WO2017122555A1 - 送信機、送信方法、受信機、及び、受信方法 - Google Patents

送信機、送信方法、受信機、及び、受信方法 Download PDF

Info

Publication number
WO2017122555A1
WO2017122555A1 PCT/JP2017/000013 JP2017000013W WO2017122555A1 WO 2017122555 A1 WO2017122555 A1 WO 2017122555A1 JP 2017000013 W JP2017000013 W JP 2017000013W WO 2017122555 A1 WO2017122555 A1 WO 2017122555A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
signal
receiver
mode
communication device
Prior art date
Application number
PCT/JP2017/000013
Other languages
English (en)
French (fr)
Inventor
研一 川崎
山岸 弘幸
崇宏 武田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/065,997 priority Critical patent/US10511465B2/en
Priority to EP17738310.6A priority patent/EP3404840A4/en
Priority to CN201780005832.4A priority patent/CN108476034A/zh
Publication of WO2017122555A1 publication Critical patent/WO2017122555A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • H01P3/165Non-radiating dielectric waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0002Modulated-carrier systems analog front ends; means for connecting modulators, demodulators or transceivers to a transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/52Systems for transmission between fixed stations via waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/18Electrical details
    • H04Q1/20Testing circuits or apparatus; Circuits or apparatus for detecting, indicating, or signalling faults or troubles
    • H04Q1/22Automatic arrangements
    • H04Q1/24Automatic arrangements for connection devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths

Definitions

  • the present technology relates to a transmitter, a transmission method, a receiver, and a reception method, and particularly, for example, a transmitter, a transmission method, a receiver, and a reception that can suppress an increase in size and cost. Regarding the method.
  • the millimeter wave that modulates the data into a millimeter wave band signal (millimeter wave) is transmitted and received.
  • a method using a communication device for communication has been attracting attention (see, for example, Patent Document 1).
  • the modulation signal obtained by modulating large capacity (high rate) data into millimeter waves is a broadband signal.
  • broadband modulated signals from the viewpoint of compliance with laws regulating radio waves, such as the Radio Law, between millimeter-wave communication communication devices, there is no (almost) leakage of modulated signal radio waves to the outside. Therefore, it is necessary to transmit and receive the modulation signal.
  • a communication device for millimeter wave communication is provided with a waveguide, and a waveguide of one communication device and a waveguide of another communication device are There is a method of transmitting a modulation signal from one communication device or another communication device when they are in contact.
  • the present technology has been made in view of such a situation, and is capable of suppressing an increase in size and cost.
  • the transmitter of the present technology includes a detection mode for detecting contact between the first waveguide on the transmitter side and the second waveguide on the receiver side, and a modulation signal obtained by frequency-converting the baseband signal.
  • the detection mode is changed to the communication mode, and in the communication mode, the modulation signal is transmitted via the first and second waveguides. Transmitting the transmitter.
  • the transmission method of the present technology includes a detection mode for detecting contact between the first waveguide on the transmitter side and the second waveguide on the receiver side, and a modulation signal obtained by frequency-converting the baseband signal.
  • the transmitter having a communication mode for transmitting through the first and second waveguides as an operation mode transmits a predetermined signal to the first waveguide in the detection mode,
  • the detection mode is changed to the communication mode, and in the communication mode, the modulation signal is transmitted to the first and second waveguides.
  • a predetermined signal is transmitted to the first waveguide, and is received by the receiver via the second waveguide.
  • the operation mode changes from the detection mode to the communication mode.
  • the modulated signal is transmitted through the first and second waveguides.
  • the receiver of the present technology includes a detection mode for detecting contact between the first waveguide on the transmitter side and the second waveguide on the receiver side, and a modulation signal obtained by frequency-converting the baseband signal.
  • the detection mode is changed to the communication mode in response to the predetermined signal received via the two waveguides, and the modulation signal is received via the first and second waveguides in the communication mode.
  • the reception method of the present technology includes a detection mode for detecting contact between the first waveguide on the transmitter side and the second waveguide on the receiver side, and a modulation signal obtained by frequency-converting the baseband signal.
  • the receiver having a communication mode received via the first and second waveguides as an operation mode receives a predetermined signal via the second waveguide in the detection mode.
  • the detection mode is changed to the communication mode in response to the predetermined signal received via the second waveguide, and the modulation signal is transmitted to the first and second waveguides in the communication mode. It is a receiving method to receive via.
  • the operation mode changes from the detection mode to the communication mode.
  • the modulated signal is received via the first and second waveguides.
  • transmitter and the receiver may be independent devices, or may be internal blocks constituting one device.
  • FIG. 2 is a block diagram illustrating a first configuration example of communication apparatuses 100 and 200.
  • FIG. 2 is a block diagram illustrating a second configuration example of communication apparatuses 100 and 200.
  • FIG. It is a figure which shows the structural example of the millimeter wave communication apparatuses 111 and 211 and the waveguides 112 and 212.
  • FIG. It is a figure which shows the other structural example of the millimeter wave communication apparatuses 111 and 211 and the waveguides 112 and 212.
  • FIG. 2 is a diagram illustrating a configuration example of a transmitter 121 and a receiver 122 of a millimeter wave communication device 111 and a transmitter 221 and a receiver 222 of a millimeter wave communication device 211.
  • FIG. It is a figure explaining the operation mode of the millimeter wave communication apparatuses 111 and 211.
  • FIG. It is a figure explaining a detection mode.
  • It is a figure explaining the 1st simulation which investigates the relationship between the gap of waveguides, and the transmission characteristic between waveguides.
  • It which shows the simulation result of a 1st simulation.
  • It is a figure explaining the 2nd simulation which investigates the relationship between the gap of waveguides, and the transmission characteristic between waveguides.
  • FIG. 10 is a flowchart for explaining an example of operations of the communication device 100 as an initiator and the communication device 200 as a target. It is a figure explaining the switching of the operation mode in the case of employ
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a communication system to which the present technology is applied.
  • the communication system includes communication devices 100 and 200.
  • the communication apparatuses 100 and 200 are communication apparatuses for millimeter wave communication that transmit and receive data by modulating the data into, for example, a millimeter wave band signal (millimeter wave). Data is exchanged by transmitting and receiving high-frequency signals.
  • a millimeter wave is a signal having a frequency of about 30 to 300 GHz, that is, a wavelength of about 1 to 10 mm.
  • the millimeter-wave signal has a high frequency, so data transmission at a high data rate (high rate) is possible.
  • a millimeter-wave carrier of about 60 GHz has a rate of about 11 Gbps.
  • communication can be performed using various types of transmission paths. That is, according to the millimeter waveband signal, for example, communication (wireless communication) using a space such as free space as a transmission path can be performed using a small antenna.
  • communication using a metallic line as a transmission path and communication using a dielectric such as plastic as a transmission path can be performed.
  • millimeter wave band modulation signals are transmitted and received between the communication device 100 and the communication device 200 in compliance with the law regulating radio waves without a radio license.
  • a millimeter-wave band modulation signal is transmitted and received between the communication device 100 and the communication device 200.
  • FIG. 2 is a block diagram illustrating a first configuration example of the communication apparatuses 100 and 200 of FIG.
  • the communication device 100 includes a millimeter wave communication device 11, a waveguide 12, a contact detection device 13, and a control unit 14.
  • the millimeter wave communication device 11 frequency-converts (modulates) the baseband signal, which is data to be transmitted, into a millimeter wave band modulation signal, and transmits the modulation signal to the waveguide 12.
  • the millimeter wave communication device 11 receives a modulation signal in the millimeter wave band transmitted from the communication device 200 via the waveguide 12, that is, a modulation signal propagating through the waveguide 12, and converts it into a baseband signal. Output after frequency conversion (demodulation).
  • the waveguide 12 is made of a dielectric material such as plastic.
  • the waveguide 12 has, for example, an elongated plate shape, one end face in the longitudinal direction is connected to the millimeter wave communication device 11, and the other end face is outside the communication device 100 (for example, the surface of the housing). ) Is exposed.
  • the contact detection device 13 detects whether the communication device 100 is in contact with the communication device 200 (such as another communication device capable of millimeter wave communication).
  • the contact detection device 13 performs contact detection as to whether or not a waveguide 12 of the communication device 100 and a waveguide 22 (to be described later) of the communication device 200 are in contact with each other, and a detection result of the contact detection. Is supplied to the control unit 14.
  • the control unit 14 controls the millimeter wave communication device 11 according to the detection result of the contact detection from the contact detection device 13.
  • the control unit 14 controls the millimeter wave communication device 11, and from the millimeter wave communication device 11, Millimeter wave signal (modulated signal or carrier) is transmitted.
  • the control unit 14 controls the millimeter wave communication device 11 and the millimeter wave communication device 11. Limit (prohibit) the transmission of millimeter-wave band signals from.
  • the communication device 200 includes a millimeter wave communication device 21, a waveguide 22, a contact detection device 23, and a control unit 24. Since the millimeter wave communication device 21 to the control unit 24 are configured in the same manner as the millimeter wave communication device 11 to the control unit 14, respectively, description thereof is omitted.
  • a method of contact detection in the contact detection devices 13 and 23 for example, a method using pressure-sensitive conductive rubber, a method of detecting a change in capacitance, a method of detecting deformation by light blocking, an optical tactile image
  • a method of detecting for example, a method using pressure-sensitive conductive rubber, a method of detecting a change in capacitance, a method of detecting deformation by light blocking, an optical tactile image
  • a method of detecting a method of detecting conduction or non-conduction, a method using an acoustic resonance tactile element, a method of detecting a change in contact resistance, and the like.
  • the control unit 14 is necessary. Accordingly, the millimeter wave communication device 11 transmits a millimeter wave band modulation signal.
  • the millimeter-wave communication device 11 converts a baseband signal from a circuit (not shown) into a millimeter-wave band modulation signal and transmits it.
  • the modulated signal transmitted by the millimeter wave communication device 11 propagates through the waveguide 12, further propagates through the waveguide 22 of the communication device 200 in contact with the waveguide 12, and is received by the millimeter wave communication device 21. .
  • the millimeter wave communication device 21 converts the frequency of the modulation signal received via the waveguide 22 (the modulation signal propagated through the waveguide 22) into a baseband signal and supplies the baseband signal to a circuit (not shown).
  • the control unit 24 detects the millimeter wave communication device 21 as necessary. Then, a millimeter-wave band modulation signal is transmitted.
  • the millimeter wave communication device 21 frequency-converts a baseband signal from a circuit (not shown) into a modulation signal in the millimeter wave band and transmits it.
  • the modulated signal transmitted by the millimeter wave communication device 21 propagates through the waveguide 22, further propagates through the waveguide 12 of the communication device 100 in contact with the waveguide 22, and is received by the millimeter wave communication device 11. .
  • the millimeter wave communication device 11 converts the modulation signal received via the waveguide 22 into a baseband signal and supplies it to a circuit (not shown).
  • the control unit 14 receives the millimeter wave from the millimeter wave communication device 11. Limit transmission of waveband signals.
  • the control unit 24 receives the signal from the millimeter wave communication device 21. Limit transmission of millimeter-wave signals.
  • the contact detection devices 13 and 23 are used for detecting contact between the communication device 100 (the waveguide 12) and the communication device 200 (the waveguide 22). Therefore, the communication devices 100 and 200 may be increased in size and cost.
  • FIG. 3 is a block diagram illustrating a second configuration example of the communication apparatuses 100 and 200 of FIG.
  • the communication device 100 includes a millimeter wave communication device 111, a waveguide 112, and a control unit 113.
  • the millimeter wave communication device 111 frequency-converts (modulates) the baseband signal, which is data to be transmitted, into a millimeter wave band modulation signal, and transmits the modulation signal to the waveguide 112.
  • the millimeter wave communication device 111 receives a modulation signal in the millimeter wave band transmitted through the waveguide 112, that is, a modulation signal propagated through the waveguide 112, and converts the frequency into a baseband signal (demodulation). ) And output.
  • the waveguide 112 is configured, for example, by filling a hollow metal with a dielectric such as plastic.
  • the waveguide 112 has, for example, an elongated plate shape, one end face in the longitudinal direction is connected to the millimeter wave communication device 111, and the other end face is outside the communication device 100 (for example, the surface of the housing). ) Is exposed.
  • a millimeter wave band signal transmitted by the millimeter wave transmitter 111 propagates through the waveguide 112. Further, a millimeter wave band signal received by the millimeter wave transmitter 111 is propagated through the waveguide 112.
  • the control unit 113 controls the millimeter wave communication device 111 according to a millimeter wave band signal received by the millimeter wave communication device 111 via the waveguide 112.
  • the millimeter wave communication device 111 has a detection mode and a communication mode as operation modes.
  • the detection mode contact between the waveguide 112 of the communication device 100 and the waveguide 212 of the communication device 200 is detected.
  • a millimeter-wave band modulation signal obtained by frequency conversion of the baseband signal is transmitted / received (transmitted / received) through the waveguides 112 and 212 between the communication device 100 and the communication device 200.
  • the control unit 113 sets the operation mode to the detection mode or the communication mode according to the millimeter wave band signal received by the millimeter wave communication device 111 via the waveguide 112.
  • the communication device 200 includes a millimeter wave communication device 211, a waveguide 212, and a control unit 213. Since the millimeter wave communication device 211 to the control unit 213 are configured in the same manner as the millimeter wave communication device 111 to the control unit 113, description thereof will be omitted.
  • FIG. 4 is a diagram illustrating a configuration example of the millimeter wave communication devices 111 and 211 and the waveguides 112 and 212 of FIG.
  • the millimeter wave communication device 111 includes a transmitter 121 and a receiver 122.
  • the transmitter 121 converts the frequency of the baseband signal into a modulated signal in the millimeter wave band and transmits it from the antenna 123 to the waveguide 112.
  • the receiver 122 propagates through the waveguide 112, receives a millimeter-wave band modulation signal supplied via the antenna 123, and converts the frequency into a baseband signal.
  • an antenna 123 is an antenna that is used for both transmission and reception, and is connected to a dielectric constituting the waveguide 112.
  • the waveguide 112 is composed of one waveguide that is used for both transmission and reception.
  • the waveguide 112 is also a waveguide (first waveguide) on the transmitter 121 side where a signal transmitted by the transmitter 121 is propagated, and a signal received by the receiver 122 is propagated. It is also the waveguide on the receiver 122 side.
  • the millimeter wave communication device 211 includes a transmitter 221 and a receiver 222.
  • the transmitter 221 and the receiver 222 are configured in the same manner as the transmitter 121 and the receiver 122, respectively.
  • the transmitter 221 transmits a millimeter-wave band modulation signal from the antenna 223 to the waveguide 212 in the same manner as the transmitter 121.
  • the receiver 222 propagates through the waveguide 212 and receives a millimeter wave band modulation signal supplied via the antenna 223.
  • the antenna 223 is an antenna that is used for both transmission and reception, and is connected to a dielectric constituting the waveguide 212 in the same manner as the antenna 123.
  • the waveguide 212 in response to the antenna 223 being an antenna that is used for both transmission and reception, is constituted by one waveguide that is used for both transmission and reception.
  • the waveguide 212 is also a waveguide on the transmitter 221 side where the signal transmitted by the transmitter 221 propagates, and the signal received by the receiver 222 is propagated (coming) on the receiver 222 side. It is also a waveguide (second waveguide).
  • the millimeter wave communication device 111 includes the transmitter 121 and the receiver 122 and the millimeter wave communication device 211 includes the transmitter 221 and the receiver 222, the millimeter wave communication device 111. And 211 can be bidirectionally communicated.
  • the millimeter-wave communication device 111 transmits the modulation signal in the millimeter wave band transmitted by the transmitter 121 to the antenna 123. Then, it propagates through the waveguides 112 and 212 and is received by the receiver 222 via the antenna 223. Also, in the millimeter wave communication device 211, the millimeter wave band modulation signal transmitted from the transmitter 221 propagates from the antenna 223 through the waveguides 212 and 112 and is received by the receiver 122 via the antenna 123.
  • the transmitters 121 and 221 use millimeter wave signals in the same frequency band as carriers.
  • half-duplex communication can be performed between the millimeter wave communication devices 111 and 211.
  • full-duplex communication can be performed between the millimeter wave communication devices 111 and 211.
  • the millimeter wave communication device 111 when performing communication in one direction in the communication system, that is, for example, when transmitting data from the millimeter wave communication device 111 to only one direction of the millimeter wave communication device 211, the millimeter wave communication device 111 is a receiver.
  • the millimeter wave communication device 211 can be configured without the transmitter 221.
  • FIG. 5 is a diagram illustrating another configuration example of the millimeter wave communication devices 111 and 211 and the waveguides 112 and 212 in FIG.
  • the communication system includes transmission antennas 123S and 223S, reception antennas 123R and 223R, transmission waveguides 112S and 212S, and reception waveguides 112R and 212R. This is different from the case of FIG. 4 having antennas 123 and 223 that are used for both transmission and reception, and waveguides 112 and 212.
  • the waveguide 112 has a transmission waveguide 112S and a reception waveguide 112R.
  • the waveguide 212 includes a transmission waveguide 212S and a reception waveguide 212R.
  • the waveguides 112S, 112R, 212S, and 212R are each configured, for example, by filling a hollow metal with a predetermined dielectric.
  • the waveguides 112 and 212 are such that when the millimeter wave communication devices 111 and 112 are brought into contact, the waveguides 112S and 212R are in contact with each other, and the waveguides 112R and 212S are in contact with each other. It is configured.
  • the antenna 123S is an antenna for transmission, and is connected to a dielectric constituting the waveguide 112S for transmission.
  • the millimeter-wave band modulation signal transmitted from the transmitter 121 propagates from the antenna 123S to the waveguide 112S.
  • the antenna 123R is a receiving antenna and is connected to a dielectric constituting the receiving waveguide 112R.
  • the millimeter-wave band modulation signal propagating through the waveguide 112R is received by the receiver 122 via the antenna 123R.
  • the antenna 223S is a transmission antenna and is connected to a dielectric constituting the transmission waveguide 212S.
  • the millimeter wave band modulation signal transmitted by the transmitter 221 propagates from the antenna 223S to the waveguide 212S.
  • the antenna 223R is a receiving antenna and is connected to a dielectric constituting the receiving waveguide 212R.
  • the millimeter-wave band modulation signal propagating through the waveguide 212R is received by the receiver 222 via the antenna 223R.
  • the waveguide 112 ⁇ / b> S is a waveguide on the transmitter 121 side (the first waveguide) through which the signal transmitted by the transmitter 121 propagates, and the waveguide 212 ⁇ / b> R is received by the receiver 222.
  • This is a waveguide (second waveguide) on the receiver 222 side through which a signal propagates.
  • the waveguide 212S is a waveguide on the transmitter 221 side through which a signal transmitted by the transmitter 221 propagates.
  • the waveguide 112R is a receiver 122 through which a signal received by the receiver 122 propagates. Side waveguide.
  • the communication system includes transmission antennas 123S and 223S, reception antennas 123R and 223R, transmission waveguides 112S and 212S, and reception waveguides 112R and 212R.
  • the modulation signal in the millimeter wave band transmitted by the transmitter 121 is The antenna 123S propagates through the waveguides 112S and 212R, and is received by the receiver 222 via the antenna 223R. Also, the millimeter-wave band modulation signal transmitted by the transmitter 221 propagates from the antenna 223S through the waveguides 212S and 112R, and is received by the receiver 122 via the antenna 123R.
  • the present technology may be applied to the case where each of the waveguide 112 and the waveguide 212 is configured by one waveguide that is used for both transmission and reception.
  • the waveguide 112 includes a transmission waveguide 112S and a reception waveguide 112R
  • the waveguide 212 includes a transmission waveguide 212S and a reception waveguide.
  • the present invention can also be applied to the case of having the waveguide 212R.
  • each of the waveguide 112 and the waveguide 212 is configured by one waveguide that is used for both transmission and reception. I will do it.
  • FIG. 6 is a diagram illustrating a configuration example of the transmitter 121 and the receiver 122 of the millimeter wave communication device 111 and the transmitter 221 and the receiver 222 of the millimeter wave communication device 211.
  • the transmitter 121 includes a mixer 131, an oscillator 132, an amplifier 133, and switches 134 and 135.
  • the mixer 131 is supplied with a baseband signal (BB signal) from a circuit (not shown) and with a millimeter-wave band carrier from the oscillator 132.
  • BB signal baseband signal
  • a circuit not shown
  • a millimeter-wave band carrier from the oscillator 132.
  • the mixer 131 mixes (multiplies) the baseband signal and the carrier from the oscillator 132 to frequency-convert the baseband signal by the carrier from the oscillator 132 (modulates the carrier according to the baseband signal).
  • a modulation signal of millimeter wave band for example, amplitude modulation (ASK (Amplitude Shift Keying)
  • ASK Amplitude Shift Keying
  • the mixer 133 supplies the carrier from the oscillator 132 to the amplifier 133 as it is.
  • the oscillator 132 generates a millimeter wave band carrier of, for example, 56 GHz by oscillation and supplies the carrier to the mixer 131.
  • the amplifier 133 amplifies the signal (modulated signal or carrier) from the mixer 131 with a predetermined gain as necessary, and outputs the amplified signal.
  • the signal output from the amplifier 133 is transmitted to the waveguide 112 (from the antenna 123 (FIG. 4)).
  • the gain of the amplifier 133 (the degree of amplification of the signal from the mixer 133) can be set according to the control of the control unit 113 (FIG. 3).
  • the switches 134 and 135 are turned on or off according to the control of the control unit 113 (FIG. 3).
  • the oscillator 132 is turned on or off.
  • the amplifier 133 is turned on or off.
  • the receiver 222 includes an amplifier 241, a mixer 242, an LPF (Low Pass Filter) 243, and a switch 244.
  • LPF Low Pass Filter
  • the amplifier 241 receives a millimeter-wave band signal (modulated signal or carrier) propagating through the waveguide 212, amplifies the signal with a predetermined gain as necessary, and supplies the amplified signal to the mixer 242.
  • a millimeter-wave band signal modulated signal or carrier
  • the band (reception band) of the millimeter-wave band signal amplified by the amplifier 241 can be set according to the control of the control unit 213 (FIG. 3).
  • the mixer 242 performs square detection to mix the modulation signals in the millimeter wave band supplied from the amplifier 241 (square the modulation signal), thereby converting the modulation signal in the millimeter wave band from the amplifier 241 into a baseband signal.
  • the frequency is converted (the demodulated signal is demodulated into a baseband signal) and supplied to the LPF 243.
  • the LPF 243 performs filtering that passes the low frequency range of the signal from the mixer 243, and outputs a baseband signal obtained by the filtering.
  • the pass band of the LPF 243 can be set according to the control of the control unit 213.
  • the switch 244 is turned on or off according to the control of the control unit 213.
  • the amplifier 241 is turned on or off.
  • the receiver 222 frequency-converts the modulation signal in the millimeter wave band into a baseband signal by square detection, but the receiver 222 reproduces a carrier, for example,
  • the modulation signal can be converted into a baseband signal by detection other than square detection, such as synchronous detection for mixing the carrier with the modulation signal.
  • the transmitter 221 includes a mixer 231, an oscillator 232, an amplifier 233, and switches 234 and 235.
  • mixer 231 to the switch 235 are configured in the same manner as the mixer 131 to the switch 135 of the transmitter 121, description thereof will be omitted.
  • the receiver 122 includes an amplifier 141, a mixer 142, an LPF 143, and a switch 144.
  • FIG. 7 is a diagram for explaining the operation mode of the millimeter wave communication devices 111 and 211 in FIG.
  • the millimeter wave communication devices 111 and 211 have a detection mode and a communication mode as operation modes.
  • the operation modes of the millimeter wave communication devices 111 and 211 are changed from the detection mode to the communication mode. It becomes.
  • a millimeter-wave band modulation signal is transmitted and received between the communication device 100 and the communication device 200 via the waveguides 112 and 212.
  • FIG. 8 is a diagram for explaining the detection mode.
  • one communication device requests the start of communication, and the other communication device Communication is started in response to a request from the communication device.
  • a communication device millimeter wave communication device that requests the start of communication
  • a communication device that starts communication in response to a request from the initiator is also referred to as a target.
  • the communication devices 100 and 200 (the millimeter wave communication devices 111 and 211), for example, the communication device 100 (the millimeter wave communication device 111) is used as an initiator, and the communication device 200 (the millimeter wave communication device). 211 will be described as a target.
  • the transmitter 121 of the communication apparatus 100 as an initiator transmits a predetermined signal (from the antenna 123) to the waveguide 112.
  • the predetermined signal transmitted by the transmitter 121 in the detection mode is, for example, a narrowband signal that is narrower than a millimeter-wave band modulation signal transmitted in the communication mode and is a low-level signal.
  • a level signal can be employed.
  • the narrow band low level signal is a millimeter wave band carrier signal output from the oscillator 132 (FIG. 6), and the gain of the amplifier 133 (FIG. 6) is transmitted in the communication mode. It is possible to employ a signal with a low level (hereinafter also referred to as a low level carrier) obtained by setting the gain lower than that when amplifying the signal.
  • a low level carrier a signal with a low level (hereinafter also referred to as a low level carrier) obtained by setting the gain lower than that when amplifying the signal.
  • the narrowband low level signal is a modulated signal obtained by modulating a millimeter wave band carrier with a baseband signal having a lower rate (narrowband) than the baseband signal transmitted in the communication mode.
  • a low-level signal (hereinafter also referred to as a low-rate modulation signal) obtained by setting the gain to a lower gain than when a millimeter-wave band modulation signal transmitted in the communication mode is amplified can be employed.
  • the narrow-band low-level signal transmitted from the transmitter 121 to the waveguide 112 propagates through the waveguide 112 and reaches the outer end face of the waveguide 112.
  • the end face on the outer side of the waveguide 112 is in contact with a space (in the atmosphere or the like).
  • the light is reflected by the end face on the outside of 112. Therefore, there is almost no radio wave leakage of the narrow-band low-level signal from the outer end face of the waveguide 112.
  • the degree (intensity) of the radio wave leakage is slight, and the narrow band low level signal is a narrow band, low level signal. Radio waves of high-level signals and broadband signals that violate are not radiated.
  • the narrow-band low-level signal does not reach the communication device 200 from the communication device 100 or does not reach the communication device 200.
  • the narrowband low level signal that is propagated and received by the receiver 222 is a very low level signal.
  • FIG. 8A shows an example of the level of a narrowband low-level signal received by the receiver 222 of the communication device 200 when the communication device 100 and the communication device 200 are separated in the detection mode.
  • the receiver 222 has received a narrow-band low-level signal having a level less than a predetermined threshold value for the detection mode.
  • the transmitter 121 has transmitted.
  • the narrow band low level signal propagates through the waveguides 112 and 212 in contact with each other and reaches the receiver 222 to be received with a certain level maintained.
  • the level of the narrowband low-level signal received by the receiver 222 via the waveguide 212 is the case where the waveguides 112 and 212 are not in contact ( When the communication device 100 and the communication device 200 are separated from each other), the signal level greatly increases from the level of the narrowband low-level signal received by the receiver 222 via the waveguide 212.
  • FIG. 8B shows an example of the level of a narrowband low-level signal received by the receiver 222 of the communication device 200 when the waveguide 112 of the communication device 100 and the waveguide 212 of the communication device 200 are in contact with each other. Is shown.
  • the receiver 222 receives a narrowband low-level signal having a level equal to or higher than the threshold value for the detection mode.
  • control units 113 and 213 change the operation mode according to the narrowband low level signal received through the waveguide 212 by the receiver 222 of the communication device 200 that is the target. Set.
  • the control units 113 and 213 control the waveguides 112 and 212.
  • the operation mode is set from the detection mode to the communication mode.
  • the operation mode of the transmitter 121 (including the communication device 100) and the operation mode of the receiver 222 (including the communication device 200) are changed from the detection mode to the communication mode.
  • a predetermined high-rate baseband signal is frequency-converted by a carrier into a millimeter-wave band modulation signal. Further, in the transmitter 121, the modulated signal is amplified by the amplifier 133 with a predetermined high gain, and a modulated signal having a level and frequency band larger than that of the narrow band low level signal is transmitted.
  • the modulated signal transmitted by the transmitter 121 propagates through the waveguides 112 and 212 that are in contact with each other, and reaches the receiver 222 and is received while maintaining a certain level.
  • the modulated signal transmitted from the transmitter 121 and propagated through the waveguides 112 and 212 is a signal whose level and frequency band are larger than those of the narrow band low level signal. Since there is no contact, there is no leakage of modulated signals as radio waves.
  • the level of the narrowband low-level signal transmitted by the transmitter 121 in the detection mode and the threshold value for the detection mode are regulated by radio wave leakage when the communication device 100 and the communication device 200 are separated from each other. While complying with the law, the level of the narrowband low level signal received by the receiver 222 when the communication device 100 and the communication device 200 are separated is less than the threshold for the detection mode, and the waveguides 112 and 212 Is adjusted in advance so that the level of the narrow-band low-level signal received by the receiver 222 is equal to or higher than the threshold value for the detection mode.
  • FIG. 9 is a diagram for explaining a first simulation for investigating the relationship between the gaps between the waveguides and the transmission characteristics between the waveguides.
  • elongated waveguides having a rectangular cross section were used as the waveguides 112 and 212.
  • the four surfaces of the waveguides 112 and 212 perpendicular to the cross section are surrounded by metal, and the inside is filled with a dielectric.
  • the width x length of the cross section of the waveguides 112 and 212 is 3 mm x 1 mm, and the thickness of the four metal surfaces orthogonal to the cross section is 0.1 mm.
  • dielectric PA a dielectric having a dielectric constant of 2.1 and a dielectric loss tangent of 0.001 (Teflon (registered trademark)) is used.
  • dielectric PB a dielectric having a dielectric constant of 10.2 and a dielectric loss tangent of 0.001 is used. It was.
  • the end faces of the waveguides 112 and 212 are arranged so as to face each other, the gap between the end faces is set to various distances, and the transmission coefficient S21 of the S parameter from the waveguides 112 to 212 is set.
  • the transmission coefficient S21 of the S parameter from the waveguides 112 to 212 was set.
  • FIG. 10 is a diagram showing a simulation result of the first simulation described in FIG.
  • FIG. 10 shows the relationship between the gap between the waveguides 112 and 212 and the transfer coefficient S21 from the waveguides 112 to 212 obtained in the first simulation.
  • the transfer coefficient S21 decreases more rapidly when the dielectric PB is used than when the dielectric PA is used.
  • the degree of change (decrease) in the transmission coefficient S21 when the gap distance between the end faces of the waveguides 112 and 212 changes from 0 to a non-zero state depends on the dielectric (dielectric constant) filling the waveguides 112 and 212. ) And the shape of the cross section of the waveguides 112 and 212 can be adjusted.
  • FIG. 11 is a diagram for explaining a second simulation for investigating the relationship between the gaps between the waveguides and the transmission characteristics between the waveguides.
  • the waveguides 112 and 212 are long and thin plate-like waveguides having a rectangular cross section, and four surfaces perpendicular to the cross section are surrounded by metal, and the inside is a dielectric.
  • a waveguide filled with body was used.
  • the width ⁇ length (Wg ⁇ Hg) of the cross sections of the waveguides 112 and 212 is 1.5 mm ⁇ 0.5 mm, and the thickness of the four metal surfaces orthogonal to the cross section is 0.1 mm. .
  • the dielectric PB described with reference to FIG. 9 is used as the dielectric filling the waveguides 112 and 212.
  • the dielectric PB is a dielectric having a dielectric constant of 10.2 and a dielectric loss tangent of 0.001.
  • the end faces of the waveguides 112 and 212 are arranged to face each other, and the gap between the end faces is set to various distances, so that the waveguides 112 to 212 are moved.
  • the S parameter transmission coefficient S21 was measured.
  • FIG. 12 is a diagram showing a simulation result of the second simulation explained in FIG.
  • FIG. 12 shows the relationship between the carrier frequency and the transfer coefficient S21 from the waveguides 112 to 212, for each of the plurality of gaps between the waveguides 112 and 212, obtained in the second simulation. Show.
  • the gap distance between the end faces of the waveguides 112 and 212 changes from 0 to a non-zero state, that is, the waveguide 112. It can be confirmed that the transmission coefficient S21 decreases rapidly when the distance between the contact point 212 and the contact point 212 slightly differs.
  • FIG. 13 is a diagram for explaining the detection mode and the communication mode.
  • FIG. 13A is a diagram for explaining the detection mode.
  • the transmitter 121 of the communication device 100 as the initiator transmits a narrowband low-level signal to the waveguide 112.
  • the narrow band low level signal may be, for example, a level obtained by modulating a carrier with a low level carrier (a carrier with a low level) or a low rate modulation signal (a low rate (narrow band) baseband signal).
  • a low modulation signal may be, for example, a level obtained by modulating a carrier with a low level carrier (a carrier with a low level) or a low rate modulation signal (a low rate (narrow band) baseband signal).
  • a low modulation signal may be, for example, a level obtained by modulating a carrier with a low level carrier (a carrier with a low level) or a low rate modulation signal (a low rate (narrow band) baseband signal).
  • the narrow-band low-level signal transmitted from the transmitter 121 to the waveguide 112 propagates through the waveguide 112 and reaches the outer end face of the waveguide 112.
  • the level of the radio wave leak is slight, and furthermore, the narrow band low level signal is a narrow band, low level signal. Radio waves of high level signals and broadband signals are not radiated.
  • the narrowband low-level signal does not reach the communication device 200 from the communication device 100 or does not reach the communication device 200.
  • a narrow-band low-level signal that propagates through the waveguide 212 and is received by the receiver 222 is a signal with a very low level.
  • the level of the narrowband low-level signal received by the receiver 222 is lower than a predetermined threshold value for the detection mode.
  • the communication devices 100 and 200 When the level of the narrowband low-level signal received by the target communication device 200 (the receiver 222) is a level lower than the threshold for the detection mode, the communication devices 100 and 200 (respective transmitter 121 and reception). The detection mode is maintained as the operation mode of the machine 222).
  • the reception sensitivity can be improved by reducing the thermal noise by narrowing the reception band in the detection mode.
  • the receiver 222 can narrow the reception band by, for example, narrowing the band of the signal to be amplified by the amplifier 241 in FIG. 6 or narrowing the passband of the LPF 243.
  • the narrow-band low-level signal transmitted by the transmitter 121 propagates through the contacted waveguides 112 and 212.
  • the signal reaches the receiver 222 and is received while maintaining a certain level.
  • the level of the narrowband low level signal received by the receiver 222 via the waveguide 212 is the same as when the waveguides 112 and 212 are not in contact.
  • the receiver 222 greatly increases from the level of the narrow-band low-level signal received via the waveguide 212, and becomes a level equal to or higher than the threshold for the detection mode.
  • the operation mode of the communication devices 100 and 200 (respective transmitter 121 and receiver 222) is set to the detection mode. To the communication mode.
  • FIG. 13B is a diagram illustrating the communication mode.
  • a predetermined high-rate baseband signal is frequency-converted into a millimeter-wave band modulation signal by a carrier. Furthermore, in the transmitter 121, the modulated signal is amplified with a predetermined high gain by the amplifier 133 (FIG. 6), and a modulated signal having a level and frequency band larger than that of the narrow band low level signal is transmitted.
  • the modulated signal transmitted by the transmitter 121 propagates through the waveguides 112 and 212 that are in contact with each other, and reaches the receiver 222 and is received while maintaining a certain level.
  • the modulated signal transmitted from the transmitter 121 and propagated through the waveguides 112 and 212 is a signal whose level and frequency band are larger than those of the narrow band low level signal. Since there is no contact, there is no leakage of modulated signals as radio waves.
  • the operation mode is changed from the detection mode to the communication mode. Then, by expanding (returning to) the reception band, a modulated signal having a large frequency band, that is, a high-rate baseband signal is received.
  • FIG. 14 is a flowchart for explaining an example of the operation of the communication device 100 as an initiator and the communication device 200 as a target.
  • step S11 the control unit 113 (FIG. 3) sets the operation mode to the detection mode, and the process proceeds to step S12.
  • step S12 in response to the fact that the operation mode is the detection mode, the transmitter 121 of the communication device 100 transmits a narrowband low level signal, and the process proceeds to step S13.
  • step S13 the control unit 113 of the communication device 100 determines whether or not a signal having a level equal to or higher than the threshold value is received by the receiver 122 (FIG. 6).
  • the target communication device 200 when a narrowband low level signal having a level equal to or higher than the detection mode threshold is received by the receiver 222, the target communication device 200 indicates that the narrowband low level signal has been received.
  • the transmitter 221 transmits a reception confirmation signal (for example, a narrow band (low rate) modulated signal obtained by modulating the carrier with a carrier itself or a baseband signal indicating reception of a narrow band low level signal).
  • a reception confirmation signal for example, a narrow band (low rate) modulated signal obtained by modulating the carrier with a carrier itself or a baseband signal indicating reception of a narrow band low level signal.
  • the reception confirmation signal transmitted by the communication device 200 propagates through the waveguide 212 (receive Most of the confirmation signals are reflected on the end face exposed on the surface of the casing of the communication device 100.
  • the reception confirmation signal transmitted by the communication device 200 does not reach or reaches the receiver 122 of the communication device 100, the reception confirmation signal received by the receiver 122 of the communication device 100 has an extremely low level. Signal.
  • the reception confirmation signal transmitted by the communication device 200 is transmitted through the waveguides 212 and 112. Propagated and received at a certain level at the receiver 122 of the communication device 100.
  • the receiver 122 receives a reception confirmation signal having a level equal to or higher than the threshold value.
  • step S13 the control unit 113 of the communication device 100 receives, in the receiver 122, whether or not the reception belief signal from the communication device 200 is received at a threshold level or higher, that is, a reception confirmation signal at a level higher than the threshold is received. Determine whether or not.
  • step S13 If it is determined in step S13 that a reception confirmation signal having a level equal to or higher than the threshold has not been received, that is, the waveguide 112 of the communication device 100 and the waveguide 212 of the communication device 200 are not in contact with each other.
  • the reception confirmation signal of the level more than a threshold value cannot be received from the communication apparatus 200, a process returns to step S12 and the same process is repeated hereafter.
  • step S13 if it is determined in step S13 that a reception confirmation signal having a level equal to or higher than the threshold value has been received, that is, the waveguide 112 of the communication device 100 and the waveguide 212 of the communication device 200 are in contact with each other.
  • the reception confirmation signal having a level equal to or higher than the threshold value is received from the communication apparatus 200, the process proceeds to step S14.
  • step S14 the control unit 113 of the communication device 100 uses a mode switching signal that requests the operation mode to be switched from the detection mode to the communication mode (for example, a carrier itself or a baseband signal that requests switching to the communication mode).
  • the narrowband modulated signal obtained by modulating the carrier is transmitted to the transmitter 121, and the process proceeds to step S15.
  • the mode switching signal transmitted by the transmitter 121 of the communication device 100 propagates through the waveguides 112 and 212 that are in contact with each other, and is received by the receiver 222 of the communication device 200.
  • the communication apparatus 200 When the communication apparatus 200 receives the mode switching signal by the receiver 222, the communication apparatus 200 transmits a switching confirmation signal indicating that the mode switching signal has been received from the transmitter 221 as described later.
  • the switching confirmation signal transmitted by the transmitter 221 propagates through the waveguides 212 and 112 that are in contact with each other, and is received by the receiver 122 of the communication device 100.
  • step S15 the communication apparatus 100 enters a standby state in which it waits for a switching confirmation signal transmitted from the transmitter 221 of the communication apparatus 200, and the process proceeds to step S16.
  • step S ⁇ b> 16 the control unit 113 of the communication device 100 receives, in the receiver 122, whether or not the switching belief signal from the communication device 200 has been received at a threshold level or higher, that is, a switching confirmation signal at a level higher than the threshold. Determine whether or not.
  • step S16 If it is determined in step S16 that the receiver 122 has not received a switching confirmation signal having a level equal to or higher than the threshold value, the process returns to step S12, and the same process is repeated thereafter.
  • step S16 when the waveguide 122 and the waveguide 212 are brought into contact with each other and the contact is released, the receiver 122 cannot receive a switching confirmation signal having a level equal to or higher than the threshold value. Returns from step S16 to step S12, and the transmission of the narrowband low-level signal is repeated.
  • step S16 if it is determined in step S16 that the receiver 122 has received a switching confirmation signal having a level equal to or higher than the threshold value, the process proceeds to step S17.
  • the communication device 100 has a level equal to or higher than the threshold from the communication device 200.
  • step S ⁇ b> 17 the control unit 113 of the communication apparatus 100 detects the reception confirmation signal and the switching confirmation signal at a level equal to or higher than the threshold value from the communication apparatus 200, that is, detected by the receiver 222 of the communication apparatus 200.
  • the operation mode of the communication apparatus 100 is set (switched) from the detection mode to the communication mode, and the process proceeds to step S18.
  • step S18 the control unit 113 of the communication apparatus 100 controls the transmitter 121 and the receiver 122 to obtain a signal obtained by amplifying a modulated signal obtained by modulating a carrier with a high-rate baseband signal with a high gain.
  • Transmission / reception of the contacted waveguides 112 and 212 (hereinafter also referred to as a broadband high level signal) is started, and the process proceeds to step S19.
  • step S19 the control unit 113 of the communication apparatus 100 determines whether or not the receiver 122 (FIG. 6) can no longer receive a signal having a level equal to or higher than the threshold value.
  • the communication devices 100 and 200 change from the detection mode to the communication mode and start transmission / reception of a broadband high-level signal.
  • a broadband high level signal transmitted by transmitter 221 of communication device 200 is equal to or greater than a predetermined broadband high level signal threshold (hereinafter also referred to as a communication mode threshold). Can be received at any level.
  • the receiver 222 of the communication device 200 can receive the broadband high-level signal transmitted by the transmitter 121 of the communication device 100 at a level equal to or higher than the threshold for the communication mode.
  • the level of the broadband high-level signal from the communication device 200 that propagates through the waveguide 112 and is received by the receiver 122 of the communication device 100 is ,descend.
  • the level of the broadband high-level signal from the communication device 100 that propagates through the waveguide 212 and is received by the receiver 222 of the communication device 200 also decreases.
  • the broadband at a level equal to or higher than the threshold for the communication mode in both the receiver 112 of the communication device 100 and the receiver 212 of the communication device 200.
  • the high level signal cannot be received.
  • step S19 as described above, the control unit 113 of the communication device 100 releases the contact between the waveguide 112 and the waveguide 212, and the receiver 112 of the communication device 100 has a wide band at a level equal to or higher than the threshold for the communication mode. It is determined whether a high level signal can no longer be received.
  • step S19 If it is determined in step S19 that the receiver 112 of the communication apparatus 100 has received a broadband high level signal having a level equal to or higher than the threshold for the communication mode, the process returns to step S19, and the same process is performed thereafter. Repeated.
  • the contact between the waveguide 112 and the waveguide 212 is maintained, and the receiver 112 of the communication device 100 receives a broadband high-level signal having a level equal to or higher than the threshold for the communication mode from the communication device 200. If it is possible, the communication mode is maintained and transmission / reception of the broadband high level signal is continued.
  • step S19 if it is determined in step S19 that the receiver 112 of the communication apparatus 100 can no longer receive a broadband high level signal having a level equal to or higher than the threshold for the communication mode, the process returns to step S11.
  • step S11 as described above, the control unit 113 of the communication device 100 sets the operation mode to the detection mode, and thereafter, the same processing is repeated.
  • the operation mode is switched from the communication mode to the detection mode.
  • step S31 the control unit 213 (FIG. 3) sets the operation mode to the detection mode, and the process proceeds to step S32.
  • step S32 the receiver 222 of the communication apparatus 200 starts receiving the narrowband low level signal, and the process proceeds to step S33.
  • the communication device 100 that is an initiator transmits a narrowband low-level signal in step S12, so that the receiver 222 of the communication device 200 that is a target communicates in step S32.
  • the reception of the narrow band low level signal from the apparatus 100 is started.
  • step S33 the control unit 213 of the communication device 200 determines whether or not the receiver 222 (FIG. 6) has received a narrowband low-level signal having a level equal to or higher than the detection mode threshold.
  • step S33 If it is determined in step S33 that the receiver 222 has not received a narrowband low level signal having a level equal to or higher than the threshold value for the detection mode, the process returns to step S33, and the same process is repeated thereafter.
  • the level of the narrowband low-level signal from the communication device 100 received by the receiver 222 of the communication device 200 is less than the threshold for the detection mode. , Reception of the narrowband low level signal at the receiver 222 is continued.
  • step S33 if it is determined in step S33 that the receiver 222 has received a narrowband low-level signal having a level equal to or higher than the detection mode threshold, the process proceeds to step S34.
  • the waveguide 112 and the waveguide 212 are in contact with each other, and therefore the level of the narrow-band low-level signal received from the communication device 100 and received by the receiver 222 of the communication device 200 is equal to or higher than the detection mode threshold. If so, the process proceeds to step S34.
  • step S34 the control unit 213 of the communication apparatus 200 controls the transmitter 221 to transmit a reception confirmation signal in response to receiving the narrowband low level signal having a level equal to or higher than the detection mode threshold.
  • the process proceeds to step S35.
  • step S35 the communication apparatus 200 waits for the mode switching signal transmitted from the communication apparatus 100 in step S14, and the process proceeds to step S36.
  • step S36 the control unit 213 of the control unit 200 determines whether the mode switching signal from the communication device 100 is received by the receiver 222.
  • the reception confirmation signal transmitted by the transmitter 221 in step S34 propagates through the waveguides 212 and 112 that are in contact with each other, and is received at the receiver 122 of the communication device 100 at a level equal to or higher than the threshold value.
  • the communication device 100 that has received the reception confirmation signal at the level equal to or higher than the threshold by the receiver 122 transmits the mode switching signal in step S14 as described above. Therefore, the communication device 200 waits for a mode switching signal from the communication device 100 in step S35, and determines whether a mode switching signal from the communication device 100 has been received in step S36.
  • step S36 If it is determined in step S36 that the mode switching signal from the communication device 100 has not been received, the process returns to step S32, and the same process is repeated thereafter.
  • step S36 the processing is performed. Then, the process returns from step S36 to step S32, and reception of a narrow band low level signal is started.
  • step S36 determines in step S36 that the mode switching signal has been received.
  • step S37 the control unit 213 of the communication device 200 controls the transmitter 221 in response to the reception of the mode switching signal to transmit a switching confirmation signal, and the process proceeds to step S38.
  • the switching confirmation signal propagates through the contacted waveguides 212 and 112 and is received by the receiver 122 of the communication device 100.
  • step S38 the control unit 213 of the communication apparatus 200 responds to the reception of the mode switching signal from the communication apparatus 100, that is, the receiver 222 has a narrow band low level that is equal to or higher than the detection mode threshold.
  • the operation mode of the communication apparatus 200 is set from the detection mode to the communication mode, and the process proceeds to step S39.
  • step S39 the control unit 213 of the communication apparatus 200 controls the transmitter 221 and the receiver 222 to amplify a broadband high-level signal (a modulated signal obtained by modulating a carrier with a high-rate baseband signal with a high gain). Signal) is transmitted / received via the contacting waveguides 212 and 112, and the process proceeds to step S40.
  • a broadband high-level signal a modulated signal obtained by modulating a carrier with a high-rate baseband signal with a high gain.
  • Signal is transmitted / received via the contacting waveguides 212 and 112, and the process proceeds to step S40.
  • step S40 the control unit 213 of the communication device 2100 determines whether or not the receiver 222 cannot receive a signal having a level equal to or higher than the threshold value.
  • the communication devices 100 and 200 change from the detection mode to the communication mode and start transmission / reception of a broadband high-level signal. To do.
  • the transmitter 121 of the communication device 100 is connected to the receiver 222 of the communication device 200 without causing radio wave leakage of a broadband high-level signal as a radio wave.
  • a broadband high-level signal to be transmitted can be received at a level equal to or higher than a threshold for the communication mode.
  • the level of the broadband high-level signal received by the receiver 222 of the communication device 200 decreases.
  • the receiver 212 of the communication device 200 cannot receive a broadband high-level signal having a level equal to or higher than the threshold for the communication mode.
  • step S40 the control unit 213 of the communication device 200 cancels the contact between the waveguide 112 and the waveguide 212 as described above, and the receiver 212 of the communication device 200 has a broadband level equal to or higher than the threshold for the communication mode. It is determined whether a high level signal can no longer be received.
  • step S40 If it is determined in step S40 that the receiver 212 of the communication apparatus 200 has received a broadband high level signal having a level equal to or higher than the threshold for the communication mode, the process returns to step S40, and the same process is performed thereafter. Repeated.
  • the waveguide 112 and the waveguide 212 are in contact with each other, and the receiver 212 of the communication device 200 can receive a broadband high-level signal having a level equal to or higher than the threshold for the communication mode from the communication device 100. In this case, the communication mode is maintained, and transmission / reception of the broadband high level signal is continued.
  • step S40 if it is determined in step S40 that the receiver 212 of the communication apparatus 200 is unable to receive a broadband high level signal having a level equal to or higher than the threshold for the communication mode, the process returns to step S31.
  • step S31 as described above, the control unit 213 of the communication device 200 sets the operation mode to the detection mode, and thereafter, the same processing is repeated.
  • the operation mode is switched from the communication mode to the detection mode.
  • the transmitter 121 transmits a predetermined signal such as a narrow-band low-level signal to the waveguide 112 and is received by the receiver 222 via the waveguide 212.
  • the detection mode is changed to the communication mode in response to a low-level narrow-band signal that is equal to or higher than the threshold value. Then, the transmitter 121 transmits the modulation signal via the waveguides 112 and 212 in the communication mode.
  • the receiver 222 receives the narrowband low-level signal via the waveguide 212, and is received via the waveguide 212.
  • the level of the narrowband low-level signal equal to or higher than the threshold for the detection mode is received. Accordingly, the communication mode is changed from the detection mode.
  • the receiver 222 receives the modulated signal via the waveguides 112 and 212 in the communication mode.
  • the receiver 222 when the receiver 222 receives a signal with a narrow band low level that is equal to or higher than the detection mode threshold, the contact between the waveguide 112 and the waveguide 212 is detected. If there is, the operation mode is switched from the detection mode to the communication mode, and the modulated signal is transmitted and received.
  • the waveguide 112 on the transmitter 121 side and the waveguide 212 on the receiver 222 side are in the detection mode without using the contact detection devices 13 and 23 dedicated for contact detection.
  • the contact can be detected, and the modulated signal can be transmitted and received while the waveguide 112 and the waveguide 212 are in contact with each other.
  • the transmitter 121 and the receiver are in the detection mode and transmit and receive a narrow band low level signal. Therefore, it is possible to comply with the law that regulates radio waves.
  • the transmitter 121 and the receiver 222 are in a communication mode, and a broadband high-level signal is transmitted / received. Since it is in contact with 212, it is possible to prevent radio wave leakage of a broadband high-level signal and to comply with laws regulating radio waves.
  • the narrow band low level signal for example, a low level carrier or a low rate modulated signal can be adopted as described with reference to FIG.
  • a low-rate modulation signal for example, a predetermined pattern that requests switching of the operation mode is adopted as the baseband signal used to generate the low-rate modulation signal Can do.
  • the communication apparatus 200 can demodulate a predetermined pattern for requesting switching of the operation mode from the low-rate modulation signal as the narrow-band low-level signal received by the receiver 22, the waveguide It can be assumed that there has been contact between 112 and the waveguide 212.
  • the level of the low-rate modulated signal received by the receiver 22 is equal to or higher than the threshold for the detection mode, and a predetermined pattern for requesting switching of the operation mode is generated from the low-rate modulated signal.
  • demodulation it can be assumed that the waveguide 112 and the waveguide 212 are in contact with each other.
  • the receiver 222 of the communication device 200 receives a narrowband low-level signal having a level equal to or higher than the threshold for the detection mode and a mode switching signal, and the receiver 122 of the communication device 100.
  • the operation mode is switched from the detection mode to the communication mode.
  • the operation mode is switched at least by the receiver 222 of the communication apparatus 200. This can be done in any way using the received narrowband low level signal.
  • the communication apparatus 100 uses the detection mode for the detection mode in the receiver 222.
  • the reception confirmation signal is received by the receiver 122 in response to the reception of the narrow band low level signal having a level equal to or higher than the threshold, the operation mode can be switched from the detection mode to the communication mode. .
  • the operation mode is switched from the detection mode to the communication mode.
  • the operation mode can be switched from the communication mode to the detection mode.
  • the operation mode when the operation mode is switched according to the level (reception level) of the narrowband low-level signal received by the receiver 222 of the communication apparatus 200, the operation mode is switched for the detection mode. It can also be performed in accordance with the absolute level of the narrowband low level signal compared to the threshold value, or in accordance with the amount of change in the level of the narrowband low level signal.
  • the operation mode is changed from the detection mode to the communication mode.
  • the (absolute) level of the broadband high-level signal which is the modulated signal received by the switching or receiver 122 or 222
  • the threshold for the communication mode when it is not above the threshold for the communication mode)
  • the operation mode is switched from the communication mode to the detection mode, but the same value can be adopted as the threshold for the detection mode and the threshold for the communication mode used for switching the operation mode. However, different values can be adopted.
  • FIG. 15 is a diagram for explaining operation mode switching when different values are used as the threshold value for the detection mode and the threshold value for the communication mode.
  • FIG. 15A is a diagram for explaining switching of the operation mode when a value smaller than the detection mode threshold (first threshold) THon is adopted as the communication mode threshold (second threshold) THoff. It is.
  • the operation mode becomes the detection mode.
  • the receiver 222 when a value smaller than the threshold value THon for the detection mode is adopted as the threshold value THoff for the communication mode, the receiver 222 operates by receiving a signal having a small level such as noise. It is possible to prevent the mode from being erroneously switched from the detection mode to the communication mode.
  • the operation mode is prevented from being erroneously switched from the communication mode to the detection mode. be able to.
  • FIG. 15B is a diagram for explaining switching of the operation mode when a value larger than the detection mode threshold (first threshold) THon is adopted as the communication mode threshold THoff.
  • the operation mode is set to the communication mode. become.
  • the operation mode becomes the detection mode.
  • the level of the narrowband low-level signal transmitted from the transmitter 121 is suppressed to reduce the consumption. Electricity can be achieved, and the response of switching from the detection mode to the communication mode can be made sensitive.
  • the contact between the waveguide 112 and the waveguide 212 is shifted, and the modulation signal is radiated to the space.
  • the operation mode is immediately switched from the communication mode to the detection mode, radio wave leakage of the modulation signal can be suppressed more firmly.
  • FIG. 16 is a diagram for explaining another example of switching of operation modes.
  • the operation mode is switched from the detection mode to the communication mode according to the narrowband low level signal received by the receiver 222 of the target communication device 200.
  • the communication from the detection mode is performed.
  • the operation mode switching to the mode is performed by the narrowband low level signal received by the receiver 222 of the communication device 200 that is the target, and the narrowband low level signal received by the receiver 122 of the communication device 100 that is the initiator. Can be done according to.
  • FIG. 16 is a diagram for explaining switching of operation modes performed in accordance with a narrowband low level signal received by the receiver 222 and a narrowband low level signal received by the receiver 122.
  • the waveguide 112 is composed of one waveguide that is used for both transmission and reception.
  • the narrowband low-level signal transmitted from the antenna 123 to the waveguide 112 by the transmitter 121 propagates through the waveguide 112 and reaches the end face on the outside of the waveguide 112. To do.
  • the end face on the outer side of the waveguide 112 is in contact with the space, so that the difference in permittivity Therefore, most of the narrow-band low-level signal is reflected by the end face on the outside of the waveguide 112.
  • the narrow-band low-level signal reflected by the end face on the outside of the waveguide 112 propagates back through the waveguide 112 toward the antenna 123 and is received by the antenna 123 and thus the receiver 122.
  • the narrow-band low-level signal transmitted by the transmitter 121 propagates through the waveguides 112 and 212 in contact with each other and maintains a certain level.
  • the signal reaches the receiver 222 and is received.
  • the narrow-band low-level signal is hardly reflected on the outer end face of the waveguide 112.
  • the receiver 222 receives a narrow-band low-level signal with a large level, but the receiver 122 receives a narrow-band low-level signal with a very low level. Are received (or no narrowband low level signal is received).
  • the receiver 222 receives a narrow-band low-level signal with a small level (or no narrow-band low-level signal is received).
  • the receiver 122 receives a narrow band low level signal having a large level.
  • the receiver 222 receives a narrow-band low-level signal with a large level, but the receiver 122 receives a narrow-band low-level with a small level. A signal is received (or no narrowband low level signal is received).
  • the operation mode can be switched to the detection mode.
  • the waveguide 112 and the waveguide 212 are brought into contact with each other.
  • the operation mode can be switched to the communication mode.
  • the level can be determined by comparison with a predetermined threshold value.
  • the narrow-band low-level signal received at the receiver 122 is rapidly reduced. It can be used that there was (a decrease above a predetermined threshold).
  • the operation mode is switched by detecting contact between the waveguide 112 and the waveguide 212 or release of the contact in accordance with the low-bandwidth signal reflected and returned from the end face on the outside side, It is possible to improve the accuracy of detection of contact between the waveguide 112 and the waveguide 212 and contact release.
  • a millimeter-wave band signal is used as the modulation signal (and carrier), but the modulation signal is a signal having a frequency band lower or higher than that of the millimeter wave (for example, light). Can be adopted.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • this technique can take the following structures.
  • the predetermined signal is a narrowband signal that is narrower than the modulated signal and is a low level signal.
  • ⁇ 3> The transmitter according to ⁇ 1> or ⁇ 2>, in which the communication mode is set when a level of the predetermined signal received by the receiver via the second waveguide is equal to or higher than a threshold value.
  • the communication mode In the detection mode, when the level of the predetermined signal received by the receiver via the second waveguide is equal to or higher than a first threshold, the communication mode is entered.
  • Machine is
  • ⁇ 5> The transmitter according to any one of ⁇ 1> to ⁇ 4>, wherein the detection mode is changed to the communication mode in response to the predetermined signal reflected and returned from the end face of the first waveguide.
  • ⁇ 6> The transmitter according to any one of ⁇ 1> to ⁇ 5>, wherein the first and second waveguides are configured by filling a predetermined metal with a hollow metal.
  • the predetermined signal and the modulation signal are millimeter-wave band signals.
  • a detection mode for detecting contact between the first waveguide on the transmitter side and the second waveguide on the receiver side The transmitter having, as an operation mode, a communication mode for transmitting a modulated signal obtained by frequency-converting a baseband signal via the first and second waveguides, In the detection mode, a predetermined signal is transmitted to the first waveguide, In response to the predetermined signal received through the second waveguide at the receiver, the detection mode is changed to the communication mode, In the communication mode, the modulation signal is transmitted via the first and second waveguides.
  • the predetermined signal is a narrowband signal that is narrower than the modulated signal and is a low-level signal.
  • ⁇ 11> The receiver according to ⁇ 9> or ⁇ 10>, wherein the communication mode is set when a level of the predetermined signal received via the second waveguide is equal to or higher than a threshold value.
  • the communication mode In the detection mode, when the level of the predetermined signal received through the second waveguide is equal to or higher than a first threshold value, the communication mode is set. In the communication mode, the second guide is set.
  • the detection mode is set when a level of a modulated signal received via the waveguide is equal to or smaller than a second threshold value that is greater than or less than the first threshold value.
  • ⁇ 13> The receiver according to any one of ⁇ 9> to ⁇ 12>, wherein the first and second waveguides are configured by filling a predetermined metal with a hollow metal.
  • the predetermined signal and the modulation signal are millimeter wave band signals.
  • the receiver having, as an operation mode, a communication mode for receiving a modulated signal obtained by frequency-converting a baseband signal via the first and second waveguides, In the detection mode, a predetermined signal is received through the second waveguide; In response to the predetermined signal received via the second waveguide, the detection mode is changed to the communication mode, A receiving method for receiving the modulated signal through the first and second waveguides in the communication mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transceivers (AREA)

Abstract

本技術は、大型化及び高コスト化を抑制することができるようにする送信機、送信方法、受信機、及び、受信方法に関する。 送信機及び受信機は、送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、ベースバンド信号を周波数変換して得られる変調信号を、第1及び第2の導波路を介して送信又は受信する通信モードとを、動作モードとして有する。送信機は、検出モードにおいて、所定の信号を、第1の導波路に送信する。送信機及び受信機は、受信機で第2の導波路を介して受信される所定の信号に応じて、検出モードから通信モードとなり、通信モードにおいて、変調信号を、第1及び第2の導波路を介して送受信する。本技術は、例えば、導波路を介した通信に適用することができる。

Description

送信機、送信方法、受信機、及び、受信方法
 本技術は、送信機、送信方法、受信機、及び、受信方法に関し、特に、例えば、大型化及び高コスト化を抑制することができるようにする送信機、送信方法、受信機、及び、受信方法に関する。
 例えば、半導体チップや電子機器等の電子回路どうし等の間で、大容量のデータを、高速でやりとりする方法として、データを、ミリ波帯の信号(ミリ波)に変調して送受信するミリ波通信の通信装置を用いる方法が注目されている(例えば、特許文献1を参照)。
特開2012-109700号公報
 大容量(高レート)のデータをミリ波に変調して得られる変調信号は、広帯域の信号になる。かかる広帯域の変調信号については、電波法等の電波を規制する法律の遵守の観点から、変調信号の電波が外部に漏れる電波漏れが(ほぼ)ないように、ミリ波通信の通信装置どうしの間で、変調信号の送受信を行う必要がある。
 電波漏れがないように、変調信号の送受信を行う方法としては、例えば、ミリ波通信の通信装置に、導波路を設け、1の通信装置の導波路と、他の通信装置の導波路とが接触している場合に、1の通信装置又は他の通信装置から、変調信号を送信する方法がある。
 1の通信装置の導波路と、他の通信装置の導波路とが接触している場合に、変調信号を送信する方法では、1の通信装置の導波路と、他の通信装置の導波路とが接触しているかどうかの接触検出を行う必要がある。
 接触検出を行う方法としては、接触検出専用の接触検出装置を用いる方法がある。
 しかしながら、専用の接触検出装置を用いて、接触検出を行う場合には、接触検出装置を、ミリ波通信の通信装置に設ける必要があり、通信装置の大型化及び高コスト化の原因となる。
 本技術は、このような状況に鑑みてなされたものであり、大型化及び高コスト化を抑制することができるようにするものである。
 本技術の送信機は、送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して送信する通信モードとを、動作モードとして有し、前記検出モードにおいて、所定の信号を、前記第1の導波路に送信し、前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して送信する前記送信機である。
 本技術の送信方法は、送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して送信する通信モードとを、動作モードとして有する前記送信機が、前記検出モードにおいて、所定の信号を、前記第1の導波路に送信し、前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して送信する送信方法である。
 本技術の送信機及び送信方法においては、前記検出モードにおいて、所定の信号が、前記第1の導波路に送信され、前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、動作モードが、前記検出モードから前記通信モードとなる。そして、前記通信モードにおいて、前記変調信号が、前記第1及び第2の導波路を介して送信される。
 本技術の受信機は、送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して受信する通信モードとを、動作モードとして有し、前記検出モードにおいて、所定の信号を、前記第2の導波路を介して受信し、前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して受信する前記受信機である。
 本技術の受信方法は、送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して受信する通信モードとを、動作モードとして有する前記受信機が、前記検出モードにおいて、所定の信号を、前記第2の導波路を介して受信し、前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して受信する受信方法である。
 本技術の受信機及び受信方法においては、前記検出モードにおいて、所定の信号が、前記第2の導波路を介して受信され、前記第2の導波路を介して受信される前記所定の信号に応じて、動作モードが、前記検出モードから前記通信モードとなる。そして、前記通信モードにおいて、前記変調信号が、前記第1及び第2の導波路を介して受信される。
 なお、送信機や受信機は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
 本技術によれば、大型化及び高コスト化を抑制することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した通信システムの一実施の形態の構成例を示すブロック図である。 通信装置100及び200の第1の構成例を示すブロック図である。 通信装置100及び200の第2の構成例を示すブロック図である。 ミリ波通信機111及び211、並びに、導波路112及び212の構成例を示す図である。 ミリ波通信機111及び211、並びに、導波路112及び212の他の構成例を示す図である。 ミリ波通信機111の送信機121及び受信機122、並びに、ミリ波通信機211の送信機221及び受信機222の構成例を示す図である。 ミリ波通信機111及び211の動作モードを説明する図である。 検出モードを説明する図である。 導波路どうしのギャップと、導波路どうし間の伝送特性との関係を調査する第1のシミュレーションを説明する図である。 第1のシミュレーションのシミュレーション結果を示す図である。 導波路どうしのギャップと、導波路どうし間の伝送特性との関係を調査する第2のシミュレーションを説明する図である。 第2のシミュレーションのシミュレーション結果を示す図である。 検出モード及び通信モードを説明する図である。 イニシエータである通信装置100と、ターゲットである通信装置200との動作の例を説明するフローチャートである。 検出モード用の閾値、及び、通信モード用の閾値として、異なる値を採用する場合の動作モードの切り替えを説明する図である。 動作モードの切り替えの他の例を説明する図である。
 <本技術を適用した通信システムの一実施の形態>
 図1は、本技術を適用した通信システムの一実施の形態の構成例を示すブロック図である。
 図1において、通信システムは、通信装置100及び200を有する。
 通信装置100及び200は、データを、例えば、ミリ波帯の信号(ミリ波)に変調して送受信するミリ波通信の通信装置であり、データをミリ波帯に変調して得られる変調信号(高周波信号)を送受信することで、データのやりとりを行う。
 ここで、ミリ波(ミリ波帯の(変調)信号)とは、周波数が30ないし300GHz程度、つまり、波長が、1ないし10mm程度の信号である。ミリ波帯の信号によれば、周波数が高いことから、高速のデータレート(高レート)でのデータ伝送が可能であり、例えば、60GHz程度のミリ波帯のキャリアによれば、11Gbps程度のレートのデータを送受信することができる。また、ミリ波帯の信号によれば、様々な種類の伝送路を用いて通信を行うことができる。すなわち、ミリ波帯の信号によれば、例えば、小さなアンテナを用いて、自由空間等の空間を伝送路とする通信(無線通信)を行うことができる。また、ミリ波帯の信号によれば、メタリック線を伝送路とする通信や、プラスチック等の誘電体を伝送路とする通信を行うことができる。
 図1の通信システムでは、無線の免許なしで、電波を規制する法律を遵守して、通信装置100と通信装置200との間で、ミリ波帯の変調信号の送受信が行われる。
 具体的には、図1の通信システムでは、変調信号の電波が外部に漏れる電波漏れが(ほぼ)ないように、通信装置100と通信装置200とが(ほぼ)接触している場合、すなわち、通信装置100及び200の外部に電波漏れが(ほぼ)生じない状態になっている場合に、通信装置100と通信装置200と間で、ミリ波帯の変調信号の送受信が行われる。
 <通信装置100及び200の第1の構成例>
 図2は、図1の通信装置100及び200の第1の構成例を示すブロック図である。
 図2において、通信装置100は、ミリ波通信機11、導波路12、接触検出装置13、及び、制御部14を有する。
 ミリ波通信機11は、送信対象のデータであるベースバンド信号を、ミリ波帯の変調信号に周波数変換(変調)し、その変調信号を、導波路12に送信する。
 また、ミリ波通信機11は、通信装置200から導波路12を介して送信されてくるミリ波帯の変調信号、すなわち、導波路12を伝播してくる変調信号を受信し、ベースバンド信号に周波数変換(復調)して出力する。
 導波路12は、例えば、プラスチック等の誘電体で構成される。導波路12は、例えば、細長い板状になっており、長手方向の一端の端面は、ミリ波通信機11に接続され、他端の端面は、通信装置100の外部(例えば、筐体の表面)に露出している。
 接触検出装置13は、通信装置100と、通信装置200(等の、ミリ波通信が可能な他の通信装置)とが接触しているかどうかを検出する。
 すなわち、接触検出装置13は、通信装置100の導波路12と、通信装置200の後述する導波路22と(の端面どうし)が接触しているかどうかの接触検出を行い、その接触検出の検出結果を、制御部14に供給する。
 制御部14は、接触検出装置13からの接触検出の検出結果等に応じて、ミリ波通信機11を制御する。
 例えば、接触検出の検出結果が、通信装置100と通信装置200とが接触していることを表している場合、制御部14は、ミリ波通信機11を制御し、ミリ波通信機11から、ミリ波帯の信号(変調信号やキャリア)を送信させる。
 また、例えば、接触検出の検出結果が、通信装置100と通信装置200とが接触していることを表していない場合、制御部14は、ミリ波通信機11を制御し、ミリ波通信機11からのミリ波帯の信号の送信を制限(禁止)する。
 図2において、通信装置200は、ミリ波通信機21、導波路22、接触検出装置23、及び、制御部24を有する。ミリ波通信機21ないし制御部24は、ミリ波通信機11ないし制御部14とそれぞれ同様に構成されるので、その説明は省略する。
 ここで、接触検出装置13及び23での接触検出の方法としては、例えば、感圧導電ゴムを利用する方法や、容量変化を検出する方法、光遮断による変形検出を行う方法、光学的触像検出を行う方法、導通や非導通を検出する方法、音響共鳴触覚素子を用いる方法、接触抵抗の変化を検出する方法等がある。
 以上のように構成される通信システムでは、通信装置100において、接触検出装置13が、通信装置100の導波路12と通信装置200の導波路22との接触を検出すると、制御部14が、必要に応じて、ミリ波通信機11から、ミリ波帯の変調信号を送信させる。
 すなわち、ミリ波通信機11は、図示せぬ回路からのベースバンド信号を、ミリ波帯の変調信号に周波数変換して送信する。
 ミリ波通信機11が送信する変調信号は、導波路12を伝播し、さらに、導波路12に接触している通信装置200の導波路22を伝播して、ミリ波通信機21で受信される。
 ミリ波通信機21は、導波路22を介して受信した変調信号(導波路22を伝播してきた変調信号)を、ベースバンド信号に周波数変換し、図示せぬ回路に供給する。
 一方、通信装置200において、接触検出装置23が、通信装置100の導波路12と通信装置200の導波路22との接触を検出すると、制御部24が、必要に応じて、ミリ波通信機21から、ミリ波帯の変調信号を送信させる。
 すなわち、ミリ波通信機21は、図示せぬ回路からのベースバンド信号を、ミリ波帯の変調信号に周波数変換して送信する。
 ミリ波通信機21が送信する変調信号は、導波路22を伝播し、さらに、導波路22に接触している通信装置100の導波路12を伝播して、ミリ波通信機11で受信される。
 ミリ波通信機11は、導波路22を介して受信した変調信号を、ベースバンド信号に周波数変換し、図示せぬ回路に供給する。
 なお、通信装置100の接触検出装置13において、通信装置100の導波路12と通信装置200の導波路22との接触が検出されていない場合、制御部14は、ミリ波通信機11からのミリ波帯の信号の送信を制限する。
 同様に、通信装置200の接触検出装置23において、通信装置100の導波路12と通信装置200の導波路22との接触が検出されていない場合、制御部24は、ミリ波通信機21からのミリ波帯の信号の送信を制限する。
 以上のように、通信装置100の導波路12と通信装置200の導波路22との接触が検出されていない場合に、ミリ波通信機11及び21からのミリ波帯の信号の送信が制限されることで、導波路12の、通信装置100の外部に露出している端面や、導波路22の、通信装置200の外部に露出している端面から、法律に違反するような高レベルの信号や広帯域の信号が、電波として放射されることを防止することができる。
 ところで、図2の通信装置100及び200の第1の構成例では、通信装置100(の導波路12)と通信装置200(の導波路22)との接触の検出に、接触検出装置13や23を設ける必要があり、通信装置100及び200が大型化、高コスト化するおそれがある。
 <通信装置100及び200の第2の構成例>
 図3は、図1の通信装置100及び200の第2の構成例を示すブロック図である。
 図3において、通信装置100は、ミリ波通信機111、導波路112、及び、制御部113を有する。
 ミリ波通信機111は、送信対象のデータであるベースバンド信号を、ミリ波帯の変調信号に周波数変換(変調)し、その変調信号を、導波路112に送信する。
 また、ミリ波通信機111は、導波路112を介して送信されてくるミリ波帯の変調信号、すなわち、導波路112を伝播してくる変調信号を受信し、ベースバンド信号に周波数変換(復調)して出力する。
 導波路112は、例えば、中空の金属にプラスチック等の誘電体が充填されて構成される。導波路112は、例えば、細長い板状になっており、長手方向の一端の端面は、ミリ波通信機111に接続され、他端の端面は、通信装置100の外部(例えば、筐体の表面)に露出している。
 導波路112には、ミリ波送信機111が送信するミリ波帯の信号が伝播する。さらに、導波路112には、ミリ波送信機111が受信するミリ波帯の信号が伝播する。
 制御部113は、ミリ波通信機111が導波路112を介して受信するミリ波帯の信号等に応じて、ミリ波通信機111を制御する。
 すなわち、ミリ波通信機111は、動作モードとして、検出モードと通信モードとを有する。
 検出モードでは、通信装置100の導波路112と通信装置200の導波路212との接触が検出される。通信モードでは、通信装置100と通信装置200との間で、ベースバンド信号を周波数変換して得られるミリ波帯の変調信号が、導波路112及び212を介して送受信(送信/受信)される。
 制御部113は、ミリ波通信機111が導波路112を介して受信するミリ波帯の信号等に応じて、動作モードを、検出モード、又は、通信モードに設定する。
 図3において、通信装置200は、ミリ波通信機211、導波路212、及び、制御部213を有する。ミリ波通信機211ないし制御部213は、ミリ波通信機111ないし制御部113とそれぞれ同様に構成されるので、その説明は省略する。
 <ミリ波通信機111及び211、並びに、導波路112及び212の構成例>
 図4は、図3のミリ波通信機111及び211、並びに、導波路112及び212の構成例を示す図である。
 図4において、ミリ波通信機111は、送信機121及び受信機122を有する。
 送信機121は、ベースバンド信号をミリ波帯の変調信号に周波数変換し、アンテナ123から導波路112に送信する。
 受信機122は、導波路112を伝播し、アンテナ123を介して供給されるミリ波帯の変調信号を受信し、ベースバンド信号に周波数変換する。
 図4において、アンテナ123は、送信及び受信の両方で兼用されるアンテナで、導波路112を構成する誘電体に接続している。
 図4では、アンテナ123が送信及び受信の両方で兼用されるアンテナであることに応じて、導波路112が、送信及び受信の両方で兼用される1の導波路で構成される。
 すなわち、図4では、導波路112は、送信機121が送信する信号が伝播する送信機121側の導波路(第1の導波路)でもあり、受信機122が受信する信号が伝播する(してくる)受信機122側の導波路でもある。
 ミリ波通信機211は、送信機221及び受信機222を有する。
 送信機221及び受信機222は、送信機121及び受信機122とそれぞれ同様に構成される。
 すなわち、送信機221は、送信機121と同様に、ミリ波帯の変調信号を、アンテナ223から導波路212に送信する。
 受信機222は、導波路212を伝播し、アンテナ223を介して供給されるミリ波帯の変調信号を受信する。
 図4において、アンテナ223は、アンテナ123と同様に、送信及び受信の両方で兼用されるアンテナで、導波路212を構成する誘電体に接続している。
 さらに、図4では、アンテナ223が送信及び受信の両方で兼用されるアンテナであることに応じて、導波路212が、送信及び受信の両方で兼用される1の導波路で構成される。
 すなわち、図4では、導波路212は、送信機221が送信する信号が伝播する送信機221側の導波路でもあり、受信機222が受信する信号が伝播する(してくる)受信機222側の導波路(第2の導波路)でもある。
 図4に示すように、ミリ波通信機111が、送信機121及び受信機122を有するとともに、ミリ波通信機211が、送信機221及び受信機222を有する場合には、ミリ波通信機111と211との間では、双方向の通信を行うことができる。
 すなわち、図4に示すように、導波路112と導波路212とが(ほぼ)接触している場合、ミリ波通信機111において、送信機121が送信するミリ波帯の変調信号は、アンテナ123から、導波路112及び212を伝播し、アンテナ223を介して、受信機222で受信される。また、ミリ波通信機211において、送信機221が送信するミリ波帯の変調信号は、アンテナ223から、導波路212及び112を伝播し、アンテナ123を介して、受信機122で受信される。
 なお、送信及び受信の両方で兼用されるアンテナ123及び223、並びに、導波路112及び212を有する通信システムでは、送信機121及び221において、同一の周波数帯のミリ波の信号をキャリアとして用いる場合には、ミリ波通信機111と211との間では、半二重の通信を行うことができる。また、送信機121及び221において、異なる周波数帯のミリ波の信号をキャリアとして用いる場合には、ミリ波通信機111と211との間では、全二重の通信を行うことができる。
 さらに、通信システムにおいて、一方向の通信を行う場合、すなわち、例えば、ミリ波通信機111からミリ波通信機211の一方向にのみ、データを送信する場合、ミリ波通信機111は、受信機122なしで構成し、ミリ波通信機211は、送信機221なしで構成することができる。
 図5は、図3のミリ波通信機111及び211、並びに、導波路112及び212の他の構成例を示す図である。
 なお、図中、図4の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図5の場合は、通信システムが、送信用のアンテナ123S及び223S、受信用のアンテナ123R及び223R、送信用の導波路112S及び212S、並びに、受信用の導波路112R及び212Rを有する点で、送信及び受信の両方で兼用されるアンテナ123及び223、並びに、導波路112及び212を有する図4の場合と相違する。
 図5において、導波路112は、送信用の導波路112Sと、受信用の導波路112Rとを有する。導波路212は、送信用の導波路212Sと、受信用の導波路212Rとを有する。
 導波路112S,112R,212S、及び、212Rは、例えば、いずれも、中空の金属に所定の誘電体が充填されて構成される。
 また、図5において、導波路112及び212は、ミリ波通信機111と112とを接触させたときに、導波路112Sと212Rとが接触するとともに、導波路112Rと212Sとが接触するように構成されている。
 アンテナ123Sは、送信用のアンテナで、送信用の導波路112Sを構成する誘電体に接続している。
 図5において、送信機121が送信するミリ波帯の変調信号は、アンテナ123Sから導波路112Sを伝播する。
 アンテナ123Rは、受信用のアンテナで、受信用の導波路112Rを構成する誘電体に接続している。
 導波路112Rを伝播するミリ波帯の変調信号は、アンテナ123Rを介して、受信機122で受信される。
 アンテナ223Sは、送信用のアンテナで、送信用の導波路212Sを構成する誘電体に接続している。
 送信機221が送信するミリ波帯の変調信号は、アンテナ223Sから導波路212Sを伝播する。
 アンテナ223Rは、受信用のアンテナで、受信用の導波路212Rを構成する誘電体に接続している。
 導波路212Rを伝播するミリ波帯の変調信号は、アンテナ223Rを介して、受信機222で受信される。
 以上から、図5では、導波路112Sは、送信機121が送信する信号が伝播する送信機121側の導波路(第1の導波路)であり、導波路212Rは、受信機222が受信する信号が伝播する(してくる)受信機222側の導波路(第2の導波路)である。
 また、導波路212Sは、送信機221が送信する信号が伝播する送信機221側の導波路であり、導波路112Rは、受信機122が受信する信号が伝播する(してくる)受信機122側の導波路である。
 図5に示すように、通信システムが、送信用のアンテナ123S及び223S、受信用のアンテナ123R及び223R、送信用の導波路112S及び212S、並びに、受信用の導波路112R及び212Rを有する場合には、ミリ波通信機111と211との間で、全二重の双方向の通信を行うことができる。
 すなわち、図5に示すように、導波路112Sと導波路212Rとが接触するとともに、導波路112Rと導波路212Sとが接触している場合、送信機121が送信するミリ波帯の変調信号は、アンテナ123Sから、導波路112S及び212Rを伝播し、アンテナ223Rを介して、受信機222で受信される。また、送信機221が送信するミリ波帯の変調信号は、アンテナ223Sから、導波路212S及び112Rを伝播し、アンテナ123Rを介して、受信機122で受信される。
 ここで、本技術は、図4に示したように、導波路112と導波路212とのそれぞれが、送信及び受信の両方で兼用される1の導波路で構成される場合に適用することもできるし、図5に示したように、導波路112が、送信用の導波路112Sと、受信用の導波路112Rとを有するとともに、導波路212が、送信用の導波路212Sと、受信用の導波路212Rとを有する場合に適用することもできる。
 但し、以下では、説明を簡単にするため、例えば、図4に示したように、導波路112と導波路212とのそれぞれが、送信及び受信の両方で兼用される1の導波路で構成されることとする。
 <送信機121及び受信機122、並びに、送信機221及び受信機222の構成例>
 図6は、ミリ波通信機111の送信機121及び受信機122、並びに、ミリ波通信機211の送信機221及び受信機222の構成例を示す図である。
 送信機121は、ミキサ131、発振器132、アンプ133、並びに、スイッチ134及び135を有する。
 ミキサ131には、図示せぬ回路から、ベースバンド信号(BB信号)が供給されるとともに、発振器132からミリ波帯のキャリアが供給される。
 ミキサ131は、ベースバンド信号と、発振器132からのキャリアとをミキシング(乗算)することにより、ベースバンド信号を、発振器132からのキャリアによって周波数変換し(キャリアを、ベースバンド信号に従って変調し)、その結果得られる、ミリ波帯の、例えば、振幅変調(ASK(Amplitude Shift Keying))の変調信号を、アンプ133に供給する。
 又は、ミキサ133は、発振器132からのキャリアを、そのまま、アンプ133に供給する。
 発振器132は、発振によって、例えば、56GHz等のミリ波帯のキャリアを発生し、ミキサ131に供給する。
 アンプ133は、ミキサ131からの信号(変調信号又はキャリア)を必要に応じて所定のゲインで増幅して出力する。アンプ133が出力する信号は、(アンテナ123(図4)から)導波路112に送信される。
 なお、アンプ133のゲイン(ミキサ133からの信号の増幅の程度)は、制御部113(図3)の制御に従って設定することができる。
 スイッチ134及び135は、制御部113(図3)の制御に従って、オン又はオフになる。
 スイッチ134がオン又はオフになることによって、発振器132がオン又はオフになる。
 スイッチ135がオン又はオフになることによって、アンプ133がオン又はオフになる。
 受信機222は、アンプ241、ミキサ242、LPF(Low Pass Filter)243、及び、スイッチ244を有する。
 アンプ241は、導波路212を伝播してくるミリ波帯の信号(変調信号又はキャリア)を受信し、必要に応じて所定のゲインで増幅して、ミキサ242に供給する。
 なお、アンプ241で増幅するミリ波帯の信号の帯域(受信帯域)は、制御部213(図3)の制御に従って設定することができる。
 ミキサ242は、アンプ241から供給されるミリ波帯の変調信号どうしをミキシングする(変調信号を自乗する)自乗検波を行うことで、アンプ241からのミリ波帯の変調信号を、ベースバンド信号に周波数変換し(変調信号を、ベースバンド信号に復調し)、LPF243に供給する。
 LPF243は、ミキサ243からの信号の低域を通過させるフィルタリングを行い、そのフィルタリングにより得られる、ベースバンド信号を出力する。
 なお、LPF243の通過帯域は、制御部213の制御に従って設定することができる。
 スイッチ244は、制御部213の制御に従って、オン又はオフになる。
 スイッチ244がオン又はオフになることによって、アンプ241がオン又はオフになる。
 ここで、図6では、受信機222において、自乗検波によって、ミリ波帯の変調信号をベースバンド信号に周波数変換することとしたが、受信機222では、その他、例えば、キャリアを再生して、そのキャリアを変調信号とミキシングする同期検波等の、自乗検波以外の検波によって、変調信号をベースバンド信号に周波数変換することができる。
 送信機221は、ミキサ231、発振器232、アンプ233、並びに、スイッチ234及び235を有する。
 ミキサ231ないしスイッチ235は、送信機121のミキサ131ないしスイッチ135とそれぞれ同様に構成されるため、その説明は、省略する。
 受信機122は、アンプ141、ミキサ142、LPF143、及び、スイッチ144を有する。
 アンプ141ないしスイッチ144は、受信機222のアンプ241ないしスイッチ244とそれぞれ同様に構成されるため、その説明は、省略する。
 <ミリ波通信機111及び211の動作モード>
 図7は、図3のミリ波通信機111及び211の動作モードを説明する図である。
 図3で説明したように、ミリ波通信機111及び211は、動作モードとして、検出モードと通信モードとを有する。
 検出モードでは、通信装置100の導波路112と通信装置200の導波路212との接触が検出される。
 検出モードにおいて、通信装置100の導波路112と通信装置200の導波路212とが(ほぼ)接触したことが検出されると、ミリ波通信機111及び211の動作モードは、検出モードから通信モードとなる。
 通信モードでは、通信装置100と通信装置200との間で、ミリ波帯の変調信号が、導波路112及び212を介して送受信される。
 図8は、検出モードを説明する図である。
 ここで、説明の便宜上、ベースバンド信号をやりとりする通信装置100及び200(ミリ波通信機111及び211)では、一方の通信装置が、通信の開始を要求し、他方の通信装置が、一方の通信装置からの要求に応じて通信を開始することとする。
 また、通信の開始を要求する通信装置(ミリ波通信機)を、イニシエータともいい、イニシエータからの要求に応じて通信を開始する通信装置を、ターゲットともいうこととする。
 以下では、通信装置100及び200(のミリ波通信機111及び211)のうちの、例えば、通信装置100(のミリ波通信機111)をイニシエータとするとともに、通信装置200(のミリ波通信機211をターゲット)として、説明を行うこととする。
 検出モードでは、イニシエータである通信装置100の送信機121が、所定の信号を、(アンテナ123から)導波路112に送信する。
 検出モードにおいて送信機121が送信する所定の信号としては、例えば、通信モードで送信されるミリ波帯の変調信号よりも狭帯域の信号であって、かつ、低レベルの信号である狭帯域低レベル信号を採用することができる。
 狭帯域低レベル信号としては、発振器132(図6)が出力するミリ波帯のキャリアであって、かつ、アンプ133(図6)のゲインを、通信モードで送信されるミリ波帯の変調信号を増幅する場合よりも低ゲインに設定して得られるレベルの低い信号(以下、低レベルキャリアともいう)を採用することができる。
 また、狭帯域低レベル信号としては、ミリ波帯のキャリアを、通信モードで送信されるベースバンド信号よりも低レート(狭帯域)のベースバンド信号で変調した変調信号であって、アンプ133のゲインを、通信モードで送信されるミリ波帯の変調信号を増幅する場合よりも低ゲインに設定して得られるレベルの低い信号(以下、低レート変調信号ともいう)を採用することができる。
 検出モードにおいて、送信機121が導波路112に送信する狭帯域低レベル信号は、導波路112を伝播し、その導波路112の外部側の端面に到達する。
 通信装置100と通信装置200とが離れている場合、導波路112の外部側の端面は、空間(大気中等)に接するため、誘電率の違いによって、狭帯域低レベル信号は、ほとんど、導波路112の外部側の端面で反射される。そのため、導波路112の外部側の端面からの、狭帯域低レベル信号の電波漏れはほぼない。
 また、電波漏れがあったとしても、その電波漏れの程度(強度)は僅かであり、さらに、狭帯域低レベル信号は、狭帯域で、低レベルの信号であるため、電波漏れとして、法律に違反するような高レベルの信号や広帯域の信号の電波が放射されることはない。
 検出モードでは、以上のように、導波路112の外部側の端面からの狭帯域低レベル信号の電波漏れがほぼない。そのため、通信装置100と通信装置200とが離れている場合には、狭帯域低レベル信号は、通信装置100から通信装置200に到達しないか、到達したとしても、通信装置200の導波路212を伝播して受信機222で受信される狭帯域低レベル信号は、レベルが極めて小さい信号となる。
 図8のAは、検出モードにおいて、通信装置100と通信装置200とが離れている場合に、通信装置200の受信機222で受信される狭帯域低レベル信号のレベルの例を示している。
 図8のAでは、受信機222において、あらかじめ決められた検出モード用の閾値未満のレベルの狭帯域低レベル信号が受信されている。
 一方、通信装置100の導波路112と通信装置200の導波路212とが接触している場合(接触しているとみなせる程度に近接している場合も含む)には、送信機121が送信した狭帯域低レベル信号は、接触している導波路112及び212を伝播し、ある程度のレベルを維持した状態で、受信機222に到達して受信される。
 すなわち、導波路112と212とが接触している場合に受信機222で導波路212を介して受信される狭帯域低レベル信号のレベルは、導波路112と212とが接触していない場合(通信装置100と通信装置200とが離れている場合)に受信機222で導波路212を介して受信される狭帯域低レベル信号のレベルから大きく上昇する。
 図8のBは、通信装置100の導波路112と通信装置200の導波路212とが接触している場合に、通信装置200の受信機222で受信される狭帯域低レベル信号のレベルの例を示している。
 図8のBでは、受信機222において、検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されている。
 通信装置100及び200において、制御部113及び213(図3)は、ターゲットである通信装置200の受信機222で導波路212を介して受信される狭帯域低レベル信号に応じて、動作モードを設定する。
 すなわち、検出モードにおいて、受信機222で導波路212を介して受信される狭帯域低レベル信号のレベルが、検出モード用の閾値以上である場合、制御部113及び213は、導波路112と212との接触が検出されたとして、動作モードを、検出モードから通信モードの設定する。
 これにより、送信機121(を有する通信装置100)の動作モード、及び、受信機222(を有する通信装置200)の動作モードは、検出モードから通信モードとなる。
 通信モードでは、送信機121において、例えば、あらかじめ決められた高レートのベースバンド信号が、キャリアによって、ミリ波帯の変調信号に周波数変換される。さらに、送信機121では、その変調信号が、アンプ133で所定の高ゲインで増幅され、レベルや周波数帯域が、狭帯域低レベル信号よりも大の変調信号が送信される。
 送信機121が送信する変調信号は、接触している導波路112及び212を伝播していき、ある程度のレベルを維持した状態で、受信機222に到達して受信される。
 通信モードにおいて、送信機121が送信し、導波路112及び212を伝播していく変調信号は、レベルや周波数帯域が、狭帯域低レベル信号よりも大の信号であるが、導波路112と212とが接触しているため、電波としての変調信号の電波漏れはない。
 したがって、高レベルな変調信号や広帯域の変調信号が漏れる電波漏れが生じることを防止し、電波を規制する法律を遵守することができる。
 なお、検出モードにおいて送信機121が送信する狭帯域低レベル信号のレベル、及び、検出モード用の閾値は、通信装置100と通信装置200とが離れている場合の電波漏れが、電波を規制する法律を遵守するとともに、通信装置100と通信装置200とが離れている場合に受信機222で受信される狭帯域低レベル信号のレベルが検出モード用の閾値未満となり、かつ、導波路112と212とが接触している場合に受信機222で受信される狭帯域低レベル信号のレベルが検出モード用の閾値以上になるように、あらかじめ調整される。
 図9は、導波路どうしのギャップと、導波路どうし間の伝送特性との関係を調査する第1のシミュレーションを説明する図である。
 第1のシミュレーションでは、導波路112及び212として、断面が矩形の細長い板状の導波路を用いた。
 導波路112及び212の、断面と直交する4面は金属で囲まれおり、内部には誘電体が充填されている。
 導波路112及び212の断面の横×縦は、3mm×1mmであり、断面と直交する4面の金属の厚みは、0.1mmである。
 また、第1のシミュレーションでは、導波路112及び212の内部に充填する誘電体として、2種類の誘電体PA及びPBを用意した。
 誘電体PAとしては、誘電率が2.1で、誘電正接が0.001の誘電体(テフロン(登録商標))を用い、誘電体PBとしては、誘電率が10.2で、誘電正接が0.001の誘電体を用いた。
 第1のシミュレーションでは、導波路112及び212の端面を対向するように配置し、それらの端面どうしのギャップを様々な距離に設定して、導波路112から212への、Sパラメータの伝達係数S21を計測した。
 なお、第1のシミュレーションにおいて、伝達係数S21の計測には、60GHzのキャリアを用いた。
 図10は、図9で説明した第1のシミュレーションのシミュレーション結果を示す図である。
 すなわち、図10は、第1のシミュレーションで得られた、導波路112と212との間のギャップと、導波路112から212への伝達係数S21との関係を示している。
 図10のシミュレーション結果によれば、導波路112及び212の端面どうしのギャップの距離が0の状態から、0でない状態になると、すなわち、導波路112と212とが接触している状態から、僅かに離れると、伝達係数S21が急速に低下することを確認することができる。
 さらに、シミュレーション結果によれば、誘電体PBを用いた方が、誘電体PAを用いる場合に比較して、伝達係数S21が、より急速に低下することを確認することができる。
 導波路112及び212の端面どうしのギャップの距離が0の状態から、0でない状態になるときの伝達係数S21の変化(低下)の程度は、導波路112及び212に充填する誘電体(誘電率)の他、導波路112及び212の断面の形状によって調整することができる。
 図11は、導波路どうしのギャップと、導波路どうし間の伝送特性との関係を調査する第2のシミュレーションを説明する図である。
 第2のシミュレーションでは、第1のシミュレーションと同様に、導波路112及び212として、断面が矩形の細長い板状の導波路であって、断面と直交する4面が金属で囲まれ、内部に誘電体が充填された導波路を用いた。
 但し、第2のシミュレーションでは、導波路112及び212の断面の横×縦(Wg×Hg)は、1.5mm×0.5mmであり、断面と直交する4面の金属の厚みは、0.1mmである。
 また、第2のシミュレーションでは、導波路112及び212の内部に充填する誘電体として、図9で説明した誘電体PBを採用した。
 図9で説明したように、誘電体PBは、誘電率が10.2で、誘電正接が0.001の誘電体である。
 第2のシミュレーションでは、第1のシミュレーションと同様に、導波路112及び212の端面を対向するように配置し、それらの端面どうしのギャップを様々な距離に設定して、導波路112から212への、Sパラメータの伝達係数S21を計測した。
 なお、第2のシミュレーションでは、伝達係数S21の計測には、30ないし90GHzのキャリアを用いた。
 図12は、図11で説明した第2のシミュレーションのシミュレーション結果を示す図である。
 すなわち、図12は、第2のシミュレーションで得られた、導波路112と212との間の複数のギャップそれぞれについての、キャリアの周波数と、導波路112から212への伝達係数S21との関係を示している。
 図12のシミュレーション結果によれば、キャリアの周波数が55ないし70GHz程度の範囲において、導波路112及び212の端面どうしのギャップの距離が0の状態から、0でない状態になると、すなわち、導波路112と212とが接触している状態から、僅かに離れると、伝達係数S21が急速に低下することを確認することができる。
 検出モードでは、以上のように、導波路112と212とが接触している状態と、僅かに離れている状態とで、伝達係数S21が急速に変化することを利用して、通信装置100の導波路112と通信装置200の導波路212との接触が検出される。
 図13は、検出モード及び通信モードを説明する図である。
 図13のAは、検出モードを説明する図である。
 検出モードでは、図8で説明したように、イニシエータである通信装置100の送信機121が、狭帯域低レベル信号を、導波路112に送信する。
 狭帯域低レベル信号としては、図8で説明したように、例えば、低レベルキャリア(レベルの低いキャリア)や低レート変調信号(低レート(狭帯域)のベースバンド信号でキャリアを変調したレベルの低い変調信号)を採用することができる。
 検出モードにおいて、送信機121が導波路112に送信した狭帯域低レベル信号は、導波路112を伝播し、その導波路112の外部側の端面に到達する。
 通信装置100と通信装置200とが離れている場合、導波路112の外部側の端面は、空間に接しているため、誘電率の違いによって、狭帯域低レベル信号は、ほとんど、導波路112の外部側の端面で反射される。そのため、導波路112の外部側の端面からの、電波としての狭帯域低レベル信号の電波漏れはほぼない。
 また、電波漏れがあっても、その電波漏れの程度は僅かであり、さらに、狭帯域低レベル信号は、狭帯域で、低レベルの信号であるため、電波漏れとして、法律に違反するような高レベルの信号や広帯域の信号の電波が放射されることはない。
 したがって、通信装置100と通信装置200とが離れている場合、導波路112の外部側の端面からの狭帯域低レベル信号の電波漏れはほぼない。
 イニシエータである通信装置100と、ターゲットである通信装置200とが離れている場合には、狭帯域低レベル信号は、通信装置100から通信装置200に到達しないか、到達したとしても、通信装置200の導波路212を伝播して受信機222で受信される狭帯域低レベル信号は、レベルが極めて小さい信号となる。
 すなわち、通信装置100と通信装置200とが離れている場合には、受信機222で受信される狭帯域低レベル信号のレベルは、あらかじめ決められた検出モード用の閾値未満のレベルになる。
 ターゲットである通信装置200(の受信機222)で受信される狭帯域低レベル信号のレベルが、検出モード用の閾値未満のレベルである場合、通信装置100及び200(それぞれの送信機121及び受信機222)の動作モードとしては、検出モードが維持される。
 なお、ターゲットである通信装置200の受信機222では、検出モードにおいて、受信帯域を狭めることで、熱雑音を少なくすることにより、受信感度を向上させることができる。受信機222において受信帯域を狭めることは、例えば、図6のアンプ241で増幅する対象の信号の帯域を狭めることや、LPF243の通過域を狭めることで行うことができる。
 検出モードにおいて、通信装置100の導波路112と通信装置200の導波路212とが接触すると、送信機121が送信している狭帯域低レベル信号は、接触した導波路112及び212を伝播し、ある程度のレベルを維持した状態で、受信機222に到達して受信される。
 すなわち、導波路112と212とが接触している場合に受信機222で導波路212を介して受信される狭帯域低レベル信号のレベルは、導波路112と212とが接触していない場合に受信機222で導波路212を介して受信される狭帯域低レベル信号のレベルから大きく上昇し、検出モード用の閾値以上のレベルになる。
 受信機222で受信される狭帯域低レベル信号のレベルが、検出モード用の閾値以上のレベルになると、通信装置100及び200(それぞれの送信機121及び受信機222)の動作モードは、検出モードから通信モードになる。
 図13のBは、通信モードを説明する図である。
 通信モードでは、例えば、送信機121において、あらかじめ決められた高レートのベースバンド信号が、キャリアによって、ミリ波帯の変調信号に周波数変換される。さらに、送信機121では、その変調信号が、アンプ133(図6)で所定の高ゲインで増幅され、レベルや周波数帯域が、狭帯域低レベル信号よりも大の変調信号が送信される。
 送信機121が送信する変調信号は、接触している導波路112及び212を伝播していき、ある程度のレベルを維持した状態で、受信機222に到達して受信される。
 通信モードにおいて、送信機121が送信し、導波路112及び212を伝播していく変調信号は、レベルや周波数帯域が、狭帯域低レベル信号よりも大の信号であるが、導波路112と212とが接触しているため、電波としての変調信号の電波漏れはない。
 したがって、高レベルな変調信号や広帯域の変調信号が漏れる電波漏れが生じることを防止し、電波を規制する法律を遵守することができる。
 なお、ターゲットである通信装置200の受信機222では、検出モードにおいて、狭帯域低レベル信号の受信感度を向上させるために受信帯域を狭めた場合には、動作モードが、検出モードから通信モードになったときに、受信帯域を拡げる(元に戻す)ことで、周波数帯域が大の変調信号、すなわち、高レートのベースバンド信号が受信される。
 <通信装置100及び200の動作>
 図14は、イニシエータである通信装置100と、ターゲットである通信装置200との動作の例を説明するフローチャートである。
 イニシエータである通信装置100では、ステップS11において、制御部113(図3)が、動作モードを検出モードに設定し、処理は、ステップS12に進む。
 ステップS12では、動作モードが検出モードであることに応じて、通信装置100の送信機121が、狭帯域低レベル信号を送信し、処理は、ステップS13に進む。
 ステップS13では、通信装置100の制御部113が、受信機122(図6)で閾値以上のレベルの信号が受信されたかどうかを判定する。
 すなわち、ターゲットである通信装置200は、後述するように、受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信された場合、狭帯域低レベル信号を受信したことを表す受信確認信号(例えば、キャリアそのものや、狭帯域低レベル信号の受信を表すベースバンド信号でキャリアを変調した狭帯域(低レート)の変調信号)を、送信機221から送信する。
 通信装置100と通信装置200とが離れている場合(導波路112と導波路212とが接触していない場合)、通信装置200が送信する受信確認信号は、導波路212を伝播し、(受信確認信号のほとんどは)通信装置100の筐体の表面に露出している方の端面で反射される。
 したがって、通信装置200が送信する受信確認信号は、通信装置100の受信機122に到達しないか、到達したとしても、通信装置100の受信機122で受信される受信確認信号は、レベルが極めて小さい信号となる。
 一方、通信装置100と通信装置200とが接触している場合(導波路112と導波路212とが接触している場合)、通信装置200が送信する受信確認信号は、導波路212及び112を伝播し、通信装置100の受信機122においてある程度のレベルで受信される。
 したがって、通信装置100と通信装置200とが接触している場合、受信機122では、閾値以上のレベルの受信確認信号が受信される。
 ステップS13では、通信装置100の制御部113は、受信機122において、通信装置200からの受信確信信号が、閾値レベル以上で受信されたかどうか、すなわち、閾値以上のレベルの受信確認信号が受信されたかどうかを判定する。
 ステップS13において、閾値以上のレベルの受信確認信号が受信されていないと判定された場合、すなわち、通信装置100の導波路112と通信装置200の導波路212とが接触していないために、通信装置100において、通信装置200からの、閾値以上のレベルの受信確認信号を受信することができない場合、処理は、ステップS12に戻り、以下、同様の処理が繰り返される。
 一方、ステップS13において、閾値以上のレベルの受信確認信号が受信されたと判定された場合、すなわち、通信装置100の導波路112と通信装置200の導波路212とが接触しており、通信装置100において、通信装置200からの、閾値以上のレベルの受信確認信号が受信された場合、処理は、ステップS14に進む。
 ステップS14では、通信装置100の制御部113は、動作モードを、検出モードから通信モードに切り替えることを要求するモード切替信号(例えば、キャリアそのものや、通信モードへの切り替えを要求するベースバンド信号でキャリアを変調した狭帯域の変調信号)を、送信機121に送信させ、処理は、ステップS15に進む。
 通信装置100の送信機121が送信するモード切替信号は、接触している導波路112及び212を伝播し、通信装置200の受信機222で受信される。
 通信装置200は、受信機222でモード切替信号を受信すると、後述するように、モード切替信号を受信したことを表す切り替え確認信号を、送信機221から送信する。
 送信機221が送信する切り替え確認信号は、接触している導波路212及び112を伝播し、通信装置100の受信機122で受信される。
 ステップS15では、通信装置100は、通信装置200の送信機221から送信されてくる切り替え確認信号の待ち受けを行う待ち受け状態となり、処理は、ステップS16に進む。
 ステップS16では、通信装置100の制御部113は、受信機122において、通信装置200からの切り替え確信信号が、閾値レベル以上で受信されたかどうか、すなわち、閾値以上のレベルの切り替え確認信号が受信されたかどうかを判定する。
 ステップS16において、受信機122で、閾値以上のレベルの切り替え確認信号が受信されていないと判定された場合、処理は、ステップS12に戻り、以下、同様の処理が繰り返される。
 すなわち、例えば、導波路112と導波路212とが接触された後、その接触が解除されたために、受信機122で、閾値以上のレベルの切り替え確認信号を受信することができなかった場合、処理は、ステップS16からステップS12に戻り、狭帯域低レベル信号の送信が繰り返される。
 一方、ステップS16において、受信機122で、閾値以上のレベルの切り替え確認信号が受信されたと判定された場合、処理は、ステップS17に進む。
 すなわち、通信装置200の受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されることに起因して、通信装置100において、通信装置200からの、閾値以上のレベルの受信確認信号及び切り替え確認信号が受信された場合、処理は、ステップS16からステップS17に進む。
 ステップS17では、通信装置100の制御部113は、通信装置200からの、閾値以上のレベルの受信確認信号及び切り替え確認信号を受信したことに応じて、すなわち、通信装置200の受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されたことに応じて、通信装置100の動作モードを検出モードから通信モードに設定し(切り替え)、処理は、ステップS18に進む。
 ステップS18では、通信装置100の制御部113は、送信機121及び受信機122を制御することで、高レートのベースバンド信号でキャリアを変調した変調信号を高いゲインで増幅することにより得られる信号(以下、広帯域高レベル信号ともいう)の、接触している導波路112及び212を介しての送受信を開始させ、処理は、ステップS19に進む。
 ステップS19では、通信装置100の制御部113が、受信機122(図6)で閾値以上のレベルの信号が受信できなくなったかどうかを判定する。
 すなわち、導波路112と導波路212とが接触すると、上述のように、通信装置100及び200は、検出モードから通信モードとなって、広帯域高レベル信号の送受信を開始する。
 導波路112と導波路212とが接触している場合には、通信装置100及び200が送受信を行う広帯域高レベル信号は、接触している導波路112及び212に、いわば閉じ込められるため、電波としての広帯域高レベル信号の電波漏れはない。さらに、通信装置100の受信機122では、通信装置200の送信機221が送信する広帯域高レベル信号を、あらかじめ決められた広帯域高レベル信号用の閾値(以下、通信モード用の閾値ともいう)以上のレベルで受信することができる。同様に、通信装置200の受信機222では、通信装置100の送信機121が送信する広帯域高レベル信号を、通信モード用の閾値以上のレベルで受信することができる。
 一方、導波路112と導波路212との接触が解除されると、導波路112を伝播して、通信装置100の受信機122で受信される、通信装置200からの広帯域高レベル信号のレベルは、低下する。同様に、導波路212を伝播して、通信装置200の受信機222で受信される、通信装置100からの広帯域高レベル信号のレベルも、低下する。
 したがって、導波路112と導波路212との接触が解除されると、通信装置100の受信機112、及び、通信装置200の受信機212のいずれにおいても、通信モード用の閾値以上のレベルの広帯域高レベル信号を受信することができなくなる。
 ステップS19では、通信装置100の制御部113が、以上のように、導波路112と導波路212との接触が解除され、通信装置100の受信機112で通信モード用の閾値以上のレベルの広帯域高レベル信号が受信できなくなったかどうかを判定する。
 ステップS19において、通信装置100の受信機112で通信モード用の閾値以上のレベルの広帯域高レベル信号が受信できていると判定された場合、処理は、ステップS19に戻り、以下、同様の処理が繰り返される。
 すなわち、導波路112と導波路212との接触が維持されており、通信装置100の受信機112において、通信装置200からの、通信モード用の閾値以上のレベルの広帯域高レベル信号を受信することができる場合、通信モードが維持され、広帯域高レベル信号の送受信が続行される。
 一方、ステップS19において、通信装置100の受信機112で通信モード用の閾値以上のレベルの広帯域高レベル信号が受信できなくなったと判定された場合、処理は、ステップS11に戻る。
 ステップS11では、上述したように、通信装置100の制御部113は、動作モードを検出モードに設定し、以下、同様の処理が繰り返される。
 すなわち、導波路112と導波路212との接触が解除され、通信装置100の受信機112において、通信モード用の閾値以上のレベルの広帯域高レベル信号を受信することができなくなった場合、通信装置100では、動作モードが、通信モードから検出モードに切り替えられる。
 一方、ターゲットである通信装置200では、ステップS31において、制御部213(図3)が、動作モードを検出モードに設定し、処理は、ステップS32に進む。
 ステップS32では、通信装置200の受信機222が、狭帯域低レベル信号の受信を開始し、処理は、ステップS33に進む。
 すなわち、上述したように、検出モードにおいて、イニシエータである通信装置100は、ステップS12で、狭帯域低レベル信号を送信するので、ターゲットである通信装置200の受信機222は、ステップS32において、通信装置100からの狭帯域低レベル信号の受信を開始する。
 ステップS33では、通信装置200の制御部213が、受信機222(図6)で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されたかどうかを判定する。
 ステップS33において、受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されていないと判定された場合、処理は、ステップS33に戻り、以下、同様の処理が繰り返される。
 すなわち、導波路112と導波路212とが接触していないために、通信装置200の受信機222で受信される、通信装置100からの狭帯域低レベル信号のレベルが、検出モード用の閾値未満である場合、受信機222での狭帯域低レベル信号の受信が続行される。
 一方、ステップS33において、受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されたと判定された場合、処理は、ステップS34に進む。
 すなわち、導波路112と導波路212とが接触し、そのため、通信装置200の受信機222で受信される、通信装置100からの狭帯域低レベル信号のレベルが、検出モード用の閾値以上である場合、処理は、ステップS34に進む。
 ステップS34では、通信装置200の制御部213は、検出モード用の閾値以上のレベルの狭帯域低レベル信号を受信したことに応じて、送信機221を制御することにより、受信確認信号を送信させ、処理は、ステップS35に進む。
 ステップS35では、通信装置200は、通信装置100からステップS14で送信されるモード切替信号の待ち受けを行い、処理は、ステップS36に進む。
 ステップS36では、制御部200の制御部213が、通信装置100からのモード切替信号が受信機222で受信されたかどうかを判定する。
 すなわち、送信機221がステップS34で送信した受信確認信号は、接触している導波路212及び112を伝播し、通信装置100の受信機122において、閾値以上のレベルで受信される。
 閾値以上のレベルの受信確認信号を受信機122で受信した通信装置100は、上述したように、ステップS14でモード切替信号を送信する。そのため、通信装置200は、ステップS35で、通信装置100からのモード切替信号の待ち受けを行い、ステップS36で、通信装置100からのモード切替信号を受信したかどうかを判定する。
 ステップS36において、通信装置100からのモード切替信号を受信していないと判定された場合、処理は、ステップS32に戻り、以下、同様の処理が繰り返される。
 すなわち、例えば、導波路112と導波路212とが接触された後、その接触が解除されたために、通信装置200の受信機222で、モード切替信号を受信することができなかった場合、処理は、ステップS36からステップS32に戻り、狭帯域低レベル信号の受信が開始される。
 一方、ステップS36において、受信機122で、モード切替信号が受信されたと判定された場合、処理は、ステップS37に進む。
 ステップS37では、通信装置200の制御部213は、モード切替信号の受信に応じて、送信機221を制御することにより、切り替え確認信号を送信させ、処理は、ステップS38に進む。
 切り替え確認信号は、接触している導波路212及び112を伝播し、通信装置100の受信機122において受信される。
 ステップS38では、通信装置200の制御部213は、通信装置100からのモード切替信号が受信されたことに応じて、すなわち、すなわち、受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号が受信されたことに応じて、通信装置200の動作モードを検出モードから通信モードに設定し、処理は、ステップS39に進む。
 ステップS39では、通信装置200の制御部213は、送信機221及び受信機222を制御することで、広帯域高レベル信号(高レートのベースバンド信号でキャリアを変調した変調信号を高いゲインで増幅することにより得られる信号)の、接触している導波路212及び112を介しての送受信を開始させ、処理は、ステップS40に進む。
 ステップS40では、通信装置2100の制御部213が、受信機222で閾値以上のレベルの信号が受信できなくなったかどうかを判定する。
 すなわち、導波路112と導波路212とが接触すると、上述のステップS17及びS39で説明したように、通信装置100及び200は、検出モードから通信モードとなって、広帯域高レベル信号の送受信を開始する。
 導波路112と導波路212とが接触している場合には、電波としての広帯域高レベル信号の電波漏れを生じさせることなく、通信装置200の受信機222において、通信装置100の送信機121が送信する広帯域高レベル信号を、通信モード用の閾値以上のレベルで受信することができる。
 一方、導波路112と導波路212との接触が解除されると、通信装置200の受信機222で受信される広帯域高レベル信号のレベルは、低下する。
 したがって、導波路112と導波路212との接触が解除されると、通信装置200の受信機212において、通信モード用の閾値以上のレベルの広帯域高レベル信号を受信することができなくなる。
 ステップS40では、通信装置200の制御部213が、以上のように、導波路112と導波路212との接触が解除され、通信装置200の受信機212で通信モード用の閾値以上のレベルの広帯域高レベル信号が受信できなくなったかどうかを判定する。
 ステップS40において、通信装置200の受信機212で通信モード用の閾値以上のレベルの広帯域高レベル信号が受信できていると判定された場合、処理は、ステップS40に戻り、以下、同様の処理が繰り返される。
 すなわち、導波路112と導波路212とが接触しており、通信装置200の受信機212において、通信装置100からの、通信モード用の閾値以上のレベルの広帯域高レベル信号を受信することができる場合、通信モードが維持され、広帯域高レベル信号の送受信が続行される。
 一方、ステップS40において、通信装置200の受信機212で通信モード用の閾値以上のレベルの広帯域高レベル信号が受信できなくなったと判定された場合、処理は、ステップS31に戻る。
 ステップS31では、上述したように、通信装置200の制御部213は、動作モードを検出モードに設定し、以下、同様の処理が繰り返される。
 すなわち、導波路112と導波路212との接触が解除され、通信装置200の受信機212において、通信モード用の閾値以上のレベルの広帯域高レベル信号を受信することができなくなった場合、通信装置200では、動作モードが、通信モードから検出モードに切り替えられる。
 以上のように、送信機121は、検出モードにおいて、狭帯域低レベル信号等の所定の信号を、導波路112に送信し、受信機222で導波路212を介して受信される、検出モード用の閾値以上のレベル狭帯域低レベル信号に応じて、検出モードから通信モードとなる。そして、送信機121は、通信モードにおいて、変調信号を、導波路112及び212を介して送信する。
 一方、受信機222は、検出モードにおいて、狭帯域低レベル信号を、導波路212を介して受信し、導波路212を介して受信される、検出モード用の閾値以上のレベル狭帯域低レベル信号に応じて、検出モードから通信モードとなる。そして、受信機222は、通信モードにおいて、変調信号を、導波路112及び212を介して受信する。
 すなわち、送信機121及び受信機222では、受信機222で検出モード用の閾値以上のレベル狭帯域低レベル信号が受信された場合に、導波路112と導波路212との接触(の検出)があったとして、動作モードが検出モードから通信モードに切り替えられ、変調信号が送受信される。
 したがって、送信機121及び受信機222では、接触検出専用の接触検出装置13及び23を用いることなく、検出モードにおいて、送信機121側の導波路112と、受信機222側の導波路212とが接触したことを検出することができ、さらに、導波路112と導波路212とが接触している状態で、変調信号の送受信を行うことができる。
 その結果、接触検出装置13及び23を設けることによる通信装置100や通信装置200の大型化及び高コスト化を抑制することができる。
 また、導波路112と導波路212とが接触しておらず、多くの電波漏れの懸念がある場合には、送信機121及び受信機は、検出モードとなって、狭帯域低レベル信号を送受信するので、電波を規制する法律を遵守することができる。
 さらに、導波路112と導波路212とが接触している場合には、送信機121及び受信機222が、通信モードとなって、広帯域高レベル信号が送受信されるが、導波路112と導波路212とが接触しているので、広帯域高レベル信号の電波漏れを防止し、電波を規制する法律を遵守することができる。
 なお、狭帯域低レベル信号としては、図8で説明したように、例えば、低レベルキャリアや低レート変調信号を採用することができる。狭帯域低レベル信号として、低レート変調信号を採用する場合には、その低レート変調信号を生成するのに用いるベースバンド信号として、例えば、動作モードの切り替えを要求する所定のパターンを採用することができる。
 この場合、通信装置200において、受信機22で受信された狭帯域低レベル信号としての低レート変調信号から、動作モードの切り替えを要求する所定のパターンを復調することができたときに、導波路112と導波路212との接触があったこととすることができる。
 あるいは、この場合、受信機22で受信された低レート変調信号のレベルが、検出モード用の閾値以上のレベルであり、かつ、低レート変調信号から、動作モードの切り替えを要求する所定のパターンを復調することができたときに、導波路112と導波路212との接触があったこととすることができる。
 さらに、図14では、通信装置200の受信機222で、検出モード用の閾値以上のレベルの狭帯域低レベル信号の受信と、モード切替信号の受信とが行われ、通信装置100の受信機122で、受信確認信号及び切り替え確認信号の受信が行われた場合に、動作モードを、検出モードから通信モードに切り替えるようにしたが、動作モードの切り替えは、少なくとも、通信装置200の受信機222で受信された狭帯域低レベル信号を用いた任意の方法で行うことができる。
 すなわち、例えば、通信装置200では、受信機222で検出モード用の閾値以上のレベルの狭帯域低レベル信号の受信が行われた場合に、通信装置100では、受信機222での検出モード用の閾値以上のレベルの狭帯域低レベル信号の受信に応じて、受信機122で受信確認信号の受信が行われた場合に、それぞれ、検出モードから通信モードへの動作モードの切り替えを行うことができる。
 また、例えば、通信装置200の受信機222で受信される狭帯域低レベル信号の急激な上昇(あらかじめ決められた閾値以上の上昇)や、急激な低下(あらかじめ決められた閾値以上の低下)があった場合に、導波路112と導波路212との接触や、導波路112と導波路212との接触の解除(の検出)があったとして、検出モードから通信モードへの動作モードの切り替えや、通信モードから検出モードへの動作モードの切り替えを行うことができる。
 以上のように、通信装置200の受信機222で受信される狭帯域低レベル信号のレベル(受信レベル)に応じて、動作モードの切り替えを行う場合には、動作モードの切り替えは、検出モード用の閾値と比較される、狭帯域低レベル信号の絶対的なレベルに応じて行うこともできるし、狭帯域低レベル信号のレベルの変化量に応じて行うこともできる。
 ここで、図14では、受信機222で受信された狭帯域低レベル信号の(絶対的な)レベルが、検出モード用の閾値以上のレベルである場合に、動作モードを検出モードから通信モードに切り替え、受信機122又は222で受信された変調信号である広帯域高レベル信号の(絶対的な)レベルが、通信モード用の閾値以下のレベルである場合(通信モード用の閾値以上のレベルでない場合)に、動作モードを通信モードから検出モードに切り替えることとしたが、動作モードの切り替えに使用する検出モード用の閾値、及び、通信モード用の閾値としては、同一の値を採用することもできるし、異なる値を採用することもできる。
 <検出モード用の閾値、及び、通信モード用の閾値として、異なる値を採用する場合の動作モードの切り替え>
 図15は、検出モード用の閾値、及び、通信モード用の閾値として、異なる値を採用する場合の動作モードの切り替えを説明する図である。
 図15のAは、通信モード用の閾値(第2の閾値)THoffとして、検出モード用の閾値(第1の閾値)THonよりも小さい値を採用する場合の、動作モードの切り替えを説明する図である。
 図15のAでは、受信機222で受信された狭帯域低レベル信号のレベルPrxが、通信モード用の閾値THoffよりも大きい検出モード用の閾値THon以上のレベルになると、動作モードが、通信モードになる。
 そして、受信機122又は222で受信される変調信号のレベルPrxが、検出モード用の閾値THonより小さい通信モード用の閾値THoff以下のレベルになると、動作モードが、検出モードになる。
 以上のように、通信モード用の閾値THoffとして、検出モード用の閾値THonよりも小さい値を採用する場合には、受信機222で、ノイズのような小さなレベルの信号を受信したことによって、動作モードが、誤って、検出モードから通信モードに切り替えられることを防止することができる。
 さらに、受信機122又は222で受信される変調信号のレベルPrxが、何からの原因で、一瞬だけ低下した場合に、動作モードが、誤って、通信モードから検出モードに切り替えられることを防止することができる。
 図15のBは、通信モード用の閾値THoffとして、検出モード用の閾値(第1の閾値)THonよりも大きい値を採用する場合の、動作モードの切り替えを説明する図である。
 図15のBでは、受信機222で受信された狭帯域低レベル信号のレベルPrxが、通信モード用の閾値THoffよりも小さい検出モード用の閾値THon以上のレベルになると、動作モードが、通信モードになる。
 そして、受信機122又は222で受信される変調信号のレベルPrxが、検出モード用の閾値THonより大きい通信モード用の閾値THoff以下のレベルになると、動作モードが、検出モードになる。
 以上のように、通信モード用の閾値THoffとして、検出モード用の閾値THonよりも大きい値を採用する場合には、送信機121から送信する狭帯域低レベル信号のレベルを抑制して、低消費電力化を図ることができるとともに、検出モードから通信モードへの切り替えの反応を敏感にすることができる。
 さらに、導波路112と導波路212とが接触して、通信モードになった後、導波路112と導波路212との接触にずれが生じ、変調信号が空間に放射されるようになった場合に、動作モードが、即座に、通信モードから検出モードに切り替えられるので、変調信号の電波漏れを、より強固に抑制することができる。
 <動作モードの切り替えの他の例>
 図16は、動作モードの切り替えの他の例を説明する図である。
 図3ないし図15では、ターゲットである通信装置200の受信機222で受信される狭帯域低レベル信号に応じて、動作モードを、検出モードから通信モードに切り替えることとしたが、検出モードから通信モードへの動作モードの切り替えは、ターゲットである通信装置200の受信機222で受信される狭帯域低レベル信号と、イニシエータである通信装置100の受信機122で受信される狭帯域低レベル信号とに応じて行うことができる。
 図16は、受信機222で受信される狭帯域低レベル信号と、受信機122で受信される狭帯域低レベル信号とに応じて行われる動作モードの切り替えを説明する図である。
 なお、受信機222で受信される狭帯域低レベル信号と、受信機122で受信される狭帯域低レベル信号とに応じて、動作モードの切り替えを行う場合には、図4で説明したように、導波路112が、送信及び受信の両方で兼用される1の導波路で構成されることとする。
 図8で説明したように、検出モードにおいて、送信機121がアンテナ123から導波路112に送信する狭帯域低レベル信号は、導波路112を伝播し、その導波路112の外部側の端面に到達する。
 そして、導波路112と導波路212とが離れている場合(通信装置100と通信装置200とが離れている場合)、導波路112の外部側の端面は、空間に接するため、誘電率の違いによって、狭帯域低レベル信号は、ほとんど、導波路112の外部側の端面で反射される。
 導波路112の外部側の端面で反射された狭帯域低レベル信号は、導波路112を、アンテナ123側に戻ってくるように伝播し、アンテナ123、ひいては、受信機122で受信される。
 導波路112と導波路212とが離れている場合、導波路112の外部側の端面では、上述のように、送信機121が送信する狭帯域低レベル信号のほとんどが反射されるため、受信機122では、ある程度大きなレベルの狭帯域低レベル信号が受信される。
 一方、導波路112と導波路212とが接触している場合、送信機121が送信する狭帯域低レベル信号は、接触している導波路112及び212を伝播し、ある程度のレベルを維持した状態で、受信機222に到達して受信される。
 そして、導波路112と導波路212とが接触している場合、導波路112の外部側の端面では、狭帯域低レベル信号は、ほとんど反射されない。
 したがって、導波路112と導波路212とが接触している場合、受信機222では、レベルの大きな狭帯域低レベル信号が受信されるが、受信機122では、極めてレベルが低い狭帯域低レベル信号が受信される(又は、狭帯域低レベル信号が受信されない)。
 以上から、導波路112と導波路212とが離れている場合には、受信機222では、レベルの小さな狭帯域低レベル信号が受信される(又は、狭帯域低レベル信号が受信されない)が、受信機122では、レベルの大きな狭帯域低レベル信号が受信される。
 一方、導波路112と導波路212とが接触している場合には、受信機222では、レベルの大きな狭帯域低レベル信号が受信されるが、受信機122では、レベルの小さな狭帯域低レベル信号が受信される(又は、狭帯域低レベル信号が受信されない)。
 したがって、受信機222において、レベルの小さな狭帯域低レベル信号が受信され、かつ、受信機122において、レベルの大きな狭帯域低レベル信号が受信される場合に、導波路112と導波路212との接触が解除されているとして、動作モードを、検出モードに切り替えることができる。
 また、受信機222において、レベルの大きな狭帯域低レベル信号が受信され、受信機122において、レベルの小さな狭帯域低レベル信号が受信される場合に、導波路112と導波路212とが接触されているとして、動作モードを、通信モードに切り替えることができる。
 ここで、レベルの大小は、あらかじめ決められた閾値との比較により判定することができる。
 なお、動作モードを検出モードに切り替えるにあたっては、受信機122においてレベルの大きな狭帯域低レベル信号が受信されることに代えて、受信機122において受信される狭帯域低レベル信号の急激な上昇(あらかじめ決められた閾値以上の上昇)があったことを用いることができる。
 同様に、動作モードを通信モードに切り替えるにあたっては、受信機122においてレベルの小さな狭帯域低レベル信号が受信されることに代えて、受信機122において受信される狭帯域低レベル信号の急激な低下(あらかじめ決められた閾値以上の低下)があったことを用いることができる。
 以上のように、ターゲットである通信装置200の受信機222で受信される狭帯域低レベル信号と、イニシエータである通信装置100の受信機122で受信される狭帯域低レベル信号(導波路112の外部側の端面で反射されて戻ってくる狭帯域低レベル信号)とに応じて、導波路112と導波路212との接触や接触の解除の検出を行って、動作モードを切り替える場合には、導波路112と導波路212との接触や接触の解除の検出の精度を向上させることができる。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本実施の形態では、変調信号(及びキャリア)として、ミリ波帯の信号を採用したが、変調信号としては、ミリ波よりも低い、又は、高い周波数帯の信号(例えば、光等)を採用することができる。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術は、以下の構成をとることができる。
 <1>
  送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
  ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して送信する通信モードと
 を、動作モードとして有し、
 前記検出モードにおいて、所定の信号を、前記第1の導波路に送信し、
 前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
 前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して送信する
 前記送信機。
 <2>
 前記所定の信号は、前記変調信号よりも狭帯域の信号であって、かつ、低レベルの信号である狭帯域低レベル信号である
 <1>に記載の送信機。
 <3>
 前記受信機で前記第2の導波路を介して受信される前記所定の信号のレベルが閾値以上である場合に、前記通信モードになる
 <1>又は<2>に記載の送信機。
 <4>
 前記検出モードにおいて、前記受信機で前記第2の導波路を介して受信される前記所定の信号のレベルが第1の閾値以上である場合に、前記通信モードになり、前記通信モードにおいて、前記第1の導波路を介して受信される変調信号のレベルが、前記第1の閾値より大きい、又は、小さい第2の閾値以下である場合に、前記検出モードになる
 <3>に記載の送信機。
 <5>
 前記第1の導波路の端面で反射されて戻ってくる前記所定の信号にも応じて、前記検出モードから前記通信モードとなる
 <1>ないし<4>のいずれかに記載の送信機。
 <6>
 前記第1及び第2の導波路は、中空の金属に、所定の誘電体が充填されて構成される
 <1>ないし<5>のいずれかに記載の送信機。
 <7>
 前記所定の信号及び前記変調信号は、ミリ波帯の信号である
 <1>ないし<6>のいずれかに記載の送信機。
 <8>
  送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
  ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して送信する通信モードと
 を、動作モードとして有する前記送信機が、
 前記検出モードにおいて、所定の信号を、前記第1の導波路に送信し、
 前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
 前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して送信する
 送信方法。
 <9>
  送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
  ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して受信する通信モードと
 を、動作モードとして有し、
 前記検出モードにおいて、所定の信号を、前記第2の導波路を介して受信し、
 前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
 前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して受信する
 前記受信機。
 <10>
 前記所定の信号は、前記変調信号よりも狭帯域の信号であって、かつ、低レベルの信号である狭帯域低レベル信号である
 <9>に記載の受信機。
 <11>
 前記第2の導波路を介して受信される前記所定の信号のレベルが閾値以上である場合に、前記通信モードになる
 <9>又は<10>に記載の受信機。
 <12>
 前記検出モードにおいて、前記第2の導波路を介して受信される前記所定の信号のレベルが第1の閾値以上である場合に、前記通信モードになり、前記通信モードにおいて、前記第2の導波路を介して受信される変調信号のレベルが、前記第1の閾値より大きい、又は、小さい第2の閾値以下である場合に、前記検出モードになる
 <11>に記載の受信機。
 <13>
 前記第1及び第2の導波路は、中空の金属に、所定の誘電体が充填されて構成される
 <9>ないし<12>のいずれかに記載の受信機。
 <14>
 前記所定の信号及び前記変調信号は、ミリ波帯の信号である
 <9>ないし<13>のいずれかに記載の受信機。
 <15>
  送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
  ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して受信する通信モードと
 を、動作モードとして有する前記受信機が、
 前記検出モードにおいて、所定の信号を、前記第2の導波路を介して受信し、
 前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
 前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して受信する
 受信方法。
 11 ミリ波通信機, 12 導波路, 13 接触検出装置, 14 制御部, 21 ミリ波通信機, 22 導波路, 23 接触検出装置, 24 制御部, 100 通信装置, 111 ミリ波通信機, 112,112S,112R 導波路, 113 制御部, 121 送信機, 122 受信機, 123,123S,123R アンテナ, 131 ミキサ, 132 発振器, 133 アンプ, 134,135 スイッチ, 141 アンプ, 142 ミキサ, 143 LPF, 144 スイッチ, 200 通信装置, 211 ミリ波通信機, 212,212S,212R 導波路, 213 制御部, 221 送信機, 222 受信機, 223,223S,223R アンテナ, 231 ミキサ, 232 発振器, 233 アンプ, 234,235 スイッチ, 241 アンプ, 242 ミキサ, 243 LPF, 244 スイッチ

Claims (15)

  1.   送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
      ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して送信する通信モードと
     を、動作モードとして有し、
     前記検出モードにおいて、所定の信号を、前記第1の導波路に送信し、
     前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
     前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して送信する
     前記送信機。
  2.  前記所定の信号は、前記変調信号よりも狭帯域の信号であって、かつ、低レベルの信号である狭帯域低レベル信号である
     請求項1に記載の送信機。
  3.  前記受信機で前記第2の導波路を介して受信される前記所定の信号のレベルが閾値以上である場合に、前記通信モードになる
     請求項1に記載の送信機。
  4.  前記検出モードにおいて、前記受信機で前記第2の導波路を介して受信される前記所定の信号のレベルが第1の閾値以上である場合に、前記通信モードになり、前記通信モードにおいて、前記第1の導波路を介して受信される変調信号のレベルが、前記第1の閾値より大きい、又は、小さい第2の閾値以下である場合に、前記検出モードになる
     請求項3に記載の送信機。
  5.  前記第1の導波路の端面で反射されて戻ってくる前記所定の信号にも応じて、前記検出モードから前記通信モードとなる
     請求項1に記載の送信機。
  6.  前記第1及び第2の導波路は、中空の金属に、所定の誘電体が充填されて構成される
     請求項1に記載の送信機。
  7.  前記所定の信号及び前記変調信号は、ミリ波帯の信号である
     請求項1に記載の送信機。
  8.   送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
      ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して送信する通信モードと
     を、動作モードとして有する前記送信機が、
     前記検出モードにおいて、所定の信号を、前記第1の導波路に送信し、
     前記受信機で前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
     前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して送信する
     送信方法。
  9.   送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
      ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して受信する通信モードと
     を、動作モードとして有し、
     前記検出モードにおいて、所定の信号を、前記第2の導波路を介して受信し、
     前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
     前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して受信する
     前記受信機。
  10.  前記所定の信号は、前記変調信号よりも狭帯域の信号であって、かつ、低レベルの信号である狭帯域低レベル信号である
     請求項9に記載の受信機。
  11.  前記第2の導波路を介して受信される前記所定の信号のレベルが閾値以上である場合に、前記通信モードになる
     請求項9に記載の受信機。
  12.  前記検出モードにおいて、前記第2の導波路を介して受信される前記所定の信号のレベルが第1の閾値以上である場合に、前記通信モードになり、前記通信モードにおいて、前記第2の導波路を介して受信される変調信号のレベルが、前記第1の閾値より大きい、又は、小さい第2の閾値以下である場合に、前記検出モードになる
     請求項11に記載の受信機。
  13.  前記第1及び第2の導波路は、中空の金属に、所定の誘電体が充填されて構成される
     請求項9に記載の受信機。
  14.  前記所定の信号及び前記変調信号は、ミリ波帯の信号である
     請求項9に記載の受信機。
  15.   送信機側の第1の導波路と、受信機側の第2の導波路との接触を検出する検出モードと、
      ベースバンド信号を周波数変換して得られる変調信号を、前記第1及び第2の導波路を介して受信する通信モードと
     を、動作モードとして有する前記受信機が、
     前記検出モードにおいて、所定の信号を、前記第2の導波路を介して受信し、
     前記第2の導波路を介して受信される前記所定の信号に応じて、前記検出モードから前記通信モードとなり、
     前記通信モードにおいて、前記変調信号を、前記第1及び第2の導波路を介して受信する
     受信方法。
PCT/JP2017/000013 2016-01-15 2017-01-04 送信機、送信方法、受信機、及び、受信方法 WO2017122555A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/065,997 US10511465B2 (en) 2016-01-15 2017-01-04 Transmitter, transmission method, receiver, and reception method
EP17738310.6A EP3404840A4 (en) 2016-01-15 2017-01-04 Transmitter, transmission method, receiver, and receiving method
CN201780005832.4A CN108476034A (zh) 2016-01-15 2017-01-04 发送器、发送方法、接收器和接收方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-006004 2016-01-15
JP2016006004 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122555A1 true WO2017122555A1 (ja) 2017-07-20

Family

ID=59310996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000013 WO2017122555A1 (ja) 2016-01-15 2017-01-04 送信機、送信方法、受信機、及び、受信方法

Country Status (4)

Country Link
US (1) US10511465B2 (ja)
EP (1) EP3404840A4 (ja)
CN (1) CN108476034A (ja)
WO (1) WO2017122555A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122555A1 (ja) * 2016-01-15 2017-07-20 ソニー株式会社 送信機、送信方法、受信機、及び、受信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244179A (ja) * 2010-05-18 2011-12-01 Sony Corp 信号伝送システム、コネクタ装置、電子機器、信号伝送方法
JP2012109700A (ja) 2010-11-16 2012-06-07 Sony Corp 受信装置、受信方法、及び、電子機器
JP2014050271A (ja) * 2012-09-03 2014-03-17 Toshiba Corp 送電装置、受電装置および無線電力伝送システム
JP2015186068A (ja) * 2014-03-25 2015-10-22 ソニー株式会社 通信装置、及び、制御方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912651B1 (en) * 1998-03-31 2005-06-28 Hewlett-Packard Development Company, L.P. Wireless universal serial bus link for a computer system
US7003058B2 (en) * 2002-02-27 2006-02-21 The Boeing Company Polarization division duplexing with cross polarization interference canceller
US7175249B2 (en) * 2003-06-06 2007-02-13 Canon Kabushiki Kaisha Recording apparatus and electronic apparatus
US20110090086A1 (en) * 2007-10-22 2011-04-21 Kent Dicks Systems for personal emergency intervention
WO2009123233A1 (ja) * 2008-03-31 2009-10-08 京セラ株式会社 高周波モジュールおよびその製造方法ならびに該高周波モジュールを備えた送信器、受信器、送受信器およびレーダ装置
US20100296819A1 (en) * 2008-04-24 2010-11-25 Kahn Joseph M Optical Receivers and Communication Systems
US9191263B2 (en) * 2008-12-23 2015-11-17 Keyssa, Inc. Contactless replacement for cabled standards-based interfaces
KR20120073205A (ko) * 2009-08-31 2012-07-04 소니 주식회사 신호 전송 장치, 전자기기, 및, 신호 전송 방법
US8831073B2 (en) * 2009-08-31 2014-09-09 Sony Corporation Wireless transmission system, wireless communication device, and wireless communication method
JP5671933B2 (ja) * 2010-10-18 2015-02-18 ソニー株式会社 信号伝送装置
JP5005845B2 (ja) * 2010-12-07 2012-08-22 パナソニック株式会社 電子機器
WO2012119396A1 (zh) * 2011-08-18 2012-09-13 华为技术有限公司 光收发一体组件和光收发模块
JP2013162149A (ja) * 2012-02-01 2013-08-19 Sony Corp 伝送方法、及び、伝送システム
US9054078B2 (en) * 2012-02-08 2015-06-09 Sony Corporation Signal processing device
US20150061398A1 (en) * 2012-09-03 2015-03-05 Kabushiki Kaisha Toshiba Power Transmitting Apparatus, Power Receiving Apparatus, and Wireless Power Transmission System
CN103891041B (zh) * 2013-07-04 2015-09-30 华为技术有限公司 滤波器、通信装置及通信系统
HUE039331T2 (hu) * 2013-12-16 2018-12-28 Grieshaber Vega Kg Súlyeszköz hullámvezetõhöz, egy szondaeszköz és eljárás súlyeszköz gyártására
CN104836208B (zh) * 2014-02-11 2019-02-01 快捷半导体(苏州)有限公司 标准连接器适配器保护电路和保护方法
JP6138076B2 (ja) 2014-03-17 2017-05-31 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信システム、及び、通信方法
CN103916179B (zh) * 2014-03-28 2016-09-07 武汉光迅科技股份有限公司 通过局端光线路终端监控用户端可调激光器波长的方法
US9749043B2 (en) * 2014-12-09 2017-08-29 Exfo Inc. Method for referencing an optical power loss measurement system, and associated computer readable memory and OPLM system
JP2017004404A (ja) * 2015-06-15 2017-01-05 ソニー株式会社 通信装置、及び、制御方法
WO2017122555A1 (ja) * 2016-01-15 2017-07-20 ソニー株式会社 送信機、送信方法、受信機、及び、受信方法
US9977206B2 (en) * 2016-05-23 2018-05-22 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Asynchronous distributed optical mutual exclusion interconnect and method
US20180279601A1 (en) * 2017-04-03 2018-10-04 At&T Intellectual Property I, L.P. Methods, systems and devices to provide physical security to waveguides
US10579119B2 (en) * 2017-05-23 2020-03-03 Cirrus Logic, Inc. Active charge through of a peripheral device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244179A (ja) * 2010-05-18 2011-12-01 Sony Corp 信号伝送システム、コネクタ装置、電子機器、信号伝送方法
JP2012109700A (ja) 2010-11-16 2012-06-07 Sony Corp 受信装置、受信方法、及び、電子機器
JP2014050271A (ja) * 2012-09-03 2014-03-17 Toshiba Corp 送電装置、受電装置および無線電力伝送システム
JP2015186068A (ja) * 2014-03-25 2015-10-22 ソニー株式会社 通信装置、及び、制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404840A4

Also Published As

Publication number Publication date
EP3404840A4 (en) 2018-12-26
EP3404840A1 (en) 2018-11-21
US10511465B2 (en) 2019-12-17
CN108476034A (zh) 2018-08-31
US20190013975A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US10673479B2 (en) Range-based transmission parameter adjustment
JP4387323B2 (ja) Rfid用送受信装置
US7696835B2 (en) Communication system, transmitting device, transmitting method, receiving device, and receiving method
JP6140092B2 (ja) コネクタ装置、通信装置、及び、通信システム
US20160197630A1 (en) Millimeter wave transmission device, millimeter wave transmission method, and millimeter wave transmission system
JP2011055457A (ja) 送受信信号を分離するための結合装置及び制御方法
KR20070050466A (ko) 무선 데이터 통신 장치
KR20030010586A (ko) 광대역 2중 방향성 커플러를 이용하여 실제 전송된 전력을측정하는 방법 및 장치
CN109375176B (zh) 一种发射机功放模块
JP6138076B2 (ja) 通信装置、通信システム、及び、通信方法
CN112118055B (zh) 一种驻波检测装置及通信设备
WO2016136091A1 (ja) コネクタ装置、通信装置、及び、通信システム
WO2017122555A1 (ja) 送信機、送信方法、受信機、及び、受信方法
US7236745B2 (en) Transceiver power detection architecture
JP5724538B2 (ja) 信号伝送装置、通信装置、電子機器、及び、信号伝送方法
US20080008271A1 (en) Dual-system transmitting and receiving device
JP2010245905A5 (ja)
US10291383B2 (en) Communication device and method for wireless signal transmission
WO2018066349A1 (ja) 通信装置、通信方法、及び、電子機器
Mohsin et al. Design and implementation of a UWB six‐port correlator for 6–9 GHz frequency band
WO2018061794A1 (ja) 通信装置、通信方法、及び、電子機器
CN111555813A (zh) 基于微波光子变频的发射频率分集阵列实现装置及方法
EP3761053B1 (en) Radar sensor, method of operating the radar sensor and program code
KR102441648B1 (ko) 웨이브가이드 포함하는 칩-대-칩 인터페이스 장치
JP3778813B2 (ja) 電磁波送信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738310

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738310

Country of ref document: EP

Effective date: 20180816

NENP Non-entry into the national phase

Ref country code: JP