装置。
优选地,所述二次搅拌装置包括用于放置装满所述芯球基体粉和所述核燃料的芯球模具的底盘、支架和安装在所述支架上的可旋转的搅拌头;所述搅拌头伸入所述芯球模具的内腔;
工作时,所述搅拌头通过电机带动对所述芯球模具内的所述芯球基体粉和所述核燃料进行搅拌;所述底盘通过所述电机带动旋转,所述底盘的旋转方向与所述搅拌头的旋转方向相反。
优选地,所述芯球压制装置包括可上下移动的外套筒、固定在所述外套筒内的上冲头和可上下移动的下冲头;所述芯球模具的外径分别与所述外套筒的内径、所述上冲头的外径和所述下冲头的外径相同。
优选地,所述无燃料区造型系统包括依次设置的芯球定位传送装置、芯球定位转移装置、无燃料区基体粉定量输送装置和无燃料区造型装置;所述芯球定位传送装置通过所述芯球定位转移装置连接所述无燃料区造型装置;所述无燃料区基体粉定量输送装置连接所述无燃料区造型装置;
所述芯球定位传送装置和所述芯球定位转移装置将所述芯球转移到所述无燃料区造型装置;所述无燃料区基体粉定量输送装置向所述无燃料区造型装置输送所述基体粉;所述无燃料区造型装置使所述基体粉包裹所述芯球制成所述球形燃料元件。
优选地,所述芯球定位传送装置包括用于定位旋转的圆盘,圆盘上均匀分布有若干用于放置所述芯球的凸台;
所述芯球定位转移装置包括一个机械爪和带动所述机械爪沿水平和垂直方向移动的机械臂;所述机械爪在水平方向的移动范围为从所述芯球定位传送装置的凸台的正上方至所述无燃料区造型装置的模具的正上方。
优选地,所述无燃料区造型装置包括用于放置模具的活动的底盘、用于探测基体粉料位的探针和用于使所述球形燃料元件成型的圆弧形刮片;所述圆弧形刮片的圆心位于所述模具的垂直轴心线上。
本发明所提供的球形燃料元件成型的设备,按照工艺流程流水线作业分布,结构紧凑、操作方便、每个装置衔接合理,设备运行有较好的逻辑关系,易于实现自动化。通过无燃料区造型系统,得到终压后的球坯的球形度较好,只需要较少的加工裕量,减少了基体石墨粉的浪费,降低了燃料元件成本。另外,通过核燃料均分装置和核燃料颗粒精确定位装置,得到的核燃料和基体粉的配比准确,因此通过采用本发明球形燃料元件成型的设备制作的球形燃料元件的成品率高。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1示出了本发明燃料区成型系统和无燃料区造型系统的结构示意图;
图2示出了本发明一种实施方式的燃料区成型系统的结构示意图;
图3示出了本发明一种实施方式的核燃料颗粒均分装置的剖视图;
图4示出了本发明一种实施方式的物料罐工作传输装置的剖视图;
图5示出了本发明一种实施方式的二次搅拌装置的立体结构示意图;
图6示出了本发明一种实施方式的芯球压制装置的剖视图;
图7示出了本发明一种实施方式的无燃料区造型系统的结构示意图;
图8示出了本发明一种实施方式的无燃料区造型系统的立体结构示意图。
具体实施方式
下面将结合附图对本发明的实施例进行详细描述。
如图1所示,一种球形燃料元件成型的设备,包括:依次连接的燃料区成型系统、无燃料区造型系统和生坯球压制系统;燃料区成型系统用于将芯球基体粉与核燃料颗粒均匀混合后压制成芯球;无燃料区造型系统用于将无燃料的基体粉包裹所述芯球制成所述球形燃料元件;生坯球压制系统用于将球形燃料元件压制成生坯球。
具体的,如图2所示,所述燃料区成型系统包括依次设置的芯球基体粉定量输送装置1、核燃料颗粒均分装置2、核燃料颗粒精确定量装置3、初次搅拌装置4、卸料装模装置5、二次搅拌装置7和芯球压制装置8;所述芯球基体粉定量输送装置1、核燃料颗粒精确定量装置3、初次搅拌装置4和卸料装模装置5之间通过物料罐工位传输装置6进行连接;所述芯球基体粉定量输送装置1定量输送所述芯球基体粉至所述物料罐工位传输装置6;所述核燃料颗粒均分装置2和核燃料颗粒精确定量装置3精确定量输送所述核燃料至所述物料罐工位传输装置6;所述物料罐工位传输装置6输送所述芯球基体粉和所述核燃料至所述初次搅拌装置4;所述初次搅拌装置4将所述芯球基体粉和所述核燃料搅拌均匀;所述物料罐工位传输装置6将经过所述初次搅拌装置4的所述芯球基体粉和所述核燃料输送至所述卸料装模装置5;所述卸料装模装置5将搅拌均匀的所述芯球基体粉和所述核燃料装满芯球模具7-0;所述二次搅拌装置7对所述芯球模具内的所述芯球基体粉和所述核燃料进行搅拌;所述芯球压制装置8将所述芯球模具内的所述芯球基体粉和所述核燃料压制成芯球。
其中较优的,芯球基体粉定量输送装置1包括用于所述芯球基体粉存储的第一料斗和位于所述料斗底部的螺旋给料器,所述芯球基体粉的输送量是通过所述螺旋给料器的给料时间控制的。如图3所示,所述核燃料颗粒均分装置2包括用于接收核燃料的可旋转的第二料斗2-1、与所述第二料斗2-1相连接的分配管2-2和多个用于接收所述分配管分配的所述核燃料的柱状容器2-3,所述多个柱状容器2-3整体可旋转;优选的,所述多个柱状容器2-3为50个,并设置在分配盘上,通过分配盘的旋转使该多个柱状容器2-3旋转。如图4所示,所述核燃料精确定量装置3包括具有底部悬挂功能的天平3-1、悬挂于所述天平 的底部的称量斗3-2和用于向所述称量斗中添加核燃料并能储存核燃料的振动给料器3-3;其中,所述柱状容器2-3的底部设有管道,通过可旋转的所述多个柱状容器2-3,将旋转到位的柱状容器2-3内的所述核燃料通过所述管道输送至所述称量斗3-2。
其中较优的,如图4所示,所述物料罐工位传输装置6包括红外线定位传感器、靠电机传动的链条和安装于所述链条上的若干物料罐6-2;红外线定位传感器用于确定所述若干物料罐6-2的罐口是否分别对应所述芯球基体粉定量输送装置的输送口6-1、所述核燃料精确定量装置3的称量斗3-2的卸料口、所述初次搅拌装置4和所述卸料装模装置5。通过电机带动链条,将链条上的若干物料罐6-2从芯球基体粉定量输送装置1的输送口6-1和所述核燃料精确定量装置3的称量斗3-2的卸料口输送到初次搅拌装置4,并将经过初次搅拌的混合物料再运送卸料装模装置5。
其中较优的,如图5所示,所述二次搅拌装置7包括用于放置装满所述芯球基体粉和所述核燃料的芯球模具7-0的底盘7-1、支架7-3和安装在所述支架上的可旋转的搅拌头7-2;所述搅拌头7-2伸入所述芯球模具的内腔;工作时,所述搅拌头7-2通过电机带动对所述芯球模具内的所述芯球基体粉和所述核燃料进行搅拌;所述底盘7-1由所述电机带动可旋转,所述底盘7-1的旋转方向与所述搅拌头7-2的旋转方向相反。
其中较优的,如图6所示,所述芯球压制装置8包括可上下移动的外套筒8-1、固定在所述外套筒8-1内的上冲头8-2和可上下移动的下冲头8-3;所述芯球模具的外径分别与所述外套筒8-1的内径、所述上冲头8-2的外径和所述下冲头8-3的外径相同。外套筒8-1可以依靠气缸实现上下滑动,行程不大于300mm,下冲头8-3可以依靠液压实现上下滑动,冲头上的压力可以为40-120KPa。
具体的,如图7所示,所述无燃料区造型系统包括芯球定位传送装置9、芯球定位转移装置12、无燃料区基体粉定量输送装置和无燃料区造型装置;所述芯球定位传送装置9和所述芯球定位转移装置12用于将所述芯球转移到所述无燃料区造型装置;所述无燃料区基体粉定量输送装置用于向所述无燃 料区造型装置输送所述基体粉;所述无燃料区造型装置用于使所述基体粉包裹所述芯球制成所述球形燃料元件。
其中较优的,如图8所示,所述芯球定位传送装置9包括可定位旋转的圆盘9-1,圆盘9-1上均匀分布有若干用于放置所述芯球的凸台9-2;优选的,圆盘9-1上均匀分布有12个用于放置芯球的凸台9-2,圆盘9-1的定位旋转可以通过气缸传动实现。所述芯球定位转移装置12包括一个机械爪12-1和带动所述机械爪12-1沿水平和垂直方向移动的机械臂12-2;所述机械爪12-1在水平方向可移动到所述芯球定位传送装置9的凸台9-2的正上方和所述无燃料区造型装置的模具的正上方。较优的,无燃料区造型装置包括下半球无燃料区造型装置11和上半球无燃料区造型装置14。所述无燃料区基体粉定量输送装置包括下半球无燃料区基体粉定量输送装置10和上半球无燃料区基体粉定量输送装置13。机械爪12-1沿机械臂12-2在水平方向上一端位于芯球定位传送装置9某个放置芯球的正上方,一端位于下半球无燃料区造型装置14上模具正上方。该装置可依次完成芯球的抓取、提升、水平移动、下降、放置等动作。
其中较优的,所述无燃料区造型装置包括用于放置模具的活动的底盘11-1、用于探测基体粉料位的探针和用于使所述球形燃料元件成型的圆弧形刮片11-3;所述圆弧形刮片11-3的圆心位于所述模具的垂直轴心线上。优选的,所述下半球无燃料区造型装置11包括一个用于放置终压模下半模模具的可旋转底盘11-1、一个依靠气缸推动可上下移动的支架11-2和一个垂直固定于支架下方的圆弧型刮片11-3,所述底盘11-1通过电机传动旋转。所述移动支架11-2下方装有一对用于探测基体粉料位的探针,当基体粉到达探针位置,所述下半球无燃料区基体粉定量输送装置10停止工作,同时气缸推动移动支架上行。优选的,所述上半球无燃料区造型装置13可以包括一个用于放置终压模上半模模具的底盘13-1、一对用于探测基体粉料位的探针13-2,所述底盘13-1通过电机传动可旋转,所述探针位于终压模加粉口处,当基体粉到达探针位置,所述上半球无燃料区基体粉定量输送装置13停止工作。优选的,所述上、下半球无燃料区造型装置均可以是4个底盘,4个底盘均匀分布在转盘上,其中,4个底盘可以分别用于下半模无燃料区造型、放置芯球并加盖上半模、上半模 无燃料区造型、模具更替。
经过无燃料造型系统造型后的终压模具最后通过生坯球压制系统,在不小于300MPa的压力下压制成直径略大于目标尺寸的生坯球,其中,生坯球压制系统可以是真空准等静压压机。
采用上述球形燃料元件成型的设备进行球形燃料元件造型及生坯球压制的过程如下:
S1:将一批石墨作为芯球基体粉和无燃料区基体粉分别装入芯球基体粉定量输送装置的第一料斗和无燃料区基体粉定量输送装置中;
S2:当物料罐工位传输装置上的物料罐位于螺旋给料器的正下方时,一定量的石墨基体粉就自动加入物料罐内;
S3:将含250gU的核燃料颗粒的重量的98%倒入核燃料颗粒均分装置的第二料斗中,将其分成50等份,存储在柱状容器中;剩余2%的核燃料颗粒加入振动给料器中,通过柱状容器的旋转,将柱状容器内的核燃料颗粒流入天平底部悬挂的称量斗中,需要微调的量通过振动给料器加入;
S4:当物料罐工位传输装置的传送链条上的物料罐运行到称量斗正下方时,称量斗中的核燃料颗粒加入以及装有定量石墨基体粉的物料罐中;
S5:物料罐工位传输装置的传送链条将装有核燃料颗粒和石墨基体粉的物料罐运送到初次搅拌装置的工位,初次搅拌装置将核燃料颗粒和石墨基体粉搅拌均匀;
S6:物料罐工位传输装置的传送链条又将搅拌后核燃料颗粒和石墨基体粉运送至卸料装模装置,卸料装模装置将搅拌后的核燃料颗粒和石墨基体粉装满芯球模具中;
S7:将装满物料的芯球模具放置到二次搅拌装置上进行搅拌;
S8:将装满物料的芯球模具放在芯球压制装置上,压制成芯球,并将压制后的芯球放在芯球定位传送装置的凸台上;
S9:启动无燃料区造型装置,无燃料区造型装置的转盘转90度,带动圆盘上的底盘运动,使底盘内的下半模模具进行下一工位,定量的石墨基体粉通过下半球无燃料区基体粉定量输送装置输送至下半模模具内;
S10:启动芯球定位转移装置,机械臂控制机械爪将预压得到的芯球放入装有石墨基体粉的下半模模具中,芯球处于模腔中间位置;
S11:盖上上半模模具,启动无燃料区造型装置的转盘再转90度,使模具进行下一工位,上半球无燃料区基体粉定量输送装置向模具模腔内注入定量的石墨基体粉;
S12:之后从无燃料区造型装置的转盘上取下模具,放入真空准等静压压机上进行压制成生坯球。
本发明所提供的球形燃料元件成型的设备,按照工艺流程流水线作业分布,结构紧凑、操作方便、每个装置衔接合理,设备运行有较好的逻辑关系,易于实现自动化。通过无燃料区造型系统,得到终压后的球坯的球形度较好,只需要较少的加工裕量,减少了基体石墨粉的浪费,降低了燃料元件成本。另外,通过核燃料均分装置和核燃料颗粒精确定位装置,得到的核燃料和基体粉的配比准确,因此通过采用本发明球形燃料元件成型的设备制作的球形燃料元件的成品率高。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种球形燃料元件成型的设备,其特征在于,包括:依次连接的燃料区成型系统、无燃料区造型系统和生坯球压制系统;
    所述燃料区成型系统用于将芯球基体粉与核燃料颗粒均匀混合后压制成芯球;
    所述无燃料区造型系统用于将无燃料的基体粉包裹所述芯球制成所述球形燃料元件;
    所述生坯球压制系统用于将所述球形燃料元件压制成生坯球。
  2. 根据权利要求1所述的一种球形燃料元件成型的设备,其特征在于,所述燃料区成型系统包括依次设置的芯球基体粉定量输送装置(1)、核燃料颗粒均分装置(2)、核燃料颗粒精确定量装置(3)、初次搅拌装置(4)、卸料装模装置(5)、二次搅拌装置(7)和芯球压制装置(8);所述芯球基体粉定量输送装置(1)、核燃料颗粒精确定量装置(3)、初次搅拌装置(4)和卸料装模装置(5)之间通过物料罐工位传输装置(6)进行连接;
    所述芯球基体粉定量输送装置(1)定量输送所述芯球基体粉至所述物料罐工位传输装置(6);所述核燃料颗粒均分装置(2)和核燃料颗粒精确定量装置(3)精确定量输送所述核燃料至所述物料罐工位传输装置(6);所述物料罐工位传输装置(6)输送所述芯球基体粉和所述核燃料至所述初次搅拌装置(4);所述初次搅拌装置(4)将所述芯球基体粉和所述核燃料搅拌均匀;所述物料罐工位传输装置(6)将经过所述初次搅拌装置(4)的所述芯球基体粉和所述核燃料输送至所述卸料装模装置(5);所述卸料装模装置(5)将搅拌均匀的所述芯球基体粉和所述核燃料装满芯球模具;所述二次搅拌装置(7)对所述芯球模具内的所述芯球基体粉和所述核燃料进行搅拌;
    所述芯球压制装置(8)将所述芯球模具内的所述芯球基体粉和所述核燃料压制成芯球。
  3. 根据权利要求2所述的一种球形燃料元件成型的设备,其特征在于,所述芯球基体粉定量输送装置(1)包括用于所述芯球基体粉存储的第一料斗 和位于所述料斗底部的螺旋给料器,所述芯球基体粉的输送量是通过所述螺旋给料器的给料时间控制的。
  4. 根据权利要求2所述的一种球形燃料元件成型的设备,其特征在于,所述核燃料颗粒均分装置(2)包括用于接收核燃料的旋转的第二料斗(2-1)、与所述第二料斗(2-1)相连接的分配管(2-2)和多个用于接收所述分配管(2-2)分配的所述核燃料的柱状容器(2-3);
    所述核燃料精确定量装置(3)包括具有底部悬挂功能的天平(3-1)、悬挂于所述天平的底部的称量斗(3-2)和用于向所述称量斗(3-2)中添加核燃料并能储存核燃料的振动给料器(3-3);
    其中,所述柱状容器(2-3)的底部设有管道,通过所述多个柱状容器(2-3)的旋转,将旋转到位的所述柱状容器(2-3)内的所述核燃料通过所述管道输送至所述称量斗(3-2)。
  5. 根据权利要求2所述的一种球形燃料元件成型的设备,其特征在于,所述物料罐工位传输装置(6)包括红外线定位传感器、靠电机传动的链条和安装于所述链条上的若干物料罐(6-2);所述红外线定位传感器用于确定所述若干物料罐(6-2)的罐口是否分别对应所述芯球基体粉定量输送装置(1)的输送口、所述核燃料精确定量装置(3)的称量斗(3-2)的卸料口、所述初次搅拌装置(4)和所述卸料装模装置(5)。
  6. 根据权利要求2所述的一种球形燃料元件成型的设备,其特征在于,
    所述二次搅拌装置(7)包括用于放置装满所述芯球基体粉和所述核燃料的芯球模具(7-0)的底盘(7-1)、支架(7-3)和安装在所述支架上的可旋转的搅拌头(7-2);所述搅拌头(7-2)伸入所述芯球模具(7-0)的内腔;
    工作时,所述搅拌头(7-2)通过电机带动对所述芯球模具(7-0)内的所述芯球基体粉和所述核燃料进行搅拌;所述底盘(7-1)通过所述电机带动旋转,所述底盘(7-1)的旋转方向与所述搅拌头(7-2)的旋转方向相反。
  7. 根据权利要求2所述的一种球形燃料元件成型的设备,其特征在于,所述芯球压制装置(8)包括可上下移动的外套筒(8-1)、固定在所述外套筒(8-1)内的上冲头(8-2)和可上下移动的下冲头(8-3);所述芯球模具(7-0) 的外径分别与所述外套筒(8-1)的内径、所述上冲头(8-2)的外径和所述下冲头(8-3)的外径相同。
  8. 根据权利要求1-7任意一项所述的一种球形燃料元件成型的设备,其特征在于,所述无燃料区造型系统包括依次设置的芯球定位传送装置(9)、芯球定位转移装置(12)、无燃料区基体粉定量输送装置和无燃料区造型装置;所述芯球定位传送装置通过所述芯球定位转移装置连接所述无燃料区造型装置;所述无燃料区基体粉定量输送装置连接所述无燃料区造型装置;
    所述芯球定位传送装置(9)和所述芯球定位转移装置(12)将所述芯球转移到所述无燃料区造型装置;所述无燃料区基体粉定量输送装置向所述无燃料区造型装置输送所述基体粉;所述无燃料区造型装置使所述基体粉包裹所述芯球制成所述球形燃料元件。
  9. 根据权利要求8所述的一种球形燃料元件成型的设备,其特征在于,
    所述芯球定位传送装置(9)包括用于定位旋转的圆盘(9-1),圆盘(9-1)上均匀分布有若干用于放置所述芯球的凸台(9-2);
    所述芯球定位转移装置(12)包括一个机械爪(12-1)和带动所述机械爪(12-1)沿水平和垂直方向移动的机械臂(12-2);所述机械爪(12-1)在水平方向的移动范围为从所述芯球定位传送装置(9)的凸台(9-2)的正上方至所述无燃料区造型装置的模具的正上方。
  10. 根据权利要求8所述的一种球形燃料元件成型的设备,其特征在于,所述无燃料区造型装置包括用于放置模具的活动的底盘、用于探测基体粉料位的探针和用于使所述球形燃料元件成型的圆弧形刮片;所述圆弧形刮片的圆心位于所述模具的垂直轴心线上。
PCT/CN2016/071573 2016-01-21 2016-01-21 一种球形燃料元件成型的设备 WO2017124372A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US15/768,676 US20180315514A1 (en) 2016-01-21 2016-01-21 Spherical fuel element forming apparatus
CA2999588A CA2999588C (en) 2016-01-21 2016-01-21 Spherical fuel element forming apparatus
EP16885645.8A EP3407359B1 (en) 2016-01-21 2016-01-21 Spherical fuel element forming apparatus
PCT/CN2016/071573 WO2017124372A1 (zh) 2016-01-21 2016-01-21 一种球形燃料元件成型的设备
RU2018111974A RU2689333C1 (ru) 2016-01-21 2016-01-21 Устройство формирования сферического топливного элемента
BR112018013396-5A BR112018013396B1 (pt) 2016-01-21 2016-01-21 Aparelho de formação de elemento combustível esférico
JP2018516001A JP6611925B2 (ja) 2016-01-21 2016-01-21 球状燃料素子成形設備
HUE16885645A HUE064574T2 (hu) 2016-01-21 2016-01-21 Berendezés gömb alakú tüzelõanyag-elem kialakítására
PL16885645.8T PL3407359T3 (pl) 2016-01-21 2016-01-21 Instalacja do formowania elementu paliwowego
KR1020187008200A KR102088461B1 (ko) 2016-01-21 2016-01-21 구형 연료소자 성형장치
SA518391202A SA518391202B1 (ar) 2016-01-21 2018-03-26 جهاز تكوين عنصر وقود كروي
ZA2018/03322A ZA201803322B (en) 2016-01-21 2018-05-17 Spherical fuel element forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071573 WO2017124372A1 (zh) 2016-01-21 2016-01-21 一种球形燃料元件成型的设备

Publications (1)

Publication Number Publication Date
WO2017124372A1 true WO2017124372A1 (zh) 2017-07-27

Family

ID=59361176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071573 WO2017124372A1 (zh) 2016-01-21 2016-01-21 一种球形燃料元件成型的设备

Country Status (12)

Country Link
US (1) US20180315514A1 (zh)
EP (1) EP3407359B1 (zh)
JP (1) JP6611925B2 (zh)
KR (1) KR102088461B1 (zh)
BR (1) BR112018013396B1 (zh)
CA (1) CA2999588C (zh)
HU (1) HUE064574T2 (zh)
PL (1) PL3407359T3 (zh)
RU (1) RU2689333C1 (zh)
SA (1) SA518391202B1 (zh)
WO (1) WO2017124372A1 (zh)
ZA (1) ZA201803322B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278337A (zh) * 2018-10-09 2019-01-29 合肥合锻智能制造股份有限公司 一种核燃料预压成形液压机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108320821B (zh) * 2017-12-27 2019-09-17 中核北方核燃料元件有限公司 一种球形燃料元件压制自动上下料装置
CN113125311B (zh) * 2019-12-31 2022-11-22 中核四0四有限公司 一种mox混合颗粒的检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047120A1 (de) * 2002-11-15 2004-06-03 Ald Vacuum Technologies Aktiengesellschaft Automatisiertes produktionsverfahren zur herstellung von kugelförmigen graphit-brenn-und absorberelementen für hochtemperatur-kernreaktoren (htr)
CN101573765A (zh) * 2006-12-12 2009-11-04 法国原子能委员会 制造核燃料元件的方法和用于实施这种方法的容器
CN102280152A (zh) * 2011-05-12 2011-12-14 清华大学 制备二氧化铀陶瓷燃料微球的方法
CN102689450A (zh) * 2012-05-31 2012-09-26 清华大学 准等静压真空液压机
CN104496487A (zh) * 2014-12-19 2015-04-08 清华大学 核壳结构的双层陶瓷微球及其制备方法
CN105185418A (zh) * 2015-09-08 2015-12-23 清华大学 一种全陶瓷型包覆燃料颗粒及其制备方法、燃料元件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1977173A (en) * 1932-04-11 1934-10-16 Costa William Mario Electrolytic production of powdered metals
US2316562A (en) * 1939-12-05 1943-04-13 Us Rubber Co Mixing and whipping apparatus
US2454362A (en) * 1942-04-21 1948-11-23 Westinghouse Electric Corp Autoamtic molding press
US2842330A (en) * 1956-12-27 1958-07-08 Bemis Bro Bag Co Magnetic lock for scale beams and the like
US3848726A (en) * 1973-05-02 1974-11-19 Koppers Gmbh Heinrich Apparatus for transferring pallets between the upper and lower reaches of an endless conveyor system
DE2654536C2 (de) * 1976-12-02 1978-10-19 Hobeg Hochtemperaturreaktor-Brennelement Gmbh, 6450 Hanau Verfahren zur Herstellung von kugelförmigen Brennelementen für Hochtemperatur-Reaktoren
US4127054A (en) * 1977-10-26 1978-11-28 Remington Arms Company, Inc. Powder level inspection system with magnetic latching device
DE3905535C1 (zh) * 1989-02-23 1990-03-15 Signode System Gmbh, 4220 Dinslaken, De
RU2080663C1 (ru) * 1992-05-27 1997-05-27 Российский научный центр "Курчатовский институт" Шаровой тепловыделяющий элемент ядерного реактора
DE19837989C2 (de) * 1998-08-21 2000-12-21 Andrea Hrovat Verfahren zur Herstellung von Brennelementen, Absorberelementen und Brennstoffkörpern für Hochtemperaturreaktoren
JP2007147450A (ja) * 2005-11-28 2007-06-14 Nuclear Fuel Ind Ltd ペブルベッド型燃料の製造方法
JP4451380B2 (ja) * 2005-11-28 2010-04-14 原子燃料工業株式会社 被覆燃料粒子のオーバコート方法とオーバコート装置
JP2007171099A (ja) * 2005-12-26 2007-07-05 Nuclear Fuel Ind Ltd 球形燃料製造用モールド
RU2307406C1 (ru) * 2006-04-12 2007-09-27 Федеральное государственное унитарное предприятие Научно-исследовательский институт Научно-производственное объединение "Луч" Топливный элемент исследовательского ядерного реактора
DE102006040309B4 (de) * 2006-08-29 2009-04-16 Ald Vacuum Technologies Gmbh Kugelförmiges Brennelement und dessen Herstellung für gasgekühlte Hochtemperatur-Kugelhaufen-Kernreaktoren (HTR)
US20080240334A1 (en) * 2007-03-30 2008-10-02 Battelle Memorial Institute Fuel elements for nuclear reactor system
DE102008055468B4 (de) * 2008-12-01 2010-09-02 Nukem Technologies Gmbh Verfahren und Anordnung zur Herstellung von Brennstoffkernen
EP2723662B1 (en) * 2011-12-28 2018-02-07 Alliance Machine Systems International, LLC Apparatus and method for stacking items

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047120A1 (de) * 2002-11-15 2004-06-03 Ald Vacuum Technologies Aktiengesellschaft Automatisiertes produktionsverfahren zur herstellung von kugelförmigen graphit-brenn-und absorberelementen für hochtemperatur-kernreaktoren (htr)
CN101573765A (zh) * 2006-12-12 2009-11-04 法国原子能委员会 制造核燃料元件的方法和用于实施这种方法的容器
CN102280152A (zh) * 2011-05-12 2011-12-14 清华大学 制备二氧化铀陶瓷燃料微球的方法
CN102689450A (zh) * 2012-05-31 2012-09-26 清华大学 准等静压真空液压机
CN104496487A (zh) * 2014-12-19 2015-04-08 清华大学 核壳结构的双层陶瓷微球及其制备方法
CN105185418A (zh) * 2015-09-08 2015-12-23 清华大学 一种全陶瓷型包覆燃料颗粒及其制备方法、燃料元件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278337A (zh) * 2018-10-09 2019-01-29 合肥合锻智能制造股份有限公司 一种核燃料预压成形液压机
CN109278337B (zh) * 2018-10-09 2020-11-10 合肥合锻智能制造股份有限公司 一种核燃料预压成形液压机

Also Published As

Publication number Publication date
KR102088461B1 (ko) 2020-03-12
KR20180068961A (ko) 2018-06-22
JP6611925B2 (ja) 2019-11-27
HUE064574T2 (hu) 2024-03-28
RU2689333C1 (ru) 2019-05-27
EP3407359B1 (en) 2023-09-20
BR112018013396B1 (pt) 2022-09-13
BR112018013396A2 (zh) 2018-12-04
CA2999588A1 (en) 2017-07-27
US20180315514A1 (en) 2018-11-01
SA518391202B1 (ar) 2022-04-19
EP3407359A1 (en) 2018-11-28
ZA201803322B (en) 2019-08-28
EP3407359A4 (en) 2019-10-02
PL3407359T3 (pl) 2024-03-11
JP2018534556A (ja) 2018-11-22
CA2999588C (en) 2021-05-04

Similar Documents

Publication Publication Date Title
CN105679387B (zh) 一种球形燃料元件成型的设备
JP4745867B2 (ja) レーザ焼結用粉末回収システム
WO2017124372A1 (zh) 一种球形燃料元件成型的设备
CN111974239A (zh) 一种颗粒物料混批装置
CN110548449A (zh) 一种用于粉体材料混制的连续均匀混料装置
CN207401389U (zh) 饲料混合配料站
JPH11132833A (ja) 粉粒体の計量供給装置
CN211415589U (zh) 一种用于不定形耐火材料的加压定型装置
CN207894685U (zh) 一种自动化制灰锥装置
US5035597A (en) Apparatus for manufacturing multi-element sintered material
CN203349908U (zh) 一种吸料式传送带称重机
CN206954676U (zh) 一种肥料生产定量输送设备
JP2002086438A (ja) レンガ成形機への原料供給装置
CN207415749U (zh) 塑化系统
CN218590306U (zh) 一种糖果浇注机自动配料计量装置
CN211189922U (zh) 一种包装装潢印刷用原料配比配料装置
CN214765118U (zh) 粘合剂配制装置
CN220350197U (zh) 一种混合包装生产线
CN217594529U (zh) 一种熔融陶瓷覆膜再生砂级配装置
CN217625320U (zh) 一种高精度称量系统
CN111640523B (zh) 一种模腔定量加粉设备
CN221477607U (zh) 一种水产药物的自动定量投送设备
CN214086741U (zh) 一种工程陶瓷原料全自动配料系统
CN212915540U (zh) 一种高温耐磨涂料生产用自动配料混料装置
CN213153776U (zh) 一种双工位自动称重蒸茶机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2999588

Country of ref document: CA

Ref document number: 20187008200

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018516001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2018/0202.1

Country of ref document: KZ

WWE Wipo information: entry into national phase

Ref document number: 15768676

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018013396

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016885645

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016885645

Country of ref document: EP

Effective date: 20180821

ENP Entry into the national phase

Ref document number: 112018013396

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180628