WO2017123038A1 - 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 약학 조성물 - Google Patents

피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 약학 조성물 Download PDF

Info

Publication number
WO2017123038A1
WO2017123038A1 PCT/KR2017/000457 KR2017000457W WO2017123038A1 WO 2017123038 A1 WO2017123038 A1 WO 2017123038A1 KR 2017000457 W KR2017000457 W KR 2017000457W WO 2017123038 A1 WO2017123038 A1 WO 2017123038A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbon atoms
compound
mmol
substituted
Prior art date
Application number
PCT/KR2017/000457
Other languages
English (en)
French (fr)
Inventor
정병선
김정애
남태규
Original Assignee
영남대학교 산학협력단
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단, 한양대학교 에리카산학협력단 filed Critical 영남대학교 산학협력단
Priority to JP2018536728A priority Critical patent/JP6680888B2/ja
Priority to EP17738667.9A priority patent/EP3404020B1/en
Priority to US16/070,279 priority patent/US10604487B2/en
Publication of WO2017123038A1 publication Critical patent/WO2017123038A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/69Two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/76Nitrogen atoms to which a second hetero atom is attached

Abstract

본 발명은 피리딘올 유도체 또는 이의 약제학적 허용가능한 염을 유효성분으로 함유하는 염증성 장질환의 예방 또는 치료용 약학조성물에 관한 것으로, 화학식 1로 표시되는 피리딘올 유도체 또는 이의 약제학적 허용가능한 염은 염증성 장질환 모델에서의 대장염 억제 효과가 탁월하여, 염증성 장질환의 예방 또는 치료용 약제로서 유용하게 사용될 수 있다.

Description

피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 약학 조성물
본 발명은 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 염증성 장질환의 예방 또는 치료용 약학조성물에 관한 것이다.
염증성 장질환(Inflammatory bowel disease, IBD)은 임상적으로 유사하면서도, 조직학적 소견과 내시경 및 면역학적 측면에서 서로 다른 궤양성 대장염 및 크론병의 두 가지 질환으로 분류된다. 이러한 IBD는 염증세포의 활성화가 중요한 병인인 것으로 알려져 있다.
장면역계의 지속적이거나 부적절한 활성화는 만성 점막성 염증의 병리생리에 중요한 역할을 하며, 특히 호중구, 대식세포, 림프구 및 비만세포의 침윤에 의해 결국 점막 파괴 및 궤양을 초래한다. 침윤되고 활성화된 호중구는 활성산소질소종의 중요한 원인이 되며, 이러한 활성종은 세포독성 물질로서 가교 단백질, 지질 및 핵산에 의해 세포성 산화 스트레스를 유도하고 상피성 기능장애 및 손상을 초래한다.
염증성 질환이 있으면 장관의 점막에서 다양한 염증성 사이토카인들이 분비된다. TNF-α는 궤양성 대장염 환자의 대장 루멘과 대장 상피세포에서 높게 나타난다. 최근 연구에 의하면, TNF-α는 궤양성 대장염의 병인으로 중요한 역할을 한다고 알려졌다. 항-TNF-α 항체인 인플릭시맵(infliximab)은 종기의 치료뿐 아니라, 기존에 치료되지 않던 크론병의 치료에 효과적이라고 알려졌다. 그러나, 이러한 치료법은 비용이 많이 들고, 일부 환자에게서는 수액 반응 또는 전염성 합병증과 같은 부작용이 야기된다.
단핵구 화학주성 단백질-1(monocyte chemoattractant protein-1; MCP-1)은 C-C 케모카인 패밀리 중 14kDa으로서, 염증부위에서 주로 단핵구/대식세포를 동원하고 활성화시킨다. MCP-1은 대장의 상피세포에 국재되며 이의 발현이 염증성 장질환의 점막에서 단핵구 침윤과 관련된다는 보고가 있다. 다른 케모카인과는 달리 MCP-1은 단지 CCR2에만 결합하므로, MCP-1/CCR2 결합이 단핵구 동원의 주요한 조절자이며 IBD에서 중요한 역할을 수행하는 것으로 알려져 있다.
또한, IBD를 지닌 환자의 점막에서는 유의성 있게 인터루킨-8(IL-8)이 상승하고, 모세혈관 신생을 촉진하는 것으로 알려져 있다. 대장에서의 염증이 심할수록 IL-8의 발현이 증가하며, 설치류를 이용한 동물실험 모델에서 IL-8 특이적 항체가 장염증을 감소시킨다는 것이 알려졌다. 이때, 세포내 Ca2+의 변화가 IL-8 유도의 중요한 요소로 작용한다.
현재 염증성 장질환 치료제로는 프로스타글란딘(prostaglandins)의 생성을 차단하는 5-아미노살리실산(5-aminosalicylic acid; 5-ASA) 계통 약물 예를 들어, 설파살라진 등을 이용하거나, 스테로이드류의 면역억제제를 사용하고 있다.
설파살라진은 복부허실(fullness), 두통, 발진, 간질환, 백혈구 감소증, 무과립구증, 남성 불임 등과 같은 부작용 또는 역효과를 일으키기 쉽다. 또한, 설파살라진이 장의 환부를 절개한 환자 또는 차도가 있는 환자에게 충분한 재발 억제 효과가 있는지는 불분명하다.
스테로이드류의 면역억제제는 부신피질 스테로이드로서, 단기적인 효과는 인정받고 있지만, 장기적인 예후를 향상시킬 수는 없다. 또한, 유도된 감염성 질환, 2차 부신피질 부전증, 소화성 궤양, 당뇨병, 정신장애, 스테로이드성 신장병 등과 같은 부작용의 측면에서 단지 급성인 경우에만 사용되어야 하는 한계가 있다.
즉, 아직까지 염증성 장질환에 대해 신뢰할 만한 경구용 치료요법이 없으므로, 이러한 질환에 대해 효과적이고 저 비용의 경구용인 치료제의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
1. 한국등록특허 제1103426
이에, 본 발명자들은 특정 구조의 피리딘올 유도체 또는 이의 약제학적 허용가능한 염이 우수한 염증성 장질환 치료 효과를 가짐을 확인함으로써, 본 발명을 완성하였다.
따라서, 본 발명의 목적은 피리딘올 유도체 또는 이의 약제학적 허용가능한 염을 유효성분으로 함유하는 염증성 장질환의 예방 또는 치료를 위한 약학조성물을 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적 허용가능한 염을 제공한다.
[화학식 1]
Figure PCTKR2017000457-appb-I000001
상기 화학식 1에서,
R2, R3 및 R4는 각각 독립적으로 탄소수 1 내지 8의 알킬이고,
R5는 수소; 할로겐; 탄소수 1 내지 8의 알킬; -Si(R6)3; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹으로부터 선택된 어느 하나이며,
상기 R5의 탄소수 1 내지 8의 알킬 또는 탄소수 6 내지 18의 아릴은 각각 독립적으로 탄소수 1 내지 8의 알킬 또는 탄소수 6 내지 18의 아릴로 치환 또는 비치환되고,
상기 R6은 수소, 탄소수 1 내지 8의 알킬; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 어느 하나이며,
R1은 수소; 설포닐; 카보닐; 탄소수 1 내지 12의 알킬; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 어느 하나이고,
상기 R1의 설포닐 또는 카보닐은 각각 독립적으로 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 및 탄소수 1 내지 8의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되며,
상기 R1의 탄소수 1 내지 12의 알킬 또는 탄소수 6 내지 18의 아릴은 각각 독립적으로 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알콕시; 및 탄소수 1 내지 8의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되고,
L은 -O- 또는 하기 화학식 2 또는 3으로 표시되는 연결기를 나타내며,
[화학식 2]
Figure PCTKR2017000457-appb-I000002
[화학식 3]
Figure PCTKR2017000457-appb-I000003
상기 화학식 2에서 Q는 O 또는 S이고, P는 -NH- 또는 -O-이며,
상기 화학식 3에서 Z는 단일결합 또는 -NH-이다.
본 발명에 따른 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염은 염증성 장질환 모델에서 대장염을 억제하므로, 염증성 장질환의 예방 또는 치료를 위한 약제로서 유용하게 사용될 수 있다.
이하, 본 발명의 구성을 구체적으로 설명한다.
본 발명은 하기 화학식 1로 표시되는 화합물(이하, 화학식 1의 화합물) 또는 이의 약제학적 허용가능한 염을 제공한다.
[화학식 1]
Figure PCTKR2017000457-appb-I000004
상기 화학식 1에서,
R2, R3 및 R4는 각각 독립적으로 탄소수 1 내지 8의 알킬이고,
R5는 수소; 할로겐; 탄소수 1 내지 8의 알킬; -Si(R6)3; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹으로부터 선택된 어느 하나이며,
상기 R5의 탄소수 1 내지 8의 알킬 또는 탄소수 6 내지 18의 아릴은 각각 독립적으로 탄소수 1 내지 8의 알킬 또는 탄소수 6 내지 18의 아릴로 치환 또는 비치환되고,
상기 R6은 수소, 탄소수 1 내지 8의 알킬; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 어느 하나이며,
R1은 수소; 설포닐; 카보닐; 탄소수 1 내지 12의 알킬; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 어느 하나이고,
상기 R1의 설포닐 또는 카보닐은 각각 독립적으로 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 및 탄소수 1 내지 8의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되며,
상기 R1의 탄소수 1 내지 12의 알킬 또는 탄소수 6 내지 18의 아릴은 각각 독립적으로 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알콕시; 및 탄소수 1 내지 8의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되고,
L은 -O- 또는 하기 화학식 2 또는 3으로 표시되는 연결기를 나타내며,
[화학식 2]
Figure PCTKR2017000457-appb-I000005
[화학식 3]
Figure PCTKR2017000457-appb-I000006
상기 화학식 2에서 Q는 O 또는 S이고, P는 -NH- 또는 -O-이며,
상기 화학식 3에서 Z는 단일결합 또는 -NH-일 수 있다.
본 발명에서 화학식 1의 화합물은 피리딘올 유도체라 명명할 수 있다.
또한, 본 발명의 화합물의 치환체 정의에 사용된 용어는 하기와 같다.
"알킬"은 다른 기재가 없는 한 명시된 수의 탄소원자를 갖는 직쇄, 분지쇄 또는 고리형의 포화 탄화수소를 가리킨다.
“할로겐”은 플루오로(F), 클로로(Cl), 브로모(Br) 또는 요오도(I)를 나타낸다.
“아릴”은 다른 기재가 없는 한, 각각 5원 및 6원의 일환의 방향족 기를 포함하는 일가 및 이가 방향족기를 나타낸다.
또한, 화학식에서 "Bn"은 벤질을 나타내며, "TBDPS"는 터트-부틸디페닐실릴을 나타내고, Me는 메틸을 나타낸다.
"약학 조성물(pharmaceutical composition)"은 생리학적/약학적으로 허용가능한 운반체 및 부형제와 같은 다른 화학 성분과 함께, 본 발명에 따른 화합물 또는 생리학적/약학적으로 허용가능한 염들 또는 이들의 전구약물의 혼합물을 말한다. 약학 조성물의 목적은 화합물을 생물체에 용이하게 투여하는 것이다.
화학식 1의 화합물은 전구약물로 작용할 수 있다. "전구약물"은 체내에서 모 약물(parent drug)로 전환되는 물질을 말한다. 전구약물은 몇 가지 경우 모 약물보다 투여하기가 쉽기 때문에, 종종 유용하다. 예를 들면, 모 약물이 경구 투여시 생체이용가능(bioavailable)하지 아니하더라도, 전구약물은 경구 투여시 생체이용 가능할 수 있다. 또한, 전구약물은 약학 조성물에서 모 약물보다 개선된 용해도를 나타낼 수 있다.
"생리적/약학적으로 허용가능한 운반체"는 생물에 유의성 있는 자극을 야기하지 아니하고, 투여된 화합물의 생물학적 활성 및 특성을 제거하지 아니하는 운반체 또는 희석제를 말한다.
"생리적/약학적으로 허용가능한 부형제"는 화합물의 투여를 보다 용이하게 하기 위하여 첨가되는 안정한 물질을 말한다. 부형제의 예로는 칼슘 카보네이트, 칼슘 포스페이트, 다양한 당 및 전분 종류들, 셀룰로스 유도체들, 젤라틴, 식물성 기름 및 폴리에틸렌 글리콜을 등을 들 수 있다.
"치료하다(treat)", "치료하는 것(treating)" 및 "치료(treatment)"는 본 발명에 따른 질환 또는 이에 수반되는 증상들을 경감 또는 제거하는 방법을 말한다.
"생물체(Organism)"는 적어도 하나 이상의 세포로 이루어진 모든 살아있는 것을 의미한다. 살아 있는 생물체는 진핵 단세포 정도로 간단한 것이나, 인간을 포함한 포유동물로 복잡한 것일 수 있다.
"치료 유효량(Therapeutically effective amount)"은 치료되는 질환의 하나 또는 그 이상의 증상을 어느 정도까지 경감시키는 투여 화합물의 양을 말한다.
본 발명의 일 구체예에서 R2, R3 및 R4는 각각 독립적으로 탄소수 1 내지 4의 알킬이고,
R5는 수소; 탄소수 6 내지 12의 아릴로 치환되거나 비치환된 탄소수 1 내지 4의 알킬; 및 -Si(R6)3로 이루어진 그룹으로부터 선택된 어느 하나이며,
R6은 탄소수 1 내지 6의 알킬 또는 탄소수 6 내지 12의 아릴이고,
L은 -O-, -NH-C(O)-NH-, -NH-C(S)-NH-, -NH-C(O)-O-, -NH-S(O)2-NH- 또는 -NH-S(O)2-일 수 있다.
또한, R2, R3 및 R4는 각각 독립적으로 메틸이고,
R5는 수소; 페닐로 치환되거나 비치환된 메틸; 및 -Si(R6)3로 이루어진 그룹으로부터 선택된 어느 하나이며,
R6은 부틸 또는 페닐일 수 있다.
또한, 일 구체예에서 R1은 수소; 설포닐; 카보닐; 탄소수 1 내지 10의 알킬; 및 탄소수 6 내지 12의 아릴로 이루어진 그룹에서 선택된 어느 하나이고,
상기 설포닐 또는 카보닐은 각각 독립적으로 탄소수 1 내지 4의 알킬; 및 탄소수 6 내지 12의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되며,
상기 탄소수 1 내지 10의 알킬은 할로겐; 탄소수 1 내지 4의 알콕시; 및 탄소수 1 내지 6의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 12의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되고,
상기 탄소수 6 내지 12의 아릴은 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알킬; 및 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알콕시로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환될 수 있다.
또한, 수소; 설포닐; 카보닐; 탄소수 1 내지 8의 알킬; 및 탄소수 6 내지 10의 아릴로 이루어진 그룹으로부터 선택된 어느 하나이고,
상기 설포닐 또는 카보닐은 페닐로 치환되며,
상기 탄소수 1 내지 8의 알킬은 할로겐; 메톡시; 에톡시; 프로폭시; 및 탄소수 1 내지 4의 알킬 또는 할로겐으로 치환되거나 비치환된 페닐로 이루어진 그룹으로부터 선택된 하나 이상의 치환체로 치환되거나 비치환되고,
상기 탄소수 6 내지 10의 아릴은 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알킬; 및 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알콕시로 이루어진 그룹으로부터 선택된 하나 이상의 치환체로 치환되거나 비치환될 수 있다.
또한, 일 구체예에서 R2, R3 및 R4는 각각 독립적으로 메틸이고,
R5는 수소; 페닐로 치환되거나 비치환된 메틸; 또는 페닐 및 부틸로 치환된 실릴이며,
R1은 수소; 페닐로 치환된 카보닐; 페닐로 치환된 설포닐; 클로로, 메톡시, 페닐, 클로로페닐, 및 부틸페닐로 이루어진 그룹 중에서 선택된 하나 이상의 치환체로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 또는 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 부틸, 트리플루오로메틸, 니트로, 메톡시 및 트리플루오로메톡시로 이루어진 그룹 중에서 선택된 하나 이상의 치환체로 치환되거나 비치환된 페닐 또는 나프틸일 수 있다.
보다 구체적으로, 본 발명에 따른 화합물은 하기 화학식으로 표시되는 화합물로 이루어진 군에서 선택된 어느 하나일 수 있다.
피리딘올-우레아(pyridinol-urea) 유도체는 하기 화학식으로 표시될 수 있다.
Figure PCTKR2017000457-appb-T000001
Figure PCTKR2017000457-appb-I000007
Figure PCTKR2017000457-appb-I000008
Figure PCTKR2017000457-appb-I000009
피리딘올-티오우레아(pyridinol-thiourea) 유도체는 하기 화학식으로 표시될 수 있다.
Figure PCTKR2017000457-appb-T000002
Figure PCTKR2017000457-appb-I000010
Figure PCTKR2017000457-appb-I000011
Figure PCTKR2017000457-appb-I000012
피리딘올-카바메이트(pyridinol-carbamate) 유도체는 하기 화학식으로 표시될 수 있다.
Figure PCTKR2017000457-appb-T000003
피리딘올-술폰아미드(pyridinol-sulfonamide) 유도체는 하기 화학식으로 표시될 수 있다.
Figure PCTKR2017000457-appb-T000004
피리딘올-술파미드(pyridinol-sulfamide) 유도체는 하기 화학식으로 표시될 수 있다.
Figure PCTKR2017000457-appb-T000005
또한, 피리딘올-알콕사이드(pyridinol-alkoxide) 유도체는 하기 화학식으로 표시될 수 있다.
Figure PCTKR2017000457-appb-T000006
Figure PCTKR2017000457-appb-I000013
본 발명에서 약제학적 허용가능한 염은 옥살산, 말레산, 푸마르산, 말산, 타르타르산, 시트르산 및 벤조산으로 이루어진 군에서 선택된 유기산이거나, 또는 염산, 황산, 인산 및 브롬화수소산으로 이루어진 군에서 선택된 무기산에 의해 형성되는 산부가염의 형태일 수 있다.
또한, 본 발명은 화학식 1의 화합물을 제조하는 방법을 제공한다. 상기 제조는 예를 들어,
또한, 본 발명은 하기 화학식 4의 화합물을 하기 화학식 5의 화합물 또는 하기 화학식 6의 화합물과 반응시키거나;
하기 화학식 4의 화합물을 하기 화학식 7의 화합물과 반응시켜 하기 화학식 8의 화합물을 얻고, 상기 화학식 8의 화합물과 하기 화학식 9의 화합물을 반응시키거나; 또는
하기 화학식 4의 화합물을 하기 화학식 10의 화합물로 변환하고, 상기 화학식 10의 화합물과 화학식 11의 화합물을 반응시켜 하기 화학식 1의 화합물을 제조할 수 있다.
[화학식 4]
Figure PCTKR2017000457-appb-I000014
[화학식 5]
Figure PCTKR2017000457-appb-I000015
[화학식 6]
Figure PCTKR2017000457-appb-I000016
[화학식 7]
Figure PCTKR2017000457-appb-I000017
[화학식 8]
Figure PCTKR2017000457-appb-I000018
[화학식 9]
Figure PCTKR2017000457-appb-I000019
[화학식 10]
Figure PCTKR2017000457-appb-I000020
[화학식 11]
Figure PCTKR2017000457-appb-I000021
[화학식 1]
Figure PCTKR2017000457-appb-I000022
상기 화학식 1 내지 9에서, R1 내지 R5, Q 및 L은 전술한 화합물을 사용할 수 있고, R은 카보닐 또는 설포닐을 나타내며, X는 할로겐일 수 있다.
일 구체예에서 상기 화학식 1의 화합물은 하기 반응식 1 또는 2와 같은 제조방법에 의해 제조될 수 있다.
[반응식 1]
Figure PCTKR2017000457-appb-I000023
[반응식 2]
Figure PCTKR2017000457-appb-I000024
상기 반응식 1 또는 2의 화합물은 실시예 1 내지 16에 따른 제조 방법에 의해 제조될 수 있다.
또한, 본 발명은 전술한 화합물 또는 이의 약제학적 허용가능한 염을 유효성분으로 포함하는 염증성 장질환 예방 또는 치료용 약학조성물에 관한 것이다.
본 발명에서 염증성 장질환은 궤양성 대장염, 크론병(Crohn's disease), 장관형 베체트병, 출혈성 직장 궤양 및 회장낭염(pouchitis)으로 이루어진 군에서 선택될 수 있다.
본 발명에 따른 화학식 1의 화합물 또는 이의 약제학적 허용가능한 염은 환자에게 그 자체로 투여될 수 있거나, 적당한 담체 또는 부형제와 혼합된 약학 조성물로 투여될 수 있다. 약물의 제형과 투여의 기술들은 "Remington's Pharmacological Science," Mack Publishing Co., Easton, PA, 최신판에서 찾을 수 있다.
상기 문헌에 따르면, "투여" 또는 "투여한다"는 전술한 질환의 치료 또는 예방을 위하여, 화학식 1의 화합물 또는 이의 약학적으로 허용가능한 염 또는 화학식 1의 화합물을 포함하는 약학 조성물을 생물체에 전달하는 것을 말한다.
투여의 적당한 경로는 구강, 직장, 점막 또는 장관 투여 또는 근육 내, 피하, 수질 내, 포막 내, 직접적인 심실 내, 혈관 내, 안구의 유리체내, 복막 내, 비강 내, 또는 눈으로의 주입 등일 수 있다. 상기 투여의 바람직한 경로는 구강 및 비경구 투여일 수 있다.
본 발명의 약학 조성물은 이 분야의 통상적인 혼합, 용해, 과립화, 당의정화(dragee-making), 분말화(levigating), 유제화, 캡슐화, 인트래핑(entrapping)과 동결건조 공정 등의 잘 알려진 공정으로 제조할 수 있다.
본 발명에 따른 악학 조성물은 활성 화합물을 약학적으로 사용될 수 있는 제제로 제형화할 수 있다. 적합한 제제는 투여 경로의 선택에 따라 달라질 수 있다.
주사로 사용하기 위하여, 본 발명의 화합물은 수용액, 바람직하게는 행크스 용액(Hank's solution), 링거 용액이나 생리 식염수 같은 생리학적으로 적합한 완충액으로 제제화될 수 있다.
비점막을 통하여 투여하기 위해서, 장벽을 투과할 수 있게 하는 표면투과제가 제제 내에 사용될 수 있다. 이러한 표면투과제는 이 분야에서 일반적으로 알려진 것을 사용할 수 있다.
경구 투여를 위해서, 화합물은 약학으로 허용되는 담체와 결합하여 제제화할 수 있다. 담체는 환자가 구강을 통하여 복용할 수 있도록, 본 발명의 화합물을 정제, 필(pills), 함당정제(lozenge), 당의정, 캡슐, 액체, 겔, 시럽, 슬러리(slurries), 현탁액 등으로 제제화할 수 있다. 경구투여를 위한 약학 제제는 정제 또는 함당 정제의 중심부를 만들기 위하여, 필요하다면 다른 적당한 보조제를 첨가한 후, 고형 부형제를 사용하여 제조할 수 있다. 이때, 선택적으로는 만들어진 혼합물을 분쇄하고 혼합물을 과립으로 만들 수도 있다. 유용한 부형제로는 젖당(lactose), 설탕(sucrose), 만니톨(mannitol)이나 솔비톨(solbitol)을 포함하는 당류; 옥수수 전분, 밀전분, 쌀전분과 감자전분 같은 섬유질 제제; 젤라틴, 검류, 고무수액, 메틸셀룰로스, 히드록시프로필메틸-셀룰로스, 및/또는 폴리비닐-피롤리돈(PVP)과 같은 충진제들를 들 수 있다. 필요하다면, 가교결합한 폴리비닐-피롤리돈, 한천 혹은 알긴산 같은 분해제를 첨가할 수도 있다. 또한, 알긴산 나트륨같은 염을 첨가할 수도 있다.
당의정의 중심 부위는 적절히 코팅하여 만들 수 있다. 이를 위해, 선택적으로 아라비안 검, 폴리비닐 피롤리돈, 카보폴 젤, 폴리에틸렌 글리콜 및/또는 티타늄 디옥시드, 라커 용액을 함유하는 농축한 당용액을 사용할 수 있다.
경구적으로 사용할 수 있는 약학 조성물은 젤라틴과 글리세롤아나 솔비톨 같은 가소제로 만든 연질 밀봉캡슐뿐만 아니라, 젤라틴으로 만든 푸쉬-피트(push-fit)캡슐을 포함할 수 있다. 연질 캡슐에서 활성 화합물은 패티 오일(fatty oil), 액체 파라핀이나 액체 폴리에틸렌 글리콜 같은 적절한 용액에 용해되거나 현탁될 수 있다. 또한, 안정제가 조성물에 첨가될 수 있다.
사용될 수 있는 약학 조성물은 경질 젤라틴 캡슐을 포함할 수 있다.
캡슐들은 광선으로부터 활성 화합물을 보호하기 위하여, 갈색 유리 또는 플라스틱 병에 충진될 수 있다. 활성 화합물 캡슐 제제를 담은 용기는 조절된 실온(15-30℃)에서 보관될 수 있다.
흡입으로 투여되기 위하여, 본 발명에 따른 화합물은 압축 용기, 네뷸라이저(nebulizer) 및 디클로로디플루오로메탄, 트리크로로플루오로메탄, 디클로로테트라-플루오로에탄과 이산화탄소와 같은 적절한 추진제(propellant)를 사용한 에어로졸 스프레이의 형태로 용이하게 투여될 수 있다.
또한, 화합물은 예를 들어, 일시 주입(bolus injection) 또는 연속적 정맥 주입에 의하여 비경구적으로 투여되도록 제제화 될 수 있다. 주입하기 위한 제제는, 예를 들면 앰플(ampoules) 또는 다용량 용기와 같은 보존제가 첨가된 단위 투여 용량의 형태로 제공될 수 있다. 조성물은 유상이나 수상인 담체(vehicles)로서 현탁액, 용액 또는 애멀젼의 형태를 취하고, 현탁제, 안정화제 및/또는 분산제와 같은 제제화 물질을 포함할 수 있다.
비경구 투여를 위한 약학 조성물은 수용성의 수용액 형태를 포함하는데, 예를 들어 염과 같은 활성 화합물의 수용성의 수용액 형태를 포함할 수 있다. 또한, 활성 화합물의 현탁액은 친유성 담체로 조제될 수 있다. 적절한 친유성 담체는 패티 오일(fatty oil), 에틸 올레이트 및 트리글세라이드와 같은 합성 지방산 에스테르, 리포좀과 같은 물질을 포함할 수 있다. 수용성 주사 현탁액은 소디움 카르복시 메틸 셀룰로스, 솔비톨 혹은 덱스트란 같은 현탁액의 점도를 증가시키는 물질을 함유할 수 있다. 또한, 선택적으로, 현탁액은 적절한 안정제 및/또는 화합물의 용해도를 증가시켜 고농도의 용액을 조제할 수 있도록 하는 물질을 함유할 수 있다.
또한, 화합물은 코코아 버터나 다른 글리세리드와 같이 통상적인 좌약의 베이스를 사용한 좌약 또는 보유 관장제와 같은 직장 투여 화합물로 제제화될 수 있다.
또한, 전술한 제제에 추가하여, 화합물은 데포(depot)제제의 형태로 제제화될 수 있다. 이러한 장시간 작용하는 제제는 이식(예를 들어, 피하나 근육내로) 또는 근육 주사로 투여한다. 본 발명의 화합물은 적절한 중합성 또는 소수성 물질(예를 들어, 약학적으로 허용가능한 오일로 만든 에멀젼), 이온 교환 수지 또는 물에 아주 녹지 않는 염(이에 한정되지는 아니함)과 같은 물에 아주 녹지 않은 유도체로 이러한 경로의 투여를 위하여 제제화할 수 있다.
본 발명에 따른 약학 조성물은, 전술한 질환, 예를 들면, 궤양성 대장염, 크론병(Crohn's disease), 장관형 베체트병, 출혈성 직장 궤양 및 회장낭염(pouchitis)으로 이루어진 군으로부터 선택된 어느 하나의 질환의 예방 또는 치료와 같은 의도한 목적을 달성하기에 충분한 양의 활성 화합물이 포함된 조성물을 의미한다.
이때, 치료 유효량이란 질병의 증후를 예방, 완화 또는 개선하거나, 처방된 환자의 생존을 연장할 수 있는 용량을 의미한다.
본 발명에 따른 피리딘올 유도체 또는 이의 약제학적 허용가능한 염은 염증성 장질환 모델에서 대장염을 억제하므로, 염증성 장질환의 예방 또는 치료를 위한 약제로서 유용하게 사용될 수 있다.
본 발명에 따른 약학조성물은, 조성물 총 중량에 대하여 상기 피리딘올 유도체 또는 이의 약제학적 허용가능한 염을 0.1 내지 50 중량%로 포함할 수 있다.
본 발명에 따른 피리딘올 유도체 또는 이의 약제학적 허용가능한 염의 사용량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으나, 0.001 내지 100 mg/㎏, 바람직하게는 0.01 내지 10 mg/kg의 양을 일일 1회 내지 수회 투여할 수 있다. 또한, 피리딘올 유도체 또는 이의 약제학적 허용가능한 염의 투여량은 투여경로, 질병의 정도, 성별, 체중, 나이 등에 따라서 증감될 수 있다. 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
상기 약학조성물은 쥐, 생쥐, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내(intracerebroventricular) 주사에 의해 투여될 수 있다.
본 발명에 따른 피리딘올 유도체 또는 이의 약제학적 허용가능한 염은 50% 치사량(LC50)이 2 g/kg 이상으로 안정성이 확보된 것으로서, 본 발명의 약학조성물에 사용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
실시예
< 실시예 1> 4,5- Bis ( chloromethyl )-2- methylpyridin -3- ol hydrochloride ( 2)의 제조
피리독신염산염 (1) (PyridoxineHCl, 5 g, 24.31 mmol)에 thionyl chloride (30 mL)와 DMF (0.2 mL, 2.583 mmol)를 가한 후 80℃에서 3시간 환류 교반하였다. 반응액을 상온으로 냉각한 후 Et2O (70 mL)를 가하고 빙냉 하에서 1시간 교반하였다. 석출된 고체를 감압 여과하고 걸러진 고체를 Et2O로 세척한 후 건조시켜 목적화합물 2 (5.5 g, 93%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.42 (s, 1H), 4.99 (s, 2H), 4.96 (s, 2H), 2.63 (s, 3H) ppm.
<실시예 2> 2,4,5-Trimethylpyridin-3-ol (3)의 제조
화합물 2 (10 g, 41.23 mmol)의 AcOH (50 mL) 현탁액에 아연(Zn)분말 (8.08 g, 123.69 mmol)을 소량씩 나누어 가하고 130℃에서 2시간 환류 교반하였다. 반응액을 상온으로 식힌 뒤 반응액을 감압 여과하고, 10 M NaOH 수용액을 사용하여 여액의 pH를 6으로 조절하였다. 이 액을 소금으로 포화시킨 후 EtOAc (6×100 mL)로 추출하였다. EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=20:1)로 정제하여 목적화합물 3 (5.2 g, 92%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.49 (s, 1H), 7.72 (s, 1H), 2,31 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H) ppm.
<실시예 3> 6-Bromo-2,4,5-trimethylpyridin-3-ol (4)의 제조
화합물 3 (2.5 g, 18.22 mmol)의 THF (30 mL) 현탁액에 1,3-dibromo-5,5-dimethylhydantoin (DBDMH, 2.5 g, 9.11 mmol)을 가한 뒤 상온에서 3시간 교반하였다. 반응액을 농축시킨 후 잔사를 EtOAc (500 mL)과 물 (20 mL)로 희석하고 수층을 EtOAc (3×100 mL)로 추출하였다. EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 4 (3.22 g, 80%)를 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 5.56 (br s, 1H), 2.42 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H) ppm.
< 실시예 4> 3- Benzyloxy -6- bromo -2,4,5- trimethylpyridine ( 5)의 제조
화합물 4 (6.5 g, 30.08 mmol)의 DMF (15 mL) 용액에 K2CO3 (20.78 g, 150.04 mmol), benzyl chloride (5.2 mL, 45.12 mmol)를 차례로 가한 후 상온에서 12시간 교반하였다. 반응액을 EtOAc (700 mL)로 희석하고 물 (10×20 mL)로 세척하였다. EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAC:Hex=1:20)로 정제하여 목적화합물 5 (8.9 g, 97%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.38-7.43 (m, 5H), 4.77 (s, 2H), 2.46 (s, 3H), 2.32 (s, 3H), 2.24 (s, 3H) ppm.
< 실시예 5> 5- Benzyloxy -N-( diphenylmethylene )-3,4,6- trimethylpyridin -2-amine ( 6)의 제조
화합물 5 (3 g, 9.80 mmol), tris(dibenzylideneacetone)dipalladium(0) (Pd2(DBA)3, 203mg, 0.20mmol), 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP, 249 mg, 0.39 mmol), NaOtBu (1.36 g, 13.71 mmol)의 toluene (30 mL) 용액에 benzophenone imine (1.73 mL, 9.80 mmol)을 가한 후 120℃에서 12시간 환류 교반하였다. 반응액을 상온으로 식힌 뒤 EtOAc (700 mL)와 물 (10 mL)로 희석하고 EtOAc 용액을 포화소금물 (5×30 mL)로 세척하였다. 무수 MgSO4로 건조, 여과한 후 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 6 (3.28 g, 83%)을 노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.80 (d, J = 7.1 Hz, 2H), 7.17-7.48 (m, 13H), 4.69 (s, 2H), 2.29 (s, 3H), 2.03 (s, 3H), 1.91 (s, 3H) ppm.
< 실시예 6> 5- Benzyloxy -3,4,6- trimethylpyridin -2-amine (7a)의 제조
차가운 methanol (50 mL)에 acetyl chloride (2 mL)를 조금씩 가한 용액을 화합물 6 (2 g, 4.920 mmol)의 MeOH(50 mL)-THF(5 mL) 혼합 용액에 가한 다음 상온에서 12시간 교반하였다. 반응액을 감압 농축한 후 반응액을 EtOAc (300 mL)로 희석시키고 포화 NaHCO3 용액 (4×20 mL)으로 세척하였다. EtOAc 용액을 포화소금물(20 mL)로 세척하고 무수 MgSO4로 건조, 여과한 후 감압 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=20:1)로 정제하여 목적화합물 7a (992 mg, 83%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.31-7.45 (m, 5H), 4.68 (s, 2H), 4.25 (br s, 1H), 2.34 (s, 3H), 2.16 (s, 3H), 1.99 (s, 3H) ppm.
< 실시예 7> 3- Benzyloxy -2,4,5- trimethylpyridine ( 8)의 제조
화합물 3 (500 mg, 3.644 mmol)의 DMF (10 mL) 현탁액에 K2CO3 (2.5 g, 18.224 mmol)과 benzyl chloride (0.63 mL, 5.467 mmol)를 가하고 상온에서 12시간 교반하였다. 반응액을 농축시킨 후 잔사를 EtOAc (300 mL)로 희석하고 EtOAc 용액을 물 (3×30 mL)로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:20)로 정제하여 목적화합물 8 (593 mg, 71%)을 노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 8.03 (s, 1H), 7.33-7.46 (m, 5H), 4.77 (s, 2H), 2.47 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H) ppm.
< 실시예 8> 3- Benzyloxy -2,4,5- trimethylpyridine 1-oxide ( 9)의 제조
화합물 8 (460 mg, 2.023 mmol)의 CH2Cl2 (10 mL) 현탁액에 m-chloroperbenzonic acid (m-CPBA, 549 mg, 2.226 mmol)을 가하고 상온에서 1시간 교반하였다. 반응액에 포화 NaHCO3 수용액을 가하고 CH2Cl2 (3×30 mL)으로 추출하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=30:1)로 정제하여 목적화합물 9 (463 mg, 94%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 8.00 (s, 1H), 7.36-7.41 (m, 5H), 4.77 (s, 2H), 2.44 (s, 3H), 2.17 (s, 3H), 2.13 (s, 3H) ppm.
< 실시예 9> 2-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl ) isoindoline -1,3-dione ( 10)의 제조
화합물 9 (113 mg, 0.464 mmol) 의 CH2Cl2 (2 mL) 현탁액에 phthalimide (82 mg, 0.557 mmol), p-toluenesulfonyl chloride (133 mg, 0.696 mmol), N,N-diisopropylethylamine (242.5 μL, 1.392 mmol)을 가하고 상온에서 15시간 교반하였다. 반응액을 CH2Cl2으로 희석시킨 후 포화 NaHCO3 수용액과 포화소금물로 세척하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:5)로 정제하여 목적화합물 10 (136 mg, 79%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.90-7.95 (m, 2H), 7.74-7.81 (m, 2H), 7.36-7.50 (m, 5H), 4.83 (s, 2H), 2.52 (s, 3H), 2.28 (s, 3H), 2.10 (s, 3H) ppm.
< 실시예 10> 5- Benzyloxy -3,4,6- trimethylpyridin -2-amine (7a)의 제조
화합물 10 (454 mg, 1.222 mmol)의 THF-EtOH (1:1, 12 mL) 현탁액에 hydrazine hydrate (0.84 mL)을 가한 후 상온에서 1시간 교반하였다. 반응액을 농축시킨 후 CH2Cl2과 포화 NaHCO3 수용액으로 희석시킨 후, 수층을 CH2Cl2 (3×100 mL)으로 추출하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:5)로 정제하여 목적화합물 7a (249 mg, 84%)를 흰색의 고체로 얻었다.
1H-NMR (CDCl3) δ 7.31-7.45 (m, 5H), 4.68 (s, 2H), 4.25 (br s, 1H), 2.34 (s, 3H), 2.16 (s, 3H), 1.99 (s, 3H) ppm.
< 실시예 11> 2- Bromo -5- methoxy -3,4,6- trimethylpyridine ( 11)의 제조
화합물 4 (213 mg, 1.0 mmol)을 CH3CN (10 mL)에 용해하고 iodomethane (0.12 mL, 2.0 mmol)과 K2CO3 (207 mg, 1.5 mmol)을 가한 후 50 ℃에서 16시간 교반하였다. 반응액을 EtOAc (100 mL)로 희석하고 1 N HCl 수용액, 물 및 포화소금물로 차례대로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:9)로 정제하여 목적화합물 11 (154 mg, 67%)을 노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 3.67 (s, 3H), 2.44 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H) ppm.
< 실시예 12> N-( Diphenylmethylene )-5- methoxy -3,4,6- trimethylpyridin -2-amine ( 12)의 제조
화합물 11 (155 mg, 0.67 mmol)의 toluene (5 mL) 현탁액에 BINAP (42 mg, 0.067 mmol), Pd2(dba)3 (31 mg, 0.034 mmol), NaOtBu (71 mg, 0.74 mmol) 및 benzophenone imine (0.11 mL, 0.67 mmol)을 가한 후 16시간 환류 교반하였다. 반응액을 EtOAc (50 mL)로 희석하고 물과 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 12 (170 mg, 77%)을 노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.80-7.36 (m, 10H), 3.66 (s, 3H), 2.52 (s, 3H), 2.29 (s, 3H), 2.10 (s, 3H) ppm.
< 실시예 13> 5- Methoxy -3,4,6- trimethylpyridin -2-amine (7b)의 제조
화합물 12 (168 mg, 0.51 mmol)의 THF-MeOH (1:10, 5.5 mL) 용액을 0℃로 냉각한 후, CH3COCl-MeOH 혼합 용액 (1:10, 1.0 mL)을 천천히 적가하고 상온에서 18시간 교반하였다. 반응액을 감압 농축하고 잔사를 물 (100 mL)과 EtOAc (100 mL)로 희석하였다. 수층과 유기층을 분리한 후, 유기층을 물 (50 mL)로 추출하였다. 수용액들을 모으고 여기에 1 N NaOH 수용액을 가해 pH 10으로 맞춘 후 EtOAc (3×50 mL)로 추출하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=30:1)로 정제하여 목적화합물 7b (54 mg, 64%)를 회색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 5.22 (s, 2H), 3.52 (s, 3H), 2.17 (s, 3H), 2.06 (s, 3H), 1.91 (s, 3H) ppm.
< 실시예 14> 2- Bromo -5-( tert - butyldiphenylsilyloxy )-3,4,6-trimethylpyridine ( 13)의 제조
화합물 4 (964 mg, 4.46 mmol)의 DMF (9 mL) 용액에 imidazole (759 mg, 11.15 mmol)을 가한 후 20분 동안 교반하였다. 여기에 tert-butyldiphenylchlorosilane (TBDPSCl, 1.4 mL, 5.35 mmol)을 가한 후 상온에서 24시간 교반하였다. 반응물을 Et2O (100 mL)로 희석하고 물로 세척하였다. Et2O 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:45)로 정제하여 목적화합물 13 (1.75 g, 87%)을 무색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.68-7.60 (m, 4H), 7.44-7.38 (m, 2H), 7.36-7.31 (m, 4H), 2.21 (s, 3H), 2.16 (s, 3H), 1.98 (s, 3H), 1.10 (s, 9H) ppm.
< 실시예 15> 5-( tert - Butyldiphenylsilyloxy )-N-( diphenylmethylene )-3,4,6-trimethylpyridin-2-amine ( 14)의 제조
화합물 13 (1.74 g, 3.84 mmol), NaOtBu (389 mg, 4.23 mmol), Pd2(dba)3 (176 mg, 0.19 mmol) 및 BINAP (239 mg, 0.39 mmol)의 toluene (19 mL)현탁액에 benzophenone imine (0.65 mL, 3.84 mmol)을 가한 후 5시간 환류 교반하였다. 반응물을 상온으로 식힌 후 EtOAc (100 mL)로 희석하고 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:45)로 정제하여 목적화합물 14 (1.88 g, 89%)를 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 7.70-7.64 (m, 2H), 7.60-7.55 (m, 4H), 7.55-7.51 (m, 1H), 7.50-7.44 (m, 4H), 7.41-7.27 (m, 7H), 7.07-7.02 (m, 2H), 1.87 (s, 3H), 1.85 (s, 3H), 1.84 (s, 3H), 1.02 (s, 9H) ppm.
< 실시예 16> 5-( tert - Butyldiphenylsilyloxy )-3,4,6- trimethylpyridin -2-amine (7c)의 제조
화합물 14 (2.29 g, 4.14 mmol)의 THF-MeOH (1:10, 22 mL) 용액을 0℃로 냉각한 후, CH3COCl-MeOH 혼합 용액 (1:10, 1.0 mL) 을 천천히 적가하고 상온에서 24시간 교반하였다. 반응액을 감압 농축하고 잔사를 EtOAc (200 mL)로 희석한 후 포화 NaHCO3 수용액으로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=45:1)로 정제하여 목적화합물 7c (1.49 g, 93%)를 갈색 액체로 얻었다.
1H-NMR ((CD3)2SO) δ 7.66-7.61 (m, 4H), 7.49-7.43 (m, 2H), 7.43-7.37 (m, 4H), 5.03 (s, 2H), 1.92 (s, 3H), 1.86 (s, 3H), 1.85 (s, 3H), 1.04 (s, 9H) ppm.
실시예 17 피리딘올 - 우레아 ( pyridinol -urea) 유도체 제조
< 실시예 17-1> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3- propylurea (15-1) 제조
화합물 7a (100 mg, 0.413 mmol)의 CH2Cl2 (5 mL) 현탁액에 propyl isocyanate (46.4 ㎕를 가하고 상온에서 40시간 교반하였다. 반응액에 실리카겔을 가하여 농축한 후 잔사를 관크로마토그래피 (CHCl3:MeOH=50:1→20:1)로 정제하여 목적화합물 15-1 (125 mg, 92%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 9.77 (s, 1H), 7.48-7.30 (m, 5H), 6.67 (s, 1H), 4.72 (s, 2H), 3.33 (td, J = 6.9, 5.6 Hz, 2H), 2.38 (s, 3H), 2.20 (s, 3H), 2.08 (s, 3H), 1.62 (dd, J = 14.3, 7.1 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H) ppm.
< 실시예 17-2> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3- propylurea (16-1) 제조
화합물 15-1 (105 mg, 0.321 mmol)의 CH2Cl2 (4 mL) 현탁액에 10% palladium on activated carbon (21 mg)을 가하고 수소기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=20:1)로 정제하여 목적화합물 16-1 (58 mg, 75%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.88 (s, 1H), 8.20 (s, 1H), 7.71 (s, 1H), 3.31 (s, 2H), 3.14 (dd, J = 12.4, 6.7 Hz, 2H), 2.29 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H), 1.56-1.40 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H) ppm.
< 실시예 17-3> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3- phenylurea (15-2) 제조
화합물 7a (70 mg, 0.289 mmol)의 CH2Cl2 (3 mL) 현탁액에 phenyl isocyanate (47.5 ㎕, 0.289 mmol)를 가하고 상온에서 7시간 교반하였다. 반응액에 실리카겔을 가하여 농축한 후 잔사를 관크로마토그래피 (CH2Cl2:MeOH=20:1)로 정제하여 목적화합물 15-2 (99 mg, 95%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.64 (s, 1H), 8.41 (s, 1H), 7.56-7.35 (m, 7H), 7.34-7.25 (m, 2H), 7.05-6.96 (m. 1H), 4.78 (s, 2H), 2.43 (s, 3H), 2.21 (s, 3H), 2.15 (s, 3H) ppm.
< 실시예 17-4> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3- phenylurea (16-2) 제조
화합물 15-2 (79 mg, 0.219 mmol)의 MeOH- CH2Cl2 (4 mL) 현탁액에 10% palladium on activated carbon (15.8 mg)을 가하고 수소기류 하 상온에서 3시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 16-2 (58 mg, 97%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.38-11.33 (m, 1H), 8.27 (s, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.29 (t, J=7.9 Hz, 2H), 6.98 (t, J = 7.3 Hz, 1H), 2.38 (s, 3H), 2.15 (s, 3H), 2.09 (s, 3H) ppm.
< 실시예 17-5> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-chlorophenyl)urea (15-3) 제조
화합물 7a (100 mg, 0.413 mmol)의 CH2Cl2 (5 mL) 현탁액에 4-chlorophenyl isocyanate (63.4 mg, 0.413 mmol)을 가하고 상온에서 7시간 교반하였다. 반응액에 실리카겔을 가하고 농축한 후 잔사를 관크로마토그래피 (CH2Cl2:MeOH=50:1→20:1)로 정제하여 목적화합물 15-3 (64 mg, 79%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.47 (s, 1H), 7.57-7.48 (m, 2H), 7.47-7.34 (m, 5H), 7.30-7.24 (m, 2H), 6.87 (s, 1H), 4.75 (s, 2H), 2.47 (s, 3H), 2.24 (s, 3H), 2.14 (s, 3H) ppm.
< 실시예 17-6> 1-(4- Chlorophenyl )-3-(5- hydroxy -3,4,6- trimethylpyridin -2-yl)urea (16-3) 제조
화합물 15-3 (64 mg, 0.162 mmol)의 CH2Cl2 (4 mL) 현탁액에 pentamethylbenzene (72 mg, 0.486 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.32 mL)를 천천히 가한 후 0℃에서 3시간 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 1 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=30:1)로 정제하여 목적화합물 16-3 (28 mg, 57%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 10.75 (s, 1H), 10.03 (s, 2H), 7.57-7.49 (m, 2H), 7.41-7.33 (m, 2H), 2.53 (s, 3H), 2.32 (s, 3H), 2.28 (s, 3H) ppm.
< 실시예 17-7> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(2- tert -butyl-6-methylphenyl)urea (15-4) 제조
화합물 7a (70 mg, 0.289 mmol)의 CH2Cl2 (2 mL) 현탁액에 2-tert-butyl-6-methylphenyl isocyanate (58.2 ㎕, 0.289 mmol)을 가하고 상온에서 26시간 교반하였다. 반응액에 실리카겔을 가하고 농축한 후 잔사를 관크로마토그래피 (CHCl3:MeOH=50:1→30:1)로 정제하여 목적화합물 15-4 (118 mg, 82%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 11.48 (s, 1H), 7.47-7.27 (m, 6H), 7.18-7.12 (m, 2H), 6.83 (s, 1H), 4.75 (s, 2H), 2.34 (s, 3H), 2.30 (s, 3H), 2.26 (s, 3H), 2.15 (s, 3H), 1.43 (s, 9H) ppm.
< 실시예 17-8> 1-(2- tert -butyl-6- methylphenyl )-3-(5- hydroxy -3,4,6-trimethylpyridin-2-yl)urea (16-4) 제조
화합물 15-4 (50 mg, 0.116 mmol)의 MeOH-CH2Cl2 (3 mL) 현탁액에 10% palladium on activated carbon (10 mg)을 가하고 수소기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 16-4 (35 mg, 88%)를 연노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 10.91 (s, 1H), 8.38 (s, 1H), 8.26 (s, 1H), 7.23 (dd, J = 8.7, 4.5 Hz, 1H), 7.11 (dd, J = 7.4, 5.7 Hz, 2H), 2.26 (s, 3H), 2.18-2.12 (m, 9H), 1.35 (s, 9H) ppm.
< 실시예 17-9> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(naphthalen-1-yl)urea (15-5) 제조
화합물 7a (70 mg, 0.289 mmol)의 CH2Cl2 (3 mL) 현탁액에 1-naphthyl isocyanate (42.7 ㎕, 0.289 mmol)을 가하고 상온에서 12시간 교반하였다. 반응액에 실리카겔을 가하고 농축한 후 잔사를 관크로마토그래피 (CHCl3:MeOH=30:1)로 정제하여 목적화합물 15-5 (99 mg, 83%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.68 (s, 1H), 8.35-8.19 (m, 2H), 7.89-7.84 (m, 1H), 7.65-7.34 (m, 9H), 6.91 (s, 1H), 5.28 (s, 2H), 4.78 (s, 2H), 2.56 (s, 3H), 2.27 (s, 3H), 2.19 (s, 3H) ppm.
< 실시예 17-10> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-( naphthalen -1-yl)urea (16-5) 제조
화합물 15-5 (49 mg, 0.119 mmol)의 MeOH-THF-CH2Cl2 (4 mL) 현탁액에 10% palladium on activated carbon (10 mg)을 가하고 수소기류 하 상온에서 5시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=20:1)로 정제하여 목적화합물 16-5 (31mg, 82%)를 연노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.08 (s, 1H), 8.43 (s, 1H), 8.22 (dd, J = 11.2, 8.0 Hz, 2H), 7.96 (d, J = 7.5 Hz, 1H), 7.68-7.45 (m, 4H), 2.50 (s, 3H), 2.20 (s, 6H) ppm.
< 실시예 17-11> N-((5- Benzyloxy -3,4,6- trimethylpyridin -2-yl)carbamoyl)benzenesulfonamide (15-6) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (1.5 mL) 현탁액에 p-toluenesulfonyl isocyanate (31.5 ㎕, 0.206 mmol)을 가하고 상온에서 24시간 교반하였다. 반응액에 실리카겔을 가하고 농축한 후 잔사를 관크로마토그래피 (CHCl3:MeOH=40:1)로 정제하여 목적화합물 15-6 (75 mg, 83%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.96 (d, J = 8.3 Hz, 2H), 7.43-7.34 (m, 5H), 7.32-7.36 (d, J = 8.0 Hz, 2H), 4.74 (s, 2H), 2.45 (s, 3H), 2.39 (s, 3H), 2.21 (s, 3H), 2.06 (s, 3H) ppm.
< 실시예 17-12> N-((5- Hydroxy -3,4,6- trimethylpyridin -2-yl)carbamoyl)benzenesulfonamide (16-6) 제조
화합물 15-6 (251 mg, 0.571 mmol)의 MeOH-CH2Cl2 (10 mL) 현탁액에 10% palladium on activated carbon (50 mg)을 가하고 수소기류 하 상온에서 3시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 16-6 (107 mg, 54%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.87 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 2.38 (s, 3H), 2.34 (s, 3H), 2.19 (s, 3H), 2.03 (s, 3H) ppm.
< 실시예 17-13> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-fluorophenyl)urea (15-7) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 현탁액에 4-fluorophenyl isocyanate (23 ㎕, 0.206 mmol)를 가하고 상온에서 18시간 교반하였다. 반응액에 실리카겔을 가하여 농축한 후 잔사를 관크로마토그래피 (CH2Cl2:MeOH=99:1)로 정제하여 목적화합물 15-7 (67 mg, 86%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.32 (s, 1H), 7.59-7.51 (m, 2H), 7.49-7.37 (m, 5H), 7.05 (t, J = 8.7 Hz, 2H), 6.81 (br s, 1H), 4.78 (s, 2H), 2.48 (s, 3H), 2.27 (s, 3H), 2.18 (s, 3H) ppm.
< 실시예 17-14> 1-(4- Fluorophenyl )-3-(5- hydroxy -3,4,6- trimethylpyridin -2-yl)urea (16-7) 제조
화합물 15-7 (62 mg, 0.164 mmol)의 CH2Cl2 (3 mL) 현탁액에 pentamethylbenzene (79 mg, 0.530 mmol)과 BCl3 (0.35 mL, 0.353 mmol)을 가하고 아르곤 기류 하 상온에서 2시간 교반하였다. 반응액을 여과하여 목적화합물 16-7 (43 mg, 90%)을 흰색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.52-7.43 (m, 2H), 7.02 (t, J = 8.8 Hz, 2H), 2.43 (s, 3H), 2.23 (s, 3H), 2.17 (s, 3H) ppm.
< 실시예 17-15> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-bromophenyl)urea (15-8) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 현탁액에 4-bromophenyl isocyanate (61.2 mg, 0.309 mmol)를 가하고 상온에서 18시간 교반하였다. 반응액에 실리카겔을 가하여 농축한 후 잔사를 관크로마토그래피 (CH2Cl2:MeOH=99:1)로 정제하여 목적화합물 15-8 (80 mg, 89%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.44 (s, 1H), 7.55-7.36 (m, 9H), 6.85 (br s, 1H), 4.78 (s, 2H), 2.48 (s, 3H), 2.27 (s, 3H), 2.18 (s, 3H) ppm.
< 실시예 17-16> 1-(4- Bromophenyl )-3-(5- hydroxy -3,4,6- trimethylpyridin -2-yl)urea (16-8) 제조
화합물 15-8 (74 mg, 0.168 mmol)의 CH2Cl2 (2 mL) 현탁액에 pentamethylbenzene (75 mg, 0.505 mmol)과 BCl3 (0.34 mL, 0.337 mmol)을 가하고 아르곤 기류 하 상온에서 2시간 교반하였다. 반응액을 여과하여 목적화합물 16-8 (30 mg, 50%)을 노란색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.43 (s, 4H), 2.49 (s, 3H), 2.30 (s, 3H), 2.23 (s, 3H) ppm.
< 실시예 17-17> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(p-tolyl)urea (15-9) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 현탁액에 p-tolyl isocyanate (26 ㎕, 0.206 mmol)를 가하고 상온에서 18시간 교반하였다. 반응액에 실리카겔을 가하여 농축한 후 잔사를 관크로마토그래피 (CH2Cl2:MeOH=99:1)로 정제하여 목적화합물 15-7 (76 mg, 98%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.23 (s, 1H), 7.53-7.37 (m, 7H), 7.14 (d, J = 8.2 Hz, 2H), 6.86 (brs, 1H), 4.78 (s, 2H), 2.48 (s, 3H), 2.33 (s, 3H), 2.26 (s, 3H), 2.17 (s, 3H) ppm.
< 실시예 17-18> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(p-tolyl)urea (16-9) 제조
화합물 15-9 (69 mg, 0.185 mmol)의 MeOH (2 mL) 현탁액에 10% palladium on activated carbon (15 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-9 (26 mg, 49%)을 흰색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.74 (s, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H), 2.45 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H), 2.18 (s, 3H) ppm.
< 실시예 17-19> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-methoxyphenyl)urea (15-10) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 4-methoxyphenyl isocyanate (32 ㎕, 0.248 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후 반응액 중 석출된 고체를 여과하여 목적화합물 15-10 (75 mg, 93%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 11.88 (s, 1H), 7.55-7.33 (m, 7H), 6.89 (d, J = 9.0 Hz, 2H), 4.79 (s, 2H), 3.80 (s, 3H), 2.46 (s, 3H), 2.29 (s, 6H) ppm.
< 실시예 17-20> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-methoxyphenyl)urea (16-10) 제조
화합물 15-10 (63 mg, 0.161 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (13 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-10 (47 mg, 97%)을 연노란색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.42-7.35 (m, 2H), 6.93-6.85 (m, 2H), 3.78 (s, 3H), 2.43 (s, 3H), 2.24 (s, 3H), 2.18 (s, 3H) ppm.
< 실시예 17-21> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-(trifluoromethyl)phenyl)urea (15-11) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 4-trifluoromethylphenyl isocyanate (68 ㎕, 0.206 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후 반응액 중 석출된 고체를 여과하여 목적화합물 15-11 (59 mg, 66%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.72 (s, 1H), 7.71 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.7 Hz, 2H), 7.43 (ddd, J = 8.7, 4.8, 2.5 Hz, 5H), 6.81 (brs, 1H), 4.79 (s, 2H), 2.50 (s, 3H), 2.28 (s, 3H), 2.19 (s, 3H) ppm.
< 실시예 17-22> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-(trifluoromethyl)phenyl)urea (16-11) 제조
화합물 15-11 (44 mg, 0.103 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (9 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-11 (33 mg, 95%)을 흰색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.65 (dd, J = 27.5, 8.7 Hz, 4H), 2.45 (s, 3H), 2.24 (s, 3H), 2.19 (s, 3H) ppm.
< 실시예 17-23> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-nitrophenyl)urea (15-12) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 4-nitrophenyl isocyanate (40 ㎕, 0.247 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후, 고체를 여과하여 목적화합물 15-12 (75 mg, 89%)을 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.80 (s, 1H), 8.82 (s, 1H), 8.21 (t, J = 7.9 Hz, 2H), 7.76 (t, J = 9.3 Hz, 2H), 7.46 (dd, J = 20.2, 7.4 Hz, 5H), 4.80 (s, 2H), 2.44 (s, 3H), 2.22 (s, 3H), 2.15 (s, 3H) ppm.
< 실시예 17-24> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-nitrophenyl)urea (16-12) 제조
화합물 15-12 (74 mg, 0.184 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (15 mg)을 가하고 수소기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-12 (13.6 mg, 23%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.03 (s, 1H), 8.33 (s, 1H), 7.94 (s, 1H), 7.15 (d, J = 8.7 Hz, 2H), 6.52 (d, J = 8.6 Hz, 2H), 2.36 (s, 3H), 2.12 (d, J = 10.7 Hz, 6H) ppm.
< 실시예 17-25> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-(trifluoromethoxy)phenyl)urea (15-13) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 4-trifluoromethoxyphenyl isocyanate (31 ㎕, 0.206 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후 반응액 중 석출된 고체를 여과하여 목적화합물 15-13 (67 mg, 73%)을 흰색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.62 (d, J = 8.9 Hz, 2H), 7.50-7.35 (m, 5H), 7.23 (d, J = 8.2 Hz, 2H), 4.60 (s, 2H), 2.47 (s, 3H), 2.27 (s, 3H), 2.20 (s, 3H) ppm.
< 실시예 17-26> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-(trifluoromethoxy)phenyl)urea (16-13) 제조
화합물 15-13 (67 mg, 0.150 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (13 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-13 (50 mg, 95%)을 흰색 고체로 얻었다.
1H-NMR (CD3OD) δ 7.60 (d, 2H), 7.24 (d, J = 9.1 Hz, 2H), 2.50 (s, 3H), 2.31 (s, 3H), 2.24 (s, 3H) ppm.
< 실시예 17-27> 1-Benzyl-3-(5- benzyloxy -3,4,6- trimethylpyridin -2- yl )urea (15-14) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 benzyl isocyanate (43 ㎕, 0.351 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후 반응액 중 석출된 고체를 여과하여 목적화합물 15-14 (38 mg, 50%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.49-7.28 (m, 10H), 4.75 (s, 2H), 4.59 (d, J = 5.5 Hz, 2H), 2.32 (s, 6H), 2.26 (s, 3H) ppm.
< 실시예 17-28> 1-Benzyl-3-(5- hydroxy -3,4,6- trimethylpyridin -2- yl )urea (16-14) 제조
화합물 15-14 (31 mg, 0.082 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (6 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-14 (23 mg, 100%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 9.16 (s, 1H), 8.27 (brs, 1H), 7.93 (s, 1H), 7.37-7.23 (m, 5H), 4.40 (d, J = 7.5 Hz, 2H), 2.24 (s, 3H), 2.12 (s, 3H), 2.06 (s, 3H) ppm.
< 실시예 17-29> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-isopropylphenyl)urea (15-15) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 4-isopropylphenyl isocyanate (40 ㎕, 0.248 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후, 고체를 여과하여 목적화합물 15-15 (56 mg, 67%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.50 (d, J = 8.5 Hz, 2H), 7.42 (s, 5H), 7.20 (d, J = 8.5 Hz, 2H), 4.80 (s, 2H), 2.95-2.82 (m, 1H), 2.45 (s, 3H), 2.29 (s, 6H), 1.24 (d, J = 6.9 Hz, 6H) ppm.
< 실시예 17-30> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-isopropylphenyl)urea (16-15) 제조
화합물 15-15 (49 mg, 0.121 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (10 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-15 (38 mg, 100%)을 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.25 (s, 1H), 8.43 (s, 1H), 8.15 (s, 1H), 7.41 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 2.93-2.74 (m, 1H), 2.38 (s, 3H), 2.13 (d, J = 10.1 Hz, 6H), 1.18 (d, J = 6.9 Hz, 6H) ppm.
< 실시예 17-31> N-((5- Benzyloxy -3,4,6- trimethylpyridin -2-yl)carbamoyl)benzamide (15-16) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (2 mL) 용액에 benzoyl isocyanate (40 ㎕, 0.309 mmol)를 가하고 상온에서 10시간 교반하였다. 반응이 끝난 후 반응액 중 석출된 고체를 여과하여 목적화합물 15-16 (44 mg, 56%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 10.72 (brs, 1H), 8.87 (brs, 1H), 7.96 (d, J = 6.3 Hz, 2H), 7.66-7.30 (m, 8H), 4.80 (s, 2H), 2.49 (s, 3H), 2.27 (d, J = 5.5 Hz, 6H) ppm.
< 실시예 17-32> N-((5- Hydroxy -3,4,6- trimethylpyridin -2-yl)carbamoyl)benzamide (16-16) 제조
화합물 15-16 (42 mg, 0.109 mmol)의 MeOH (3 mL) 현탁액에 10% palladium on activated carbon (9 mg)을 가하고 수소 기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하여 목적화합물 16-16 (23 mg, 69%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.06 (s, 1H), 10.26 (s, 1H), 8.61 (s, 1H), 8.02 (d, J = 7.2 Hz, 2H), 7.60 (dt, J = 29.5, 7.4 Hz, 3H), 2.31 (s, 3H), 2.16 (s, 3H), 2.08 (s, 3H) ppm.
실시예 . 피리딘올 - 티오우레아 ( pyridinol - thiourea ) 유도체 제조
< 실시예 18-1> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3- butylthiourea (17-1a) 제조
화합물 7a (70 mg, 0.289 mmol)의 EtOH (1.5 mL) 현탁액에 butyl isothiocyanate (38.3 ㎕, 0.318 mmol)을 가하고 60℃로 가열하면서 5시간 교반하였다. 반응액을 상온으로 식히고 감압 농축한 후, 잔사를 관크로마토그래피 (EtAOc:Hex=1:5)로 정제하여 목적화합물 17-1 (81 mg, 78%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.06 (s, 1H), 7.83 (s, 1H), 7.44-7.36 (m, 5H), 4.74 (s, 2H), 3.73 (dd, J = 11.8, 6.7 Hz, 2H), 2.37 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H), 1.77-1.63 (m, 2H), 1.55-1.41 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H) ppm.
< 실시예 18-2> 1-Butyl-3-(5- hydroxy -3,4,6- trimethylpyridin -2- yl ) thiourea (18-1) 제조
화합물 17-1 (64 mg, 0.178 mmol)의 CH2Cl2 (2 mL) 현탁액에 pentamethylbenzene (79 mg, 0.534 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.36 mL)를 천천히 가한 후 0℃에서 30분 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 2 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:3→1:1)로 정제하여 목적화합물 18-1 (28 mg, 61%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 11.89 (s, 1H), 7.76 (s, 1H), 4.74 (s, 1H), 3.72 (dd, J = 11.9, 6.8 Hz, 2H), 2.38 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H), 1.73-1.67 (m. 2H), 1.56-1.39 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H) ppm.
< 실시예 18-3> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-isopropylthiourea (17-2a) 제조
화합물 7a (70 mg, 0.289 mmol)의 CH3CN (1.5 mL) 현탁액에 isopropyl isothiocyanate (62 μL, 0.578 mmol)을 가하고 5시간 환류 교반하였다. 반응액을 상온으로 식히고 감압 농축한 후, 잔사를 관크로마토그래피 (EtAOc:Hex=1:5→1:4)로 정제하여 목적화합물 17-2 (88 mg, 89%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.06 (s, 1H), 7.76 (s, 1H), 7.46-7.36 (m, 5H), 4.75 (s, 2H), 4.53 (dq, J = 13.2, 6.6 Hz, 1H), 2.39 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H), 1.35 (d, J = 6.5 Hz, 6H) ppm.
< 실시예 18-4> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-isopropylthiourea (18-2) 제조
화합물 17-2 (88 mg, 0.257 mmol)의 CH2Cl2 (2 mL) 현탁액에 pentamethylbenzene (114 mg, 0.771 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.52 mL)를 천천히 가한 후 0℃에서 12시간 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 2 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:3→2:1)로 정제한 후, 재결정하여 목적화합물 18-2 (61 mg, 94%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.23 (s, 1H), 8.40 (s, 1H), 4.35 (dq, J = 13.4, 6.6 Hz, 1H), 2.32 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 1.24 (d, J = 6.5 Hz, 6H) ppm.
< 실시예 18-5> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-cyclohexylthiourea (17-3a) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH3CN (0.5 mL) 현탁액에 cyclohexyl isothiocyanate (42 μL, 0.309 mmol)을 가하고 21시간 환류 교반하였다. 반응액을 상온으로 식히고 감압 농축한 후, 잔사를 관크로마토그래피 (EtAOc:Hex=1:4→1:3)로 정제하여 목적화합물 17-3 (56 mg, 70%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.14-12.11 (m, 1H), 7.76 (s, 1H), 7.45-7.33 (m, 5H), 4.73 (s, 2H), 4.33-4.29 (m, 1H), 2.37 (s, 3H), 2.21 (s, 3H), 2.12 (s, 3H), 2.08-2.02 (m, 2H), 1.75-1.63 (m, 3H), 1.50-1.35 (m, 5H) ppm.
< 실시예 18-6> 1- Cyclohexyl -3-(5- hydroxy -3,4,6- trimethylpyridin -2- yl ) thiourea (18-3) 제조
화합물 17-3 (37 mg, 0.096 mmol)의 CH2Cl2 (2 mL) 현탁액에 pentamethylbenzene (43 mg, 0.288 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.19 mL)를 천천히 가한 후 0℃에서 3시간 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 1 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=50:1)로 정제한 후, 재결정하여 목적화합물 18-3 (15 mg, 54%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 11.49-11.45 (m, 1H), 8.47 (s, 2H), 4.20 (s, 1H), 2.32 (s, 3H), 2.15 (s, 3H), 2.11 (s, 3H), 1.99-1.85 (m, 3H), 1.70-1.59 (m, 2H), 1.44-1.30 (m, 5H) ppm.
< 실시예 18-7> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-phenylthiourea (17-4a) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH3CN (1 mL) 현탁액에 cyclohexyl isothiocyanate phenyl isothiocyanate (37 μL, 0.309 mmol)을 가하고 10시간 환류 교반하였다. 반응액을 상온으로 식히고 감압 농축한 후, 잔사를 관크로마토그래피 (EtAOc:Hex=1:5→1:1)로 정제하여 목적화합물 17-4 (66 mg, 85%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 14.17 (s, 1H), 7.99 (s, 1H), 7.76 (d, J = 7.9 Hz, 2H), 7.47-7.35 (m, 7H), 7.25-7.19 (m, 1H), 4.79 (s, 2H), 2.44 (s, 3H), 2.27 (s, 3H), 2.22 (s, 3H) ppm.
< 실시예 18-8> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-phenylthiourea (18-4) 제조
화합물 17-4 (25 mg, 0.066 mmol)의 CH2Cl2 (1 mL) 현탁액에 pentamethylbenzene (29 mg, 0.198 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.13 mL)를 천천히 가한 후 0℃에서 1시간 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 1 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=40:1)로 정제하여 목적화합물 18-4 (13 mg, 66%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.12 (s, 1H), 9.12 (s, 1H), 7.73-7.65 (m, 2H), 7.41-7.32 (m, 2H), 7.21-7.12 (m, 1H), 2.38 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-9> 1-(5-(( tert - butyldiphenylsilyl )oxy)-3,4,6-trimethylpyridin-2-yl)-3-(p-tolyl)thiourea (17-5c) 제조
화합물 7c (110 mg, 0.28 mmol)의 EtOH (5 mL) 용액에 p-tolyl isothiocyanate (42 mg, 0.28 mmol)을 가하고 상온에서 18시간 교반하였다. 반응액을 감압농축하고, 잔사를 EtOH로 재결정하여 목적화합물 17-5c (110 mg, 73%)를 흰색 고체로 얻었다.
MS m/z 540 [M+H]+.
< 실시예 18-10> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(p-tolyl)thiourea (18-5) 제조
화합물 17-5 (108 mg, 0.20 mmol)의 THF (2 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.22 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=2:3)로 정제하여 목적화합물 18-5 (38 mg, 63%)를 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.05 (s, 1H), 9.25 (s, 1H), 8.68 (s, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 2.37 (s, 3H), 2.29 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-11> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(4-chlorophenyl)thiourea (17-6a) 제조
화합물 7a (50 mg, 0.206 mmol)의 EtOH (1.5 mL) 현탁액에 4-chlorophenyl isothiocyanate (53.9 mg, 0.318 mmol)를 가하고 50℃에서 11시간 교반하였다. 반응액을 상온으로 식히고 감압 농축한 후, 잔사를 관크로마토그래피 (EtAOc:Hex=1:5)로 정제하여 목적화합물 17-6 (98 mg, 82%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 14.28 (s, 1H), 7.99 (s, 1H), 7.70 (d, J = 8.7 Hz, 2H), 7.45-7.31 (m, 7H), 4.76 (s, 2H), 2.42 (s, 3H), 2.25 (s, 3H), 2.19 (s, 3H) ppm.
< 실시예 18-12> 1-(4- Chlorophenyl )-3-(5- hydroxy -3,4,6- trimethylpyridin -2-yl)thiourea (18-6) 제조
화합물 17-6 (93 mg, 0.226 mmol)의 CH2Cl2 (1.5 mL) 현탁액에 pentamethylbenzene (101 mg, 0.678 mmol을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.45 mL)를 천천히 가한 후 0℃에서 1시간 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 2 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:2→2:1)로 정제한 후, 재결정하여 목적화합물 18-6 (54 mg, 74%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.99 (s, 1H), 9.18 (s, 1H), 8.64 (s, 1H), 7.73 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.8 Hz, 2H), 2.38 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-13> 1-(4- Bromophenyl )-3-(5-(( tert - butyldiphenylsilyl )oxy)-3,4,6-trimethylpyridin-2-yl)thiourea (17-7c) 제조
화합물 7c (104 mg, 0.27 mmol)의 EtOH (5 mL) 용액에 4-bromophenyl isothiocyanate (57 mg, 0.27 mmol)을 가하고 상온에서 18시간 교반하였다. 반응액을 감압농축하고, 잔사를 EtOH로 재결정하여 목적화합물 17-7c (126 mg, 77%)를 흰색 고체로 얻었다.
MS m/z 604 [M+H]+.
< 실시예 18-14> 1-(4- Bromophenyl )-3-(5- hydroxy -3,4,6- trimethylpyridin -2-yl)thiourea (18-7) 제조
화합물 17-7 (126 mg, 0.21 mmol)의 THF (2 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.23 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=2:3)로 정제하여 목적화합물 18-7 (45 mg, 59%)을 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.96 (s, 1H), 9.00 (s, 1H), 8.65 (s, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 2.37 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-15> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(3,4-dichlorophenyl)thiourea (17-8a) 제조
화합물 7a (121 mg, 0.50 mmol)의 EtOH (5 mL) 용액에 3,4-dichlorophenyl isothiocyanate (70 ㎕, 0.50 mmol)를 가한 후 상온에서 18시간 동안 교반하였다. 반응액을 감압 농축하고 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 17-8 (152 mg, 68%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.00 (s, 1H), 8.19 (s, 1H), 7.64-7.60 (m, 1H), 7.57-7.54 (m, 1H), 7.51-7.48 (m, 2H), 7.46-7.36 (m, 4H), 4.80 (s, 2H), 2.41 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H) ppm.
< 실시예 18-16> 1-(3,4- Dichlorophenyl )-3-(5- methoxy -3,4,6- trimethylpyridin -2-yl)thiourea (17-8b) 제조
화합물 7b (25 mg, 0.15 mmol)의 EtOH (2 mL) 용액에 3,4-dichlorophenyl isothiocyanate (24 μL, 0.16 mmol) 가하고 상온에서 48시간 교반하였다. 반응액을 감압 농축하고 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 17-8b (30 mg, 54%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.05 (s, 1H), 9.54 (s, 1H), 8.22 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.55-7.47 (m, 1H), 3.66 (s, 3H), 2.41 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H) ppm.
< 실시예 18-17> 1-(5-(( tert - Butyldiphenylsilyl )oxy)-3,4,6-trimethylpyridin-2-yl)-3-(3,4-dichlorophenyl)thiourea (17-8c) 제조
화합물 7c (196 mg, 0.50 mmol)의 EtOH (5 mL) 용액에 3,4-dichlorophenyl isothiocyanate (70 μL, 0.50 mmol)을 가하고 상온에서 18시간 교반하였다. 반응액을 감압농축하고, 잔사를 EtOH로 재결정하여 목적화합물 17-8c (238 mg, 80%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.77 (s, 1H), 9.51 (s, 1H), 8.14 (d, J = 2.0 Hz, 1H), 7.69-7.62 (m, 4H), 7.68-7.40 (m, 8H), 2.11 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 1.07 (s, 9H) ppm.
< 실시예 18-18> 1-(3,4- Dichlorophenyl )-3-(5- hydroxy -3,4,6-trimethylpyridin-2-yl)thiourea (18-8) 제조
화합물 17-8c (120 mg, 0.22 mmol)의 THF (2 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.24 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 18-8 (44 mg, 63%)을 회색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.81 (s, 1H), 9.45 (s, 1H), 8.71 (s, 1H), 8.19 (d, J = 1.6 Hz, 1H), 7.63-7.52 (m, 2H), 2.37 (s, 3H), 2.16 (m, 6H) ppm.
< 실시예 18-19> 1-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-3-(3-(trifluoromethyl)phenyl)thiourea (17-9a) 제조
화합물 7a (121 mg, 0.5 mmol)의 EtOH (5 mL) 용액에 3-(trifluoromethyl)phenyl isothiocyanate (76 ㎕, 0.5 mmol)를 가한 후 상온에서 18시간 교반하였다. 반응물을 감압 농축하고 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 17-9a (91 mg, 76%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.11 (s, 1H), 9.54 (s, 1H), 8.28 (s, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.64-7.58 (m, 1H), 7.51 (m, 3H), 7.46-7.35 (m, 3H), 4.81 (s, 2H), 2.42 (s, 3H), 2.23 (s, 3H), 2.21 (s, 3H) ppm.
< 실시예 18-20> 1-(5- Methoxy -3,4,6- trimethylpyridin -2- yl )-3-(3-(trifluoromethyl)phenyl)thiourea (17-9b) 제조
화합물 7b (25 mg, 0.15 mmol)의 EtOH (2 mL) 용액에 3-(trifluoromethyl)phenyl isothiocyanate (24 μL, 0.16 mmol)을 가하고 상온에서 48시간 교반하였다. 반응물을 감압 농축하고 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 17-9b (30 mg, 54%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.05 (s, 1H), 9.54 (s, 1H), 8.22 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.55-7.47 (m, 1H), 3.66 (s, 3H), 2.41 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H) ppm.
< 실시예 18-21> 1-(5-(( tert - Butyldiphenylsilyl )oxy)-3,4,6- trimethylpyridin -2-yl)-3-(3-(trifluoromethyl)phenyl)thiourea (17-9c) 제조
화합물 7c (196 mg, 0.50 mmol)의 EtOH (5 mL) 용액에 3-(trifluoromethyl)phenyl isothiocyanate (76 μL, 0.50 mmol)을 가하고 60℃에서 18시간 동안 교반하였다. 반응물을 감압농축하고, 잔사를 관크로마토그래피 (EtOAc:Hex=1:9)로 정제하여 목적화합물 17-9c (201 mg, 64%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.85 (s, 1H), 9.49 (s, 1H), 8.23 (s, 1H), 7.77-7.71 (m, 1H), 7.70-7.63 (m, 4H), 7.58-7.41 (m, 8H), 2.13 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 1.08 (s, 9H) ppm.
< 실시예 18-22> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(3-(trifluoromethyl)phenyl)thiourea (18-9) 제조
화합물 17-9c (109 mg, 0.18 mmol)의 THF (2 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.22 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=3:7)로 정제하여 목적화합물 18-9 (42 mg, 66%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.85 (s, 1H), 9.44 (s, 1H), 8.71 (s, 1H), 8.27 (s, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.62-7.57 (m, 1H), 7.49 (d, J = 7.6 Hz, 1H), 2.38 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-23> 1-(5-(( tert - Butyldiphenylsilyl )oxy)-3,4,6-trimethylpyridin-2-yl)-3-(4-(trifluoromethyl)phenyl)thiourea (17-10c) 제조
화합물 7c (113 mg, 0.29 mmol)의 EtOH (5 mL) 용액에 4-(trifluoromethyl)phenyl isothiocyanate (60 mg, 0.30 mmol)을 가하고 상온에서 18시간 교반하였다. 반응액을 감압농축하고, 잔사를 EtOH로 재결정하여 목적화합물 17-10c (140 mg, 81%)를 흰색 고체로 얻었다.
MS m/z 594 [M + H]+.
< 실시예 18-24> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-(trifluoromethyl)phenyl)thiourea (18-10) 제조
화합물 17-10c (140 mg, 0.24 mmol)의 THF (3 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.26 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=2:3)로 정제하여 목적화합물 18-10 (54 mg, 64%)을 회색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.10 (s, 1H), 9.43 (s, 1H), 8.73 (s, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 2.39 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-25> 1-(5-(( tert - Butyldiphenylsilyl )oxy)-3,4,6-trimethylpyridin-2-yl)-3-(4-nitrophenyl)thiourea (17-11c) 제조
화합물 7c (105 mg, 0.27 mmol)의 EtOH (5 mL) 용액에 4-nitrophenyl isothiocyanate (49 mg, 0.27 mmol)을 가하고 상온에서 18시간 교반하였다. 반응액을 감압농축하고, 잔사를 EtOH로 재결정하여 목적화합물 17-10c (106 mg, 69%)를 흰색 고체로 얻었다.
MS m/z 571 [M + H]+.
< 실시예 18-26> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-nitrophenyl)thiourea (18-11) 제조
화합물 17-11c (106 mg, 0.19 mmol)의 THF (2 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.20 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=2:3)로 정제하여 목적화합물 18-11 (32 mg, 54%)을 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 13.11 (s, 1H), 9.67 (s, 1H), 8.76 (s, 1H), 8.22 (d, J = 9.2 Hz, 2H), 8.04 (d, J = 9.2 Hz, 2H), 2.40 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-27> 1-(5-(( tert - Butyldiphenylsilyl )oxy)-3,4,6-trimethylpyridin-2-yl)-3-(4-methoxyphenyl)thiourea (17-12c) 제조
화합물 7c (234 mg, 0.60 mmol)의 EtOH (6 mL) 용액에 4-methoxyphenyl isothiocyanate (83 μL, 0.60 mmol)을 가하고 70 oC에서 18시간 동안 교반하였다. 반응물을 감압농축하고, 잔사를 관크로마토그래피 (EtOAc:Hex=1:9)로 정제하여 목적화합물 17-12c (132 mg, 43%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.79 (s, 1H), 9.06 (s, 1H), 7.69-7.63 (m, 4H), 7.51-7.40 (m, 8H), 6.90 (d, J = 8.8 Hz, 2H), 3.74 (s, 3H), 2.21 (s, 3H), 2.04 (s, 6H), 1.07 (s, 9H) ppm.
< 실시예 18-28> 1-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-3-(4-methoxyphenyl)thiourea (18-12) 제조
화합물 17-12c (107 mg, 0.21 mmol)의 THF (2 mL) 용액에 tetrabutylammonium fluoride (TBAF, 1.0 M in THF, 0.25 mL) 용액을 가한 후, 상온에서 1시간 교반하였다. 반응액에 포화소금물 (1 mL)을 가한 후, EtOAc (50 mL)로 희석하고 수층을 분리한 후, EtOAc 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=2:3)로 정제하여 목적화합물 18-12 (30 mg, 52%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.88 (s, 1H), 8.99 (s, 1H), 8.64 (s, 1H), 7.52 (d, J = 6.8 Hz, 2H), 6.93 (d, J = 6.8 Hz, 2H), 3.75 (s, 3H), 2.36 (s, 3H), 2.17 (s, 6H) ppm.
< 실시예 18-29> N-((5- Benzyloxy -3,4,6- trimethylpyridin -2-yl)carbamothioyl)benzamide (17-13a) 제조
화합물 7a (70 mg, 0.289 mmol)의 EtOH (1 mL) 현탁액에 benzoyl isothiocyanate (42.7 μL, 0.318 mmol)를 가하고 50 oC에서 10시간 교반하였다. 반응액을 상온으로 식히고 감압 농축한 후, 잔사를 관크로마토그래피 (EtAOc:Hex=1:5→1:1)로 정제하여 목적화합물 17-13a (117 mg, 99%)를 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 12.17 (s, 1H), 9.14 (s, 1H), 7.89 (d, J = 7.3 Hz, 2H), 7.68-7.60 (m, 1H), 7.58-7.51 (m, 2H), 7.48-7.37 (m, 5H), 4.85 (s, 2H), 2.52 (s, 3H), 2.28 (s, 3H), 2.26 (s, 3H) ppm.
< 실시예 18-30> N-((5- Hydroxy -3,4,6- trimethylpyridin -2-yl)carbamothioyl)benzamide (18-13) 제조
화합물 17-13a (107 mg, 0.264 mmol)의 CH2Cl2 (2 mL) 현탁액에 pentamethylbenzene (117 mg, 0.792 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.53 mL)를 천천히 가한 후 0℃에서 2시간 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 2 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=40:1)로 정제하여 목적화합물 18-13 (53 mg, 64%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 12.12 (s, 1H), 11.52 (s, 1H), 8.69 (s, 1H), 7.99 (d, J = 7.4 Hz, 2H), 7.67 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.4 Hz, 2H), 2.33 (s, 3H), 2.16 (s, 3H), 2.11 (s, 3H) ppm.
실시예 . 피리딘올 - 카바메이트 ( pyridinol - carbamate ) 유도체 제조
< 실시예 19-1> Methyl (5- benzyloxy -3,4,6- trimethylpyridin -2- yl ) carbamate (19-1) 제조
화합물 7a (70 mg, 0.289 mmol)의 acetone (1 mL) 현탁액에 K2CO3 (120 mg, 0.864 mmol)를 가한 후 반응액을 0℃로 냉각하였다. 반응액에 methyl chloroformate (112 ㎕, 1.445 mmol)를 천천히 가한 후, 상온에서 24시간 교반하였다. 반응액을 농축한 후, 잔사를 CH2Cl2와 물로 희석하고 수층을 CH2Cl2 (3×30 mL)로 추출하였다. CH2Cl2 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=30:1→20:1)로 정제하여 목적화합물 19-1 (63 mg, 73%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.55-7.30 (m, 5H), 6.96 (s, 1H), 4.77 (s, 2H), 3.76 (s, 3H), 2.43 (s, 3H), 2.25 (s, 3H), 2.16 (s, 3H) ppm.
< 실시예 19-2> Methyl (5- hydroxy -3,4,6- trimethylpyridin -2- yl ) carbamate (20-1) 제조
화합물 19-1 (55 mg, 0.184 mmol)의 MeOH-CHCl3 (3 mL) 현탁액에 10% palladium on activated carbon (12 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=20:1→5:1)로 정제하여 목적화합물 20-1 (37 mg, 96%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.99 (s, 1H), 8.51 (s, 1H), 5.74 (s, 1H), 3.55 (s, 3H), 2.25 (s, 3H), 2.09 (s, 3H), 1.97 (s, 3H) ppm.
< 실시예 19-3> Butyl (5- benzyloxy -3,4,6- trimethylpyridin -2- yl ) carbamate (19-2) 제조
화합물 7a (70 mg, 0.289 mmol)의 acetone (1 mL) 현탁액에 K2CO3 (200 mg, 1.445 mmol)를 가한 후 반응액을 0℃로 냉각하였다. 반응액에 butyl chloroformate (183.8 ㎕, 1.445 mmol)를 천천히 가한 후, 상온에서 24시간 교반하였다. 반응액을 농축한 후, 잔사를 CH2Cl2로 희석하고 포화 NaHCO3 수용액, 물, 포화소금물로 세척하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=30:1→20:1)로 정제하여 목적화합물 19-2 (90 mg, 91%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.51-7.29 (m, 5H), 6.78 (s, 1H), 4.75 (s, 2H), 4.12 (t, J = 6.6 Hz, 2H), 2.42 (s, 3H), 2.22 (s, 3H), 2.14 (s, 3H), 1.61 (dt, J = 8.3, 5.6 Hz, 2H), 1.38 (dd, J = 15.1, 7.4 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H) ppm.
< 실시예 19-4> Butyl (5- hydroxy -3,4,6- trimethylpyridin -2- yl ) carbamate (20-2) 제조
화합물 19-2 (79 mg, 0.231 mmol)의 MeOH (5 mL) 현탁액에 10% palladium on activated carbon (16 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 20-2 (54 mg, 92%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.95 (s, 1H), 3.98 (t, J = 6.5 Hz, 2H), 2.27 (s, 3H), 2.11 (s, 3H), 1.99 (s, 3H), 1.55 (dt, J = 14.5, 6.6 Hz, 2H), 1.34 (dq, J = 14.1, 7.1 Hz, 2H), 0.89 (t, J = 7.3 Hz, 3H) ppm.
< 실시예 19-5> Isobutyl (5- benzyloxy -3,4,6- trimethylpyridin -2-yl)carbamate (19-3) 제조
화합물 7a (70 mg, 0.289 mmol)의 acetone (1 mL) 현탁액에 K2CO3 (200 mg, 1.445 mmol)를 가한 후 반응액을 0℃로 냉각하였다. 반응액에 isobutyl chloroformate (187 ㎕, 1.445 mmol)를 천천히 가했다. 반응액을 상온에서 23시간 교반한 후, 50℃에서 4시간 더 교반하였다. 반응액을 농축한 후, 잔사를 CH2Cl2로 희석하고 포화 NaHCO3 수용액, 6 M NaOH 수용액으로 세척하였다. 수층을 CH2Cl2 (2×30 mL)로 추출한 후, CH2Cl2 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=40:1)로 정제하여 목적화합물 19-3 (94 mg, 93%)을 노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.46-7.30 (m, 5H), 4.75 (s, 2H), 3.91 (d, J = 6.6 Hz, 2H), 2.42 (s, 3H), 2.21 (s, 3H), 2.14 (s, 3H), 1.94 (dt, J = 13.4, 6.7 Hz, 1H), 0.92 (d, J = 6.7 Hz, 6H) ppm.
< 실시예 19-6> Isobutyl (5- hydroxy -3,4,6- trimethylpyridin -2- yl ) carbamate (20-3) 제조
화합물 19-3 (91 mg, 0.266 mmol)의 MeOH (5 mL) 현탁액에 10% palladium on activated carbon (18 mg)을 가하고 수소기류 하 상온에서 6시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=30:1→20:1)로 정제하여 목적화합물 20-3 (34 mg, 50%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.87 (s, 1H), 8.42 (s, 1H), 3.76 (d, J = 6.6 Hz, 2H), 2.26 (s, 3H), 2.10 (s, 3H), 1.99 (s, 3H), 1.85 (td, J = 13.3, 6.6 Hz, 1H), 0.87 (d, J = 6.7 Hz, 6H) ppm.
< 실시예 19-7> 2- Chloroethyl (5- benzyloxy -3,4,6- trimethylpyridin -2-yl)carbamate (19-4) 제조
화합물 7a (70 mg, 0.289 mmol)의 acetone (1 mL) 현탁액에 K2CO3 (200 mg, 1.445 mmol)를 가한 후 반응액을 0℃로 냉각하였다. 반응액에 2-chloroethyl chloroformate (149.2 ㎕, 1.445 mmol)을 천천히 가한 후 상온에서 9시간 교반하였다. 반응액을 농축한 후, 잔사를 CH2Cl2로 희석하고 포화 NaHCO3 수용액, 포화소금물로 세척하였다. CH2Cl2 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=50:1→30:1)로 정제하여 목적화합물 19-4 (84 mg, 84%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.48-7.33 (m, 5H), 6.88 (s, 1H), 4.76 (s, 2H), 4.38 (t, J = 5.8 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 2.43 (s, 3H), 2.23 (s, 3H), 2.15 (s, 3H) ppm.
< 실시예 19-8> 2- Chloroethyl (5- hydroxy -3,4,6- trimethylpyridin -2-yl)carbamate (20-4) 제조
화합물 19-4 (75 mg, 0.215 mmol)의 CH2Cl2 (2 mL) 현탁액에 pentamethylbenzene (96 mg, 0.645 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.32 mL)를 천천히 가한 후 0℃에서 30분 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 1 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=30:1→10:1)로 정제하여 목적화합물 20-4 (51 mg, 92%)을 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 9.11 (s, 1H), 8.48 (s, 1H), 4.31-4.21 (m, 2H), 3.86-3.76 (m, 2H), 2.28 (s, 3H), 2.12 (s, 3H), 2.02 (s, 3H) ppm.
< 실시예 19-9> 2- Methoxyethyl (5- benzyloxy -3,4,6- trimethylpyridin -2-yl)carbamate (19-5) 제조
화합물 7a (70 mg, 0.289 mmol)의 acetone (2 mL) 현탁액에 K2CO3 (200 mg, 1.445 mmol)를 가한 후 반응액을 0℃로 냉각하였다. 반응액에 2-methoxyethyl chloroformate (168 ㎕, 1.445 mmol)를 천천히 가한 후 상온에서 17시간 교반하였다. 반응액을 농축한 후, 잔사를 CH2Cl2로 희석하고 포화 NaHCO3 수용액, 포화소금물로 세척하였다. CH2Cl2 용액을 포화소금물로 세척하고 무수 MgSO4로 건조, 여과하여 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=40:1)로 정제하여 목적화합물 19-5 (72mg, 72%)를 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.49-7.35 (m, 5H), 6.94 (s, 1H), 4.77 (s, 2H), 4.35-4.26 (m, 2H), 3.67-3.58 (m, 2H), 3.41 (s, 3H), 2.44 (s, 3H), 2.24 (s, 3H), 2.16 (s, 3H) ppm.
< 실시예 19-10> 2- Methoxyethyl (5- hydroxy -3,4,6- trimethylpyridin -2-yl)carbamate (20-5) 제조
화합물 19-5 (95 mg, 0.276 mmol)의 MeOH (5 mL) 현탁액에 10% palladium on activated carbon (19 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 20-5 (70 mg, 99%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 9.01 (s, 1H), 8.52 (s, 1H), 4.11 (dd, J = 5.4, 3.9 Hz, 2H), 3.52 (dd, J = 5.4, 4.0 Hz, 2H), 3.27 (s, 3H), 2.28 (s, 3H), 2.12 (s, 3H), 2.00 (s, 3H) ppm.
실시예 . 피리딘올 -술폰아미드( pyridinol -sulfonamide) 유도체 제조
< 실시예 20-1> N-(5- Benzyloxy -3,4,6- trimethylpyridin -2-yl)methanesulfonamide (21-1) 제조
화합물 7a (50 mg, 0.206 mmol)의 pyridine (2 mL) 현탁액에 methanesulfonyl chloride (47.8 ㎕, 0.618 mmol)을 가하고 상온에서 24시간 교반하였다. 반응액을 농축한 후 잔사를 CH2Cl2로 희석하고 물, 포화소금물로 세척하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (CH2Cl2:MeOH=40:1→30:1)로 정제하여 목적화합물 21-1 (34 mg, 52%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.43-7.37 (m, 5H), 4.72 (s, 2H), 3.20 (s, 3H), 2.30 (s, 3H), 2.21 (s, 3H), 2.13 (s, 3H) ppm.
< 실시예 20-2> N-(5- Hydroxy -3,4,6- trimethylpyridin -2-yl)methanesulfonamide (22-1) 제조
화합물 21-1 (26 mg, 0.081 mmol)의 CH2Cl2-MeOH (5 mL) 현탁액에 10% palladium on activated carbon (5 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 22-1 (19 mg, 100%)를 연노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 9.00 (br s, 1H), 3.20 (s, 3H), 2.30 (s, 3H), 2.10 (d, J = 3.7 Hz, 6H) ppm.
< 실시예 20-3> N-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-4-methylbenzenesulfonamide (21-2) 제조
화합물 7a (100 mg, 0.413 mmol)의 pyridine (2 mL) 현탁액에 tosyl chloride (86.5 mg, 0.454 mmol)을 가하고 상온에서 2시간 교반하였다. 반응액을 농축한 후 잔사를 CH2Cl2로 희석하고 물, 포화소금물로 세척하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:3)로 정제하여 목적화합물 21-2 (82 mg, 50%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.81 (d, J = 8.3 Hz, 2H), 7.39-7.35 (m, 5H), 7.22 (d, J = 8.0 Hz, 2H), 4.70 (s, 2H), 2.37 (s, 3H), 2.23 (s, 3H), 2.19 (s, 3H), 2.14 (s, 3H) ppm.
< 실시예 20-4> N-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-4-methylbenzenesulfonamide (22-2) 제조
화합물 21-2 (130 mg, 0.328 mmol)의 MeOH (10 mL) 현탁액에 10% palladium on activated carbon (26 mg)을 가하고 수소기류 하 상온에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 22-2 (186 mg, 85%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 7.71 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H) ppm.
< 실시예 20-5> N-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-4-(trifluoromethyl)benzenesulfonamide (21-3) 제조
화합물 7a (150 mg, 0.619 mmol)의 pyridine (3 mL) 현탁액에 4-(trifluoromethyl)benzenesulfonyl chloride (227.1 mg, 0.929 mmol)을 가하고 상온에서 24시간 교반하였다. 반응액을 농축한 후 잔사를 CH2Cl2로 희석하고 물, 포화 NaHCO3 수용액으로 세척하였다. 수층을 CH2Cl2 (3×25 mL)로 추출한 후 CH2Cl2 용액을 포화소금물로 세척하고, 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:3)로 정제하여 목적화합물 21-3 (231 mg, 83%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 8.05 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.41-7.31 (m, 5H), 4.72 (s, 2H), 2.25 (s, 3H), 2.22 (s, 3H), 2.14 (s, 3H) ppm.
< 실시예 20-6> N-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-4-(trifluoromethyl)benzenesulfonamide (22-3) 제조
화합물 21-3 (146 mg, 0.324 mmol)의 MeOH-THF (5 mL) 현탁액에 10% palladium on activated carbon (23 mg)을 가하고 수소기류 하 상온에서 4시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 22-3 (182 mg, 98%)를 흰색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.03 (d, J = 8.3 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H), 2.12 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H) ppm.
< 실시예 20-7> N-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-4-nitrobenzenesulfonamide (21-4) 제조
화합물 7a (200 mg, 0.825 mmol)의 pyridine (3 mL) 현탁액에 4-nitrobenzensulfonyl chloride (219.5 mg, 0.99 mmol)을 가하고 70℃에서 48시간 교반하였다. 반응액을 농축한 후 잔사를 CH2Cl2로 희석하고 물, 포화 NaHCO3 수용액, 포화소금물로 차례대로 세척하였다. CH2Cl2 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:4)로 정제하여 목적화합물 21-4 (233 mg, 66%)을 노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 11.94 (br s, 1H), 8.29-8.22 (m, 2H), 8.12-8.06 (m, 2H), 7.42-7.31 (m, 5H), 4.72 (s, 2H), 2.26 (s, 3H), 2.23 (s, 3H), 2.13 (s, 3H) ppm.
< 실시예 20-8> N-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )-4-nitrobenzenesulfonamide (22-4) 제조
화합물 21-4 (70 mg, 0.164 mmol)의 CH2Cl2 (1 mL) 현탁액에 pentamethylbenzene (72.8 mg, 0.491 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 0.33 mL)를 천천히 가한 후 0℃에서 30분 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 1 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=30:1)로 정제하여 목적화합물 22-4 (60 mg, 100%)을 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 10.11 (s, 1H), 8.60 (s, 1H), 8.39 (d, J = 8.9 Hz, 2H), 8.08 (d, J = 8.8 Hz, 2H), 2.13-2.07 (m, 9H) ppm.
< 실시예 20-9> N-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )naphthalene-1-sulfonamide (21-5) 제조
화합물 7a (50 mg, 0.206 mmol)의 CH2Cl2 (1 mL) 현탁액에 triethylamine (57.4 μL, 0.412 mmol), 1-naphthalenesulfonyl chloride (70 mg, 0.309 mmol)를 가하고 상온에서 70시간 교반하였다. 반응액을 CH2Cl2와 포화 NaHCO3 수용액을 가하여 희석하고, 수층을 CH2Cl2 (3×30 mL)로 추출한 후, CH2Cl2 용액을 포화소금물로 세척하고, 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:15→1:2)로 정제하여 목적화합물 21-5 (54 mg, 61%)을 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 11.87 (s, 1H), 9.03 (d, J = 8.6 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.68-7.58 (m, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.48-7.40 (m, 1H), 7.38-7.27 (m, 5H), 4.65 (s, 2H), 2.21 (s, 3H), 2.15 (s, 3H), 2.09 (s, 3H) ppm.
< 실시예 20-10> N-(5- Hydroxy -3,4,6- trimethylpyridin -2- yl )naphthalene-1-sulfonamide (22-5) 제조
화합물 21-5 (109 mg, 0.252 mmol)의 MeOH (5 mL) 현탁액에 10% palladium on activated carbon (22 mg)을 가하고 수소기류 하 상온에서 8시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:2→1:1)로 정제하여 목적화합물 22-5 (77 mg, 89%)을 연노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 8.75-8.65 (m, 1H), 8.22 (d, J = 7.3 Hz, 1H), 8.14 (d, J = 8.1 Hz, 1H), 8.06-8.01 (m, 1H), 7.63-7.57 (m, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 1.96 (s, 3H) ppm.
실시예 . 피리딘올 - 술파미드 ( pyridinol - sulfamide ) 유도체 제조
< 실시예 21-1> N-(5- Benzyloxy -3,4,6- trimethylpyridin -2- yl )-2-oxooxazolidine-3-sulfonamide (23) 제조
Chlorosulfonyl isocyanate (360 μL, 4.127 mmol)의 CH2Cl2 용액 (2 mL)을 0℃로 냉각한 후 2-chloroethanol (277 μL, 4.127 mmol)을 가하고 0℃에서 2.5시간 교반하였다. 반응액에 triethylamine (575 μL, 4.127 mmol)을 가한 후, 화합물 7a (500 mg, 2.063 mmol)의 CH2Cl2 용액 (10 mL)을 0℃에서 적가하고 상온에서 12시간 교반하였다. 반응액을 CH2Cl2로 희석하고 포화 NaHCO3 수용액으로 세척하였다. CH2Cl2 용액을 포화소금물로 세척하고, 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:2→1:1)로 정제하여 목적화합물 23 (592 mg, 73%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.38 (s, 5H), 4.75 (s, 2H), 4.29 (t, J = 5.8 Hz, 2H), 3.61 (t, J = 5.8 Hz, 2H), 2.32 (s, 3H), 2.24 (s, 3H), 2.16 (s, 3H) ppm.
< 실시예 21-2> N-(5- Benzyloxy -3,4,6- trimethyl -2- pyridinyl )-N'-(4-( tert -butyl)benzyl)sulfamide (24-1) 제조
화합물 23 (61 mg, 0.159 mmol)의 1,2-dichloroethane (2 mL) 용액에 triethylamine (65 μL, 0.488 mmol)과 tert-butylbenzylamine (55 μL, 0.312 mmol)를 가한 후, 반응액을 12시간 환류 교반하였다. 반응액을 CH2Cl2로 희석하고 포화 NaHCO3 수용액으로 세척하였다. CH2Cl2 용액을 포화소금물로 세척하고, 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:5→1:3)로 정제하여 목적화합물 24-1 (26 mg, 35%)을 연노란색 카라멜로 얻었다.
1H-NMR (CDCl3) δ 7.45-7.36 (m, 5H), 7.31-7.26 (m, 2H), 7.23-7.16 (m, 2H), 5.76 (s, 1H), 4.71 (s, 2H), 4.20-4.18 (m, 2H), 2.34 (s, 3H), 2.19 (s, 3H), 2.03 (s, 3H), 1.26 (s, 9H) ppm.
< 실시예 21-3> N-(5- Hydroxy -3,4,6- trimethyl -2- pyridinyl )-N'-(4-( tert -butyl)benzyl)sulfamide (25-1) 제조
화합물 24-1 (26 mg, 0.056 mmol)의 MeOH 용액 (3 mL)에 10% palladium on activated carbon (6 mg)을 가하고 수소기류 하 상온에서 12시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:2)로 정제하여 목적화합물 25-1 (8 mg, 38%)을 연노란색 카라멜로 얻었다.
1H-NMR (CDCl3) δ 7.35 (br s, 1H), 7.29-7.26 (m, 2H), 7.24-7.16 (m, 2H), 4.19 (s, 2H), 2.30 (s, 3H), 2.15 (s, 3H), 2.06 (s, 3H), 1.27 (s, 9H) ppm.
< 실시예 21-4> N-(5- Benzyloxy -3,4,6- trimethyl -2- pyridinyl )-N'-(4-chlorophenethyl)sulfamide (24-2) 제조
화합물 23 (50 mg, 0.128 mmol)의 CH3CN (1 mL) 용액에 triethylamine (54 μL, 0.385 mmol)와 2-(4-chlorophenyl)ethylamine (36 μL, 0.257 mmol)을 차례로 가한 후, 반응액을 55℃에서 6시간 교반하였다. 반응액을 감압 농축한 후, 잔사를 관크로마토그래피 (EtOAc:Hex=1:5)로 정제하여 목적화합물 24-2 (14 mg, 24%)를 연노란색 카라멜로 얻었다.
1H-NMR (CDCl3) δ 7.49-7.39 (m, 5H), 7.29-7.27 (m, 2H), 7.16-7.12 (m, 2H), 4.73 (s, 2H), 3.39-3.29 (m, 2H), 2.89 (t, J = 6.7 Hz, 2H), 2.23 (s, 3H), 2.20 (s, 3H), 2.11 (s, 3H) ppm.
< 실시예 21-5> N-(5- Hydroxy -3,4,6- trimethyl -2- pyridinyl )-N'-(4-chlorophenethyl)sulfamide (25-2) 제조
화합물 24-2 (13 mg, 0.028 mmol)의 CH2Cl2 (1 mL) 현탁액에 pentamethylbenzene (13 mg, 0.085 mmol)을 넣고 boron trichloride (1 M BCl3 in CH2Cl2, 56 μL)를 천천히 가한 후 0℃에서 30분 교반하였다. 반응액에 CHCl3-MeOH 용액 (9:1, 1 mL)을 가하여 30분간 교반한 후 반응액을 농축하였다. 잔사를 관크로마토그래피 (CHCl3:MeOH=20:1)로 정제하여 목적화합물 25-2 (7 mg, 69%)을 연노란색 카라멜로 얻었다.
1H-NMR ((CD3)2SO) δ 7.37-7.30 (m, 2H), 7.27-7.19 (m, 2H), 3.13 (t, J = 6.3 Hz, 2H), 2.77 (t, J = 7.1 Hz, 2H), 2.13 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H) ppm.
실시예 . 피리딘올 - 알콕사이드 ( pyridinol - alkoxide ) 유도체 제조
< 실시예 22-1> 5- Benzyloxy -3,4,6- trimethylpyridin -2- ol (26) 제조
화합물 7a (2 g, 8.253 mmol)를 물 (100 mL)과 THF (3 mL)의 혼합 용매에 녹인 후, 10% H2SO4 수용액 (1.1 mL, 20.634 mmol)을 가하고 0℃로 냉각하였다. 여기에 sodium nitrite (NaNO2, 285 mg, 4.127 mmol)의 수용액 (15 mL)을 가한 후 상온으로 서서히 온도를 올리면서 2시간 교반하였다. 반응액을 CH2Cl2로 희석하고 포화 NaHCO3 수용액으로 세척하였다. 수층을 CH2Cl2로 추출한 후, CH2Cl2 용액을 포화소금물로 세척하고, 무수 MgSO4로 건조, 여과하고 감압 농축하여 목적화합물 26 (1.95 g, 98%)을 노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.43-7.32 (m, 5H), 4.69 (s, 2H), 2.23 (s, 3H), 2.17 (s, 3H), 2.09 (s, 3H) ppm.
< 실시예 22-2> 2,5- Bis ( benzyloxy )-3,4,6- trimethylpyridine (27-1) 제조
화합물 26 (17 mg, 0.070 mmol)의 THF-DMF (1:1, 2 mL) 용액에 silver carbonate (Ag2CO3, 23 mg, 0.084 mmol)와 benzyl bromide (13 μL, 0.105 mmol)를 가한 후, 반응액을 상온에서 20시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 CH2Cl2와 물로 희석하고 수층을 CH2Cl2로 추출하였다. CH2Cl2 용액을 물, 포화소금물로 세척한 후, 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:20)로 정제하여 목적화합물 27-1 (15 mg, 65%)을 연노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.50-7.25 (m, 10H), 5.36 (s, 2H), 4.73 (s, 2H), 2.41 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H) ppm.
< 실시예 22-3> 3,4,6- Trimethylpyridine -2,5- diol (28-1) 제조
화합물 27-1 (55 mg, 0.164 mmol)의 MeOH 용액 (2 mL)에 10% palladium on activated carbon (13 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 28-1 (23 mg, 92%)를 노란색 고체로 얻었다.
1H-NMR ((CD3)2SO) δ 2.08 (s, 3H), 2.03 (s, 3H), 1.90 (s, 3H) ppm.
< 실시예 22-4> 3- Benzyloxy -6- butoxy -2,4,5- trimethylpyridine (27-2) 제조
화합물 26 (100 mg, 0.411 mmol)의 DMF (4 mL) 용액에 silver carbonate (Ag2CO3, 136 mg, 0.493 mmol)와 1-iodobutane (70 μL, 0.617 mmol)를 가한 후, 반응액을 40℃에서 2시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후 여액을 감압 농축하였다. 잔사를 EtOAc로 희석하고 물, 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:30)로 정제하여 목적화합물 27-2 (87 mg, 89%)을 노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.49-7.29 (m, 5H), 4.71 (s, 2H), 4.26 (t, J = 6.5 Hz, 2H), 2.38 (s, 3H), 2.17 (s, 3H), 2.08 (s, 3H), 1.73 (dt, J = 14.5, 6.7 Hz, 2H), 1.48 (dq, J = 14.2, 7.2 Hz, 5H), 0.96 (t, J = 7.3 Hz, 3H) ppm.
< 실시예 22-5> 6- Butoxy -2,4,5- trimethylpyridin -3- ol (28-2) 제조
화합물 27-2 (57 mg, 0.190 mmol)의 MeOH 용액 (2 mL)에 10% palladium on activated carbon (11 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 여액을 감압 농축하여 목적화합물 28-2 (28 mg, 70%)를 노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 4.21 (t, J = 6.5 Hz, 2H), 4.09 (s, 1H), 2.33 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H), 1.71 (dt, J = 14.5, 6.6 Hz, 2H), 1.46 (dq, J = 14.2, 7.2 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H) ppm.
< 실시예 22-6> 3- Benzyloxy -2,4,5- trimethyl -6-( octyloxy )pyridine (27-3) 제조
화합물 26 (100 mg, 0.411 mmol)의 DMF (4 mL) 용액에 silver carbonate (Ag2CO3, 136 mg, 0.493 mmol)와 1-iodooctane (111 μL, 0.617 mmol)를 가한 후, 반응액을 40℃에서 4시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후 여액을 감압 농축하였다. 잔사를 EtOAc로 희석하고 물, 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:30)로 정제하여 목적화합물 27-3 (131 mg, 90%)을 노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.48-7.29 (m, 5H), 4.71 (s, 2H), 4.25 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H), 2.17 (s, 3H), 2.08 (s, 3H), 1.79-1.63 (m, 2H), 1.47-1.25 (m, 10H), 0.88-0.83 (m, 3H) ppm.
< 실시예 22-7> 2,4,5- Trimethyl -6-( octyloxy ) pyridin -3- ol (28-3) 제조
화합물 27-3 (99 mg, 0.279 mmol)의 MeOH 용액 (2 mL)에 10% palladium on activated carbon (20 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 감압 농축하여 목적화합물 28-3 (70 mg, 95%)를 노란색 액체로 얻었다.
1H-NMR (CDCl3) δ 4.20 (t, J = 6.6 Hz, 2H), 4.04 (s, 1H), 2.33 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H), 1.76-1.68 (m, 2H), 1.44-1.25 (m, 10H), 0.92-0.85 (m, 3H) ppm.
< 실시예 22-8> 3- Benzyloxy -6- isopentyloxy -2,4,5- trimethylpyridine (27-4) 제조
화합물 26 (100 mg, 0.411 mmol)의 DMF (4 mL) 용액에 silver carbonate (Ag2CO3, 136 mg, 0.493 mmol)와 1-iodooctane (71 μL, 0.617 mmol)를 가한 후, 반응액을 50℃에서 20시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후 여액을 감압 농축하였다. 잔사를 EtOAc로 희석하고 물, 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:30)로 정제하여 목적화합물 27-4 (33 mg, 27%)을 무색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.52-7.28 (m, 5H), 4.70 (s, 2H), 4.27 (t, J = 6.6 Hz, 2H), 2.38 (s, 3H), 2.17 (s, 3H), 2.07 (s, 3H), 1.90-1.72 (m, 1H), 1.63 (q, J = 6.7 Hz, 2H), 0.95 (d, J = 6.6 Hz, 6H) ppm.
< 실시예 22-9> 6- Isopentyloxy -2,4,5- trimethylpyridin -3- ol (28-4) 제조
화합물 27-4 (72 mg, 0.230 mmol)의 MeOH 용액 (2 mL)에 10% palladium on activated carbon (14 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 감압 농축하여 목적화합물 28-4 (40 mg, 78%)를 회색 액체로 얻었다.
1H-NMR (CDCl3) δ 4.24 (t, J = 6.6 Hz, 2H), 4.08 (s, 1H), 2.33 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 1.78 (td, J = 13.3, 6.6 Hz, 1H), 1.61 (dd, J = 13.4, 6.7 Hz, 2H), 0.94 (d, J = 6.6 Hz, 6H) ppm.
< 실시예 22-10> 3- Benzyloxy -6- cyclopentyloxy -2,4,5- trimethylpyridine (27-5) 제조
화합물 26 (100 mg, 0.411 mmol)의 DMF (4 mL) 용액에 silver carbonate (Ag2CO3, 136 mg, 0.493 mmol)와 1-iodocyclopentane (71 μL, 0.617 mmol)를 가한 후, 반응액을 50℃에서 7시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후 여액을 감압 농축하였다. 잔사를 EtOAc로 희석하고 물, 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:50)로 정제하여 목적화합물 27-5 (88 mg, 69%)을 무색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.48-7.28 (m, 5H), 5.49-5.37 (m, 1H), 4.72 (s, 2H), 2.37 (s, 3H), 2.16 (s, 3H), 2.04 (s, 3H), 1.97-1.88 (m, 2H), 1.83-1.68 (m, 4H), 1.64-1.55 (m, 2H) ppm.
< 실시예 22-11> 6- Cyclopentyloxy -2,4,5- trimethylpyridin -3- ol (28-5) 제조
화합물 27-5 (63 mg, 0.202 mmol)의 MeOH 용액 (2 mL)에 10% palladium on activated carbon (13 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 감압 농축하여 목적화합물 28-5 (39 mg, 87%)를 연노란색 고체로 얻었다.
1H-NMR (CDCl3) δ 5.39-5.35 (m, 1H), 4.05 (br s, 1H), 2.34 (s, 3H), 2.14 (s, 3H), 2.06 (s, 3H), 1.96-1.46 (m, 10H) ppm.
< 실시예 22-12> 3- Benzyloxy -2,4,5- trimethyl -6-(3- phenylpropoxy )pyridine (27-6) 제조
화합물 26 (100 mg, 0.411 mmol)의 DMF (4 mL) 용액에 silver carbonate (Ag2CO3, 136 mg, 0.493 mmol)와 (3-iodopropyl)benzene (99 μL, 0.617 mmol)를 가한 후, 반응액을 50℃에서 4시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후 여액을 감압 농축하였다. 잔사를 EtOAc로 희석하고 물, 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:50)로 정제하여 목적화합물 27-6 (101 mg, 68%)을 무색 액체로 얻었다.
1H-NMR (CDCl3) δ 7.49-7.26 (m, 6H), 7.24-7.11 (m, 4H), 4.72 (s, 2H), 4.32 (t, J = 6.4 Hz, 2H), 2.85-2.73 (m, 2H), 2.37 (s, 3H), 2.18 (s, 3H), 2.13-2.01 (m, 5H) ppm.
< 실시예 22-13> 2,4,5- Trimethyl -6-(3- phenylpropoxy ) pyridin -3- ol (28-6) 제조
화합물 27-6 (77 mg, 0.202 mmol)의 MeOH 용액 (2 mL)에 10% palladium on activated carbon (15 mg)을 가하고 수소기류 하 상온에서 1시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후, 여액을 감압 농축하였다. 잔사를 MeOH에 녹인 후, 멤브레인 필터로 여과하고 감압 농축하여 목적화합물 28-6 (50 mg, 87%)를 무색 액체로 얻었다.
11H-NMR (CDCl3) δ 7.34-7.09 (m, 5H), 4.26 (t, J = 6.3 Hz, 2H), 4.04 (s, 1H), 2.82-2.72 (m, 2H), 2.33 (s, 3H), 2.15 (s, 3H), 2.13-1.99 (m, 5H) ppm.
< 실시예 22-14> 3- Benzyloxy -6-((4-( tert -butyl)benzyl)oxy)-2,4,5-trimethylpyridine (27-7) 제조
화합물 26 (100 mg, 0.411 mmol)의 DMF (4 mL) 용액에 silver carbonate (Ag2CO3, 136 mg, 0.493 mmol)와 4-tert-butylbenzyl bromide (113 μL, 0.617 mmol)를 차례대로 가한 후, 반응액을 40℃에서 6시간 교반하였다. 반응액을 Celite를 이용하여 여과한 후 여액을 감압 농축하였다. 잔사를 EtOAc로 희석하고 물, 포화소금물로 세척하였다. EtOAc 용액을 무수 MgSO4로 건조, 여과하고 감압 농축하였다. 잔사를 관크로마토그래피 (EtOAc:Hex=1:50)로 정제하여 목적화합물 27-7 (143 mg, 89%)을 흰색 고체로 얻었다.
1H-NMR (CDCl3) δ 7.48-7.30 (m, 9H), 5.34 (s, 2H), 4.73 (s, 2H), 2.41 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H), 1.32 (s, 9H) ppm.
< 실험예 1> TNF -α로 유도한 단핵구의 장상피세포 부착 억제 활성 시험
<시험 방법>
HT-29 사람 대장암 유래 상피세포와 U937 사람 유래 단핵구성 세포는 10% FBS, 1% penicillin/streptomycin(PS)가 함유된 RPMI 1640 배지로 37℃, 5% CO2 조건 하에서 배양하여, 세포가 배양 플라스크에 80% 이상 성장하면 1:3 의 비율로 계대하여 본 실험에 사용하였다. HT-29 세포를 24 well plate에 2×105 cells/cm2의 농도로 배양하여 1% FBS와 1% PS만 함유된 배지에 시험약물을 1시간 전처리 하였다. 그 후 10 ug/mL BCECF-AM를 처리하여 37℃에서 30분 반응시켜 BCECF가 세포내에 탑재된 U937 세포와 TNF-α(10 ng/mL)를 앞서 시험 약물이 처리된 HT-29 세포와 37℃에서 3시간 반응시켰다. 반응이 끝나면 배지를 제거하고 부착되지 않은 U937 세포를 제거하기 위하여 PBS로 2회 세척하였다. 다음 단계로 세포 용해를 위하여 0.1% Triton X-100 (0.1 M Tris)를 처리하여 실온에서 30분 반응시킨 후, Fluostar optima microplate reader (BMG Labtechnologies, Germany)을 사용하여 형광을 측정하여 정량하였다 (Carvalho et al., 1996; Thapa et al., 2008).
Carvalho, D., Savage, C.O., Black, C.M. and Pearson, J.D., IgG antiendothelial cell autoantibodies from scleroderma patients induce leukocyte adhesion to human vascular endothelial cells in vitro. Induction of adhesion molecule expression and involvement of endothelium-derived cytokines. J. Clin. Invest. 97, 111-119 (1996).
Thapa, D., Lee, J.S., Park, S.Y., Bae, Y.H., Bae, S.K., Kwon, J.B., Kim, K.J., Kwak, M.K., Park, Y.J., Choi, H.G. and Kim, J.A., Clotrimazole Ameliorates Intestinal Inflammation and Abnormal Angiogenesis by Inhibiting Interleukin-8 Expression through a Nuclear Factor-kB-Dependent Manner. J. Pharmacol. Exp. Ther. 327, 353-364 (2008).
Figure PCTKR2017000457-appb-T000007
TNF-α에 의해 유도된 장 상피 세포(HT-29)와 단핵구성 세포(U937)의 부착에 대한 시험 약물(1 μM)의 억제활성을 조사한 결과는 <표 7>과 같다. 현재 임상에서 염증성 장질환 치료에 쓰이고 있는 약물인 sulfasalazine의 활성 대사체인 5-ASA(양성대조군)의 경우는 3.8%의 억제율로 1 μM의 농도에서는 그 효과가 거의 나타나지 않은 반면, 갈라파고스(Galapagos)사에서 염증성 장질환 치료제 개발 임상 시험 중인 GLPG 화합물은 30.9%의 억제율을 보였다. 이에 반해 피리딘올 유도체 18-9 화합물은 93%의 억제율을 나타내어 매우 우수한 활성을 보였다. 화합물 22-3은 87.3%의 억제율을, 화합물 18-8은 87.2%의 억제율을 보였다. 50% 이상의 억제율을 보이는 화합물들을 억제 활성이 우수한 순으로 나열하면, 화합물 18-9 > 22-3 > 18-8 > 22-5 > 16-12 > 18-10 > 16-2 > 18-11 > 28-1 > 18-13 > 18-3 > 18-2 > 28-6 > 18-6으로 나타났다. 억제 활성이 용매를 처리한 경우보다 더 낮게 나온 일부 화합물 18-1, 20-4, 20-5을 제외한 나머지 화합물은 모두 5-ASA보다 더 우수한 억제 활성을 갖는 것으로 확인되었다.
TNF-α에 의해 유도된 장 상피 세포(HT-29)와 단핵구성 세포(U937)의 부착에 대한 시험 약물(1 μM)의 억제활성을 조사한 결과는 <표 7>과 같다. 현재 임상에서 염증성 장질환 치료에 쓰이고 있는 약물인 sulfasalazine의 활성 대사체인 5-ASA(양성대조군)의 경우는 3.8%의 억제율로 1 μM의 농도에서는 그 효과가 거의 나타나지 않은 반면, 갈라파고스(Galapagos)사에서 염증성 장질환 치료제 개발 임상 시험 중인 GLPG 화합물은 30.9%의 억제율을 보였다. 이에 반해 피리딘올 유도체 18-9 화합물은 93%의 억제율을 나타내어 매우 우수한 활성을 보였다. 화합물 22-3은 87.3%의 억제율을, 화합물 18-8은 87.2%의 억제율을 보였다. 50% 이상의 억제율을 보이는 화합물들을 억제 활성이 우수한 순으로 나열하면, 화합물 18-9 > 22-3 > 18-8 > 22-5 > 16-12 > 18-10 > 16-2 > 18-11 > 28-1 > 18-13 > 18-3 > 18-2 > 28-6 > 18-6으로 나타났다. 억제 활성이 용매를 처리한 경우보다 더 낮게 나온 일부 화합물 18-1, 20-4, 20-5을 제외한 나머지 화합물은 모두 5-ASA보다 더 우수한 억제 활성을 갖는 것으로 확인되었다.
Figure PCTKR2017000457-appb-T000008
TNF-α에 의한 장 상피 세포-단핵구의 부착 억제 활성이 우수한 3종의 화합물을 대상으로 부착 억제 IC50를 구한 결과는 <표 8>과 같다. 대조약물로 사용한 5-ASA의 IC50는 18.1 mM인 반면 화합물 16-2, 22-3, 22-5의 경우는 각각 0.41 μM, 0.32 μM 0.23 μM로 5-ASA 대비 수만 배 이상의 우수한 활성을 보였다.
< 실험예 2> TNBS로 유도한 염증성 장질환 동물 모델에서 화합물의 경구 투여 in vivo 효능 시험
<시험 방법>
동물은 7-8주령 된 Sprague Dawley Rat을 오리엔트바이오(Korea)로부터 구입하여 3일간 일반 고형사료로 안정화 시킨 후 실험에 이용하였다. 실험 기간 중 사료와 물을 자유로이 공급하였고, 사육실의 온도는 25±1℃, 상대습도는 50±10%로 유지시켰다. 점등 관리는 자동조명조절기에 의해 12시간 명암주기(light-dark cycle)로 조절하였다. 실험군은 각 군당 6마리로 하여 평균체중이 180±10 g이 되도록 난괴법 (randomized block design)에 의하여 5군(대조군, TNBS 단독 투여군, TNBS+sulfasalazine 300 mg/kg 투여군, TNBS+GLPG 10 mg/kg 투여군, TNBS+시험약물 1 mg/kg 투여군)으로 나누어 실험하였다.
(1) TNBS 직장 투여 장염 유발
24시간 절식한 rat를 diethyl ether로 마취한 후, polyethylene catheter를 연결한 1 mL주사기를 이용하여 colon의 lumen에 50v/v% ethanol로 희석한 5% TNBS를 0.8 mL을 천천히 주입한 후, 항문으로 5% TNBS가 새어 나오는 것을 방지하기 위하여 랫드를 거꾸로 세운 상태에서 60초 동안 정치시켰다. 대조군은 vehicle [50v/v% ethanol]만을 다른 군과 마찬가지 방법으로 주입하였다 (Thapa et al., 2008).
(2) 약물 투여
약물의 효과를 조사하기 위하여 TNBS를 처치한 다음날부터 5일 동안 약물을 매일 일정한 시간에 투여하였다.
(3) 체중 관찰
Digital mass meter를 이용하여 절식 단계부터 TNBS 투여 및 약물 투여과정 동안 각 rat의 체중 변화를 관찰하였다.
(4) 장 무게 측정
Rat의 대장을 적출하여 항문으로부터 5-6 cm사이의 조직을 1 cm 길이로 잘라서 조직의 무게를 측정하였다.
Figure PCTKR2017000457-appb-T000009
<TNBS로 유도한 장염증에 대한 화합물의 경구 투여 효과>
In vitro 부착 억제 시험에서 활성이 우수한 화합물들을 대상으로 in vivo 장염 억제 활성을 측정하여 <표 9>에 나타내었다.
가. 체중의 변화
체중 180-190 g인 rat에 5% TNBS를 이용하여 장내에 염증을 유발한 대장염 모델에서 TNBS 처리 전의 몸무게를 기준으로 5일 간 매일 일정시간에 몸무게의 변화를 관찰한 결과, vehicle 처리 대조군은 계속해서 몸무게가 증가함을 보이고 TNBS만 처리한 군은 계속하여 몸무게가 감소하며 5일째부터 몸무게가 약간 회복되었으나, 정상군과 비교했을 때 몸무게가 현저히 감소되었다. 양성대조군인 sulfasalazine 300 mg/kg을 처리한 군은 몸무게가 서서히 회복되어 vehicle 처리 대조군에 비해서는 감소되었지만, TNBS 단독 투여군에 비해 현저히 몸무게가 증가하여 몸무게 회복률 50.5%를 나타냈다. GLPG 10 mg/kg을 처리한 군의 경우도 50%의 체중 회복율을 보였다. 피리딘올 화합물들은 1 mg/kg을 투여하였음에도 93.8%~25.3%의 회복율을 나타내었다. 체중 회복율이 우수한 순으로 나열하면 화합물 18-13 > 18-9 > 18-8 > 18-2, 16-2 > 22-3 순이었다.
나. 형태학적 관찰
5일 간의 약물투여가 끝난 후에 대장을 적출하여 육안으로 살펴 본 결과, TNBS를 처리한 rat의 대장은 대조군에 비하여 부종과 충혈이 관찰되었으며, 충수돌기의 부종과 울혈 및 장조직의 유착현상이 나타났다. 양성대조군인 sulfasalazine 300 mg/kg을 처리한 군에서는 육안적 증상과 다른 기관들 사이의 유착이나 대장의 충혈도 현저히 억제되었으며, 피리딘올 화합물 투여 그룹의 경우는 sulfasalazine 300 mg/kg을 처리한 그룹보다 증상이 더욱 개선되었다.
다. 장 무게 측정
Rat의 대장을 적출하여 항문으로부터 5-6 cm사이의 조직 무게를 측정한 결과, vehicle-처리 대조군에 비해 TNBS 단독 처리군의 경우 부종이 있는 장의 무게가 유의적으로 증가하였으며, 양성대조군인 sulfasalazine 300 mg/kg을 처리한 군에서는 장조직 무게 회복율 69.6%를 나타냈다. GLPG 10 mg/kg을 처리한 군의 경우도 71.8%의 장조직 무게 회복율을 보였다. 피리딘올 화합물들의 경우는 1 mg/kg을 투여하였음에도 94.9%~50.3%의 회복율을 나타내었다. 장조직 무게 회복율이 우수한 순으로 나열하면 화합물 18-13 > 18-9 > 18-8 > 18-2, 16-2 > 22-3 순이었다.
< 실험예 3> 세포독성 시험
사람 대장암 세포주 HT-29와 단핵구성 혈액암 유래 세포주 U937는 10% FBS, 1% penicillin/streptomycin(PS)가 함유된 RPMI 1640 배지로 37℃, 5% CO2 조건 하에서 배양하였으며, 세포가 배양 플라스크에 80% 이상 자라면 1:3의 비율로 계대하여 본 실험에 사용하였다.
각 세포를 96 well plate에 1×105 cells/cm2의 농도로 배양한 뒤 1% FBS와 1% PS만을 함유한 배지에서 시험 화합물을 농도 별로 37℃, 5% CO2 조건 하에서 48시간 동안 처리 한 후 농도 5 mg/mL의 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) 시약을 첨가하여 4시간 반응시킨 후 배지를 모두 제거하고 DMSO를 첨가하여 30분간 formazan 결정을 모두 용해시킨 후 540 nm에서 흡광도를 측정하였다.
Figure PCTKR2017000457-appb-T000010
Figure PCTKR2017000457-appb-T000011
피리딘올 유도체 화합물들의 장상피세포-단핵구 부착 억제 활성이 세포에 대한 독성 효과에 의한 것이 아님을 확인하기 위하여 장 상피 세포(HT-29) 및 단핵구(U937)의 생존율에 미치는 화합물들의 세포 독성을 확인한 결과 <표 10> 및 <표 11>과 같았다. 장상피세포-단핵구 부착 억제 활성 시험에서는 피리딘올 유도체 화합물과 배양한 시간은 4시간이나, 화합물의 독성 활성유무를 확인하기 위하여 각 화합물들을 48시간 배양하였을 때의 세포 독성을 측정하였다. 그 결과, HT-29에 대한 세포독성 IC50가 화합물 16-1, 16-4, 18-13, 22-1의 경우 각 각 64.6 μM, 34.7 μM, 19.1 μM, 50.1 μM이었고, 그 외 화합물들은 모두 100 μM 이상으로 확인되어 장상피세포-단핵구 부착 억제 활성 농도인 1 μM 보다 19배~100배 이상 높게 나타났다. U937에 대해서는 화합물 16-1의 경우만 15.4 μM이었고, 그 외 화합물들은 모두 100 μM 이상으로 나타났다, 이상의 IC50 측정 결과로부터 본 피리딘올 화합물들은 장상피세포-단핵구 부착 억제 활성 유효농도 구간에서는 세포독성이 전혀 없는 매우 안전한 화합물로 확인되었다.
본 발명에 따른 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염은 염증성 장질환 모델에서 대장염을 억제하므로, 염증성 장질환의 예방 또는 치료를 위한 약제로서 유용하게 사용될 수 있다.

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물 또는 이의 약제학적 허용가능한 염:
    [화학식 1]
    Figure PCTKR2017000457-appb-I000025
    상기 화학식 1에서,
    R2, R3 및 R4는 각각 독립적으로 탄소수 1 내지 8의 알킬이고,
    R5는 수소; 할로겐; 탄소수 1 내지 8의 알킬; -Si(R6)3; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹으로부터 선택된 어느 하나이며,
    상기 R5의 탄소수 1 내지 8의 알킬 또는 탄소수 6 내지 18의 아릴은 각각 독립적으로 탄소수 1 내지 8의 알킬 또는 탄소수 6 내지 18의 아릴로 치환 또는 비치환되고,
    상기 R6은 수소, 탄소수 1 내지 8의 알킬; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 어느 하나이며,
    R1은 수소; 설포닐; 카보닐; 탄소수 1 내지 12의 알킬; 및 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 어느 하나이고,
    상기 R1의 설포닐 또는 카보닐은 각각 독립적으로 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 및 탄소수 1 내지 8의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되며,
    상기 R1의 탄소수 1 내지 12의 알킬 또는 탄소수 6 내지 18의 아릴은 각각 독립적으로 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 8의 알콕시; 및 탄소수 1 내지 8의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 18의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되고,
    L은 -O- 또는 하기 화학식 2 또는 3으로 표시되는 연결기를 나타내며,
    [화학식 2]
    Figure PCTKR2017000457-appb-I000026
    [화학식 3]
    Figure PCTKR2017000457-appb-I000027
    상기 화학식 2에서 Q는 O 또는 S이고, P는 -NH- 또는 -O-이며,
    상기 화학식 3에서 Z는 단일결합 또는 -NH-이다.
  2. 제 1 항에 있어서,
    R2, R3 및 R4는 각각 독립적으로 탄소수 1 내지 4의 알킬이고,
    R5는 수소; 탄소수 6 내지 12의 아릴로 치환되거나 비치환된 탄소수 1 내지 4의 알킬; 및 -Si(R6)3로 이루어진 그룹으로부터 선택된 어느 하나이며,
    R6은 탄소수 1 내지 6의 알킬 또는 탄소수 6 내지 12의 아릴이고,
    L은 -O-, -NH-C(O)-NH-, -NH-C(S)-NH-, -NH-C(O)-O-, -NH-S(O)2-NH- 또는 -NH-S(O)2-인 화합물 또는 이의 약제학적 허용가능한 염.
  3. 제 1 항에 있어서,
    R2, R3 및 R4는 각각 독립적으로 메틸이고,
    R5는 수소; 페닐로 치환되거나 비치환된 메틸; 및 -Si(R6)3로 이루어진 그룹으로부터 선택된 어느 하나이며,
    R6은 부틸 또는 페닐인 화합물 또는 이의 약제학적 허용가능한 염.
  4. 제 1 항에 있어서,
    R1은 수소; 설포닐; 카보닐; 탄소수 1 내지 10의 알킬; 및 탄소수 6 내지 12의 아릴로 이루어진 그룹에서 선택된 어느 하나이고,
    상기 설포닐 또는 카보닐은 각각 독립적으로 탄소수 1 내지 4의 알킬; 및 탄소수 6 내지 12의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되며,
    상기 탄소수 1 내지 10의 알킬은 할로겐; 탄소수 1 내지 4의 알콕시; 및 탄소수 1 내지 6의 알킬 또는 할로겐으로 치환되거나 비치환된 탄소수 6 내지 12의 아릴로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되고,
    상기 탄소수 6 내지 12의 아릴은 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알킬; 및 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알콕시로 이루어진 그룹에서 선택된 하나 이상의 치환체로 치환 또는 비치환되는 화합물 또는 이의 약제학적 허용가능한 염.
  5. 제 1 항에 있어서,
    R1은 수소; 설포닐; 카보닐; 탄소수 1 내지 8의 알킬; 및 탄소수 6 내지 10의 아릴로 이루어진 그룹으로부터 선택된 어느 하나이고,
    상기 설포닐 또는 카보닐은 페닐로 치환되며,
    상기 탄소수 1 내지 8의 알킬은 할로겐; 메톡시; 에톡시; 프로폭시; 및 탄소수 1 내지 4의 알킬 또는 할로겐으로 치환되거나 비치환된 페닐로 이루어진 그룹으로부터 선택된 하나 이상의 치환체로 치환되거나 비치환되고,
    상기 탄소수 6 내지 10의 아릴은 할로겐; -NO2; 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알킬; 및 할로겐으로 치환되거나 비치환된 탄소수 1 내지 4의 알콕시로 이루어진 그룹으로부터 선택된 하나 이상의 치환체로 치환되거나 비치환되는 화합물 또는 이의 약제학적 허용가능한 염.
  6. 제 1 항에 있어서,
    R2, R3 및 R4는 각각 독립적으로 메틸이고,
    R5는 수소; 페닐로 치환되거나 비치환된 메틸; 또는 페닐 및 부틸로 치환된 실릴이며,
    R1은 수소; 페닐로 치환된 카보닐; 페닐로 치환된 설포닐; 클로로, 메톡시, 페닐, 클로로페닐, 및 부틸페닐로 이루어진 그룹 중에서 선택된 하나 이상의 치환체로 치환되거나 비치환된 탄소수 1 내지 8의 알킬; 또는 클로로, 플루오로, 브로모, 메틸, 에틸, 프로필, 부틸, 트리플루오로메틸, 니트로, 메톡시 및 트리플루오로메톡시로 이루어진 그룹 중에서 선택된 하나 이상의 치환체로 치환되거나 비치환된 페닐 또는 나프틸인 화합물 또는 이의 약제학적 허용가능한 염.
  7. 제 1 항에 있어서,
    화학식 1로 표시되는 화합물은 하기 화학식으로 표시되는 화합물로 이루어진 군에서 선택된 어느 하나인 화합물 또는 이의 약제학적 허용가능한 염:
    [화학식 15-1]
    Figure PCTKR2017000457-appb-I000028
    [화학식 16-1]
    Figure PCTKR2017000457-appb-I000029
    [화학식 15-2]
    Figure PCTKR2017000457-appb-I000030
    [화학식 16-2]
    Figure PCTKR2017000457-appb-I000031
    [화학식 15-3]
    Figure PCTKR2017000457-appb-I000032
    [화학식 16-3]
    Figure PCTKR2017000457-appb-I000033
    [화학식 15-4]
    Figure PCTKR2017000457-appb-I000034
    [화학식 16-4]
    Figure PCTKR2017000457-appb-I000035
    [화학식 15-5]
    Figure PCTKR2017000457-appb-I000036
    [화학식 16-5]
    Figure PCTKR2017000457-appb-I000037
    [화학식 15-6]
    Figure PCTKR2017000457-appb-I000038
    [화학식 16-6]
    Figure PCTKR2017000457-appb-I000039
    [화학식 15-7]
    Figure PCTKR2017000457-appb-I000040
    [화학식 16-7]
    Figure PCTKR2017000457-appb-I000041
    [화학식 15-8]
    Figure PCTKR2017000457-appb-I000042
    [화학식 16-8]
    Figure PCTKR2017000457-appb-I000043
    [화학식 15-9]
    Figure PCTKR2017000457-appb-I000044
    [화학식 16-9]
    Figure PCTKR2017000457-appb-I000045
    [화학식 15-10]
    Figure PCTKR2017000457-appb-I000046
    [화학식 16-10]
    Figure PCTKR2017000457-appb-I000047
    [화학식 15-11]
    Figure PCTKR2017000457-appb-I000048
    [화학식 16-11]
    Figure PCTKR2017000457-appb-I000049
    [화학식 15-12]
    Figure PCTKR2017000457-appb-I000050
    [화학식 16-12]
    Figure PCTKR2017000457-appb-I000051
    [화학식 15-13]
    Figure PCTKR2017000457-appb-I000052
    [화학식 16-13]
    Figure PCTKR2017000457-appb-I000053
    [화학식 15-14]
    Figure PCTKR2017000457-appb-I000054
    [화학식 16-14]
    Figure PCTKR2017000457-appb-I000055
    [화학식 15-15]
    Figure PCTKR2017000457-appb-I000056
    [화학식 16-15]
    Figure PCTKR2017000457-appb-I000057
    [화학식 15-16]
    Figure PCTKR2017000457-appb-I000058
    [화학식 16-16]
    Figure PCTKR2017000457-appb-I000059
    [화학식 17-1a]
    Figure PCTKR2017000457-appb-I000060
    [화학식 18-1]
    Figure PCTKR2017000457-appb-I000061
    [화학식 17-2a]
    Figure PCTKR2017000457-appb-I000062
    [화학식 18-2]
    Figure PCTKR2017000457-appb-I000063
    [화학식 17-3a]
    Figure PCTKR2017000457-appb-I000064
    [화학식 18-3]
    Figure PCTKR2017000457-appb-I000065
    [화학식 17-4a]
    Figure PCTKR2017000457-appb-I000066
    [화학식 18-4]
    Figure PCTKR2017000457-appb-I000067
    [화학식 17-5c]
    Figure PCTKR2017000457-appb-I000068
    [화학식 18-5]
    Figure PCTKR2017000457-appb-I000069
    [화학식 17-6a]
    Figure PCTKR2017000457-appb-I000070
    [화학식 18-6]
    Figure PCTKR2017000457-appb-I000071
    [화학식 17-7c]
    Figure PCTKR2017000457-appb-I000072
    [화학식 18-7]
    Figure PCTKR2017000457-appb-I000073
    [화학식 17-8a]
    Figure PCTKR2017000457-appb-I000074
    [화학식 17-8b]
    Figure PCTKR2017000457-appb-I000075
    [화학식 17-8c]
    Figure PCTKR2017000457-appb-I000076
    [화학식 18-8]
    Figure PCTKR2017000457-appb-I000077
    [화학식 17-9a]
    Figure PCTKR2017000457-appb-I000078
    [화학식 17-9b]
    Figure PCTKR2017000457-appb-I000079
    [화학식 17-9c]
    Figure PCTKR2017000457-appb-I000080
    [화학식 18-9]
    Figure PCTKR2017000457-appb-I000081
    [화학식 17-10c]
    Figure PCTKR2017000457-appb-I000082
    [화학식 18-10]
    Figure PCTKR2017000457-appb-I000083
    [화학식 17-11c]
    Figure PCTKR2017000457-appb-I000084
    [화학식 18-11]
    Figure PCTKR2017000457-appb-I000085
    [화학식 17-12c]
    Figure PCTKR2017000457-appb-I000086
    [화학식 18-12]
    Figure PCTKR2017000457-appb-I000087
    [화학식 17-13a]
    Figure PCTKR2017000457-appb-I000088
    [화학식 18-13]
    Figure PCTKR2017000457-appb-I000089
    [화학식 19-1]
    Figure PCTKR2017000457-appb-I000090
    [화학식 20-1]
    Figure PCTKR2017000457-appb-I000091
    [화학식 19-2]
    Figure PCTKR2017000457-appb-I000092
    [화학식 20-2]
    Figure PCTKR2017000457-appb-I000093
    [화학식 19-3]
    Figure PCTKR2017000457-appb-I000094
    [화학식 20-3]
    Figure PCTKR2017000457-appb-I000095
    [화학식 19-4]
    Figure PCTKR2017000457-appb-I000096
    [화학식 20-4]
    Figure PCTKR2017000457-appb-I000097
    [화학식 19-5]
    Figure PCTKR2017000457-appb-I000098
    [화학식 20-5]
    Figure PCTKR2017000457-appb-I000099
    [화학식 21-1]
    Figure PCTKR2017000457-appb-I000100
    [화학식 22-1]
    Figure PCTKR2017000457-appb-I000101
    [화학식 21-2]
    Figure PCTKR2017000457-appb-I000102
    [화학식 22-2]
    Figure PCTKR2017000457-appb-I000103
    [화학식 21-3]
    Figure PCTKR2017000457-appb-I000104
    [화학식 22-3]
    Figure PCTKR2017000457-appb-I000105
    [화학식 21-4]
    Figure PCTKR2017000457-appb-I000106
    [화학식 22-4]
    Figure PCTKR2017000457-appb-I000107
    [화학식 21-5]
    Figure PCTKR2017000457-appb-I000108
    [화학식 22-5]
    Figure PCTKR2017000457-appb-I000109
    [화학식 24-1]
    Figure PCTKR2017000457-appb-I000110
    [화학식 25-1]
    Figure PCTKR2017000457-appb-I000111
    [화학식 24-2]
    Figure PCTKR2017000457-appb-I000112
    [화학식 25-2]
    Figure PCTKR2017000457-appb-I000113
    [화학식 27-1]
    Figure PCTKR2017000457-appb-I000114
    [화학식 28-1]
    Figure PCTKR2017000457-appb-I000115
    [화학식 27-2]
    Figure PCTKR2017000457-appb-I000116
    [화학식 28-2]
    Figure PCTKR2017000457-appb-I000117
    [화학식 27-3]
    Figure PCTKR2017000457-appb-I000118
    [화학식 28-3]
    Figure PCTKR2017000457-appb-I000119
    [화학식 27-4]
    Figure PCTKR2017000457-appb-I000120
    [화학식 28-4]
    Figure PCTKR2017000457-appb-I000121
    [화학식 27-5]
    Figure PCTKR2017000457-appb-I000122
    [화학식 28-5]
    Figure PCTKR2017000457-appb-I000123
    [화학식 27-6]
    Figure PCTKR2017000457-appb-I000124
    [화학식 28-6]
    Figure PCTKR2017000457-appb-I000125
  8. 제 1 항에 있어서,
    약제학적 허용가능한 염은 옥살산, 말레산, 푸마르산, 말산, 타르타르산, 시트르산 및 벤조산으로 이루어진 군에서 선택된 유기산이거나, 또는 염산, 황산, 인산 및 브롬화수소산으로 이루어진 군에서 선택된 무기산에 의해 형성되는 산부가염의 형태인 화합물 또는 이의 약제학적 허용가능한 염.
  9. 하기 화학식 4의 화합물을 하기 화학식 5의 화합물 또는 하기 화학식 6의 화합물과 반응시키거나;
    하기 화학식 4의 화합물을 하기 화학식 7의 화합물과 반응시켜 하기 화학식 8의 화합물을 얻고, 상기 화학식 8의 화합물과 하기 화학식 9의 화합물을 반응시키거나; 또는
    하기 화학식 4의 화합물을 하기 화학식 10의 화합물로 변환하고, 상기 화학식 10의 화합물과 화학식 11의 화합물을 반응시켜 하기 화학식 1의 화합물을 제조하는 방법:
    [화학식 4]
    Figure PCTKR2017000457-appb-I000126
    [화학식 5]
    Figure PCTKR2017000457-appb-I000127
    [화학식 6]
    Figure PCTKR2017000457-appb-I000128
    [화학식 7]
    Figure PCTKR2017000457-appb-I000129
    [화학식 8]
    Figure PCTKR2017000457-appb-I000130
    [화학식 9]
    Figure PCTKR2017000457-appb-I000131
    [화학식 10]
    Figure PCTKR2017000457-appb-I000132
    [화학식 11]
    Figure PCTKR2017000457-appb-I000133
    [화학식 1]
    Figure PCTKR2017000457-appb-I000134
    상기 화학식 1 및 4 내지 9에서,
    R1 내지 R5, Q 및 L은 제1항에서 정의한 바와 같고, R은 카보닐 또는 설포닐을 나타내며, X는 할로겐을 나타낸다.
  10. 제 1 항에 따른 화합물 또는 이의 약제학적 허용가능한 염을 유효성분으로 포함하는 염증성 장질환 예방 또는 치료용 약학조성물.
PCT/KR2017/000457 2016-01-14 2017-01-13 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 약학 조성물 WO2017123038A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018536728A JP6680888B2 (ja) 2016-01-14 2017-01-13 ピリジノール誘導体またはその薬剤学的に許容可能な塩およびこれを有効成分として含有する薬学組成物
EP17738667.9A EP3404020B1 (en) 2016-01-14 2017-01-13 Pyridinol derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient
US16/070,279 US10604487B2 (en) 2016-01-14 2017-01-13 Pyridinol derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0004871 2016-01-14
KR20160004871 2016-01-14

Publications (1)

Publication Number Publication Date
WO2017123038A1 true WO2017123038A1 (ko) 2017-07-20

Family

ID=59311919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000457 WO2017123038A1 (ko) 2016-01-14 2017-01-13 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 약학 조성물

Country Status (5)

Country Link
US (1) US10604487B2 (ko)
EP (1) EP3404020B1 (ko)
JP (1) JP6680888B2 (ko)
KR (1) KR101909910B1 (ko)
WO (1) WO2017123038A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604487B2 (en) 2016-01-14 2020-03-31 Research Cooperation Foundation Of Yeungnam University Pyridinol derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102245670B1 (ko) * 2018-04-03 2021-04-29 영남대학교 산학협력단 신규한 6-헤테로아릴아미노-2,4,5-트라이메틸피리딘-3-올 화합물, 또는 이를 포함하는 염증성 장질환 및 자가면역 질환의 예방 또는 치료용 약학 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080016649A (ko) * 2005-06-16 2008-02-21 화이자 인코포레이티드 N-(피리딘-2-일)-술폰아미드 유도체
KR20080069265A (ko) * 2005-12-23 2008-07-25 노파르티스 아게 Ccr9 활성의 억제제
KR20130072166A (ko) * 2011-12-21 2013-07-01 영남대학교 산학협력단 6―아미노피리딘―3―올 유도체 또는 이의 약제학적 허용가능한 염 및 이를 유효성분으로 함유하는 혈관신생으로 인한 질환의 예방 또는 치료용 약학조성물
KR20140049027A (ko) * 2011-07-26 2014-04-24 그뤼넨탈 게엠베하 치환된 헤테로사이클릭 아자 유도체
KR20140125738A (ko) * 2013-04-19 2014-10-29 영남대학교 산학협력단 아미도피리딘올 유도체 또는 이의 약제학적 허용가능한 염을 유효성분으로 함유하는 염증성 장질환의 예방 또는 치료용 약학조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835304B1 (fr) * 2002-01-29 2004-10-22 Syegon Vanne de gonflage et de degonflage pour roue de vehicule
WO2005121125A1 (en) * 2004-06-09 2005-12-22 Pfizer Inc. Ether-linked heteroaryl compounds
KR101103426B1 (ko) 2009-04-10 2012-01-09 영남대학교 산학협력단 몰루긴 또는 몰루긴 유도체를 유효성분으로 함유하는 염증성 장질환 치료용 약학조성물
WO2011082400A2 (en) * 2010-01-04 2011-07-07 President And Fellows Of Harvard College Modulators of immunoinhibitory receptor pd-1, and methods of use thereof
US10604487B2 (en) 2016-01-14 2020-03-31 Research Cooperation Foundation Of Yeungnam University Pyridinol derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080016649A (ko) * 2005-06-16 2008-02-21 화이자 인코포레이티드 N-(피리딘-2-일)-술폰아미드 유도체
KR20080069265A (ko) * 2005-12-23 2008-07-25 노파르티스 아게 Ccr9 활성의 억제제
KR20140049027A (ko) * 2011-07-26 2014-04-24 그뤼넨탈 게엠베하 치환된 헤테로사이클릭 아자 유도체
KR20130072166A (ko) * 2011-12-21 2013-07-01 영남대학교 산학협력단 6―아미노피리딘―3―올 유도체 또는 이의 약제학적 허용가능한 염 및 이를 유효성분으로 함유하는 혈관신생으로 인한 질환의 예방 또는 치료용 약학조성물
KR20140125738A (ko) * 2013-04-19 2014-10-29 영남대학교 산학협력단 아미도피리딘올 유도체 또는 이의 약제학적 허용가능한 염을 유효성분으로 함유하는 염증성 장질환의 예방 또는 치료용 약학조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404020A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604487B2 (en) 2016-01-14 2020-03-31 Research Cooperation Foundation Of Yeungnam University Pyridinol derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient

Also Published As

Publication number Publication date
KR101909910B1 (ko) 2018-10-22
EP3404020A1 (en) 2018-11-21
JP2019501944A (ja) 2019-01-24
JP6680888B2 (ja) 2020-04-15
US20190010125A1 (en) 2019-01-10
KR20170085980A (ko) 2017-07-25
EP3404020B1 (en) 2022-11-30
US10604487B2 (en) 2020-03-31
EP3404020A4 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2011083999A2 (ko) 바이구아나이드 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 약학 조성물
WO2016032120A1 (ko) 신규한 아미노-페닐-설포닐-아세테이트 유도체 및 이의 용도
AU2019310508B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and pharmaceutical composition comprising the same
WO2016190630A1 (en) Heterocyclicalkyl derivative compounds as selective histone deacetylase inhibitors and pharmaceutical compositions comprising the same
WO2014171801A1 (ko) 아미도피리딘올 유도체 또는 이의 약제학적 허용가능한 염 및 이를 유효성분으로 함유하는 약학조성물
WO2013105753A1 (en) Substituted piperidine derivatives and methods for preparing the same
AU2021226297B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
AU2021225683B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2017123038A1 (ko) 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 약학 조성물
WO2018151562A2 (ko) Jnk 저해 활성을 갖는 신규한 벤즈이미다졸 유도체 및 이의 용도
WO2012148140A2 (ko) 혈관 신생 억제 및 항산화 효과를 가지는 이미다졸계 알칼로이드 유도체 및 이의 제조방법
EP3060549A1 (en) Novel antifungal oxodihydropyridinecarbohydrazide derivative
WO2018131924A1 (ko) 피리딘올 유도체 또는 이의 약제학적 허용 가능한 염 및 이를 유효성분으로 함유하는 자가면역 질환의 예방 또는 치료용 약학 조성물
WO2022086110A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2010032986A2 (ko) 신규 5-(4-아미노페닐)-이소퀴놀린 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료용 조성물
WO2021096314A1 (ko) 신규한 벤즈이미다졸 유도체 및 이의 용도
WO2023054759A1 (ko) 2-아미노퀴나졸린 유도체 및 이를 포함하는 항바이러스용 조성물
WO2021086038A1 (ko) 신규한 화합물 및 이를 포함하는 암 예방 또는 치료용 약학 조성물
WO2012111995A1 (en) Oxime derivatives as gpr119 agonists
WO2021137665A1 (ko) Hsp90 억제제로서의 1,2,3-트리아졸 유도체 화합물 및 이의 용도
WO2023191536A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2022119090A1 (ko) 5-ht7 세로토닌 수용체 활성 저해용 바이페닐 피롤리딘 및 바이페닐 다이하이드로이미다졸 유도체 및 이를 유효성분으로 포함하는 약학 조성물
WO2018021762A1 (ko) 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물
WO2017135786A1 (ko) 신규 아미드 화합물 및 이의 용도
WO2019194556A1 (ko) 신규한 6-헤테로아릴아미노-2,4,5-트라이메틸피리딘-3-올 화합물, 또는 이를 포함하는 염증성 장질환 및 자가면역 질환의 예방 또는 치료용 약학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738667

Country of ref document: EP

Effective date: 20180814