WO2022086110A1 - 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도 - Google Patents

티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도 Download PDF

Info

Publication number
WO2022086110A1
WO2022086110A1 PCT/KR2021/014550 KR2021014550W WO2022086110A1 WO 2022086110 A1 WO2022086110 A1 WO 2022086110A1 KR 2021014550 W KR2021014550 W KR 2021014550W WO 2022086110 A1 WO2022086110 A1 WO 2022086110A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
mmol
group
thiobenzimidazole
formula
Prior art date
Application number
PCT/KR2021/014550
Other languages
English (en)
French (fr)
Inventor
서재홍
남기달
김지영
김윤재
박민수
강용구
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210138673A external-priority patent/KR20220051816A/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US18/032,724 priority Critical patent/US20230391753A1/en
Priority to CN202180071243.2A priority patent/CN116348114A/zh
Priority to EP21883179.0A priority patent/EP4230204A1/en
Publication of WO2022086110A1 publication Critical patent/WO2022086110A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41961,2,4-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/30Nitrogen atoms not forming part of a nitro radical
    • C07D235/32Benzimidazole-2-carbamic acids, unsubstituted or substituted; Esters thereof; Thio-analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to a thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof, and uses thereof.
  • Triple-negative breast cancer TNBC; ER-, PR-, HER2-
  • TNBC triple-negative breast cancer
  • ER estrogen receptor
  • PR progesterone receptor
  • HER2 triple-negative breast cancer
  • standard treatment for triple-negative breast cancer is completely dependent on general cytotoxic anticancer drugs (Taxene-based or Anthracycline-based). Due to the lack of established targeted therapeutics, other subtypes do not have as diverse therapeutic strategies as for breast cancer. What is more serious is that, after surgery or chemotherapy, recurrence occurs within 2-3 years in most patients, and metastasis to other organs such as lung, liver, brain, and bone is easily induced, which affects the survival rate of patients.
  • stage-III The 5-year overall survival rate of patients diagnosed with stage III (stage-III) is 55% or less, and the 5-year survival rate of patients who have already progressed to cancer metastasis (advanced-stage) is 30% or less. very low Most of these patients are very serious diseases that ultimately lead to death all within a few years.
  • Microtubules are a major component of the cytoskeleton and are composed of tubulin heteropolymers composed of ⁇ and ⁇ subunits. Microtubules perform various cellular functions, such as intracellular transport, maintenance of polarity, intracellular signal transduction, and cell migration and proliferation. During mitosis, a spindle is formed, chromosomes are arranged in the center of the cell, and then the process of bipolar separation is performed. If the spindle does not function properly, cell division is inhibited and apoptosis occurs, and thus it is attracting attention as a target for anticancer drugs.
  • microtubule stabilizers include taxane, paclitaxel (Taxol), decetaxel, etc., which prevent depolymerization of microtubules and enhance polymerization. Most of the microtubule stable substances bind to the taxane-binding site or the overlapping site of ⁇ -tubulin.
  • microtubule destabilizers include colchicine and vinca alkaloid, which bind to the colchicine binding site or the vinca binding site.
  • flubendazole and albendazole are tubulin polymerization inhibitors that are marketed as anthelmintic drugs, but can confirm apoptosis by cell cycle arrest, and have a killing effect on slow-growing cancer cells has been identified and is attracting attention as a therapeutic agent for various cancers.
  • flubendazole and albendazole are tubulin polymerization inhibitors that are marketed as anthelmintic drugs, but can confirm apoptosis by cell cycle arrest, and have a killing effect on slow-growing cancer cells has been identified and is attracting attention as a therapeutic agent for various cancers.
  • due to its low solubility in water it is difficult to absorb into the body, and side effects such as an increase in liver enzyme levels when consumed in large amounts appear, so the development of derivatives with a new structure is required.
  • the present inventors confirmed that a novel thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof as a tubulin polymerization inhibitor induces apoptosis by cell cycle arrest of cancer cells. and completed the present invention.
  • An object of the present invention is to provide a thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof.
  • An object of the present invention is to provide a method for preparing the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof.
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer comprising the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a thiobenzimidazole derivative represented by the following [Formula 1] or a racemate, isomer, solvate or pharmaceutically acceptable salt thereof:
  • R 1 is -SR 2 or -SSR 2 ,
  • R 2 may be any one selected from the group consisting of a substituted or unsubstituted cyclic alkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, and an alkylaryl group, preferably a substituted or unsubstituted C 3 to C It may be a 20 aryl group, a substituted or unsubstituted C 3 to C 20 heteroaryl group, or a substituted or unsubstituted C 3 to C 20 alkylaryl group.
  • a substituted aryl group, a heteroaryl group, or an alkylaryl group is a substituted or unsubstituted alkyl group, a cyclic alkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, may be substituted with any one or more selected from the group consisting of a halogen group, a hydroxyl group, an alkoxy group, and an amino group, preferably a substituted or unsubstituted C 3 to C 12 heterocycloalkyl group, a substituted or unsubstituted It may be substituted with a C 3 to C 12 heteroaryl group, or a halogen group.
  • the thiobenzimidazole derivative represented by the [Formula 1] may be any one selected from the group consisting of the following compounds:
  • the thiobenzimidazole derivative may inhibit tubulin polymerization.
  • the pharmaceutically acceptable salts of the thiobenzimidazole derivatives are hydrochloride, bromate, sulfate, phosphate, nitrate, citrate, acetate, lactate, tartrate, maleate, gluconate, and succinic acid.
  • the present invention provides a method for preparing a hydrochloride salt of the thiobenzimidazole derivative comprising the following steps.
  • step (3) adding isopropyl alcohol to the product of step (2), heating and cooling;
  • step (3) (4) adding isopropyl ether to the product of step (3), stirring, and then filtering.
  • the present invention provides a composition for preventing or treating cancer comprising the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a method for preventing or treating cancer, comprising administering the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof to a subject.
  • the present invention provides the use of the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof for the preparation of a medicament for the prevention or treatment of cancer.
  • the present invention also provides a method for diagnosing cancer, comprising administering the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof to a subject.
  • the present invention provides the use of the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for diagnosing cancer.
  • the pharmaceutical composition may be to induce apoptosis by stopping the cell cycle of cancer cells (cell cycle arrest).
  • the cancer is skin cancer, breast cancer, uterine cancer, esophageal cancer, stomach cancer, brain tumor, colon cancer, rectal cancer, colorectal cancer, lung cancer, ovarian cancer, cervical cancer, endometrial cancer, vulvar cancer, kidney cancer, blood It may be any one or more selected from the group consisting of cancer, pancreatic cancer, prostate cancer, testicular cancer, laryngeal cancer, head and neck cancer, thyroid cancer, liver cancer, bladder cancer, osteosarcoma, lymphoma, leukemia, thymus cancer, urethral cancer, and bronchial cancer, preferably It may be breast cancer, more preferably triple negative breast cancer.
  • the present invention relates to a thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof and a composition for preventing or treating cancer comprising the derivative as an active ingredient, wherein the thiobenzimidazole derivative of the present invention is activated in cancer cells It inhibits tubulin polymerization and exhibits cytotoxicity by blocking the cancer cell cycle and inducing apoptosis when administered to an individual. there is.
  • TNBC triple-negative breast cancer
  • HER2+ BC HER2 positive breast cancer
  • TNBC triple negative breast cancer
  • TNBC triple negative breast cancer
  • FIG. 6 is a HER2-positive breast cancer cell line JIMT-1 treated with the thiobenzimidazole derivatives of Formulas 1-15, 1-16, 1-17, 1-19, 1-20, 1-21, and 1-22. The results of cell viability afterward are shown.
  • FIG. 11 shows the cell viability results after treatment with the hydrochloride salt of a thiobenzimidazole derivative of Formula 1-3 (Compound 1-23) in triple-negative breast cancer (TNBC) cell lines MDA-MB-231, BT549 and 4T1.
  • FIG. 12 is a Western blot after treatment with the hydrochloride salt of a thiobenzimidazole derivative of Formula 1-3 (Compound 1-23) in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231, and a HER2-positive breast cancer cell line, JIMT-1. (Western blot) shows the results.
  • FIG. 14 shows the cell viability results after treatment with the hydrochloride salt of a thiobenzimidazole derivative of Formula 1-3 (Compound 1-23) in SKOV3, an ovarian cancer cell line, Du145, a prostate cancer cell line, and HepG2, a liver cancer cell line.
  • the present inventors completed the present invention by confirming the anticancer activity of a thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof, as a result of intensive research.
  • the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof was activated in cancer cells to inhibit tubulin polymerization, thereby blocking the cancer cell cycle and inducing apoptosis, thereby exhibiting cytotoxicity.
  • the present invention can provide a thiobenzimidazole derivative represented by the following [Formula 1] or a pharmaceutically acceptable salt thereof.
  • R 1 is -SR 2 or -SSR 2 ,
  • R 2 is a substituted or unsubstituted C 3 to C 20 aryl group, a substituted or unsubstituted C 3 to C 20 heteroaryl group, and a substituted or unsubstituted C 3 to C 20 alkylaryl group from the group consisting of It may be any one selected.
  • substitution refers to a reaction in which an atom or group included in the molecule of a compound is replaced with another atom or group.
  • chain refers to a molecule having a chain structure
  • the chain structure is a chemical structure in which carbon atoms are connected in a chain shape, and there are straight chain ones and branched ones.
  • cyclic refers to a structure in which both ends of the chain in the backbone of the organic compound are connected to form a ring.
  • chain or cyclic alkyl group means a monovalent linear or branched or cyclic saturated hydrocarbon residue having 1 to 20 carbon atoms and consisting only of carbon and hydrogen atoms.
  • alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, 2-butyl, 3-butyl, pentyl, n-hexyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like. not limited
  • heterocycloalkyl group usually refers to a saturated or unsaturated (but not aromatic) cyclohydrocarbon, which may be optionally unsubstituted, monosubstituted or polysubstituted, and in its structure At least one is selected from a heteroatom of N, O or S.
  • aryl group refers to an unsaturated aromatic ring compound having 3 to 12 carbon atoms having a single ring (eg, phenyl) or a plurality of condensed rings (eg, naphthyl). Examples of such aryl groups include, but are not limited to, phenyl, naphthyl, and the like.
  • heteroaryl group refers to a single ring or a plurality of condensed rings having at least one heteroatom of N, O or S among atoms constituting the ring.
  • heteroaryl group include, but are not limited to, a pyridyl group, a pyrimidinyl group, a pyrazinyl group, an oxazolyl group, a furyl group, and the like.
  • alkoxy group refers to an alkyl group (-O-R) bonded to oxygen.
  • alkoxy group include, but are not limited to, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and the like.
  • the “halogen group” may be fluorine (F), chloride (Cl), bromine (Br), or iodine (I).
  • R 2 is more specifically,
  • the compound represented by Formula 1 is preferably at least one selected from the group consisting of the following compounds:
  • the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof of the present invention is activated specifically for cancer cells to inhibit tubulin polymerization and induce cell death. It can be used as a pharmaceutical composition for preventing or treating cancer comprising an acceptable salt as an active ingredient.
  • the term “pharmaceutically acceptable salt” refers to a formulation of a compound that does not cause serious irritation to an organism to which the compound is administered and does not impair the biological activity and properties of the compound.
  • the pharmaceutically acceptable salt may be prepared by reacting the compound of the present invention with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid and phosphoric acid, sulfonic acid such as methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, tartaric acid, formic acid, citric acid, acetic acid, It can be obtained by reaction with an organic carbonic acid such as trichloroacetic acid, trifluoroacetic acid, capric acid, isobutanoic acid, malonic acid, succinic acid, phthalic acid, gluconic acid, benzoic acid, lactic acid, fumaric acid, maleic acid, salicylic acid, and the like.
  • an ammonium salt an alkali metal salt such as sodium or potassium salt, an alkaline earth metal salt such as a calcium or magnesium salt, dicyclohexylamine, N-methyl-D-glucamine, It can also be obtained by forming salts of organic bases such as tris (hydroxymethyl) methylamine and salts of amino acids such as arginine and lysine.
  • the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof may include all salts, hydrates and solvates that can be prepared by conventional methods as well as pharmaceutically acceptable salts.
  • the present invention may provide a method for preventing, treating, and/or diagnosing cancer, comprising administering the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof to a subject.
  • prevention refers to any action that inhibits or delays the occurrence, spread, or recurrence of cancer by administration of the composition of the present invention
  • treatment refers to the symptoms of the disease by administration of the composition of the present invention. means any action that is improved or is changed for the better.
  • the term "pharmaceutical composition” means one prepared for the purpose of preventing or treating a disease, and each may be formulated in various forms according to a conventional method and used. For example, it may be formulated in oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, and syrups, and may be formulated in the form of external preparations, suppositories, and sterile injection solutions.
  • “included as an active ingredient” means that the ingredient is included in an amount necessary or sufficient to realize a desired biological effect.
  • the amount may be determined taking into account other nontoxic factors, and may vary depending on various factors, such as, for example, the disease or condition being treated, the form of the composition being administered, the size of the subject, or the severity of the disease or condition.
  • a person of ordinary skill in the art to which the present invention pertains can empirically determine the effective amount of an individual composition without undue experimentation.
  • composition of the present invention may include one or more pharmaceutically acceptable carriers in addition to the active ingredients described above according to each formulation.
  • the pharmaceutically acceptable carrier may be saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and a mixture of one or more of these components, if necessary, antioxidants, buffers, bacteriostats It may further include other conventional additives, such as.
  • diluents, dispersants, surfactants, binders and lubricants may be additionally added to form an injectable formulation such as an aqueous solution, suspension, emulsion, etc., pills, capsules, granules or tablets.
  • it may be preferably formulated according to each disease or component using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA).
  • composition of the present invention may be administered orally or parenterally in a pharmaceutically effective amount according to a desired method
  • pharmaceutically effective amount means a disease with a reasonable benefit/risk ratio applicable to medical treatment. It means an amount sufficient to treat the drug and does not cause side effects, and the effective dose level is the patient's health status, severity, drug activity, drug sensitivity, administration method, administration time, administration route and excretion rate, treatment
  • the duration, formulation, or concomitant use may be determined by factors including drugs and other factors well known in the medical field.
  • cancer can be prevented, treated, and/or diagnosed by administering the pharmaceutical composition of the present invention to an individual, and the cancer is skin cancer, breast cancer, uterine cancer, esophageal cancer, stomach cancer, brain tumor, colon cancer, rectal cancer, colorectal cancer, Lung cancer, ovarian cancer, cervical cancer, endometrial cancer, vulvar cancer, kidney cancer, blood cancer, pancreatic cancer, prostate cancer, testicular cancer, laryngeal cancer, head and neck cancer, thyroid cancer, liver cancer, bladder cancer, osteosarcoma, lymphoma, blood cancer, thymus cancer, urethral cancer It may be cancer, or bronchial cancer, etc., but is not limited thereto, and preferably has a higher acidity than normal cells, and may be a cancer of which cytotoxicity is inhibited by a tubulin polymerization inhibitor, as a non-limiting example of which is breast cancer, preferably Examples include triple-negative breast cancer.
  • the term “individual” is not limited as long as it is a mammal such as livestock or human in need of prevention, treatment, and/or diagnosis of cancer, but preferably a human.
  • compositions of the present invention may be formulated in various forms for administration to an individual, and a representative formulation for parenteral administration is an injection formulation, preferably an isotonic aqueous solution or suspension.
  • Formulations for injection may be prepared according to techniques known in the art using suitable dispersing or wetting agents and suspending agents. For example, each component can be dissolved in saline or buffer to be formulated for injection.
  • formulations for oral administration include, for example, ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups and wafers.
  • the tablet may contain a binder such as magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and/or polyvinylpyrrolidine, and optionally starch, agar, alginic acid or its It may further contain disintegrating agents such as sodium salts, absorbents, coloring agents, flavoring agents and/or sweetening agents.
  • the formulation may be prepared by conventional mixing, granulating or coating methods.
  • composition of the present invention may further contain adjuvants such as preservatives, wettable powders, emulsification accelerators, salts or buffers for osmotic pressure control, and other therapeutically useful substances, and may be formulated according to a conventional method. .
  • the pharmaceutical composition according to the present invention may be administered through several routes including oral, transdermal, subcutaneous, intravenous or intramuscular, and the dosage of the active ingredient may vary depending on the route of administration, age, sex, weight, and severity of the patient. It may be appropriately selected according to several factors.
  • the composition of the present invention may be administered in parallel with a known compound capable of enhancing the desired effect.
  • the pharmaceutical composition according to the present invention may be administered orally or parenterally, such as intravenously, subcutaneously, intranasally or intraperitoneally, to humans and animals.
  • Oral administration also includes sublingual application.
  • Parenteral administration includes injection methods such as subcutaneous injection, intramuscular injection and intravenous injection and drip method.
  • the total effective amount of the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof according to the present invention may be administered to a patient in a single dose, and multiple doses ) can be administered by a fractionated treatment protocol that is administered for a long period of time.
  • the pharmaceutical composition of the present invention may vary the content of the active ingredient depending on the severity of the disease, but may be administered repeatedly several times a day at an effective dose of 100 ⁇ g to 3,000 mg when administered once for adults. .
  • the concentration of the thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof depends not only on the route of administration and the number of treatments, but also on various factors such as the patient's age, weight, health status, sex, severity of disease, diet and excretion rate. Taking into account the effective dosage for the patient can be determined.
  • the pharmaceutical composition according to the present invention is not particularly limited in its formulation, administration route and administration method as long as the effect of the present invention is exhibited, and the pharmaceutical composition of the present invention is the thiobenzimidazole derivative or its active ingredient. It may further include a known anticancer agent in addition to the pharmaceutically acceptable salt, and may be used in combination with other known treatments for the treatment of these diseases.
  • 1,3-bis(methoxycarbonyl)-2-methyl-2-thiopseudoeura (1.50 g, 7.20 mmol) in a solution of 4-(benzylthio)benzene-1,2-diamine (2.00 g, 8.70 mmol) in AcOH (40 mL) ) was added. The mixture was stirred at 85 °C for 16 h. After the reaction was completed, AcOH was removed and extracted with EA (50 mL * 3). The organic layer was dried over Na 2 SO 4 and concentrated.
  • 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (75 mg, 0.365 mmol, 1.1 eq) was added to a solution of 4-morpholinobenzene-1,2-diamine (100 mg, 0.332 mmol, 1.0 eq) in acetic acid (5 mL). After addition, the mixture was stirred at 80 °C for 2 hours, and the reaction was confirmed to be complete by LCMS. The reaction was extracted with DCM, washed with saturated bicarbonate water, and the organic layer was dried over anhydrous Na 2 SO 4 and filtered. The filtrate was concentrated and the material was purified by Prep-TLC to give the product as a white solid (Formula 1-7, 30 mg) (yield 23.6%).
  • tert-Butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate (0.7 g, 1.6 mmol) in DMF (5 mL) solution with thiophen-2-ylboronic acid (0.42 g, 3.28 mmol, 2.0 eq ), Tetrakis(triphenylphosphine)palladium (0.18 g, 0.16 mmol, 0.1 eq), potassium carbonate (0.66 g, 4.80 mmol, 3 eq) were added, stirred at 100 ° C. for 15 hours, and cooled to room temperature, followed by methylene chloride solution.
  • TNBC Human triple-negative breast cancer
  • MDA-MB-231 Cell seeding numbers: 1(M231) x 10 4 cells / wells (confluency) 25%
  • HER2+ BC HER2 positive breast cancer
  • JIMT-1 Cell seeding numbers: 1.2(JIMT) x 10 4 cells / wells (confluency) 25%
  • the cell lines were prepared in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS), streptomycin-penicillin (100 U/mL) and Fungizone (0.625 ⁇ g/mL), respectively, in 5% CO 2 , 37 °C environment. cultured.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • streptomycin-penicillin 100 U/mL
  • Fungizone 0.625 ⁇ g/mL
  • FIGS. 1 to 6 The measurement results are shown in FIGS. 1 to 6 . 1, 3, and 5 confirm the cell viability of the MDA-MB-231 cell line, Figures 2, 4, and 6 confirm the cell viability of the JIMT-1 cell line.
  • SKBR3 and BT474 which are HER2-positive breast cancer cell lines sensitive to trastuzumab, and JIMT-1, a HER2-positive breast cancer cell line that is resistant to trastuzumab, were treated with the thiobenzimidazole derivative of Formula 1-3 in a concentration-dependent manner for 72 hours. It was confirmed that all three cell lines showed a survival inhibitory effect (FIG. 7).
  • the degree of apoptosis of cancer cells induced by the thiobenzimidazole derivative of Formula 1-3 was measured through DNA content analysis using flow cytometry.
  • control a derivative of Formula 1-3 at concentrations of 0.1, 0.25, and 0.5 ⁇ M for 72 hours, the cells were harvested, and 0.5% for 24 hours It was fixed with 95% ethanol containing Tween-20 and stained with propidium iodide (PI, 50 ⁇ g/mL) and RNase (50 ⁇ g/mL) for 30 minutes. Then, the degree of apoptosis of cancer cells was analyzed using a flow cytometer.
  • PI propidium iodide
  • RNase 50 ⁇ g/mL
  • the cell cycle is divided into G1 (cell growth phase)-S (cell replication phase)-G2/M (cell division phase) depending on the amount of DNA in the cell, and when apoptosis is induced, DNA fragmentation phenomenon (DNA fragmentation), the DNA content in each cell is significantly lower than that in the G1 phase.
  • the result of such apoptosis is shown on the cell cycle as a Sub G1 region, and the ratio of Sub G1 is expressed as a numerical value and is shown in FIG. 8 .
  • isopropyl ether (Isopropyl ether, 35 mL) was added to the solid suspension in portions, stirred for 3 hours, and then filtered. At this time, wash with IPA and IPE mixed solvent and dry with hot air at 50 °C for 1 hour, 40 Methyl(5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate hydrochloric acid salt (Formula 1 -23, off-white solid, 350 mg) was obtained (yield 87%).
  • a HER2-positive breast cancer cell line sensitive to trastuzumab, and JIMT-1, a HER2-positive breast cancer cell line resistant to trastuzumab, the thiobenzimidazole derivative of Formula 1-3 and its hydrochloride (Compound 1-23) were mixed at the same concentration ( 0, 0.1, 0.5, 1, 5, 10 ⁇ M) for 72 hours, cell viability and IC 50 were measured by MTS assay.
  • the IC 50 of the derivative of Formula 1-3 was 2.184 ⁇ M and the IC 50 of the hydrochloride (Compound 1-23) was 0.347 ⁇ M, which was 6 times lower, and in the JIMT-1 cell line, the The IC 50 of the derivative of Formula 1-3 was 0.448 ⁇ M, and the IC 50 of the hydrochloride salt (Compound 1-23) was 0.228 ⁇ M, which was almost half of the value ( FIG. 10 ).
  • the hydrochloride salts (Compound 1-23) of the thiobenzimidazole derivatives of Formula 1-3 were added at different concentrations (0, 0.1, 0.5, 1). , 5, 10 ⁇ M) for 72 hours, and then the cell viability and IC 50 were measured by MTS assay.
  • the three cell lines exhibited low IC 50 of 0.523 ⁇ M, 0.559 ⁇ M, and 0.267 ⁇ M, respectively ( FIG. 11 ).
  • hydrochloride (Compound 1-23) has improved solubility than the derivative of Formula 1-3, and thus has more excellent cell viability inhibition ability.
  • the hydrochloride salt of the thiobenzimidazole derivative of Formula 1-3 (Compound 1-23) was added by concentration (0, 0.1, 0.25, 0.5 ⁇ M). After each treatment for 72 hours, western blot was performed.
  • the hydrochloride salt of the present invention reduces ⁇ -tubulin, a major target protein of benzimidazole-based anthelmintics, and increases p -Histone H3 (S10), a G2/M cell cycle marker, according to inhibition of tubulin synthesis. was confirmed (FIG. 12).
  • the hematologic cancer cell line HL-60 the colon cancer cell line HCT116, the non-small cell lung cancer cell lines H1299 and A549, the ovarian cancer cell line SKOV3, the prostate cancer cell line Du145, and the liver cancer cell line HepG2
  • the hydrochloride salt of a thiobenzimidazole derivative Compound 1-23
  • cell viability and IC50 were measured.
  • the present invention relates to a thiobenzimidazole derivative or a pharmaceutically acceptable salt thereof, and a composition for preventing or treating cancer comprising the derivative as an active ingredient, and the thiobenzimidazole derivative of the present invention or a pharmaceutically acceptable salt thereof.
  • the salt is activated in cancer cells to inhibit tubulin polymerization, and when administered to an individual, blocks the cancer cell cycle and induces apoptosis, thereby exhibiting cytotoxicity.
  • Prevention or treatment of cancer preferably triple negative It can be usefully used in the field of prevention or treatment of breast cancer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 상기 유도체를 유효성분으로 포함하는 암 예방 또는 치료용 조성물에 관한 것으로서, 본 발명의 티오벤즈이미다졸 유도체는 암 세포에서 활성화되어 튜불린 중합 (tubulin polymerization)을 저해하여, 개체에 투여 시 암 세포의 세포 주기를 차단하고 세포사멸을 유도함으로써 세포 독성을 나타내는바, 암의 예방 또는 치료, 바람직하게는 삼중음성유방암의 예방 또는 치료에 사용될 수 있다.

Description

티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
본 발명은 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도 등에 관한 것이다.
삼중음성유방암 (triple-negative breast cancer, TNBC; ER-, PR-, HER2-) 환자는 전체 유방암 환자의 10~15 %를 차지하고, 호르몬 수용체 (ER (estrogen receptor), PR (progesterone receptor)) 및 HER2 단백질이 결여되어 있어, 호르몬 치료법이나 HER2 표적치료제의 혜택을 받지 못한다. 현재 삼중음성유방암의 표준치료는 일반적인 세포독성항암제 (Taxene계 또는 Anthracycline계)에 전적으로 의존하고 있는 실정이다. 확립된 표적 치료제가 없기 때문에 다른 아형은 유방암에 비해 치료 전략이 다양하지 못하다. 더욱 심각한 것은 수술이나 항암치료 후, 대부분의 환자에서 2~3 년 이내에 재발이 나타나고, 폐, 간, 뇌 및 뼈 등의 타 기관으로 전이가 쉽게 유발되어 환자의 생존율 감소에 영향을 미친다.
3기 (stage-III)로 진단받은 환자의 5 년 이내 생존율 (5-years overall survival)은 55 % 이하이며, 이미 암전이가 진행된 환자 (advanced-stage)는 5 년 이내 생존율이 30 % 이하로 매우 낮다. 이들 환자의 대부분은 궁극적으로 수년 내에 모두 사망에 이르게 되는 매우 심각한 질병이다.
미세소관 (microtubule)은 세포 골격의 주요 구성요소로서, α 소단위체와 β소단위체로 이루어진 튜불린 (tubulin) 이형중합체로 구성된다. 미세소관은 세포 내 수송, 극성 유지, 세포 내 신호 전달, 세포 이주 및 증식 등 다양한 세포의 작용을 수행한다. 세포의 유사분열 중에는 방추사를 형성하여 염색체가 세포 중심에 배열된 후 양극으로 분리되는 과정을 수행한다. 방추사가 제대로 기능하지 못하면 세포 분열이 억제되어 세포자멸사 (apoptosis)가 일어나게 되므로, 항암제의 타겟으로 주목받고 있다.
미세소관을 타겟으로 하는 약물들은 크게 미세소관을 안정시키는 역할을 하는 약물과 미세소관을 불안정하게 만드는 약물의 두 가지 그룹으로 나뉜다. 첫째, 미세소관 안정제에는 taxane, paclitaxel(Taxol), decetaxel 등이 있으며, 미세소관이 탈중합되는 것을 막고 중합을 강화시키는 작용을 한다. 대부분의 미세소관 안정 물질들은 taxane- 결합 부위 또는 β튜불린의 overlapping site에 결합한다. 둘째, 미세소관 탈안정제에는 콜키친 (colchicine), vinca alkaloid 등이 있는데, 콜키친 결합 부위나 vinca 결합 부위에 결합한다. 미세소관 중합체에 영향을 주는 약물보다 이들 미세소관 자체를 타겟으로 하는 약물이 더 낮은 농도에서 효과를 보이며, 결과적으로 세포 유사분열을 저해한다는 점은 동일하다. 따라서, 항암제로서 잠재적인 튜불린 중합 저해제를 개발하는 것이 요구되는 실정이다.
한편, 플루벤다졸 (flubendazole), 알벤다졸 (Albendazole)은 튜불린 중합 저해제 (tubulin polymerization inhibitor)로서 구충제로 시판된 약품이나, cell cycle arrest에 의한 세포사멸 확인 가능하며, 느리게 자라는 암세포에도 사멸 효과가 확인되어 다양한 암의 치료제로서 주목받고 있다. 다만 물에 대한 낮은 용해도에 의해 체내 흡수가 어려운 한계를 보이고 있고, 다량 섭취시 간 효소 수치 상승과 같은 부작용이 나타나, 새로운 구조의 유도체의 개발이 요구되고 있다.
이에, 본 발명자들은 신규한 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염이 튜불린 중합 저해제로서 암 세포의 세포주기를 중지시켜 (cell cycle arrest) 세포 사멸 (apoptosis)을 유도한다는 점을 확인하고, 본 발명을 완성하게 되었다.
본 발명이 이루고자 하는 기술적 과제는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염의 제조방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기 [화학식 1]로 표시되는 티오벤즈이미다졸 유도체 또는 이의 라세미체, 이성질체, 용매화물 또는 약학적으로 허용가능한 염을 제공한다:
Figure PCTKR2021014550-appb-img-000001
상기 화학식 1에서,
R1은 -S-R2 또는 -S-S-R2 이고,
R2는 치환 또는 비치환된 고리형 알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 및 알킬아릴기로 이루어진 군으로부터 선택되는 어느 하나일 수 있고, 바람직하게는 치환 또는 비치환된 C3 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 헤테로아릴기, 또는 치환 또는 비치환된 C3 내지 C20의 알킬아릴기일 수 있다.
본 발명의 일 구현예로서, 상기 [화학식 1]에서, 치환된 아릴기, 헤테로아릴기, 또는 알킬아릴기는 치환 또는 비치환된 알킬기, 고리형 알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 할로겐기, 하이드록시기, 알콕시기, 및 아미노기로 이루어진 군으로부터 선택되는 어느 하나 이상으로 치환될 수 있으며, 바람직하게는 치환 또는 비치환된 C3 내지 C12의 헤테로시클로알킬기, 치환 또는 비치환된 C3 내지 C12의 헤테로아릴기, 또는 할로겐기로 치환될 수 있다.
본 발명의 다른 구현예로서, 상기 [화학식 1] 로 표시되는 티오벤즈이미다졸 유도체는 하기 화합물들로 이루어진 군으로부터 선택되는 어느 하나인 것일 수 있다:
Figure PCTKR2021014550-appb-img-000002
Figure PCTKR2021014550-appb-img-000003
Figure PCTKR2021014550-appb-img-000004
Figure PCTKR2021014550-appb-img-000005
Figure PCTKR2021014550-appb-img-000006
Figure PCTKR2021014550-appb-img-000007
Figure PCTKR2021014550-appb-img-000008
Figure PCTKR2021014550-appb-img-000009
Figure PCTKR2021014550-appb-img-000010
Figure PCTKR2021014550-appb-img-000011
Figure PCTKR2021014550-appb-img-000012
Figure PCTKR2021014550-appb-img-000013
Figure PCTKR2021014550-appb-img-000014
Figure PCTKR2021014550-appb-img-000015
Figure PCTKR2021014550-appb-img-000016
Figure PCTKR2021014550-appb-img-000017
Figure PCTKR2021014550-appb-img-000018
Figure PCTKR2021014550-appb-img-000019
Figure PCTKR2021014550-appb-img-000020
Figure PCTKR2021014550-appb-img-000021
Figure PCTKR2021014550-appb-img-000022
Figure PCTKR2021014550-appb-img-000023
본 발명의 또 다른 구현예로서, 상기 티오벤즈이미다졸 유도체는 튜불린 중합 (tubulin polymerization)을 저해하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 티오벤즈이미다졸 유도체의 약학적으로 허용가능한 염은 염산염, 브롬산염, 황산염, 인산염, 질산염, 구연산염, 초산염, 젖산염, 주석산염, 말레산염, 글루콘산염, 숙신산염, 포름산염, 트리플루오로아세트산염, 옥살산염, 푸마르산염, 글루타르산염, 아디프산염, 메탄술폰산염, 벤젠술폰산염, 파라톨루엔술폰산염, 캠퍼술폰산염, 나트륨염, 칼륨염, 리튬염, 칼슘염, 및 마그네슘염으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으며, 바람직하게는 염산염일 수 있다.
또한, 본 발명은 하기 단계를 포함하는 상기 티오벤즈이미다졸 유도체의 염산염의 제조방법을 제공한다.
(1) 하기 [화학식 1]로 표시되는 티오벤즈이미다졸 유도체의 현탁액을 제조하는 단계;
Figure PCTKR2021014550-appb-img-000024
(2) 상기 현탁액에 염화수소 (HCl)를 주입하고, 감압증발하는 단계;
(3) 상기 (2)단계의 생성물에 이소프로필 알코올 (isopropyl alcohol)을 가하고 가열 후 냉각하는 단계; 및
(4) 상기 (3)단계의 생성물에 이소프로필 에테르 (isopropyl ether)를 가하고 교반한 후 여과하는 단계.
또한, 본 발명은 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 하는 암 예방 또는 치료용 조성물을 제공한다.
또한, 본 발명은 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 개체에 투여하는 단계를 포함하는 암의 예방 또는 치료 방법을 제공한다.
또한, 본 발명은 암의 예방 또는 치료용 약제의 제조를 위한 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염의 용도를 제공한다.
또한, 본 발명은 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 개체에 투여하는 단계를 포함하는 암의 진단 방법을 제공한다.
또한, 본 발명은 암 진단용 약제의 제조를 위한 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염의 용도를 제공한다.
본 발명의 일 구현예로서, 상기 약학적 조성물은 암 세포의 세포주기를 중지 (cell cycle arrest)시켜 세포사멸 (apoptosis)을 유도하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 암은 피부암, 유방암, 자궁암, 식도암, 위암, 뇌 종양, 결장암, 직장암, 대장암, 폐암, 난소암, 자궁경부암, 자궁내막암, 외음부암, 신장암, 혈액암, 췌장암, 전립선암, 고환암, 후두암, 두경부암, 갑상선암, 간암, 방광암, 골육종, 림프종, 백혈병, 흉선암, 요도암, 및 기관지암으로 구성된 군으로부터 선택된 어느 하나 이상인 것일 수 있으며, 바람직하게는 유방암, 더욱 바람직하게는 삼중음성유방암일 수 있다.
본 발명은 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 상기 유도체를 유효성분으로 포함하는 암 예방 또는 치료용 조성물 등에 관한 것으로서, 본 발명의 티오벤즈이미다졸 유도체는 암 세포에서 활성화되어 튜불린 중합 (tubulin polymerization)을 저해하며, 개체에 투여 시 암 세포 주기를 차단하고 세포사멸을 유도함으로써 세포 독성을 나타내는바, 암의 예방 또는 치료, 바람직하게는 삼중음성유방암의 예방 또는 치료에 사용될 수 있다.
도 1은 삼중음성유방암 (triple-negative breast cancer, TNBC) 세포주인 MDA-MB-231에서 화학식 1-1, 1-2, 1-3 및 1-5의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 2는 HER2 양성 유방암 (HER2 positive breast cancer, HER2+ BC) 세포주인 JIMT-1에서 화학식 1-1, 1-2, 1-3 및 1-5의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 3은 삼중음성유방암 (TNBC) 세포주인 MDA-MB-231에서 화학식 1-6, 1-7, 1-8, 1-10, 1-11, 1-12, 1-13 및 1-14의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 4는 HER2 양성 유방암 세포주인 JIMT-1에서 화학식 1-6, 1-7, 1-8, 1-10, 1-11, 1-12, 1-13 및 1-14의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 5는 삼중음성유방암 (TNBC) 세포주인 MDA-MB-231에서 화학식 1-15, 1-16, 1-17, 1-19, 1-20, 1-21, 및 1-22의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 6은 HER2 양성 유방암 세포주인 JIMT-1에서 화학식 1-15, 1-16, 1-17, 1-19, 1-20, 1-21, 및 1-22의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 7은 HER2 양성 유방암 세포주인 SKBR3, BT474, 및 JIMT-1에서 화학식 1-3의 티오벤즈이미다졸 유도체를 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 8는 화학식 1-3의 티오벤즈이미다졸 유도체에 의한 암세포의 사멸 유도(Sub-G1 accumulation) 및 G2/M phase 세포 주기 정체를 확인한 결과를 나타낸 것이다.
도 9는 화학식 1-3의 티오벤즈이미다졸 유도체에 의한 암세포의 전기 및 후기 세포사멸을 확인한 결과를 나타낸 것이다.
도 10은 HER2 양성 유방암 세포주인 BT474 및 JIMT-1에서 화학식 1-3의 티오벤즈이미다졸 유도체와 이의 염산염 (화합물 1-23)을 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 11은 삼중음성유방암 (TNBC) 세포주인 MDA-MB-231, BT549 및 4T1에서 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 12는 삼중음성유방암 (TNBC) 세포주인 MDA-MB-231과 HER2 양성 유방암 세포주인 JIMT-1에서 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 처리한 후 웨스턴 블롯(western blot)을 수행한 결과를 나타낸 것이다.
도 13은 혈액암 세포주인 HL-60, 대장암 세포주인 HCT116, 비소세포성폐암 세포주인 H1299 및 A549에서 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 처리한 후 세포 생존율 결과를 나타낸 것이다.
도 14는 난소암 세포주인 SKOV3, 전립선암 세포주인 Du145, 및 간암 세포주인 HepG2에서 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 처리한 후 세포 생존율 결과를 나타낸 것이다.
본 발명자들은 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염에 대해 예의 연구한 결과, 상기 유도체의 항암 활성을 확인하여 본 발명을 완성하였다.
보다 구체적으로 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염이 암 세포에서 활성화되어 튜불린 중합을 저해하여 암 세포 주기를 차단하고 세포사멸을 유도함으로써 세포 독성을 나타낸다는 점을 확인하였다.
상기 결과로부터, 본 발명은 하기 [화학식 1]로 표시되는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 제공할 수 있다.
Figure PCTKR2021014550-appb-img-000025
상기 화학식 1에서,
R1은 -S-R2 또는 -S-S-R2 이고,
R2는 치환 또는 비치환된 C3 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 헤테로아릴기, 및 치환 또는 비치환된 C3 내지 C20의 알킬아릴기로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.
본 발명에서, 용어 “치환”은 화합물의 분자 중에 포함되는 원자 또는 원자단을 다른 원자 또는 원자단으로 바꾸어 놓는 반응이다.
본 발명에서, 용어 “사슬형”이란, 사슬형 구조가 있는 분자를 일컬으며, 사슬형 구조는 탄소 원자가 사슬 모양으로 이어진 화학구조로, 곧은 사슬 모양의 것과 분지한 모양의 것이 있다.
본 발명에서, 용어 “고리형”이란, 유기 화합물의 골격에서 연쇄된 양단이 이어져 고리모양이 된 구조를 말한다.
본 발명에서, 용어 “사슬형 또는 고리형 알킬기”는 1 내지 20개의 탄소 원자를 갖는, 오직 탄소와 수소 원자로만 이루어진 1가 선형 또는 분지형 또는 고리형 포화된 탄화수소 잔기를 의미한다. 이러한 알킬기의 예로는 메틸, 에틸, 프로필, 아이소프로필, 부틸, 아이소부틸, 2-부틸, 3-부틸, 펜틸, n-헥실, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기 등을 포함하나 이들로 한정되지 않는다.
본 발명에서, 용어 "헤테로시클로알킬기"는 통상적으로 포화 또는 불포화(그러나 방향족은 아님) 시클로탄화수소 (Cyclohydrocarbon)를 지칭하고, 이는 선택적으로 비치환, 단일 치환 또는 다중 치환된 것일 수 있으며, 이의 구조에서 적어도 하나는 N, O 또는 S의 헤테로 원자로부터 선택된다.
본 발명에서, 용어 "아릴기"는 단일고리 (예를 들면 페닐) 또는 복수의 축합고리 (예를 들면 나프틸)를 갖는 탄소원자수 3 내지 12의 불포화 방향족 고리화합물을 의미한다. 이러한 아릴기의 예로는 페닐, 나프틸 등을 포함하나, 이들로 한정되지 않는다.
본 발명에서, 용어 “헤테로아릴기”는 고리를 구성하는 원자 중 적어도 하나는 N, O 또는 S의 헤테로원자를 갖는 단일고리 또는 복수의 축합고리를 가리킨다. 이러한 헤테로아릴기의 예로는 피리딜기, 피리미디닐기, 피라지닐기, 옥사졸릴기, 푸릴기 등을 포함하나, 이들로 한정되지 않는다.
본 발명에서, 용어 “알콕시기”는 산소와 결합된 알킬기 (-O-R)를 의미한다. 이러한 알콕시기의 예로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기 등을 포함하나, 이들로 한정되지 않는다.
본 발명에서, “할로겐기”는 플루오린 (F), 클로라이드 (Cl), 브로민 (Br), 또는 아이오딘 (I) 등일 수 있다.
본 발명에 있어서, 상기 R2는 보다 구체적으로,
Figure PCTKR2021014550-appb-img-000026
또는
Figure PCTKR2021014550-appb-img-000027
일 수 있다.
본 발명의 바람직한 구현예로서, 상기 화학식 1로 표시되는 화합물은, 하기 화합물들로 이루어지는 군으로부터 선택되는 1종 이상인 것이 바람직하다:
Figure PCTKR2021014550-appb-img-000028
Figure PCTKR2021014550-appb-img-000029
Figure PCTKR2021014550-appb-img-000030
Figure PCTKR2021014550-appb-img-000031
Figure PCTKR2021014550-appb-img-000032
Figure PCTKR2021014550-appb-img-000033
Figure PCTKR2021014550-appb-img-000034
Figure PCTKR2021014550-appb-img-000035
Figure PCTKR2021014550-appb-img-000036
Figure PCTKR2021014550-appb-img-000037
Figure PCTKR2021014550-appb-img-000038
Figure PCTKR2021014550-appb-img-000039
Figure PCTKR2021014550-appb-img-000040
Figure PCTKR2021014550-appb-img-000041
Figure PCTKR2021014550-appb-img-000042
Figure PCTKR2021014550-appb-img-000043
Figure PCTKR2021014550-appb-img-000044
Figure PCTKR2021014550-appb-img-000045
Figure PCTKR2021014550-appb-img-000046
Figure PCTKR2021014550-appb-img-000047
Figure PCTKR2021014550-appb-img-000048
Figure PCTKR2021014550-appb-img-000049
본 발명의 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 혀용가능한 염은 암 세포 특이적으로 활성화되어 튜불린 중합을 저해하고, 세포 사멸을 유도하는바, 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물로 이용될 수 있다.
본 발명에서, 용어, “약학적으로 허용 가능한 염”은 화합물이 투여되는 유기체에 심각한 자극을 유발하지 않고 화합물의 생물학적 활성과 물성들을 손상시키지 않은 화합물의 제형을 의미한다. 상기 약학적으로 허용 가능한 염은 본 발명의 화합물을 염산, 브롬산, 황산, 질산, 인산 등의 무기산, 메탄술폰산, 에탄술폰산, p-톨루엔술폰산 등의 술폰산, 타타르산, 포름산, 시트르산, 아세트산, 트리클로로아세트산, 트리플루오로아세트산, 카프릭산, 이소부탄산, 말론산, 석신산, 프탈산, 클루콘산, 벤조산, 락트산, 푸마르산, 말레인산, 살리실산 등과 같은 유기 카본산과 반응시켜 얻어질 수 있다. 또한, 본 발명의 화합물을 염기와 반응시켜, 암모늄염, 나트륨 또는 칼륨염 등의 알칼리 금속염, 칼슘 또는 마그네슘 염 등의 알칼리 토금속염 등의 염, 디시클로헥실아민, N-메틸-D-글루카민, 트리스 (히드록시메틸) 메틸아민 등의 유기염기들의 염 및 아르기닌, 리신 등의 아미노산 염을 형성함으로써 얻어질 수도 있다.
또한, 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염은 약학적으로 허용되는 염뿐만 아니라, 통상의 방법에 의해 제조될 수 있는 모든 염, 수화물 및 용매화물을 모두 포함할 수 있다.
또한, 본 발명은 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염을 개체에 투여하는 단계를 포함하는 암의 예방, 치료, 및/또는 진단 방법을 제공할 수 있다.
본 발명에서 용어, "예방"은 본 발명의 조성물의 투여로 암의 발생, 확산 또는 재발을 억제시키거나 지연시키는 모든 행위를 의미하고, "치료"는 본 발명의 조성물의 투여로 상기 질환의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명에서 용어, "약학적 조성물"은 질병의 예방 또는 치료를 목적으로 제조된 것을 의미하며, 각각 통상의 방법에 따라 다양한 형태로 제형화하여 사용될 수 있다. 예컨대, 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽 등의 경구형 제형으로 제형화할 수 있고, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
본 발명에서, "유효성분으로 포함"은 원하는 생물학적 효과를 실현하는데 필요하거나 또는 충분한 양으로 해당 성분이 포함되는 것을 의미한다 실제 적용에 있어서 유효 성분으로 포함되는 양의 결정은 대상 질병을 치료하기 위한 양으로서, 다른 독성을 야기하지 않는 사항을 고려해서 결정될 수 있으며, 예를 들어 치료되는 질병 또는 병태, 투여되는 조성물의 형태, 피험체의 크기, 또는 질병 또는 병태의 심각도 등과 같은 다양한 인자에 따라서 변화될 수 있다 본 발명이 속하는 분야에서 통상의 기술을 지닌 기술자라면 과도한 실험을 동반하지 않고 개별적 조성물의 유효량을 경험적으로 결정할 수 있다.
또한, 본 발명의 약학적 조성물은, 각각의 제형에 따라 상기 기재한 유효성분 이외에 추가로 약학적으로 허용가능한 담체를 1종 이상 포함할 수 있다.
상기 약학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로오스 용액, 말토덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 하나 이상의 혼합물일 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 더 포함할 수도 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수도 있다. 더 나아가, 당분야의 적정한 방법으로, 또는 Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수도 있다.
본 발명의 조성물은 목적하는 방법에 따라 약학적으로 유효한 양으로 경구 투여하거나 비경구 투여할 수 있으며, 본 발명의 용어 “약학적으로 유효한 양”은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효용량 수준은 환자의 건강상태, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
따라서, 본 발명의 약학적 조성물을 개체에 투여하여 암을 예방, 치료, 및/또는 진단할 수 있으며, 상기 암은 피부암, 유방암, 자궁암, 식도암, 위암, 뇌 종양, 결장암, 직장암, 대장암, 폐암, 난소암, 자궁경부암, 자궁내막암, 외음부암, 신장암, 혈액암, 췌장암, 전립선암, 고환암, 후두암, 두경부암, 갑상선암, 간암, 방광암, 골육종, 림프종, 혈액암, 흉선암, 요도암, 또는 기관지암 등일 수 있으며, 이에 제한되지 않으나, 바람직하게는 산도가 정상세포보다 높고, 튜불린 중합 억제제에 의해 세포 독성이 저해되는 특성의 암일 수 있고, 그 비제한적인 예로서 유방암, 바람직하게는 삼중음성유방암 등이 있다.
본 발명에서 용어, “개체”는 암의 예방, 치료, 및/또는 진단이 필요한 가축, 인간 등의 포유류라면 제한되지 아니하나, 바람직하게는 인간일 수 있다.
본 발명의 약학적 조성물은 개체에 투여를 위한 다양한 형태로 제형화 될 수 있으며, 비경구 투여용 제형의 대표적인 것은 주사용 제형으로 등장성 수용액 또는 현탁액이 바람직하다. 주사용 제형은 적합한 분산제 또는 습윤제 및 현탁화제를 사용하여 당업계에 공지된 기술에 따라 제조할 수 있다. 예를 들면, 각 성분을 식염수 또는 완충액에 용해시켜 주사용으로 제형화 될 수 있다. 또한, 경구 투여용 제형으로는 예를들면 섭취형 정제, 협측 정제, 트로키, 캡슐, 엘릭시르, 서스펜션, 시럽 및 웨이퍼 등이 있는데, 이들 제형은 유효성분 이외에 희석제 (예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/또는 글리신)와 활탁제 (예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜)를 포함할 수 있다. 상기 정제는 마그네슘 알루미늄 실리케이트, 전분페이스트, 젤라틴, 트라가칸스, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 포함할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제, 흡수제, 착색제, 향미제 및/또는 감미제를 추가로 포함할 수 있다. 상기 제형은 통상적인 혼합, 과립화 또는 코팅 방법에 의해 제조될 수 있다.
또한, 본 발명의 약학적 조성물은 방부제, 수화제, 유화 촉진제, 삼투압 조절을 위한 염 또는 완충제와 같은 보조제와 기타 치료적으로 유용한 물질을 추가로 포함할 수 있으며, 통상적인 방법에 따라 제제화 될 수 있다.
본 발명에 따른 약학적 조성물은 경구, 경피, 피하, 정맥 또는 근육을 포함한 여러 경로를 통해 투여될 수 있으며, 활성 성분의 투여량은 투여 경로, 환자의 연령, 성별, 체중 및 환자의 중증도 등의 여러 인자에 따라 적절히 선택될 수 있다. 또한, 본 발명의 조성물은 목적하는 효과를 상승시킬 수 있는 공지의 화합물과도 병행하여 투여할 수 있다.
본 발명에 따른 약학적 조성물의 투여 경로로는 경구적으로 또는 정맥 내, 피하, 비강 내 또는 복강 내 등과 같은 비경구적으로 사람과 동물에게 투여될 수 있다. 경구 투여는 설하 적용도 포함한다. 비경구적 투여는 피하주사, 근육 내 주사 및 정맥 주사와 같은 주사법 및 점적법을 포함한다.
본 발명의 약학적 조성물에 있어서, 본 발명에 따른 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염의 총 유효량은 단일 투여량 (single dose)으로 환자에게 투여될 수 있으며, 다중 투여량 (multiple dose)이 장기간 투여되는 분할 치료 방법 (fractionated treatment protocol)에 의해 투여될 수 있다. 본 발명의 약학적 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 1회 투여시 100㎍ 내지 3,000㎎의 유효용량으로 하루에 수차례 반복 투여될 수 있다. 그러나 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염의 농도는 약의 투여 경로 및 치료 횟수뿐 만 아니라 환자의 연령, 체중, 건강 상태, 성별, 질환의 중증도, 식이 및 배설율 등 다양한 요인들을 고려하여 환자에 대한 유효 투여량이 결정될 수 있다.
또한, 본 발명에 따른 약학적 조성물은 본 발명의 효과를 보이는 한 그 제형, 투여 경로 및 투여 방법에 특별히 제한되지는 않으며, 본 발명의 약학적 조성물은 유효성분으로서 상기 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 이외에 공지된 항암제를 추가로 포함할 수 있고, 이들 질환의 치료를 위해 공지된 다른 치료와 병용될 수 있다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안 된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.  실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
[실시예]
실시예 1. 티오벤즈이미다졸 유도체의 제조
모든 화학 시약은 상업적으로 이용 가능한 것을 사용하였다. 1H NMR 스펙트럼은 Bruker Avance III 400 MHz 및 Bruker Fourier 300 MHz에서 기록되었으며 TMS는 내부 표준으로 사용되었다.
LCMS는 ES (+) 또는 (-) 이온화 모드에서 작동하는 Agilent LC/MSD 1200 시리즈 (컬럼 : ODS 2000 (50 × 4.6 mm, 5 μm))의 quadrupole Mass Spectrometer에서 촬영되었음; T = 30 ℃, 유속 = 1.5 mL/min; 검출된 파장 : 214 nm.
1.1 화학식 1-1의 합성
화학식 1-1의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 1에 나타내었다.
Figure PCTKR2021014550-appb-img-000050
1.1.1. 5-(4-fluorophenylthio)-2-nitrobenzeneamine의 합성
4-Fluorothiol (1.1 g, 8.69 mmol)을 10 mL에 녹인 후 K2CO3 (1.24 g, 9.01 mmol)를 첨가하였다. 그리고, 2-Nitro-5-Chloroaniline (1.5 g, 8.69 mmol)을 3 mL에 녹인 후 적가했다. 이후 90 ℃에서 3 시간 교반하였다. TLC로 반응 종료를 확인 후 상온으로 냉각했다. 정제수 50 mL를 붓고 Ethyl acetate 100 mL로 추출하였다. 이를 MgSO4 anhydrous로 건조 및 여과 후 감압 증류하여 노란색 고체를 얻었고, 이를 Ethyl acetate/n-hexane으로 재결정화를 하여 노란색 고체인 5-(4-fluorophenylthio)-2-nitrobenzeneamine (1.87 g)을 수득하였다 (수율 82 %).
Rf: 0.37 (EtOAc/n-Hexane, 1:5)
1H NMR (400 MHz. CDCl3 yield: 82 %, δ, ppm): 6.05(brs, 2H, -NH2), 6.33~8.02(m, 7H, ArH)
1.1.2. 4-(4-fluorophenylthio)benzene-1,2-diamine의 합성
5-(4-fluorophenylthio)-2-nitrobenzeneamine (1.0 g, 0.378 mmol)을 Acetic acid 20 mL에 녹인 후 ice-bath하에서 Zn (1.23 g, 18.9 mmol)을 천천히 첨가하였다. 이후 10 시간 상온에서 교반한 후 TLC로 반응 종결을 확인한 후 여과했다. 여액을 감압 증류하고, 5M-NaOH용액으로 pH를 8로 보정한 후 Ethyl acetate 100 mL로 추출하였다. 이후 MgSO4 anhydrous로 건조한 후 여과 및 감압증류 하여 진한 갈색 액체를 얻은 후 이를 컬럼하여 갈색 액체인 4-(4-fluorophenylthio)benzene-1,2-diamine (0.84 g)를 수득하였다 (수율 95.4 %).
Rf: 0.06 (EtOAc/n-Hexane, 1:4)
1H NMR (400 MHz. CDCl3, δ, ppm): 3.41(brs, 2H, -NH2), 3.50(brs, 2H, -NH2), 6.68~7.28(m, 7H, ArH)
1.1.3. Methyl 5-(4-fluorophenylthio)-1H-benzo[d]imidazol-2-ylcarbamate의 합성
4-(4-fluorophenylthio)benzene-1,2-diamine (0.7 g, 2.98 mmol)과 1,3-Bis(methoxycarbonyl) -S- methylisothiourea (1.6 g, 7.77 mmol)을 5 %-AcOH in Ethanol 10 mL에 녹인 후 4 시간 가열 환류 하였다. TLC로 반응 종결한 후 상온으로 냉각하여 생성된 침전물을 여과하였다. 여과시 MeOH로 충분히 세척하여 50 ℃ 진공 건조하여 흰색고체인 Methyl 5-(4-fluorophenyl-thio)-1H-benzo[d]imidazol-2-ylcarbamate (화학식 1-1, 1.02 g)을 수득하였다 (수율 78 %).
Melting Point: : 232-233 ℃
1H NMR (400 MHz. CDCl3, δ, ppm): 3.85(s, 3H, -OCH3), 6.95~7.69(m, 7H, ArH), 11.74(brs, 2H, (-NH)2)
1.2 화학식 1-2의 합성
화학식 1-2의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 2에 나타내었다.
Figure PCTKR2021014550-appb-img-000051
1.2.1. tert-butyl 4-(4-((ethoxycarbonothioyl)thio)phenyl)piperazine-1-carboxylate의 합성
THF/H2O (40 mL/40 mL) 중의 tert-butyl 4-(4-aminophenyl)piperazine-1-carboxylate (2.77 g, 10.2 mmol)의 용액에 H2SO4 (1.96 g, 20.0 mmol) 농축액을 첨가하였다. 이어서 물 (3.0 mL)에 녹인 NaNO2 (2.10 g, 30 mmol)를 -5 ℃ ~ 0 ℃에서 천천히 첨가하고 2 시간 동안 교반 하였다. Potassium O-ethyl carbonodithioate (9.60 g, 60 mmol)를 첨가하고 혼합물을 실온에서 2 시간 동안 교반하였다. 반응이 완료된 후 혼합물을 물 (100 mL)에 붓고 EA (100 mL * 3)로 추출하였다. 유기층을 Na2SO4로 건조시키고, 농축하고 역컬럼 (ACN/H2O)으로 정제하여 오렌지색 고체로서 2.00 g의 tert-butyl 4-(4-((ethoxycarbonothioyl)thio)phenyl)piperazine-1-carboxylate를 수득하였다 (수율 52 %).
1.2.2. tert-butyl 4-(4-((3-amino-4-nitrophenyl)thio)phenyl)piperazine-1-carboxylate의 합성
THF/MeOH/H2O(30 mL/50 mL/10 mL) 중의 tert-butyl 4-(4-((ethoxycarbonothioyl)thio)phenyl)piperazine-1-carboxylate (1.15 g, 3.00 mmol)의 용액에 5-chloro-2-nitroaniline (520 mg, 3.00 mmol) 및 NaOH (480 mg, 12 mmol). 혼합물을 65 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 혼합물을 AcOH로 pH = 7-8로 조정하고, 농축하여 역컬럼 (ACN/H2O)으로 정제하여 갈색 고체로서 600 mg의 tert-butyl 4-(4-((3-amino-4-nitrophenyl)thio)phenyl)piperazine-1-carboxylate을 얻었다 (수율 46 %).
1.2.3. tert-butyl 4-(4-((2-((methoxycarbonyl)amino)-1H-benzo[d]imidazol-6-yl)thio)phenyl)piperazine-1-carboxylate의 합성
AcOH (30 mL) 중의 tert-butyl 4-(4-((3-amino-4-nitrophenyl)thio)phenyl)piperazine-1-carboxylate (500 mg, 1.16 mmol)의 용액에 1,3-bis(methoxycarbonyl)-2-methyl-2-thiopseudoeura (478 mg, 2.32 mmol) 및 Zn 분말 (603 mg, 9.28 mmol)을 첨가하였고, 혼합물을 75 ℃에서 20 시간 동안 교반 하였다. 반응이 완료된 후 용매를 제거하였다. 혼합물을 MeOH (50 mL)에 용해시키고, 여과하고, 여액을 농축하고 역컬럼 (ACN/H2O)에 의해 정제하여 300 mg의 tert-butyl 4-(4-((2-((methoxycarbonyl)amino)-1H-benzo[d]imidazol-6-yl)thio)phenyl)piperazine-1-carboxylate를 황색 고체로서 수득하였다 (수율 53 %).
1.2.4. methyl (6-((4-(piperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
디옥산 (6 mL) 중의 tert-butyl 4-(4-((2-((methoxycarbonyl)amino)-1H-benzo[d]imidazol-6-yl)thio)phenyl)piperazine-1-carboxylate (300 mg, 0.62 mmol)의 용액에 HCl/디옥산 (6 mL, 6 mol/L)을 첨가하였고, 혼합물을 실온에서 2 시간 동안 교반하였다. 반응이 완료된 후 용매를 제거하고 Et3N을 첨가하였다. 혼합물을 농축하고 prep-HPLC로 정제하여 100 mg의 methyl (6-((4-(piperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-2)을 회백색 고체로 얻었다 (수율 42 %).
1H-NMR (400 MHz, DMSO-d6): δ 7.33 (d, 1H, J = 8.0 Hz), 7.29 (s, 1H), 7.21 (d, 1H, J = 8.8 HZ), 7.03-7.00 (m, 1H), 6.90 (d, 2H, J = 8.8 Hz), 3.74 (s, 3H), 3.06-3.03 (m, 4H), 2.82-2.79 (m, 4H)
1.3 화학식 1-3의 합성
화학식 1-3의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 3에 나타내었다.
Figure PCTKR2021014550-appb-img-000052
1.3.1. (5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitrophenyl)carbamate의 합성
tert-butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate (9.0 g, 21.2 mmol, 1.0 당량)의 톨렌 (50 mL)용액에 1-methylpiperazine (4.2 g, 42.4 mmol, 2.0 당량)과 Pd2(dba)3 (1.9 g, 2.12 mmol, 0.1 eq)을 차례로 첨가하였다. 여기에 Xantphos (2.0 g, 4.24 mmol, 0.2 eq) 및 t-BuONa (4.1 g, 42.4 mmol, 2.0 eq)를 첨가하고, 혼합물을 100 ℃에서 16 시간 동안 교반하였다. LCMS로 반응이 완료된 것을 확인한 다음, 반응물을 DCM으로 추출하고, 유기층은 TLC에 의해 농축 및 정제하여 황색 고체의 tert-butyl (5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitrophenyl)carbamate (4 g)을 합성하였다 (수율 43 %).
1.3.2. 5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitroaniline의 합성
(5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitrophenyl)carbamate (3 g, 6.75 mmol, 1.0 당량)의 HCl/디옥산 (30 mL)용액에 실온에서 2 시간 동안 교반하고, LCMS로 반응이 완료된 것을 확인하였다. NaHCO3를 혼합물에 첨가하여 반응을 DCM으로 추출하고 유기층을 농축하고 TLC에 의해 정제하여 황색 고체 5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitroaniline (2.3 g)을 얻었다 (수율 95 %).
1.3.3. 4-((4-(4-methylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine의 제조
5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitroaniline (2.3 g, 6.68 mmol, 1.0 eq)의 EtOH(50 mL) 및 H2O (10 mL)용액에 Fe (1.8 g, 33.4 mmol, 5.0 eq) 및 NH4Cl (3.7 g, 66.8 mmol, 5.0 당량)을 첨가하였다. 혼합물을 80 ℃에서 2 시간 동안 교반한 후, LCMS로 반응이 완료된 것을 확인한 다음, 반응물을 DCM으로 추출하고, 유기층을 농축하고 TLC로 정제하여 갈색 고체 4-((4-(4-methylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine (1.9 g)을 얻었다 (수율 90 %).
1H NMR (400 MHz, DMSO-d6): δ 7.03 (d, J=8.8 Hz, 2H), 6.84 (d, J=8.8 Hz, 2H), 6.56 (s, 1H), 6.46 (s, 2H), 4.57-4.66 (m,4H), 3.06-3.08 (m, 4H), 2.40-2.42 (m, 4H), 2.19 (s, 1H)
1.3.4. (5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 제조
4-((4-(4-methylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine (800 mg, 2.54 mmol, 1.0 당량)의 CH3COOH (20 mL) 용액에 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (575 mg, 2.79 mmol, 1.1 당량)을 첨가하고 혼합물을 80 ℃에서 2 시간 동안 교반하고, LCMS로 반응이 완료된 것을 확인하였다. 반응 생성 혼합물을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 분취물을 Prep-TLC로 정제하여 백색 고체의 methyl (5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (632 mg)을 얻었다 (수율 63 %).
1H NMR (400 MHz, DMSO-d6) δ 7.28-7.32 (m,2H), 7.20 (d, J=8.8 Hz, 2H), 6.99-7.01 (m, 1H), 6.91 (d, J=8.8 Hz, 2H), 3.71 (s, 3H), 3.11-3.14 (m, 4H), 2.41-2.43 (m, 4H), 2.20 (s, 3H)
1.4 화학식 1-4의 합성
화학식 1-4의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 4에 나타내었다.
Figure PCTKR2021014550-appb-img-000053
1.4.1. methyl (5-thiocyanato-1H-benzo[d]imidazol-2-yl) carbamate의 합성
AcOH (50 mL) 중의 2-nitro-4-thiocyanatoaniline (1.95 g, 10.0 mmol)의 용액에 Zn 분말 (5.00 g, 70.0 mmol) 및 1,3-bis(methoxycarbonyl)-2-methyl-2-thiopseudoeura (2.70 g, 13.0 mmol). 혼합물을 90 ℃에서 20 분 동안 교반 하였다. 반응이 완료된 후 혼합물을 여과하였다. 유기층을 진공에서 농축시켰다. 잔류물을 역컬럼 (CH3CN/H2O)으로 정제하여 300 mg의 methyl (5-thiocyanato-1H-benzo[d]imidazol-2-yl) carbamate를 황색 고체로 수득 하였다.
1.4.2. methyl (5-(phenyldisulfanyl)-1H-benzo[d]imidazol-2-yl) carbamate의 합성
EtOH (120 mL) 중의 methyl (5-thiocyanato-1H-benzo[d]imidazol-2-yl) carbamate (300 mg, 1.20 mmol)의 용액에 PhSNa (319 mg, 2.40 mmol) 및 KOH (101 mg, 1.80 mmol)를 첨가했다. 혼합물을 실온에서 16 시간 동안 교반 하였다. 반응이 완료된 후 EtOH를 제거하였다. 잔류물을 prep-HPLC로 정제하여 90 mg의 화학식 1-4를 회백색 고체로 얻었다 (TFA 염, 수율 22 %).
1H-NMR (400 MHz, DMSO-d6): δ 7.64 (s, 1H), 7.55-7.53 (m, 2H), 7.46-7.44 (d, 1H), 7.42-7.74 (m, 2H), 7.34-7.30 (m, 2H), 3.79 (s, 3H)
1.5 화학식 1-5의 합성
화학식 1-5의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 5에 나타내었다.
Figure PCTKR2021014550-appb-img-000054
1.5.1. 5-(benzylthio)-2-nitroaniline의 합성
DMSO (150 mL)에 녹인 phenylmethanethiol (2.40 g, 20.0 mmol)의 용액에 5-chloro-2-nitroaniline (3.40 g, 20.0 mmol) 및 Cs2CO3 (13.0 g, 40.0 mmol)를 첨가했고, 혼합물을 80 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 혼합물을 물 (700 mL)에 붓고 EA (400 mL * 3)로 추출하고 Na2SO4로 건조한 후, 농축하고 역컬럼 (ACN/H2O)으로 정제하여 붉은 오일로 6.00 g의 5-(benzylthio)-2-nitroaniline를 얻었다.
1.5.2. 4-(benzylthio)benzene-1,2-diamine의 합성
AcOH (50 mL) 중의 5-(benzylthio)-2-nitroaniline (2.00 g, 7.70 mmol)의 용액에 Zn (4.00 g, 61.0 mmol)을 첨가했다. 혼합물을 90 ℃에서 3 시간 동안 교반 하였다. 반응이 완료된 후 혼합물을 여과하였다; 여액을 농축하여 2.20 g의 4-(benzylthio)benzene-1,2-diamine을 갈색 오일로 얻었다.
1.5.3. methyl (5-(benzylthio)-1H-benzo[d]imidazol-2-yl) carbamate의 제조
AcOH (40 mL) 중의 4-(benzylthio)benzene-1,2-diamine (2.00 g, 8.70 mmol)의 용액에 1,3-bis(methoxycarbonyl)-2-methyl-2-thiopseudoeura (1.50 g, 7.20 mmol)를 첨가하였다. 혼합물을 85 ℃에서 16 시간 동안 교반 하였다. 반응이 완료된 후 AcOH를 제거하고 EA (50 mL * 3)로 추출하였다. 유기층을 Na2SO4로 건조시키고 농축시켰다. 크루드를 prep-HPLC로 정제하여 75 mg의 methyl (5-(benzylthio)-1H-benzo[d]imidazol-2-yl) carbamate (화학식 1-5)를 노란색 고체로 얻었다(수율 11 %).
1H-NMR (400 MHz, DMSO-d6): δ11.61 (s, 1H), 7.38 (s, 1H), 7.32-7.30 (m, 1H), 7.26-7.25 (m, 1H), 7.23-7.19 (m, 4H), 7.10-7.07 (m, 1H), 4.14 (s, 2H), 3.75 (s, 3H)
1.6 화학식 1-6의 합성
화학식 1-6의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 6에 나타내었다.
Figure PCTKR2021014550-appb-img-000055
1.6.1. Methyl 3-((4-(piperidin-1-yl)phenyl)thio)propanoate의 합성
화합물 1-(4-bromophenyl)piperidine (5.0 g, 20.83 mmol, 1.0 eq)의 건조 디옥산(50 ml)용액에 methyl 3-mercaptopropanoate (16.13 mL, 145.81 mmol, 7.0 eq), Xantphos (2.4 g, 4.17 mmol, 0.2 eq)를 첨가하였다. 이 혼합물에 계속하여 N,N-Diisopropylethylamine (DIEA, 10.9 mL, 62.49 mmol, 3.0 eq) 및 Pd2(dba)3 (1.9 g, 2.08 mmol, 0.1 eq) 첨가가 완료된 후, 반응물을 질소가스하에 110 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 혼합물을 실온으로 냉각시켰다. 반응물을 여과하고 여액을 농축하였다. 잔사를 실리카 겔 컬럼 크로마토그래피(HE:EtOAC=40:1)로 정제하여 화합물 methyl 3-((4-(piperidin-1-yl)phenyl)thio)propanoate를 황색 오일 형태로 얻었다 (5.9 g, 수율 100 %).
1.6.2. Sodium 4-(piperidin-1-yl)benzenethiolate의 합성
화합물 methyl 3-((4-(piperidin-1-yl)phenyl)thio)propanoate (3.6 g, 12.9 mmol, 1.0 당량)의 건조 THF (60 mL) 용액에 실온에서 20% NaOEt (6.59 g, 19.355 mmol, 1.5 당량)를 첨가하였다. 반응물을 1 시간 동안 실온으로 가열하였다. 반응이 완료된 후, 혼합물을 농축하여 화합물 sodium 4-(piperidin-1-yl)benzenethiolate을 갈색 화합물 (3.45g, 조 물질)로서 수득하였다.
1.6.3. 2-Nitro-5-((4-(piperidin-1-yl)phenyl)thio)aniline의 합성
화합물 sodium 4-(piperidin-1-yl)benzenethiolate (3.45g, 16.05 mmol, 1.0 당량), 4-fluoro-2-di(tert-butoxycarbonyl) nitroaniline (5.98g, 16.05mmol, 1.0 당량) 및 K2CO3 (6.65 g, 48.15 mmol, 3.0 당량)의 무수 1-Methyl-2-pyrrolidinone (NMP, 60 mL)의 용액에 질소 충진하의 130 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 잔류물을 실리카 겔 컬럼 크로마토그래피 (HE:EtOAC=20:1)로 정제하여 황색 고체의 2-nitro-5-((4-(piperidin-1-yl)phenyl)thio)aniline (630 mg)를 얻었다.
1.6.4. 4-((4-(Piperidin-1-yl)phenyl)thio)benzene-1,2-diamine의 합성
2-nitro-5-((4-(piperidin-1-yl)phenyl)thio)aniline (1-4, 450 mg, 1.37 mmol, 1.0 eq) 및 Pd/C (110 mg)의 MeOH (30 mL) 용액에 MeOH/NH3 (10 mL)를 가하고, 대기압하의 수소 (H2) 기류 속에서 실온으로 18 시간 동안 교반하였다. 반응물을 여과하고 여액을 농축하여 화합물 4-((4-(piperidin-1-yl)phenyl)thio)benzene-1,2-diamine을 보라색 고체 (370 mg)로서 수득하였다 (수율 90.5 %).
1H NMR (400 MHz, CDCl3): δ ppm 7.21-7.25 (m, 2H), 6.85 (d, J = 6.8 Hz, 2H), 6.69-6.74 (m, 2H), 6.62 (d, J = 8.0 Hz, 1H), 3.34-3.43 (m, 4H), 3.14-3.16 (m, 4H), 1.55-1.69 (m, 6H)
1.6.5. (5-((4-(Piperidin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
화합물 4-((4-(piperidin-1-yl)phenyl)thio)benzene-1,2-diamine (100 mg, 0.334 mmol, 1.0 당량)의 acetic acid (5 mL) 용액에 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (76 mg, 0.367 mmol, 1.1 당량)을 첨가하고, 혼합물을 80 ℃에서 2 시간 동안 교반 반응하였다. 반응물을 DCM으로 추출하고 포화 NaHCO3로 세척하였다. 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 얻어진 혼합생성물을 Prep-TLC에 의해 정제하여 백색 고체 생성물 methyl (5-((4-(piperidin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-6, 20 mg)로서 수득하였다 (수율 15.7%).
1H NMR (400 MHz, DMSO-d6): δ 7.33(d, J = 8.4 Hz, 1H), 7.28 (d, J = 1.2 Hz, 1H), 7.20 (d, J = 8.8 Hz, 2H), 7.01-7.03 (m, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.08 (brs, 2H), 3.74 (s, 3H), 3.11-3.19 (m, 4H), 1.53-1.59 (m, 6H)
1.7 화학식 1-7의 합성
화학식 1-7의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 7에 나타내었다.
Figure PCTKR2021014550-appb-img-000056
1.7.1. methyl 3-((4-morpholinophenyl)thio)propanoate의 합성
4-(4-bromophenyl)morpholine (7.0 g, 30.9 mmol, 1.0 eq)의 건조 디옥산 (50 mL) 용액에 methyl 3-mercaptopropanoate (18.6 g, 154.9 mmol, 5.0 eq), Xantphos (3.6 g, 6.2 mmol, 0.2 eq)를 첨가하였다. 여기에 DIEA (12.2 g, 92.9 mmol, 3.0 eq) 와 Pd2(dba)3 (1.4 g, 1.6 mmol, 0.05 eq)를 차례로 가한 후 반응물을 110 ℃에서 16 시간 동안 교반하면서 반응하였다. 반응이 완료된 후, 혼합물을 실온으로 냉각시켰다. 반응물을 여과하고 여액을 농축하였다. 잔사를 실리카 겔 컬럼 크로마토그래피 (HE:EtOAC=8:1)로 분리 정제하여 methyl 3-((4-morpholinophenyl)thio)propanoate (7.5 g)를 황색 오일 형태로 얻었다 (수율 91.2 %).
1.7.2. sodium 4-morpholinobenzenethiolate의 합성
methyl 3-((4-morpholinophenyl)thio)propanoate (7.4 g, 26.3 mmol, 1.0 당량)의 건조 THF (100 mL) 용액에 실온에서 20 % NaOEt (10.7 g, 31.6 mmol, 1.5 당량)를 첨가하였다. 반응물을 1 시간 동안 실온에서 반응하였다. 반응이 완료된 후, 혼합물을 농축하고 갈색 기름상의 액체 화합물 sodium 4-morpholinobenzenethiolate (5.2 g)을 얻었다 (수율 88.9 %).
1.7.3. 4-morpholino-2-nitroaniline의 합성
4-morpholinobenzenethiolate (5.2 g, 23.9 mmol, 1.0 당량)의 무수 1-Methyl-2-pyrrolidinone (60 mL) 용액에 5-fluoro-2-nitroaniline (4.5 g, 28.7 mmol, 1.2 당량)과 K2CO3 (9.9 g, 71.8 mmol, 3.0 당량) 질소 충진하에서 가한 다음 130 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 잔류물을 컬럼크로마토그래피로 실리카 겔 (HE:EtOAC=20:1)로 정제하여 화합물 4-morpholino-2-nitroaniline의 노란색 고체 (1.2 g)로 얻었다 (수율 15.2 %).
1.7.4. 4-morpholinobenzene-1,2-diamine의 합성
4-morpholino-2-nitroaniline (1.2 g, 3.6 mmol, 1.0 당량)의 MeOH (20 mL) 용액에 Pd/C (300 mg)를 가하고, 실온에서 수소가스 (H2) 존재 하에 18 시간 동안 교반하였다. 반응물을 여과하고 여액을 보라색 고체 4-morpholinobenzene-1,2-diamine (640 mg)를 얻었다 (수율 60.1 %).
1H NMR (400 MHz, DMSO-d6): δ7.85 (d, J = 9.2 Hz, 1H), 7.39-7.44 (m, 3H), 7.06 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 1.6 Hz, 1H), 6.24-6.27 (m, 1H), 3.69 - 3.76 (m, 4H), 3.19-3.23 (m, 4H)
1.7.5. methyl (5-((4-morpholinophenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
4-morpholinobenzene-1,2-diamine (100 mg, 0.332 mmol, 1.0 eq)의 초산 (5 mL) 용액에 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (75 mg, 0.365 mmol, 1.1 eq)을 첨가하고, 혼합물을 80 ℃에서 2 시간 동안 교반했으며, LCMS로 반응이 완료된 것을 확인하였다. 반응물을 DCM으로 추출하고 포화 중탄산수로 씻고, 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 이 물질을 Prep-TLC로 정제하여 생성물을 백색 고체 (화학식 1-7, 30 mg)로서 수득하였다 (수율 23.6 %).
1H NMR (400 MHz, DMSO-d6): δppm 7.34 (d, J = 8.4 Hz, 1H), 7.30 (s, 1H), 7.23 (d, J = 8.8 Hz, 2H), 7.02-7.05 (m, 1H), 6.93 (d, J = 8.8 Hz, 2H), 3.74 (s, 3H), 3.71-3.73 (m, 4H), 3.10-3.12 (m, 4H)
1.8 화학식 1-8의 합성
화학식 1-8의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 8에 나타내었다.
Figure PCTKR2021014550-appb-img-000057
1.8.1. 1-(4-bromophenyl)-4-ethylpiperazine의 합성
1-(4-bromophenyl)piperazine (10.0 g, 41.83 mmol, 1.0 eq)의 무수 acetonitrile (50 mL)용액에 ethyl iodide (4.0 mL, 49.78 mmol, 1.2 eq) 및 K2CO3 (11.47 g, 82.96 mmol, 2.0 eq)를 첨가하였다. 첨가가 완료된 후 반응물을 N2 하에서 70 ℃에서 2 시간 동안 교반하였다. 반응물을 여과하고 여과액을 농축하였다. 잔류물을 실리카 겔(HE:EtOAC=5:1) 컬럼 크로마토그래피로 정제하여 화합물 1-(4-bromophenyl)-4-ethylpiperazine를 백색 고체 (9.84 g)로 얻었다 (수율 84.2 %).
1.8.2. methyl 3-((4-(4-ethylpiperazin-1-yl)phenyl)thio)propanoate의 합성
1-(4-bromophenyl)-4-ethylpiperazine (9.4 g, 34.9 mmol, 1.0 eq)의 건조 디옥산 (50 mL)용액에 methyl 3-mercaptopropanoate (27.1 mL, 244.4 mmol, 7.0 eq), Xantphos (4.04 g, 6.98 mmol, 0.2 eq)를 첨가하였다. 여기에 DIEA (18.3 mL, 104.7 mmol, 3.0 eq) 및 Pd2(dba)3 (3.2 g, 3.5 mmol, 0.1 eq) 첨가가 완료된 후, 반응물을 N2 기류하의 110 ℃에서 16 시간 동안 교반하였다. 반응물을 여과하고 농축액을 농축하였다. 잔류물을 실리카 겔 컬럼 크로마토그래피 (Hexane:EtOAC=2:1)로 정제하여 황색 오일 상의 화합물 methyl 3-((4-(4-ethylpiperazin-1-yl)phenyl)thio)propanoate (9.5 g)를 얻었다 (수율 88.29 %).
1.8.3. sodium 4-(4-ethylpiperazin-1-yl)benzenethiolate의 합성
3-((4-(4-ethylpiperazin-1-yl)phenyl)thio)propanoate (2.81 g, 9.1 mmol, 1.0 당량)의 건조 THF (60 mL) 용액에 20 % Sodium ethoxide (4.64 g, 13.65 mmol, 1.5 당량)를 가한 다음, 반응물을 20 분 동안 실온으로 가열하였다. 반응이 완료된 후, 혼합물을 농축하여 갈색 고체 화합물 sodium 4-(4-ethylpiperazin-1-yl)benzenethiolate (2.8 g)를 얻었다.
1.8.4. 5-((4-(4-ethylpiperazin-1-yl)phenyl)thio)-2-nitroaniline의 합성
Sodium 4-(4-ethylpiperazin-1-yl)benzenethiolate (2.8 g, 11.5 mmol, 1.0 당량)를 건조 N-메틸피롤리딘디메틸 (60 mL)에 용해하고, tert-butyl (tert-butoxycarbonyl)(5-chloro-2-nitrophenyl)carbamate (4.29 g, 11.5 mmol, 1.0 당량) 및 K2CO3 (4.77 g, 34.5 mmol, 3.0 당량)를 차례로 가한 용액을 N2 기류하에 130 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후 잔류물을 실리카 겔 컬럼크로마토그래피로 (DCM:MeOH=20:1)로 정제하여 오렌지색 고체의 5-((4-(4-ethylpiperazin-1-yl)phenyl)thio)-2-nitroaniline (520 mg)를 얻었다.
1.8.5. 4-((4-(4-ethylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine의 합성
5-((4-(4-ethylpiperazin-1-yl)phenyl)thio)-2-nitroaniline (520 mg, 1.45 mmol, 1.0 당량)의 MeOH (15 mL) 및 MeOH/NH3 (5 mL) 용액 중에 Pd/C (150 mg)를 가하고, 이 용액에 수소 (H2) 존재 하에 실온에서 18 시간 동안 교반하였다. 반응물을 여과하고 여액을 농축하여 보라색 고체 화합물 4-((4-(4-ethylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine (470 mg)로서 수득하였다 (수율 99.5 %).
1H NMR (400 MHz, CDCl3): δ 7.22 (d, J = 8.4 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 6.73-6.78 (m, 2H), 6.64 (d, J = 7.6 Hz, 1H), 3.26-3.46 (m, 8H), 2.78-2.92 (m, 4H), 1.51-1.64 (m, 2H), 1.29-1.30 (m, 3H)
1.8.6. Methyl (5-((4-(4-ethylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
4-((4-(4-ethylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine (100 mg, 0.305 mmol, 1.0 당량)의 초산 (5 mL)용액에 첨가하였다. 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (69 mg, 0.335 mmol, 1.1 당량) 혼합물을 80 ℃에서 2 시간 동안 교반하고, LCMS로 반응이 완료된 것을 확인하였다. 반응이 DCM으로 추출되고 포화된 NaHCO3로 세척하였다. 여액을 농축하고 그 생성물을 Prep-TLC에 의해 정제하여 생성물을 백색 고체인 methyl (5-((4-(4-ethylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-8, 44 mg)을 얻었다 (수율 32 %).
1H NMR (400 MHz, DMSO-d6) δ 7.33 (d, J = 8.0 Hz, 1H), 7.29 (s, 1H), 7.21 (d, J = 8.8 Hz, 2H), 7.00-7.03 (m, 1H), 6.92 (d, J = 8.8 Hz, 2H), 3.74 (s, 3H), 3.13-3.15 (m, 4H), 2.46-2.48 (m, 4H), 2.32-2.37 (m, 2H), 1.01-1.04 (m, 3H)
1.9 화학식 1-9의 합성
화학식 1-9의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 9에 나타내었다.
Figure PCTKR2021014550-appb-img-000058
1.9.1. 1-(3-bromophenyl)-4-methylpiperazine의 합성
1,3-dibromobenzene (9.0 g, 38.5 mmol, 1.0당량)의 톨루엔 (100 mL) 용액에 1-methylpiperazine (19.2 g, 192.4 mmol, 5.0 당량), BINAP (4.8 g, 7.7 mmol, 0.2 eq), DBU (17.5 g, 115.5 mmol, 3.0 eq) 및 Pd2(dba)3 (2.2 g, 1.9 mmol, 0.05 eq)를 각각 가하고, 반응 혼합물을 60 ℃로 가열한 후 새로 분쇄한 sodium tert-butoxide (12.9 g, 192.4 mmol, 3.0 eq)를 한 번에 추가하였다. 반응물을 N2 하의 60 ℃에서 16 시간 동안 교반한 후에, 반응물을 농축하였다. 잔류물을 실리카 겔 컬럼 크로마토그래피로 (HE:EtOAC=60:1)로 분리, 정제하여 황색 오일상의 1-(3-bromophenyl)-4-methylpiperazine (5.5 g)를 수득하였다 (수율 56.3 %).
1.9.2. methyl 3-((3-(4-methylpiperazin-1-yl)phenyl)thio)propanoate의 합성
1-(3-bromophenyl)-4-methylpiperazine (5.5 g, 21.65 mmol, 1.0 당량)의 무수 디옥산 (50 mL)용액에 methyl 3-mercaptopropanoate (18.2 mg, 155.55 mmol, 7.0 당량)를 첨가하였다. 여기에 Xantphos (2.5 g, 4.33 mmol, 0.2 당량), DIEA (8.4 g, 64.95 mmol, 3.0 당량) 및 Pd2(dba)3 (2.0 g, 2.165 mmol, 0.1 eq)를 차례로 첨가하여 완료된 후, 반응물을 N2 하에서 110 ℃에서 24 시간 동안 교반하였다. 반응물을 여과하고 여액을 농축하였다. 잔류물을 실리카 겔 컬럼 크로마토그래피 (DCM:MeOH=20:1)로 정제하여 methyl 3-((3-(4-methylpiperazin-1-yl)phenyl)thio)propanoate을 주황색 오일 (4.5 g)로서 수득하였다 (수율 70.7 %).
1.9.3. sodium 3-(4-methylpiperazin-1-yl)benzenethiolate의 합성
Methyl 3-((3-(4-methylpiperazin-1-yl)phenyl)thio)propanoate (2.3 g, 7.82 mmol, 1.0 당량)의 건조 THF (60 mL) 용액에 20 % NaOEt (3.8 g, 11.73 mmol, 1.5 당량)을 첨가하였다. 실온의 반응물을 10 분 동안 가열하였다. 반응이 완료된 후, 혼합물을 농축하여 sodium 3-(4-methylpiperazin-1-yl)benzenethiolate의 갈색 고체 (2.05 g)를 얻었다
1.9.4. 5-((3-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitroaniline의 합성
Sodium 3-(4-methylpiperazin-1-yl)benzenethiolate (2.05 g, 8.91 mmol, 1.0 당량) 건조 N-메틸피롤리딘디메틸 (60 mL)용액에 tert-butyl (tert-butoxycarbonyl)(5-chloro-2-nitrophenyl)carbamate (3.3 g, 8.91 mmol, 1.0 당량) 및 K2CO3 (3.7 g, 26.73 mmol, 3.0 당량)를 차례로 가하고, N2 하에 130 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 잔류물을 실리카 겔 컬럼 크로마토그래피 (DCM:MeOH=20:1)로 정제하여 5-((3-(4-methylpiperazin-1-yl)phenyl)thio)-2-nitroaniline의 주황색 고체화합물 (3.1 g)를 얻었다.
1.9.5. 4-((3-(4-methylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine의 합성
5-((3-(4-메틸피페라진-1-일)페닐)티오)-2-니트로아닐린 (3.1 g, 9.0 mmol, 1.0 당량) 및 Pd/C(1.0 g)의 MeOH 용액에 (60 mL) 및 MeOH/NH3 (20 mL)를 가하고 18 시간 동안 H2 존재 하에서 교반하였다. 반응물을 여과하고 여액을 농축하고, 회색 고체 형태로 4-((3-(4-methylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine (600 mg)를 수득하였다.
1H NMR (400 MHz, CDCl3): δ 7.07-7.12 (m, 1H), 6.84-6.89 (m, 2H), 6.78-6.80 (m, 1H), 6.66-6.70 (m, 2H), 6.60-6.63 (m, 1H), 3.49 (s, 2H), 3.36 (s, 2H), 3.14-3.17 (m, 4H), 2.52-2.55 (m,4H), 2.34(d, J= 5.6 Hz,3H)
1.9.6. methyl (5-((3-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
4-((3-(4-Methylpiperazin-1-yl)phenyl)thio)benzene-1,2-diamine (100 mg, 0.318 mmol, 1.0 당량)의 CH3COOH (10 mL) 용액에 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (72 mg, 0.35 mmol, 1.1 eq)을 첨가하였다. 반응 혼합물을 80 ℃에서 2 시간 동안 교반한 후, LCMS로 반응이 완료된 것을 확인하였다. 반응물을 DCM으로 추출하고 sat. NaHCO3 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 혼합물을 Prep-TLC로 정제하여 백색 고체의 methyl (5-((3-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-9, 20 mg)를 얻었다 (수율 15.87 %).
1H NMR (400 MHz, DMSO-d6) δ 7.49 (s, 1H), 7.43 (d, J= 8.0 Hz, 1H), 7.16-7.18 (m, 1H), 7.08-7.12 (m, 1H), 6.77 (d, J= 6 Hz, 2H), 6.47 (d, J=7.6 Hz, 1H), 3.76 (s, 3H), 3.04-3.07 (m, 4H), 2.38-2.40 (m, 4H), 2.19 (s, 3H)
1.10 화학식 1-10의 합성
화학식 1-10의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 10에 나타내었다.
Figure PCTKR2021014550-appb-img-000059
1.10.1. tert-butyl (tert-butoxycarbonyl)(5-chloro-2-nitrophenyl)carbamate의 합성
5-chloro-2-nitroaniline (20 g, 116.2 mmol, 1.0 당량)의 THF (300 mL) 용액에 Di-tert-butyl decarbonate (50 g, 232.4 mmol, 2.0 당량) 및 DMAP (14 g, 116.2 mmol, 1.0 당량) 가하였다. 반응 혼합물을 70 ℃에서 1 시간 동안 교반하였다. LCMS로 반응이 완료된 것을 확인하였다. 반응물을 농축하고 실리카 겔 컬럼 크로마토그래피 (HE:EA=10:1로 용리)로 정제하여 황색 고체의 tert-butyl (tert-butoxycarbonyl)(5-chloro-2-nitrophenyl)carbamate (36 g)를 수득하였다 (수율 85 %).
1.10.2. tert-butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate의 합성
tert-butyl (tert-butoxycarbonyl)(5-chloro-2-nitrophenyl)carbamate (28 g, 75.2 mmol, 1.0 당량)의 DMF (100 mL) 용액에 4-bromobenzenethiol (21 g, 112.9 mmol, 1.5 eq) 및 K2CO3 (20.7 g, 150.4 mmol, 2eq)를 차례로 가하고, 반응 혼합물을 100 ℃에서 16 시간 동안 교반하였다. LCMS로 반응이 완료되었음을 확인하였다. 반응물을 DCM으로 추출하고 염수로 세척하였다. 유기층을 건조시키고 농축시켜 황색 고체의 tert-butyl(5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate (10.2 g, 수율 35 %)을 수득하였다.
1.10.3. tert-butyl (2-nitro-5-((4-(thiophen-3-yl)phenyl)thio)phenyl)carbamate의 합성
tert-butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate (4.3 g, 10.1 mmol, 1.0 당량)의 DMF (20 mL) 및 H2O (4 mL) 용액에 thiophen-3-yl boronic acid (2.6 g, 20.2 mmol, 2.0 eq)을 첨가하였다. 이 혼합물에 Pd(PPh3)4 (1.2 g, 1.01 mmol, 0.1 eq) 및 K2CO3 (4.2 g, 30.3 mmol, 3.0 eq)을 차례대로 가하고 100 ℃에서 16 시간 동안 교반하였다. LCMS로 반응이 완료된 것을 확인한 후, 반응을 DCM으로 추출하고 염수로 세척하였다. 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고, 잔류물을 실리카 겔 컬럼 크로마토그래피 (HE:EA=3:1로 용리)로 정제하여 황색 고체의 tert-butyl (2-nitro-5-((4-(thiophen-3-yl)phenyl)thio)phenyl)carbamate (2.7 g)를 얻었다 (수율 62 %).
1.10.4. 2-nitro-5-((4-(thiophen-3-yl)phenyl)thio)aniline의 합성
tert-butyl (2-nitro-5-((4-(thiophen-3-yl)phenyl)thio)phenyl)carbamate (2.6 g, 6.07 mmol, 1.0 당량)의 HCl/디옥산 (20 mL)용액을 실온에서 2 시간 동안 교반하였다. LCMS로 반응이 완료된 것을 확인한 후, 반응 혼합물을 NaHCO3의 얼음 용액 100 mL에 부었다. 혼합물을 DCM으로 추출하고 염수로 세척하였다. 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여과액을 농축하고 DCM:MeOH=10:1로 용리하는 실리카 겔 컬럼 크로마토그래피로 정제하여 황색 고체인 2-nitro-5-((4-(thiophen-3-yl)phenyl)thio)aniline (1.5 g)을 얻었다 (수율 78 %).
1.10.5. 4-((4-(thiophen-3-yl)phenyl)thio)benzene-1,2-diamine의 합성
2-nitro-5-((4-(thiophen-3-yl)phenyl)thio)aniline (1.3 g, 3.96 mmol, 1.0 당량)의 EtOH (20 mL) 및 H2O (5 mL) 용액에 Fe (1.1 g, 19.8 mmol, 5.0 eq)와 NH4Cl (1.1 g, 19.8 mmol, 5.0 eq)을 첨가하고 혼합물을 80 ℃에서 2 시간 동안 교반하였다. 반응이 완료된 후 LCMS로 모니터링하여 혼합물을 DCM으로 추출하고 염수로 세척하였다. 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 DCM:MeOH=10:1로 용리하는 실리카 겔 컬럼 크로마토그래피로 정제하여 갈색 고체인 4-((4-(thiophen-3-yl)phenyl)thio)benzene-1,2-diamine (900 mg)로 얻었다 (수율 76 %).
1H NMR (400 MHz, DMSO-d6) δ 7.77-7.78(m,1H), 7.57-7.76(m,3H), 7.47-7.49 (m,1H), 7.03-7.06 (m,2H), 6.68 (s, 1H), 6.56-6.61 (m, 2H), 4.67-4.84 (m, 4H)
1.10.6. methyl (5-((4-(thiophen-3-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
4-((4-(thiophen-3-yl)phenyl)thio)benzene-1,2-diamine (100 mg, 0.335 mmol, 1.0 당량)의 CH3COOH (5 mL)용액에 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (76 mg, 0.369 mmol, 1.1 당량)을 첨가하였다. 반응 혼합물을 80 ℃에서 2 시간 동안 교반하였다. LCMS로 반응이 완료된 것을 확인한 다음, 반응의 생성물을 DCM으로 추출하고 포화 용액으로 세척하였다. 유기층을 포화 NaHCO3로 씻고, 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 이 물질을 Prep-TLC로 정제하여 백색 고체의 methyl (5-((4-(thiophen-3-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-10, 50 mg)로 얻었다 (수율 39.1 %).
1H NMR (400 MHz, DMSO-d6):δ ppm 7.82-7.84 (m, 1H), 7.61-7.66 (m, 3H), 7.45-7.54 (m, 3H), 7.10-7.23 (m, 3H), 3.76 (s, 3H)
1.11 화학식 1-11의 합성
화학식 1-11의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 11에 나타내었다.
Figure PCTKR2021014550-appb-img-000060
1.11.1. Methyl 3-(furan-2-ylthio)propanoate의 합성
2-Bromofuran (6.0 g, 40.8 mmol, 1.0 당량)의 무수 디옥산 (50 mL)용액에 methyl 3-mercaptopropanoate (31.6 mL, 285.6 mmol, 7.0 당량), Xantphos (4.787 g, 8.16 mmol, 0.2 eq)), DIEA (21.4 mL, 122.4 mmol, 3.0 eq) 및 Pd2(dba)3 (3.623 g, 4.08 mmol, 0.1 eq)를 차례로 첨가하였다. 첨가가 완료된 후 반응물을 N2 하에서 110 ℃에서 16 시간 동안 교반하였다. 반응물을 여과하고 여액을 농축하였다. 얻어진 생성물를 컬럼 크로마토그래피로 실리카 겔 (HE:EtOAC=40:1)로 정제하여 황색 기름상의 액체 methyl 3-(furan-2-ylthio)propanoate를 (6.34 g)로 얻었다 (수율 83.4 %).
1.11.2. sodium furan-2-thiolate의 합성
건조 THF (60 mL) 중 methyl 3-(furan-2-ylthio)propanoate (6.34 g, 34.08 mmol, 1.0 당량)의 용액에 20 % NaOEt (14.06 g, 41.32 mmol, 1.2 당량)를 실온에서 첨가하였다. 반응 혼합물을 1 시간 동안 가열하여 반응이 완료된 후, 혼합물을 농축하여 갈색 고체인 sodium furan-2-thiolate (4.61 g)를 수득하였다.
1.11.3. 5-(furan-2-ylthio)-2-nitroaniline의 합성
Sodium furan-2-thiolate (4.61 g, 37.86 mmol, 1.1 당량), 5-fluoro-2-nitroaniline (5.39 g, 34.4 mmol, 1.0 당량) 및 K2CO3 (14.26 g, 103.2 mmol, 3.0 당량)의 무수 N-methylpyrrolidinedimethyl (60 mL)용액을 N2 하에 130 ℃에서 16 시간 동안 교반하였다. 반응이 완료된 후, 잔류물을 실리카 겔 컬럼 크로마토그래피 (HE: EtOAC= 20:1)로 정제하여 노란색 고체의 5-(furan-2-ylthio)-2-nitroaniline (860 mg)를 얻었다.
1.11.4. 4-(furan-2-ylthio)benzene-1,2-diamine의 합성
MeOH (36 mL) 과 MeOH/NH3 (12 mL)의 혼합용매에 5-(furan-2-ylthio)-2-nitroaniline (860 mg, 3.624 mmol, 1.0 당량) 및 Pd/C (360 mg)를 가하고, 실온에서 18 시간 동안 H2 존재 하에서 교반하였다. 반응 혼합물을 여과하고 여액을 농축하여 보라색 고체상의 4-(furan-2-ylthio)benzene-1,2-diamine (750 mg)를 수득하였다 (수율 100 %).
1H NMR (400 MHz, CDCl3): δ ppm 7.49-7.50 (m, 1H), 6.69-6.74 (m, 2H), 6.59-6.62 (m, 2H), 6.39-6.41 (m, 1H), 3.37 (brs, 4H)
1.11.5. methyl (5-(furan-2-ylthio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
CH3COOH (5mL) 중 4-(furan-2-ylthio)benzene-1,2-diamine (100 mg, 0.485 mmol, 1.0 당량)의 용액에 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (100 mg, 0.485 mmol, 1.1 당량)을 첨가하고, 혼합물을 80 ℃에서 2 시간 동안 교반하였다. 반응물을 LCMS로 모니터링하여 반응이 완료된 것을 확인한 다음, DCM으로 추출하고 포화 NaHCO3 용액으로 세척하였다. 유기층을 무수 Na2SO4로 건조하고 여과하였다. 여액을 농축하고 반응 잔유물을 Prep-TLC로 정제하여 백색 고체인 methyl (5-(furan-2-ylthio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-11, 20 mg)를 얻었다 (수율 14.2 %).
1H NMR (400 MHz, DMSO-d6): δ ppm 7.88-7.89 (m, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.07-7.10 (m, 1H), 6.92-6.93 (m, 1H), 6.61-6.63 (m, 1H), 3.78 (s, 3H)
1.12 화학식 1-12의 합성
3,4-difluorobenzenethiol를 출발물질로 사용하여 실시예 1.1의 화학식 1-1과 같은 방법으로 methyl (5-((3,4-difluorophenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-12, 수율 69.2 %).
1H NMR (CDCl3, 400 MHz) 3.76(s, 3H), 6.93(m, 1H), 7.17(m, 2H), 7.19(d, J=2.32 Hz, 1H), 7.23(q, 1H), 7.38(d, J=10.64 Hz), 7.55(s, 1H), 11.53(m, 1H), 12.02(m, 1H)
1.13 화학식 1-13의 합성
2,4-difluorobenzenethiol를 출발물질로 사용하여 실시예 1.1의 화학식 1-1과 같은 방법으로 methyl (5-((2,4-difluorophenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-13, 수율 75.4 %).
1H NMR (DMSO-d6, 400 MHz) 3.75(s, 3H), 7.12(m, 3H), 7.33(m, 1H), 7.38(m, 1H), 7.47(s, 1H), 11.73(m, 2H)
1.14 화학식 1-14의 합성
5-chloropyridine-2-thiol를 출발물질로 사용하여 실시예 1.1의 화학식 1-1과 같은 방법으로 methyl (5-((5-chloropyridin-2-yl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-14, 수율 75.2%).
1H NMR (DMSO-d6, 400 MHz) 3.77(s, 3H), 6.75(d, J=8.68 Hz, 1H), 7.31(d, J=1.68 Hz), 7.53(d, J=8.2 Hz, 1H), 7.64(s, 1H), 7.69(d, J=2.6 Hz), 8.44(s, 1H), 11.96(m, 2H)
1.15 화학식 1-15의 합성
화학식 1-15의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 15에 나타내었다.
Figure PCTKR2021014550-appb-img-000061
1.15.1. 5-((4-Bromophenyl)thio)-2-nitroaniline의 합성
4-bromobenzenethiol (1.4 g, 8.7 mmol)의 DMF (10 mL)용액에 Potassium carbonate (1.24 g)을 용해하고 상온에서 미리 제조한 5-chloro-2-nitroaniline (1.49 g, 8.7 mmol)의 DMF (3 mL)용액을 가하였다. 반응 혼합물을 90 ℃에서 3 시간 동안 교반 반응하고 실온으로 냉각하고 찬물 (500 mL)에 붓고 침전물를 여과하고 건조하여 노랑색 고체 생성물 5-((4-Bromophenyl)thio)-2-nitroaniline (2.8 g)을 얻었다 (수율 99 %).
1.15.2. tert-Butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate의 합성
5-((4-Bromophenyl)thio)-2-nitroaniline (2.8 g, 8.7 mmol)의 THF (30 mL)용액에 Di-tert-butyl dicarbonate (5.14 g, 23.5 mmol)과 DMAP (0.146 g)를 가하고 1 시간 동안 가열 환류하며 반응하였다. TLC로 반응 완결을 확인한 다음 반응물을 상온으로 냉각하고 감압증발하여 용매를 제거하였다. 생성물을 메탄올 (30 mL)에 용해한 다음 potassium carbonate (5.2 g) 가하고 상온에서 6 시간 동안 교반한 다음 반응 후 처리하여 tert-Butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate (1.48 g)를 얻었다 (수율 40 %).
1.15.3. tert-butyl (2-nitro-5-((4-(thiophen-2-yl)phenyl)thio)phenyl)carbamate의 합성
tert-Butyl (5-((4-bromophenyl)thio)-2-nitrophenyl)carbamate (0.7 g, 1.6 mmol)의 DMF (5 mL)용액에 thiophen-2-ylboronic acid (0.42 g, 3.28 mmol, 2.0 eq), Tetrakis(triphenylphosphine)palladium (0.18 g, 0.16 mmol, 0.1 eq), potassium carbonate (0.66 g, 4.80 mmol, 3 eq)를 가하고 100 ℃에서 15 시간 동안 교반 반응하고 실온으로 냉각한 후 메틸렌클로라이드 용액으로 추출한 다음 Brine 용액으로 한번 씻고, 무수 황산마그네슘으로 건조하고 감압증발한 다음, 에틸아세테이트와 헥산 (7:3, v/v) 전개액으로 Silica-Gel column chromatography 분리 정제하여 연노랑색 고체 생성물 tert-butyl (2-nitro-5-((4-(thiophen-2-yl)phenyl)thio)phenyl)carbamate (0.48 g)를 얻었다 (수율 70 %).
1.15.4. 2-nitro-5-((4-(thiophen-2-yl)phenyl)thio)aniline의 합성
tert-butyl (2-nitro-5-((4-(thiophen-2-yl)phenyl)thio)phenyl)carbamate (0.48 g, 1.1 mmol)의 HCl/디옥산 (6 mL) 용액으로 상온에서 2 시간 동안 반응한 다음 찬 포화 중탄산소다 수용액 (30 mL)에 붓고, 과량의 메틸렌크로라이드 용액으로 추출하고, 무수 황산나트륨으로 건조, 여과하고 감압증발로 용매를 제거한 다음 실리카 겔 칼럼 크로마토그래피로 정제하여 2-nitro-5-((4-(thiophen-2-yl)phenyl)thio)aniline (413 mg)를 얻었다 (수율 78 %).
1.15.5. 4-((4-(thiophen-2-yl)phenyl)thio)benzene-1,2-diamine의 합성
2-nitro-5-((4-(thiophen-2-yl)phenyl)thio)aniline (413 mg, 1.2 mmol)의 에탄올 (15 mL) 용액에 tin(II) chloride dihydrate (1.74 g, 7.7 mmol, 6.4 eq)를 가하고 3 시간 동안 가열, 환류한 다음, 상온으로 냉각하고 물 (50 mL)를 가하였다. 과량의 에틸아세테이트 용매로 추출한 다음 용매를 감압증발로 제거하여 고체상의 반응 혼합물를 얻었다. 이것을 에틸아세테이트와 헥산(1:3, v/v)용매를 사용하여 실리카 겔을 이용한 칼럼 크로마토그래피로 분리, 정제하여 4-((4-(thiophen-2-yl)phenyl)thio)benzene-1,2-diamine (0.20 g)를 얻었다 (수율 57 %).
1.15.6. Methyl (5-((4-(thiophen-2-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
4-((4-(thiophen-2-yl)phenyl)thio)benzene-1,2-diamine (0.1 g, 0.33 mmol)과 1,3-Bis(methoxycarbonyl)-S-methylisothiourea (0.55 g, 2.6 mmol, 8 eq)을 5 %-AcOH in Ethanol 3 ml에 녹인 후 80 ℃에서 2 시간 동안 반응하였다. TLC로 반응 종결을 확인하고, 과량의 메틸렌클로라이드로 추출하고, 포화 중탄산소다수로 중화한 다음, 무수 황산나트륨으로 건조하고, 실리카 겔 칼럼 크로마토그래피로 분리하여 연갈색 고체인 Methyl (5-((4-(thiophen-2-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-15, 90 mg)을 수득하였다 (수율 72%).
1H NMR (DMSO-d6, 400 MHz) 3.76(s, 3H), 7.12(m, 3H), 7.23(d, J=8.16Hz, 1H), 7.47(m, 2H), 7.51-7.58(m, 4H), 11.77(m, 2H)
1.16 화학식 1-16의 합성
화학식 1-16의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 16에 나타내었다.
Figure PCTKR2021014550-appb-img-000062
1.16.1. 5-((4-(1H-imidazole-1-yl)phenylthio)-2-nitroaniline의 제조
5-((4-fluorophenyl)thio)-2-nitroaniline (0.85 g, 3.2 mmol)의 DMSO (5 mL)용액에 1H-imidazole (0.23 g, 3.3 mmol)를 가하고 5 분간 교반 후 potassium t-butoxide (0.36 g, 3.2 mmol)를 서서히 가한 다음 90 ℃에서 2 시간 동안 반응하였다. 반응 혼합물을 에틸아세테이트로 추출하고 물로 씻어낸 다음 감압증발로 용매를 제거하여 혼합 결과물을 얻었다. 이것을 에틸아세테이트와 헥산(3:1, v/v) 용매를 사용하여 실리카 겔를 이용한 칼럼 크로마토그래피로 분리 정제하여 5-((4-(1H-imidazole-1-yl)phenylthio)-2-nitroaniline (0.32 g)를 얻었다 (수율 32 %).
1.16.2. 5-((4-(1H-imidazole-1-yl)phenylthio)-1,2-diamine의 제조
5-((4-(1H-imidazole-1-yl)phenylthio)-2-nitroaniline (0.309 g, 1.0 mmol)의 에탄올 (10 mL) 용액에 tin chloride two hydrate (6 eq)를 가하고 4 시간 동안 가열, 환류한 다음 상온으로 냉각하고 물 (50 mL)를 가하였다. 과량의 에틸아세테이트 용매로 추출한 다음 용매를 감압증발로 제거하여 고체상의 반응 혼합물을 얻었다. 이것을 에틸아세테이트와 헥산 (3:1, v/v) 용매를 사용하여 실리카 겔를 이용한 칼럼 크로마토그래피로 분리 정제하여 5-((4-(1H-imidazole-1-yl)phenylthio)-1,2-diamine (0.30 g)를 얻었다 (수율 98 %).
1.16.3. methyl (5-((4-(1H-imidazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성.
5-((4-(1H-imidazole-1-yl)phenylthio)-1,2-diamine(0.28 g, 1.0 mmol)의 5 % acetic acid의 ethanol (3.0 mL)의 용액에 1,3-Bis(methoxycarbonyl)-2-methyl-2-thiopseudourea (0.52 g, 2.5 mmol)를 넣은 후 5 시간 동안 가열, 환류하였다. 반응 혼합물을 여과하고 이때 메탄올로 충분히 씻어서 methyl (5-((4-(1H-imidazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-16, 0.26 g)를 얻었다 (수율 70 %).
1H NMR (DMSO-d6, 400 MHz) 3.76(s, 3H), 7.18(s, 1H), 7.23(m, 3H), 7.48(m, 1H), 7.58(m, 3H), 7.68(s, 1H), 8.20(s, 1H), 11.46(m, 1H), 11.94(m, 1H)
1.17 화학식 1-17의 합성
4,6-dimethylpyrimidine-2-thiol를 출발물질로 사용하여 실시예 1.1의 화학식 1-1과 같은 방법으로 methyl(5-((4,6-dimethylpyrimidin-2-yl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-17, 수율 75.7%).
1H NMR (DMSO-d6, 400 MHz) 2.25(s, 6H), 3.77(s, 3H), 6.93(s, 1H), 7.26(d, J=8.24 Hz, 1H), 7.45(d, J=8.20 Hz, 1H), 7.61(s, 1H), 11.74(m, 2H)
1.18 화학식 1-18의 합성
pyridine-2-thiol를 출발물질로 사용하여 실시예 1.1의 화학식 1-1과 같은 방법으로 methyl(5-(pyridin-2-ylthio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-18, 수율 72.5%).
1H NMR (DMSO-d6, 400 MHz) 3.77(s, 3H), 6.73(d, J=8.08, 1H), 7.08(m, 1H), 7.28(d, J=6.72 Hz, 1H), 7.55(m, 2H), 7.64(s, 1H), 8.37(d, J=3.36 Hz, 1H), 11.89(m, 2H).
1.19 화학식 1-19의 합성
화학식 1-19의 티오벤즈이미다졸 유도체의 합성 과정을 하기 반응식 19에 나타내었다.
Figure PCTKR2021014550-appb-img-000063
1.19.1. 5-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)-2-nitroaniline의 합성
5-((4-fluorophenyl)thio)-2-nitroaniline (2.0 g, 29 mmol)의 DMSO (30 mL)용액에 1H-1,2,4-triazole (2.2 g, 32 mmol)를 가하고 5 분간 교반 후 potassium t-butoxide (3.6 g, 33 mmol)를 서서히 가한 다음 90 ℃에서 4 시간 동안 반응하였다. 반응 혼합물을 에틸아세테이트로 추출하고 물로 씻어낸 다음 감압증발로 용매를 제거하여 혼합 결과물을 얻었다. 이것을 에틸아세테이트와 헥산 (3:1, v/v)용매를 사용하여 실리카 겔을 이용한 칼럼 크로마토그래피로 분리 정제하여 5-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)-2-nitroaniline (0.94 g)를 얻었다 (수율 47 %).
1.19.2. 4-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)benzene-1,2-diamine의 합성
5-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)-2-nitroaniline (0.94 g, 3.0 mmol)의 에탄올 (100 mL) 용액에 SnCl2·2H2O (6 eq)를 가하고 5 시간 동안 가열, 환류한 다음 상온으로 냉각하고 물 (300 mL)를 가하였다. 과량의 에틸아세테이트 용매로 추출한 다음 용매를 감압증발로 제거하여 고체상의 반응 혼합물을 얻었다. 이것을 에틸아세테이트와 헥산 (3:1, v/v)용매를 사용하여 실리카 겔을 이용한 칼럼 크로마토그래피로 분리, 정제하여 4-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)benzene-1,2-diamine (0.85 g)를 얻었다 (수율 99 %).
1.19.3. methyl (5-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate의 합성
4-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)benzene-1,2-diamine (0.85 g, 3.0 mmol)의 5 % acetic acid의 ethanol (10 mL) 용액에 1,3-Bis(methoxycarbonyl)-2-methyl-2-thiopseudourea (1.5 g, 7.7 mmol) 넣은 후 5 시간 동안 가열, 환류하였다. 반응 혼합물을 상온으로 냉각한 다음, 여과하였다. 이때 메탄올로 충분히 씻어서 methyl (5-((4-(1H-1,2,4-triazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (화학식 1-19, 0.81 g)를 얻었다 (수율 74 %).
1H NMR (DMSO-d6, 400 MHz) 3.76(s, 3H), 7.25(m, 1H), 7.28(d, J=8.6 Hz, 2H), 7.47(m, 1H), 7.57(s, 1H), 7.78(d, J=8.6 Hz, 2H), 8.21(s, 1H), 9.23(s, 1H), 11.80(m, 2H)
1.20 화학식 1-20의 합성
4-methyl-1H-imidazole를 출발물질로 사용하여 실시예 1.19의 화학식 1-19와 같은 방법으로 methyl(5-((4-(4-methyl-1H-imidazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-20, 수율 78.1 %).
1H NMR (DMSO-d6, 400 MHz) 2.14(s, 3H), 3.76(s, 3H), 7.23(d, J=8.4 Hz, 3H), 7.37(s, 1H), 7.47(m, 1H), 7.53(d, J=8.8 Hz, 3H), 8.07(s, 1H), 11.47(m, 1H), 12.01(M, 1H)
1.21 화학식 1-21의 합성
3,5-dimethyl-1H-1,2,4-triazole를 출발물질로 사용하여 실시예 1.19의 화학식 1-19와 같은 방법으로 methyl(5-((4-(3,5-dimethyl-1H-1,2,4-triazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-21, 수율 71.9%).
1H NMR (DMSO-d6, 400 MHz) 2.24(s, 3H), 2.37(s, 3H), 3.76(s, 3H), 7.20(d, J=8.8 Hz, 2H), 7.28(m, 1H), 7.43(d, J=8.8 Hz, 2H), 7.15(m, 1H), 7.60(s, 1H), 11.41(m, 1H), 12.37(m, 1H)
1.22 화학식 1-22의 합성
3-methyl-1H-1,2,4-triazole를 출발물질로 사용하여 실시예 1.19의 화학식 1-19와 같은 방법으로 methyl(5-((4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate를 합성하였다 (화학식 1-22, 수율 70.4%).
1H NMR (DMSO-d6, 400 MHz) 2.37(s, 3H), 3.76(s, 3H), 7.26(m, 3H), 7.50(m, 1H), 7.56(s, 1H), 7.73(d, J=8.4 Hz, 2H), 9.08(s, 1H), 11.46(m, 1H), 12.04(m, 1H)
실시예 2. 티오벤즈이미다졸 유도체의 항암 활성 측정
2.1 티오벤즈이미다졸 유도체의 세포 생존율 확인
인간 삼중음성유방암 (triple-negative breast cancer, TNBC) 세포주인 MDA-MB-231 (Cell seeding numbers: 1(M231) x 104 cells / wells (confluency
Figure PCTKR2021014550-appb-img-000064
25 %) 및 HER2 양성 유방암 (HER2 positive breast cancer, HER2+ BC) 세포주인 JIMT-1 (Cell seeding numbers: 1.2(JIMT) x 104 cells / wells (confluency
Figure PCTKR2021014550-appb-img-000065
25 %))를 실험에 사용하였다.
상기 세포주들은 각각 10 % fetal bovine serum (FBS), streptomycin-penicillin (100 U/mL) 및 Fungizone (0.625 ㎍/mL)을 함유하는 Dulbecco's modified Eagle's medium (DMEM)에서 5 % CO2, 37 ℃ 환경으로 배양하였다.
상기 인간 유방암 세포주 MDA-MB-231 및 JIMT-1에서 화학식 1-1, 1-2, 1-3, 1-5, 1-6, 1-7, 1-8, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-19, 1-20, 1-21, 및 1-22의 티오벤즈이미다졸 유도체를 각각 0, 0.5, 1, 5 μM의 다양한 농도로 72 시간 동안 처리한 후, MTS assay기법으로 세포 생존율을 측정하였다. MTS assay는 96 well plate에 24 시간 동안 세포를 부착시킨 후, 상기 티오벤즈이미다졸 유도체를 72 시간 동안 처리하여, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)로 4 시간 동안 발색한 뒤, Spectramax Plus384 microplate analyzer를 이용하여 490 nm에서 흡광도로 측정하였다.
측정한 결과를 도 1 내지 도 6에 나타내었다. 도 1, 3, 및 5는 MDA-MB-231 세포주에 대한 세포 생존율을 확인한 것이고, 도 2, 4, 및 6은 JIMT-1 세포주에 대한 세포 생존율을 확인한 것이다.
그 결과 상기 인간 유방암 세포주 MDA-MB-231 및 JIMT-1에서 상기 화학식 1-1, 1-2, 1-3, 1-5, 1-6, 1-7, 1-8, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-17, 1-19, 1-20, 1-21, 및 1-22의 티오벤즈이미다졸 유도체들은 대부분이 농도 의존적으로 세포 생존율을 저해하는 것이 확인되었다.
추가적으로, Trastuzumab에 sensitive한 HER2 양성 유방암 세포주인 SKBR3 및 BT474, Trastuzumab에 resistant한 HER2 양성 유방암 세포주인 JIMT-1에 대해서 화학식 1-3의 티오벤즈이미다졸 유도체를 농도의존적으로 72 시간동안 처리한 결과, 상기 세 세포주에서 모두 생존 저해 효과가 나타남을 확인하였다 (도 7).
2.2 티오벤즈이미다졸 유도체에 의한 세포주기 중지 및 세포 사멸 확인
화학식 1-3의 티오벤즈이미다졸 유도체가 유도하는 암세포의 사멸정도를 유세포 측정기 (Flow cytometry)를 이용한 DNA 함량분석을 통하여 측정하였다. SKBR3, BT474 및 JIMT-1 세포주에 대하여, control (DMSO), 화학식 1-3의 유도체를 0.1, 0.25, 0.5 μM의 농도로 72 시간동안 처리한 후, 상기 세포들을 수확하고, 24 시간 동안 0.5 % Tween-20을 포함하는 95 % 에탄올로 고정하여, 30 분 동안 propidium iodide (PI, 50 μg/mL)과 RNase (50 μg/mL)를 가지고 염색하였다. 이후, 유세포 측정기로 암세포의 사멸정도를 분석하였다.
일반적으로 세포주기 (cell cycle)는 세포내 DNA의 함량에 따라 G1 (세포성장기)-S (세포복제기)-G2/M (세포분열기)로 나뉘어지며, 세포사멸이 유도되면 DNA의 절편현상 (DNA fragmentation)을 동반하여, 각 세포내의 DNA의 함량이 G1기 보다 현저히 적어진다. 이러한 세포사멸의 결과는 Sub G1 부위로써 세포주기상에 나타나게 되며 Sub G1의 비율을 수치로 표기하여 도 8에 나타내었다.
그 결과, 상기 화학식 1-3의 유도체가 SKBR3, BT474, JIMT-1 유방암 세포주들에서 세포사멸 (Sub-G1 population)을 유의하게 유도하며, G2/M phase 세포 주기를 정체시킨다는 점을 확인하였다. 세포사멸 실험은 독립적으로 3번 수행하였으며, 유의성은 unpaired Students t-test로 검증 (*p<0.01; DMSO control vs NCT-58 or NCT-407)하였다.
또한, 화학식 1-3의 유도체의 세포자멸사 (apoptosis) 유도 효과를 확인하기 위하여 control (DMSO), 화학식 1-3의 유도체를 0.1, 0.25, 0.5 μM의 농도로 72 시간동안 처리한 후 Annexin V/PI staining하여 세포사멸 정도를 확인하였다. 그 결과, 화학식 1-3의 유도체의 처리에 의해 농도의존적으로 전기 및 후기 세포자멸사 (early and late apoptosis)가 효과적으로 유도됨을 확인하였다 (도 9).
실시예 3. 티오벤즈이미다졸 유도체의 염산염 제조
화학식 1-3의 티오벤즈이미다졸 유도체의 염산염인 화합물 1-23의 합성 과정을 하기 반응식 23에 나타내었다.
Figure PCTKR2021014550-appb-img-000066
methyl (5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate (370 mg, 0.93 mmol)의 메탄올 (75 mL) 현탁액에 염화수소 (HCl) 가스를 2 분 간격으로 주입하면서 pH 1 이하가 될 때까지 주입하였다. 반응물을 감압증발하여 오일형태 생성물를 얻은 후 다시 이소프로필 알코올 (Isopropyl alcohol, 37 mL)를 가하고, 가열 용해한 다음 실온으로 냉각하면 고체 부유물이 생성되었다. 이후 상기 고체 부유물에 이소프로필 에테르 (Isopropyl ether, 35 mL)를 나누어 가하면서 3 시간동안 교반한 다음 여과하였다. 이때 IPA와 IPE 혼용매로 세척하고 50 ℃에서 1 시간 동안 열풍건조, 40 ℃ 2 시간 진공 건조하여 회백색 고체인 Methyl(5-((4-(4-methylpiperazin-1-yl)phenyl)thio)-1H-benzo[d]imidazol-2-yl)carbamate hydrochloric acid salt (화학식 1-23, off-white solid, 350 mg)을 얻었다 (수율 87%).
1H NMR (D2O, 400 MHz) δ 2.93(s, 3H), 3.08-3.14 & 3.19-3.25 (2m, 4H), 3.61(d, J = 12.5 Hz, 2H), 3.64(d, J = 12.5 Hz, 2H), 3.89(s, 3H), 7.04-7.44(m, 7H)
실시예 4. 티오벤즈이미다졸 유도체의 염산염의 항암 활성 측정
4.1 티오벤즈이미다졸 유도체의 염산염의 세포 생존율 확인
Trastuzumab에 sensitive한 HER2 양성 유방암 세포주인 BT474와 Trastuzumab에 resistant한 HER2 양성 유방암 세포주인 JIMT-1에서 상기 제조한 화학식 1-3의 티오벤즈이미다졸 유도체와 이의 염산염 (화합물 1-23)을 같은 농도 (0, 0.1, 0.5, 1, 5, 10 μM)로 72 시간 동안 처리한 후, MTS assay기법으로 세포 생존율과 IC50을 측정하였다. 그 결과, BT474 세포주에서 상기 화학식 1-3의 유도체의 IC50은 2.184 μM, 상기 염산염 (화합물 1-23)의 IC50은 0.347 μM으로 6 배 이상 낮은 수치를 나타냈으며, JIMT-1 세포주에서 상기 화학식 1-3의 유도체의 IC50은 0.448 μM, 상기 염산염 (화합물 1-23)의 IC50은 0.228 μM으로 거의 절반 수준의 수치를 나타내었다 (도 10).
또한, 삼중음성유방암 세포주인 MDA-MB-231, BT549, 및 4T1에서 상기 제조한 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 농도별(0, 0.1, 0.5, 1, 5, 10 μM)로 72 시간 동안 처리한 후, MTS assay기법으로 세포 생존율과 IC50을 측정하였다. 그 결과, 상기 세 세포주에서 각각 0.523 μM, 0.559 μM, 0.267 μM의 낮은 IC50을 나타내었다 (도 11).
상기 결과는 염산염 (화합물 1-23)이 화학식 1-3의 유도체보다 용해도가 향상되어 세포생존율 억제능이 더욱 뛰어나다는 점을 시사한다.
4.2 티오벤즈이미다졸 유도체의 염산염의 세포 주기 중지 확인
HER2 양성 유방암 세포주인 JIMT-1과 삼중음성유방암 세포주 MDA-MB-231에서 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 농도별 (0, 0.1, 0.25, 0.5 μM)로 각각 72 시간동안 처리한 후, 웨스턴 블롯(western blot)을 수행하였다.
그 결과, 본 발명의 염산염이 벤즈이미다졸계 구충제의 주요 표적 단백질인 β-tubulin을 감소시키고, 튜불린 합성 저해에 따라 G2/M 세포주기 표지인자인 p-Histone H3 (S10)을 증가시킨다는 점을 확인하였다 (도 12).
4.3 티오벤즈이미다졸 유도체의 염산염의 타 암세포주 항암 활성 확인
유방암 세포주 외에 혈액암 세포주인 HL-60, 대장암 세포주인 HCT116, 비소세포성폐암 세포주인 H1299 및 A549, 난소암 세포주인 SKOV3, 전립선암 세포주인 Du145, 및 간암 세포주인 HepG2에서 화학식 1-3의 티오벤즈이미다졸 유도체의 염산염 (화합물 1-23)을 농도별 (0, 0.1, 0.25, 0.5 μM)로 각각 72 시간동안 처리한 후, 세포생존율 및 IC50을 측정한 결과, 타 암세포주에서도 우수한 세포 생존율 저해 효과가 있음을 확인하였다 (도 13 및 도 14).
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.
본 발명은 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 상기 유도체를 유효성분으로 포함하는 암 예방 또는 치료용 조성물 등에 관한 것으로서, 본 발명의 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염은 암 세포에서 활성화되어 튜불린 중합(tubulin polymerization)을 저해하며, 개체에 투여 시 암 세포 주기를 차단하고 세포사멸을 유도함으로써 세포 독성을 나타내는바, 암의 예방 또는 치료, 바람직하게는 삼중음성유방암의 예방 또는 치료분야에서 유용하게 이용될 수 있다.

Claims (16)

  1. 하기 [화학식 1]로 표시되는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염:
    Figure PCTKR2021014550-appb-img-000067
    상기 화학식 1에서,
    R1은 -S-R2 또는 -S-S-R2 이고,
    R2는 치환 또는 비치환된 C3 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 헤테로아릴기, 및 치환 또는 비치환된 C3 내지 C20의 알킬아릴기로 이루어진 군으로부터 선택되는 어느 하나임.
  2. 제1항에 있어서,
    상기 [화학식 1]에서, 치환된 아릴기, 헤테로아릴기, 또는 알킬아릴기는 치환 또는 비치환된 C3 내지 C12의 헤테로시클로알킬기, 치환 또는 비치환된 C3 내지 C12의 헤테로아릴기, 및 할로겐기로 이루어진 군으로부터 선택되는 어느 하나 이상으로 치환된 것을 특징으로 하는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염.
  3. 제1항에 있어서,
    상기 [화학식 1] 로 표시되는 티오벤즈이미다졸 유도체는 하기 화합물들로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염:
    Figure PCTKR2021014550-appb-img-000068
    Figure PCTKR2021014550-appb-img-000069
    Figure PCTKR2021014550-appb-img-000070
    Figure PCTKR2021014550-appb-img-000071
    Figure PCTKR2021014550-appb-img-000072
    Figure PCTKR2021014550-appb-img-000073
    Figure PCTKR2021014550-appb-img-000074
    Figure PCTKR2021014550-appb-img-000075
    Figure PCTKR2021014550-appb-img-000076
    Figure PCTKR2021014550-appb-img-000077
    Figure PCTKR2021014550-appb-img-000078
    Figure PCTKR2021014550-appb-img-000079
    Figure PCTKR2021014550-appb-img-000080
    Figure PCTKR2021014550-appb-img-000081
    Figure PCTKR2021014550-appb-img-000082
    Figure PCTKR2021014550-appb-img-000083
    Figure PCTKR2021014550-appb-img-000084
    Figure PCTKR2021014550-appb-img-000085
    Figure PCTKR2021014550-appb-img-000086
    Figure PCTKR2021014550-appb-img-000087
    Figure PCTKR2021014550-appb-img-000088
    Figure PCTKR2021014550-appb-img-000089
  4. 제1항에 있어서,
    상기 [화학식 1]로 표시되는 티오벤즈이미다졸 유도체는 하기 화합물들로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염:
    Figure PCTKR2021014550-appb-img-000090
    Figure PCTKR2021014550-appb-img-000091
    Figure PCTKR2021014550-appb-img-000092
    Figure PCTKR2021014550-appb-img-000093
    Figure PCTKR2021014550-appb-img-000094
    Figure PCTKR2021014550-appb-img-000095
    Figure PCTKR2021014550-appb-img-000096
    Figure PCTKR2021014550-appb-img-000097
    Figure PCTKR2021014550-appb-img-000098
    Figure PCTKR2021014550-appb-img-000099
    Figure PCTKR2021014550-appb-img-000100
    Figure PCTKR2021014550-appb-img-000101
    Figure PCTKR2021014550-appb-img-000102
    Figure PCTKR2021014550-appb-img-000103
    Figure PCTKR2021014550-appb-img-000104
    Figure PCTKR2021014550-appb-img-000105
    Figure PCTKR2021014550-appb-img-000106
    Figure PCTKR2021014550-appb-img-000107
    Figure PCTKR2021014550-appb-img-000108
  5. 제1항에 있어서,
    상기 티오벤즈이미다졸 유도체는 튜불린 중합 (tubulin polymerization)을 저해하는 것을 특징으로 하는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염.
  6. 제1항에 있어서,
    상기 티오벤즈이미다졸 유도체의 약학적으로 허용가능한 염은 염산염, 브롬산염, 황산염, 인산염, 질산염, 구연산염, 초산염, 젖산염, 주석산염, 말레산염, 글루콘산염, 숙신산염, 포름산염, 트리플루오로아세트산염, 옥살산염, 푸마르산염, 글루타르산염, 아디프산염, 메탄술폰산염, 벤젠술폰산염, 파라톨루엔술폰산염, 캠퍼술폰산염, 나트륨염, 칼륨염, 리튬염, 칼슘염, 및 마그네슘염으로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염.
  7. 제1항에 있어서,
    상기 티오벤즈이미다졸 유도체의 약학적으로 허용가능한 염은 염산염인 것을 특징으로 하는 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염.
  8. (1) 하기 [화학식 1]로 표시되는 티오벤즈이미다졸 유도체의 현탁액을 제조하는 단계;
    Figure PCTKR2021014550-appb-img-000109
    (2) 상기 현탁액에 염화수소 (HCl)를 주입하고, 감압증발하는 단계;
    (3) 상기 (2)단계의 생성물에 이소프로필 알코올 (isopropyl alcohol)을 가하고 가열 후 냉각하는 단계; 및
    (4) 상기 (3)단계의 생성물에 이소프로필 에테르 (isopropyl ether)를 가하고 교반한 후 여과하는 단계;
    를 포함하는, 티오벤즈이미다졸의 염산염의 제조방법으로서,
    상기 화학식 1에서,
    R1은 -S-R2 또는 -S-S-R2 이고,
    R2는 치환 또는 비치환된 C3 내지 C20의 아릴기, 치환 또는 비치환된 C3 내지 C20의 헤테로아릴기, 및 치환 또는 비치환된 C3 내지 C20의 알킬아릴기로 이루어진 군으로부터 선택되는 어느 하나인, 제조방법.
  9. 제1항 내지 제7항 중 어느 한 항에 따른 티오벤즈이미다졸 유도체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 포함하는, 암 예방 또는 치료용 약학적 조성물.
  10. 제9항에 있어서,
    상기 약학적 조성물은 암 세포 주기를 중지 (cell cycle arrest)시켜 세포사멸 (apoptosis)을 유도하는 것을 특징으로 하는, 암 예방 또는 치료용 약학적 조성물.
  11. 제9항에 있어서,
    상기 암은 피부암, 유방암, 자궁암, 식도암, 위암, 뇌 종양, 결장암, 직장암, 대장암, 폐암, 난소암, 자궁경부암, 자궁내막암, 외음부암, 신장암, 혈액암, 췌장암, 전립선암, 고환암, 후두암, 두경부암, 갑상선암, 간암, 방광암, 골육종, 림프종, 혈액암, 흉선암, 요도암, 및 기관지암으로 구성된 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 암 예방 또는 치료용 약학적 조성물.
  12. 제9항에 있어서,
    상기 암은 삼중음성유방암인 것을 특징으로 하는 암 예방 또는 치료용 약학적 조성물.
  13. 제1항 내지 제7항 중 어느 한 항에 따른 티오벤즈이미다졸 유도체, 또는 이의 약학적으로 허용가능한 염을 개체에 투여하는 단계를 포함하는 암 예방 또는 치료방법.
  14. 제13항에 있어서,
    상기 벤즈이미다졸 유도체, 또는 이의 약학적으로 허용가능한 염은 암 세포 주기를 중지시켜 세포사멸을 유도하는 것을 특징으로 하는, 암 예방 또는 치료방법.
  15. 제13항에 있어서,
    상기 암은 피부암, 유방암, 자궁암, 식도암, 위암, 뇌 종양, 결장암, 직장암, 대장암, 폐암, 난소암, 자궁경부암, 자궁내막암, 외음부암, 신장암, 혈액암, 췌장암, 전립선암, 고환암, 후두암, 두경부암, 갑상선암, 간암, 방광암, 골육종, 림프종, 혈액암, 흉선암, 요도암, 및 기관지암으로 구성된 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 암 예방 또는 치료방법.
  16. 제13항에 있어서,
    상기 암은 삼중음성유방암인 것을 특징으로 하는 암 예방 또는 치료방법.
PCT/KR2021/014550 2020-10-19 2021-10-19 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도 WO2022086110A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/032,724 US20230391753A1 (en) 2020-10-19 2021-10-19 Thiobenzimidazole derivative or pharmaceutically acceptable salt thereof and use thereof
CN202180071243.2A CN116348114A (zh) 2020-10-19 2021-10-19 硫代苯并咪唑衍生物或其药学上可接受的盐及其用途
EP21883179.0A EP4230204A1 (en) 2020-10-19 2021-10-19 Thiobenzimidazole derivative or pharmaceutically acceptable salt thereof and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200135175 2020-10-19
KR10-2020-0135175 2020-10-19
KR1020210138673A KR20220051816A (ko) 2020-10-19 2021-10-18 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
KR10-2021-0138673 2021-10-18

Publications (1)

Publication Number Publication Date
WO2022086110A1 true WO2022086110A1 (ko) 2022-04-28

Family

ID=81289969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014550 WO2022086110A1 (ko) 2020-10-19 2021-10-19 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도

Country Status (4)

Country Link
US (1) US20230391753A1 (ko)
EP (1) EP4230204A1 (ko)
CN (1) CN116348114A (ko)
WO (1) WO2022086110A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191536A1 (ko) * 2022-03-30 2023-10-05 고려대학교 산학협력단 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080293796A1 (en) * 2003-08-13 2008-11-27 Diana Shu-Lian Chow Parenteral and oral formulations of benzimidazoles
US20120064008A1 (en) * 2009-05-20 2012-03-15 Bruce Zetter Compositions for the treatment of metastatic cancer and methods of use thereof
WO2020127946A2 (en) * 2018-12-20 2020-06-25 Universität Basel Tubulin inhibitors for use in the prevention or treatment of metastasis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080293796A1 (en) * 2003-08-13 2008-11-27 Diana Shu-Lian Chow Parenteral and oral formulations of benzimidazoles
US20120064008A1 (en) * 2009-05-20 2012-03-15 Bruce Zetter Compositions for the treatment of metastatic cancer and methods of use thereof
WO2020127946A2 (en) * 2018-12-20 2020-06-25 Universität Basel Tubulin inhibitors for use in the prevention or treatment of metastasis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Science", MACK PUBLISHING COMPANY
KIM YOON-JAE; SUNG DAEIL; OH EUNHYE; CHO YOUNGKWAN; CHO TAE-MIN; FARRAND LEE; SEO JAE HONG; KIM JI YOUNG: "Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer", CANCER LETTERS, NEW YORK, NY, US, vol. 412, 1 January 1900 (1900-01-01), US , pages 118 - 130, XP085268825, ISSN: 0304-3835, DOI: 10.1016/j.canlet.2017.10.020 *
OH EUNHYE, KIM YOON‐JAE, AN HYUNSOOK, SUNG DAEIL, CHO TAE‐MIN, FARRAND LEE, JANG SEOJIN, SEO JAE HONG, KIM JI YOUNG: "Flubendazole elicits anti‐metastatic effects in triple‐negative breast cancer via STAT3 inhibition", INTERNATIONAL JOURNAL OF CANCER, vol. 143, no. 8, 15 October 2018 (2018-10-15), John Wiley & Sons, Inc., US, pages 1978 - 1993, XP055857593, ISSN: 0020-7136, DOI: 10.1002/ijc.31585 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191536A1 (ko) * 2022-03-30 2023-10-05 고려대학교 산학협력단 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도

Also Published As

Publication number Publication date
US20230391753A1 (en) 2023-12-07
EP4230204A1 (en) 2023-08-23
CN116348114A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2019190259A1 (ko) 상피세포 성장인자 수용체 돌연변이 저해 효과를 갖는 신규 설폰아마이드 유도체
WO2017188694A1 (ko) 질소를 포함하는 헤테로아릴 화합물 및 이의 용도
WO2016080810A2 (ko) 바이구아나이드 화합물 및 이의 용도
WO2019078522A1 (ko) 세레브론 단백질의 분해 유도 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2014109530A1 (ko) 2-(페닐에티닐)티에노[3,4-b]피라진 유도체 및 이를 포함하는 암의 예방 또는 치료용 약학적 조성물
EP3802495A1 (en) Heterocyclic derivatives and use thereof
WO2020096372A1 (ko) 신규한 피페리딘-2,6-디온 유도체 및 이의 용도
WO2022086110A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2009093872A2 (ko) 신규한 디아민 화합물 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 암 치료용 약학 조성물
WO2016006974A2 (en) Novel triazolopyrimidinone or triazolopyridinone derivatives, and use thereof
WO2016093554A2 (ko) 신규한 4-(아릴)-n-(2-알콕시티에노[3,2-b]피라진-3-일)-피페라진-1-카복스아미드 유도체 및 이의 항증식 효과
WO2018021826A1 (ko) 신규한 피리미딘-2,4-디아민 유도체 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2016006975A2 (en) Novel imidazotriazinone or imidazopyrazinone derivatives, and use thereof
WO2021096112A1 (ko) 피롤로피리미딘, 피롤로피리딘, 인다졸 화합물 유도체 및 이를 포함하는 치료용 약학 조성물
EP3060549A1 (en) Novel antifungal oxodihydropyridinecarbohydrazide derivative
WO2012148140A2 (ko) 혈관 신생 억제 및 항산화 효과를 가지는 이미다졸계 알칼로이드 유도체 및 이의 제조방법
WO2018164549A1 (ko) 말릭산 탈수소효소 저해 활성을 갖는 신규 화합물 및 이를 유효성분으로 포함하는 암 예방 또는 치료용 약학적 조성물
WO2022103149A1 (ko) 신규한 카바졸 유도체 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물
WO2023054759A1 (ko) 2-아미노퀴나졸린 유도체 및 이를 포함하는 항바이러스용 조성물
WO2023191536A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2017164705A1 (ko) 신규한 피리딘 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 fgfr 관련 질환의 예방 또는 치료용 약학적 조성물
WO2021137665A1 (ko) Hsp90 억제제로서의 1,2,3-트리아졸 유도체 화합물 및 이의 용도
WO2021040422A1 (ko) 단백질 키나아제 저해 활성을 갖는 신규한 피리미도[4,5-d]피리미딘-2-온 유도체
WO2021112626A1 (ko) 신규한 인디루빈 유도체 및 이의 용도
WO2019235894A1 (ko) Aimp2-dx2와 k-ras의 결합을 저해하는 화합물을 포함하는 고형암 예방 또는 치료용 조성물 및 aimp2-dx2와 k-ras의 결합을 저해하는 신규 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021883179

Country of ref document: EP

Effective date: 20230519