WO2016136091A1 - コネクタ装置、通信装置、及び、通信システム - Google Patents

コネクタ装置、通信装置、及び、通信システム Download PDF

Info

Publication number
WO2016136091A1
WO2016136091A1 PCT/JP2015/084631 JP2015084631W WO2016136091A1 WO 2016136091 A1 WO2016136091 A1 WO 2016136091A1 JP 2015084631 W JP2015084631 W JP 2015084631W WO 2016136091 A1 WO2016136091 A1 WO 2016136091A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguides
waveguide
connector device
signal
transmission
Prior art date
Application number
PCT/JP2015/084631
Other languages
English (en)
French (fr)
Inventor
研一 川崎
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/549,335 priority Critical patent/US10374273B2/en
Priority to CN201580076569.9A priority patent/CN107251442A/zh
Publication of WO2016136091A1 publication Critical patent/WO2016136091A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/042Hollow waveguide joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • H01J23/54Filtering devices preventing unwanted frequencies or modes to be coupled to, or out of, the interaction circuit; Prevention of high frequency leakage in the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/22Capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication

Definitions

  • the present disclosure relates to a connector device, a communication device, and a communication system.
  • the communication system In a communication system that communicates with a different communication device in a state where the housing (device main body) is in contact with or close to it, radio waves are leaked outside the housing from the viewpoint of transmission characteristics and interference with other devices. It is important that there is no.
  • the communication system according to the conventional example is a wireless communication using a slot antenna, and there is a problem that transmission characteristics deteriorate because radio waves easily leak outside the housing.
  • the electromagnetic wave absorber is arrange
  • the present disclosure provides a connector device capable of suppressing deterioration of transmission characteristics due to leakage of radio waves to the outside of the housing when performing communication between the two communication devices in a state where the housing is in contact with or close to the housing,
  • An object is to provide a communication device and a communication system.
  • a connector device of the present disclosure includes: Two waveguides transmitting high frequency signals; A state monitoring unit for monitoring the connection state of the two waveguides; Control that stops transmission of high-frequency signals according to the connection state of the two waveguides that are provided on the transmission-side waveguide side that transmits high-frequency signals out of the two waveguides. And Is a connector device.
  • a communication device of the present disclosure is provided.
  • a connector device that transmits a high-frequency signal to another communication device including a waveguide;
  • Connector device A waveguide that transmits a high-frequency signal to and from the waveguide of another communication device;
  • a state monitoring unit that monitors the connection state of two waveguides with another communication device;
  • a control unit that stops transmission of a high-frequency signal according to the connection state of the two waveguides monitored by the state monitoring unit, It is a communication device.
  • a communication system of the present disclosure includes: Two communication devices; A connector device that transmits a high-frequency signal between the two communication devices; Connector device Two waveguides provided in each of the two communication devices; A state monitoring unit for monitoring the connection state of the two waveguides; Control that stops transmission of high-frequency signals according to the connection state of the two waveguides that are provided on the transmission-side waveguide side that transmits high-frequency signals out of the two waveguides. And comprising It is a communication system.
  • the connection state of the two waveguides is monitored, and when the connection state is, for example, a state where radio wave leakage occurs in the connection portion, Stop sending.
  • the connection state of two waveguides is a state in which radio wave leakage occurs at the connection part, leakage of radio waves to the outside between the two communication devices is suppressed. it can.
  • FIG. 1 is a plan view including a partial cross section showing a basic configuration of a communication system according to an embodiment of the present disclosure.
  • FIG. 2A is a block diagram illustrating an example of a specific configuration of the transmission unit
  • FIG. 2B is a block diagram illustrating an example of a specific configuration of the reception unit.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of a connector device having a leakage prevention structure using a choke structure.
  • FIG. 4A is a block diagram showing a system configuration in a state where the first communication device and the second communication device are close to each other, and FIG. 4B shows a predetermined distance between the first communication device and the second communication device.
  • FIG. 5 is a block diagram illustrating a system configuration example of the communication system according to the first embodiment of the present disclosure.
  • FIG. 6 is a block diagram illustrating a system configuration example of a communication system having a state monitoring unit according to the first embodiment.
  • FIG. 7 is a block diagram illustrating a system configuration example of a communication system having a state monitoring unit according to the second embodiment.
  • FIG. 8 is a block diagram illustrating a system configuration example of a communication system according to the second embodiment of the present disclosure.
  • the state monitoring unit may be configured to be provided on the transmission-side waveguide side. Further, the state monitoring unit can be configured to monitor whether or not the connection state of the two waveguides is in a state where radio wave leakage occurs in the connection unit.
  • the connection state of the two waveguides is at least two waveguides on the transmission-side waveguide side. It is possible to adopt a structure provided with a leakage prevention structure for preventing leakage of radio waves from the connection portion when the open ends of the two are in contact or close to each other.
  • the leak prevention structure can be configured to have a choke structure provided at least in the periphery of the open end of the transmission-side waveguide.
  • the depth of the choke structure groove is preferably 1 ⁇ 4 of the wavelength of the high-frequency wave transmitted between the two waveguides.
  • the choke structure may be provided in the periphery of the open end of the receiving-side waveguide.
  • the state monitoring unit includes a radio wave signal leaked at the connection portion of the two waveguides and two guides. It can be set as the structure which consists of a leak detector which detects the leak of an electromagnetic wave from the correlation with the signal transmitted between wave tubes. Alternatively, the state monitoring unit may be configured by a distance detector that detects that the distance between the two waveguides exceeds a predetermined distance.
  • the state monitoring unit is provided on the receiving-side waveguide side that receives a high-frequency signal, and the monitoring result It is possible to adopt a configuration in which a return control signal according to the above is transmitted to the control unit on the transmission side. Further, the return control signal can be a high-frequency signal.
  • the high frequency signal can be a millimeter wave band signal.
  • the communication form is communication using a millimeter wave band signal as a high frequency signal, so-called millimeter wave communication, and has the following advantages. a) Since the millimeter wave communication can take a wide communication band, it is easy to increase the data rate. b) The frequency used for transmission can be separated from the frequency of other baseband signal processing, and interference between the millimeter wave and the frequency of the baseband signal hardly occurs. c) Since the millimeter wave band has a short wavelength, the coupling structure and the waveguide structure determined according to the wavelength can be reduced.
  • the stability of a carrier wave has strict regulations to prevent interference and the like.
  • a highly stable external frequency reference component, a multiplier circuit, a PLL (phase locked loop circuit), and the like are used, and the circuit scale increases.
  • a carrier with low stability can be used for transmission, and an increase in circuit scale can be suppressed. Can do.
  • FIG. 1 is a plan view including a partial cross section showing a basic configuration of a communication system to which the technology of the present disclosure is applied.
  • the housings Is configured to perform communication through a plurality of transmission paths in a state where the two are in contact with or close to each other.
  • the first communication device 20 has a configuration in which a transmitter 22 and a waveguide 23 are housed in a housing 21.
  • the second communication device 30 has a configuration in which the receiving unit 32 and the waveguide 33 are housed in the housing 31.
  • the casing 21 of the first communication device 20 and the casing 31 of the second communication device 30 have a rectangular shape, for example, and are a dielectric, for example, a dielectric constant of about 3 and a thickness of about 0.2 [mm].
  • the communication system 10 including the first communication device 20 and the second communication device 30 is preferably in a state where the planes of the housing 21 and the housing 31 are in contact with or close to each other between the communication devices 20 and 30.
  • Communication is performed using a high-frequency signal, for example, a millimeter-wave band signal.
  • “proximity” means that a high-frequency signal is a millimeter-wave band signal, so long as the transmission range of the millimeter-wave band signal can be limited.
  • a state in which the distance is shorter than the distance between communication devices used in simple wireless communication corresponds to a state of being “close”.
  • a millimeter-wave band signal transmitted from the transmission unit 22 is provided between the output end of the transmission unit 22 and the inner surface of the resin plate (resin layer) 21A on the second communication device 30 side.
  • a waveguide 23 is provided to form a transmission path for transmitting.
  • a received millimeter-wave band signal is transmitted between the input end of the receiving unit 32 and the inner surface of the resin plate (resin layer) 31A on the first communication device 20 side.
  • a waveguide 33 that forms a transmission path is provided.
  • the waveguide 23 on the first communication device 20 side and the waveguide 33 on the second communication device 30 side are in a state in which both open ends are in contact with or close to each other with the resin plate 21A and the resin plate 31A interposed therebetween. Be placed. When the planes of the housing 21 and the housing 31 are close to each other, an air layer is interposed between the resin plate 21A and the resin plate 31A.
  • Examples of the types of waveguides include hollow waveguides and dielectric waveguides.
  • a hollow waveguide or a dielectric waveguide can be used as the waveguide 23 on the first communication device 20 side and the waveguide 33 on the second communication device 30 side.
  • a hollow waveguide in particular, a rectangular waveguide having a rectangular cross section is used.
  • a waveguide having a dimensional ratio of 2: 1 between the long side and the short side of the cross section is preferable.
  • the 2: 1 rectangular waveguide has the advantage of preventing high-order modes from occurring and transmitting efficiently.
  • the waveguides 23 and 33 do not exclude the use of a waveguide whose cross-sectional shape is other than rectangular, for example, a waveguide whose cross-sectional shape is square or circular.
  • a waveguide whose cross-sectional shape is other than rectangular, for example, a waveguide whose cross-sectional shape is square or circular.
  • the transmission loss per unit length increases, but the dimensional ratio between the long side and the short side is 10: In some cases, 1 or 15: 1.
  • the waveguides 23 and 33 are configured to have leakage prevention structures 24 and 34 for preventing leakage of radio waves at the periphery of each opening end. Since the waveguides 23 and 33 have the leakage prevention structures 24 and 34, leakage of radio waves to the outside of the waveguides 23 and 33 can be suppressed by the action of the leakage prevention structures 24 and 34.
  • the leakage prevention structures 24 and 34 are provided in both of the waveguides 23 and 33. However, it is sufficient that at least the transmission-side waveguide 23 is provided. A specific configuration of the leakage prevention structures 24 and 34 will be described later.
  • the transmission unit 22 converts the signal to be transmitted into a millimeter-wave band signal and outputs it to the waveguide 23.
  • the receiving unit 32 receives a millimeter-wave band signal transmitted through the waveguide 33 and performs a process of restoring (restoring) the original signal to be transmitted.
  • FIG. 2A illustrates an example of a specific configuration of the transmission unit 22
  • FIG. 2B illustrates an example of a specific configuration of the reception unit 32.
  • the transmission unit 22 includes, for example, a signal generation unit 221 that processes a signal to be transmitted to generate a millimeter-wave band signal.
  • the signal generation unit 221 is a signal conversion unit that converts a signal to be transmitted into a millimeter waveband signal, and includes, for example, an ASK (Amplitude Shift Keying) modulation circuit. Specifically, the signal generation unit 221 generates a millimeter-wave band ASK modulated wave by multiplying the millimeter-wave band signal supplied from the oscillator 222 and the transmission target signal by the multiplier 223, and sets the buffer 224. Output.
  • ASK Amplitude Shift Keying
  • a connector device 25 is interposed between the transmitter 22 and the waveguide 23.
  • the connector device 25 couples the transmission unit 22 and the waveguide 23 by, for example, capacitive coupling, electromagnetic induction coupling, electromagnetic field coupling, resonator coupling, or the like.
  • the waveguide 23 is provided between the connector device 25 and the resin plate 21 ⁇ / b> A so that the opening end surface thereof is in contact with the inner surface of the resin plate 21 ⁇ / b> A that forms the wall on the second communication device 30 side of the housing 21. Yes.
  • the receiving unit 32 includes, for example, a signal restoring unit 321 that processes a millimeter waveband signal given through the waveguide 33 and restores the original transmission target signal.
  • the signal restoration unit 321 is a signal conversion unit that converts a received millimeter-wave band signal into an original signal to be transmitted, and includes, for example, a square (square) detection circuit. Specifically, the signal restoration unit 321 converts the millimeter waveband signal (ASK modulated wave) given through the buffer 322 into the original transmission target signal by squaring with the multiplier 323, and outputs the signal through the buffer 324. It has a configuration.
  • a connector device 35 is interposed between the waveguide 33 and the receiving unit 32.
  • the connector device 35 couples the waveguide 33 and the receiving unit 32 by, for example, capacitive coupling, electromagnetic induction coupling, electromagnetic field coupling, resonator coupling, or the like.
  • the waveguide 33 is provided between the resin plate 31A and the connector device 35 so that the opening end surface thereof is in contact with the inner surface of the resin plate 31A forming the wall of the housing 31 on the first communication device 20 side. Yes.
  • the communication system 10 has a communication form between the first communication device 20 and the second communication device 30, and the planes of the casing 21 and the casing 31 (the casings).
  • This is millimeter-wave communication in which communication is performed using a millimeter-wave band signal as a high-frequency signal in a state where the bodies are in contact with each other or close to each other.
  • dielectric plates specifically, resin plates 21 ⁇ / b> A and 31 ⁇ / b> A constituting a part of the casings 21 and 31 are provided on the opening end surfaces of the waveguides 23 and 33.
  • the waveguides 23 and 33 constitute a connector device that couples the first communication device 20 and the second communication device 30 via a dielectric plate in a state where each open end is in contact with or close to each other. is doing.
  • the communication since the communication is performed in a state where the open ends of the two waveguides 23 and 33 are in contact with each other or close to each other, a slot antenna is used. Broadband transmission is possible compared to wireless communication. Further, it is possible to suppress radio waves from leaking outside the waveguides 23 and 33.
  • the waveguides 23 and 33 are configured to have the leakage prevention structures 24 and 34 in the periphery of the opening end, the leakage prevention structures 24 and 34 cause the outside of the waveguides 23 and 33. It is possible to more reliably suppress the leakage of radio waves.
  • the action of the leakage prevention structures 24 and 34 can suppress the input of extraneous signals from the outside to the waveguides 23 and 33, for example, the input of millimeter wave interference waves to the waveguides 23 and 33.
  • leakage prevention structure A specific configuration of the leakage prevention structures 24 and 34 will be described.
  • a structure that loses radio waves or a structure that reflects radio waves can be used.
  • a leakage preventing structure for losing radio waves for example, a structure using a rubber-like elastic body can be exemplified.
  • a leakage prevention structure that reflects radio waves for example, a choke structure can be exemplified.
  • the specific structure of the leak prevention structure using a choke structure is demonstrated.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of a connector device having a leak prevention structure using a choke structure.
  • grooves 24 ⁇ / b> A and 34 ⁇ / b> A formed in an annular shape (for example, a rectangular annular shape) around the central axis O of the waveguides 23 and 33 in the periphery of the open ends of the waveguides 23 and 33.
  • leakage prevention structures 24 and 34 of a choke structure There are provided leakage prevention structures 24 and 34 of a choke structure.
  • the depths of the grooves 24A and 34A of the choke structure are preferably set to 1/4 ( ⁇ / 4) of the wavelength ⁇ of the high frequency (in this example, millimeter wave) transmitted by the waveguides 23 and 33.
  • the pitch of the grooves 24A and 34A is also preferably set to ⁇ / 4.
  • ⁇ / 4 means not only strictly ⁇ / 4 but also substantially ⁇ / 4, and the presence of various variations in design or manufacturing is acceptable. Is done.
  • the incident wave and the reflected wave generated in the grooves 24A and 34A are in reverse phase. Become. Accordingly, since the incident wave is canceled by the reflected wave generated in the grooves 24A and 34A, the incident wave does not travel to the outside of the choke structure. As a result, in the connector device that couples the waveguide 23 and the waveguide 33 via the resin plates 21A and 31A with the respective open ends being in contact with or close to each other, leakage of radio waves to the outside is prevented. Can be suppressed.
  • the leakage prevention structures 24 and 34 exemplified here are merely examples, and are not limited to those having the above-described configuration. Specifically, in the above configuration, the number of stages of the grooves 24A and 34A is two, but the number of stages is not limited to two, but may be one or three or more. It may be multistage. However, the effect of suppressing leakage of radio waves to the outside is greater when the number of grooves 24A and 34A is greater.
  • a dielectric protrusion having a height of, for example, ⁇ / 2 from the inner surface of the resin plates 21A and 31A is provided at a portion corresponding to the central portion of the opening end surfaces of the waveguides 23 and 33 on the inner surfaces of the resin plates 21A and 31A. It can also be set as the structure which has. Since the height of the dielectric protrusions 25 and 35 from the inner surfaces of the resin plates 21A and 31A is ⁇ / 2, only the radio waves in the resonance band pass through the radio waves propagating through the waveguides 23 and 33. A ⁇ / 2 resonator can be formed.
  • FIG. 4A is a block diagram illustrating a system configuration in a state where the first communication device 20 and the second communication device 30 are close to each other.
  • a dielectric plate (resin plates 21A and 31A) is interposed between them, or dust or dust is present. Even when it exists, radio wave leakage is prevented so that the millimeter wave desired wave signal does not leak into the external space of the waveguide 23.
  • the leakage prevention structures 24 and 34 prevent the interference wave in the millimeter wave band outside the first communication device 20 and the second communication device 30 from jumping into the waveguides 23 and 33.
  • the leakage prevention structures 24 and 34 prevent the interference wave in the millimeter wave band outside the first communication device 20 and the second communication device 30 from jumping into the waveguides 23 and 33.
  • the predetermined distance ⁇ x means that the radio wave transmitted by the waveguide 23 actually leaks into the space outside the apparatus without being blocked by the leakage prevention structures 24 and 34, or an interference wave outside the apparatus.
  • This distance ⁇ x is defined by the leakage prevention structures 24 and 34.
  • FIG. 5 is a block diagram illustrating a system configuration example of the communication system according to the first embodiment of the present disclosure.
  • the first communication device 20 on the transmission side includes the transmission unit 22, the waveguide 23, and the leakage prevention structure 24 shown in FIG. 1.
  • the state monitoring unit 26 and the control unit 27 are included.
  • the transmission unit 22 for example, a transmission unit configured as shown in FIG. 2A is used.
  • the second communication device 30 on the reception side has a configuration including a reception unit 32, a waveguide 33, and a leakage prevention structure 34.
  • the receiving unit 32 for example, a receiving unit configured as shown in FIG. 2B is used.
  • the state monitoring unit 26 determines whether or not the connection state between the transmission-side waveguide 23 and the reception-side waveguide 33, specifically, the connection state at the connection unit. It is monitored whether or not radio leakage occurs. According to the connection state of the two waveguides 23 and 33 monitored by the state monitoring unit 26, the control unit 27, specifically, the state monitoring unit 26 determines that the connection state of the waveguides 23 and 33 is the connection unit. When it is determined that there is a state in which radio wave leakage occurs, control for stopping the signal output of the transmission unit 22 is performed in response to the determination result.
  • a high-frequency signal in this example, a millimeter wave
  • the following actions and effects can be obtained. That is, even if the distance between the waveguide 23 of the first communication device 20 and the waveguide 33 of the second communication device 30 is a predetermined distance ⁇ x or more (see FIG. 4B), The radio wave (up to 3 THz) transmitted by the waveguide 23 does not leak into the space outside the apparatus (outside the casing). Thereby, it is possible to suppress deterioration of transmission characteristics due to radio wave leakage.
  • the structure provided with the leakage prevention structures 24 and 34 on both the transmission side and the receiving side is premised, it is not restricted to this, What is necessary is just to provide at the transmission side at least. Furthermore, even if the transmission side is not provided with the leakage prevention structure 24, the action of the state monitoring unit 26 and the control unit 27 can prevent leakage of radio waves to the outside of the apparatus and prevent interference waves from the outside of the apparatus. A strong connector device can be realized. This also applies to the second embodiment described later.
  • FIG. 6 is a block diagram illustrating a system configuration example of a communication system having the state monitoring unit 26 according to the first embodiment.
  • the state monitoring unit 26 according to the first embodiment has a configuration including a leak detector 26 ⁇ / b> A provided in the first communication device 20 on the transmission side.
  • the leakage detector 26 ⁇ / b> A detects the leakage of the radio wave from the correlation between the signal of the radio wave leaking at the connection portion between the two waveguides 23 and 33 and the signal of the desired millimeter wave output from the transmission unit 22.
  • the connection between the two waveguides 23 and 33 is performed. Detects that radio leakage has occurred in the unit.
  • the control unit 27 performs control to stop the signal output of the transmission unit 22 in response to the detection result of the leak detector 26A.
  • the leak detector 26A it is possible to detect whether or not radio waves have actually leaked at the connection portion between the two waveguides 23 and 33. Therefore, it is possible to quickly and surely detect the leakage of the radio wave at the connection portion between the two waveguides 23 and 33 on the side of the first communication device 20 on the transmission side to prevent the leakage of the radio wave.
  • FIG. 7 is a block diagram illustrating a system configuration example of a communication system including the state monitoring unit 26 according to the second embodiment.
  • the second embodiment attention is paid to the fact that there is a correlation between the leakage of radio waves at the connection portion between the two waveguides 23 and 33 and the distance between the two waveguides 23 and 33.
  • the distance between the waveguide 23 of the first communication device 20 and the waveguide 33 of the second communication device 30 is a predetermined distance ⁇ x or more. Then, a phenomenon occurs in which the radio wave transmitted by the waveguide 23 leaks into the space outside the device or the interference wave outside the device jumps into the waveguide 33.
  • the state monitoring unit 26 is provided in the first communication device 20 on the transmission side, and the first communication device 20 and the second communication device 30 are obtained from the above-described correlation between the leakage of radio waves and the distance. It consists of the distance detector 26B which detects the distance between. The distance detector 26B detects that the distance between the waveguide 23 and the waveguide 33 exceeds a predetermined distance ⁇ x (see FIG. 4B) defined by the leakage prevention structures 24 and 34.
  • the control unit 27 performs control to stop the signal output of the transmission unit 22 in response to the detection result of the distance detector 26B.
  • a known detection method can be used.
  • a capacitive detection method that detects based on a change in electrical capacitance between the detection target (in this example, the second communication device 30) and the distance detector 26B, or a metal disposed on the detection target
  • Examples include a magnetic detection method that detects eddy currents generated in the body.
  • an inductance type, an ultrasonic type, a sound wave / vibration type, and an optical type detection method can also be used.
  • a triangulation method that converts the image formation position of a light receiving element such as a CMOS according to a distance change into a distance, or light reflected on the detection target after irradiating the detection target with light.
  • a time-of-flight method that measures the time until light is received and converts it to a distance is known.
  • the leak detector 26A In the case of the leak detector 26A according to the first embodiment, a high frequency such as a millimeter wave band is detected, so a high frequency design is required.
  • the distance detector 26B according to the second embodiment detection of a high frequency such as a millimeter wave band is unnecessary, and a predetermined distance ⁇ x at which radio wave leakage occurs by a simple known distance detection method is used. Can be detected. As a result, the connection state where radio wave leakage occurs at the connection part between the two waveguides 23 and 33 is detected quickly and reliably on the first communication device 20 side on the transmission side, thereby reliably preventing radio wave leakage. It becomes possible to do.
  • FIG. 8 is a block diagram illustrating a system configuration example of a communication system according to the second embodiment of the present disclosure.
  • the communication system according to the first embodiment employs a configuration in which the state monitoring unit 26 is provided in the first communication device 20 on the transmission side.
  • the communication system according to the second embodiment employs a configuration in which the state monitoring unit 36 is provided in the second communication device 30 on the receiving side.
  • the state monitoring unit 36 as in the first embodiment, the leak detector 26A according to Example 1 can be used, and the distance detector 26B according to Example 2 can be used.
  • the second communication device 30 on the reception side includes a state monitoring unit 36, a transmission unit 37, and a waveguide in addition to the reception unit 32, the waveguide 33, and the leakage prevention structure 34.
  • the tube 38 is configured.
  • the state monitoring unit 36 is in a connection state between the transmission-side waveguide 23 and the reception-side waveguide 33, specifically, the connection between the two waveguides 23 and 33. It is monitored whether or not the state is a state in which radio wave leakage occurs at the connection portion. If the state monitoring unit 36 determines that the radio wave leakage is occurring, the state monitoring unit 36 outputs a radio wave leakage detection signal to the transmission unit 37.
  • the transmission unit 37 basically has the same configuration as the transmission unit 22 on the first communication device 20 side.
  • the radio wave leakage detection signal is supplied from the state monitoring unit 36, the radio wave leakage detection signal is transmitted.
  • the signal is converted into a high-frequency signal, for example, a millimeter wave band signal, and is output to the waveguide 38 as a millimeter wave band return control signal.
  • the waveguide 38 transmits the millimeter wave band return control signal output from the transmitter 37 to the first communication device 20 side.
  • the first communication device 20 on the transmission side has a configuration including a waveguide 28 and a reception unit 29 in addition to the transmission unit 22, the waveguide 23, the leakage prevention structure 24, and the control unit 27.
  • the waveguide 28 receives the millimeter-wave band return control signal transmitted by the waveguide 38 on the second communication device 30 side and transmits it to the receiving unit 29.
  • the receiving unit 29 basically has the same configuration as the receiving unit 32 on the second communication device 30 side, and processes the return control signal in the millimeter wave band transmitted by the waveguide 28 to obtain the original. Is restored to the radio wave leakage detection signal and supplied to the control unit 27.
  • the control unit 27 performs control to stop the signal output of the transmission unit 22 in response to the radio wave leakage detection signal.
  • the same operation and effect as the communication system according to the first embodiment can be obtained. That is, even if the distance between the waveguide 23 of the first communication device 20 and the waveguide 33 of the second communication device 30 is a predetermined distance ⁇ x or more (see FIG. 4B), The radio wave (up to 3 THz) transmitted by the waveguide 23 does not leak into the space outside the apparatus (outside the casing). Thereby, it is possible to suppress deterioration of transmission characteristics due to radio wave leakage.
  • this indication can also take the following structures.
  • a connector device comprising: [2] The state monitoring unit is provided on the transmission-side waveguide side. The connector device according to [1] above. [3] The state monitoring unit monitors whether or not the connection state of the two waveguides is in a state where radio wave leakage occurs in the connection unit. The connector device according to the above [1] or [2].
  • a leakage prevention structure is provided to prevent The connector device according to any one of [1] to [3].
  • the leakage prevention structure has a choke structure provided at least in the periphery of the open end of the transmission-side waveguide.
  • the depth of the groove of the choke structure is 1 ⁇ 4 of the wavelength of the high frequency transmitted between the two waveguides.
  • the state monitoring unit includes a leak detector that detects a leak of radio waves from a correlation between a signal of radio waves leaking at the connection portion of the two waveguides and a signal transmitted between the two waveguides.
  • the connector device according to any one of [1] to [6].
  • the state monitoring unit includes a distance detector that detects that the distance between the two waveguides exceeds a predetermined distance.
  • the connector device according to any one of [1] to [6].
  • the state monitoring unit is provided on the receiving-side waveguide that receives the high-frequency signal, and transmits a return control signal corresponding to the monitoring result to the transmitting-side control unit.
  • the return control signal is a high-frequency signal.
  • the connector device according to [9] above.
  • the high-frequency signal is a millimeter-wave band signal.
  • the connector device according to any one of [1] to [10].
  • a connector device that transmits a high-frequency signal to and from another communication device including a waveguide, Connector device A waveguide that transmits a high-frequency signal to and from the waveguide of another communication device; A state monitoring unit that monitors the connection state of two waveguides with another communication device; A control unit that stops transmission of a high-frequency signal according to the connection state of the two waveguides monitored by the state monitoring unit, Communication device.
  • the high-frequency signal is a millimeter-wave band signal.
  • the communication device according to [12] above.
  • the high frequency signal is a millimeter wave band signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Waveguide Connection Structure (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本開示のコネクタ装置は、高周波の信号を伝送する2つの導波管と、2つの導波管の接続状態を監視する状態監視部と、2つの導波管のうち高周波の信号を送信する送信側の導波管側に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える。

Description

コネクタ装置、通信装置、及び、通信システム
 本開示は、コネクタ装置、通信装置、及び、通信システムに関する。
 2つの通信装置間で、筐体(装置本体)を接触又は近接させた状態で通信を行う通信システムがある。この種の通信システムの一例として、2つの通信装置の一方が携帯端末装置から成り、他方がクレードルと称される無線通信装置から成る通信システムがある(例えば、特許文献1参照)。
特開2006-65700号公報
 異なる通信装置との間で筐体(装置本体)を接触又は近接させた状態で通信を行う通信システムでは、伝送特性の観点や他機器への妨害の観点等から、筐体外部に電波を漏らさないことが重要となる。しかし、上記の従来例に係る通信システムにあっては、スロットアンテナを用いた無線通信であり、筐体外部へ電波が漏れやすいため、伝送特性が劣化するという問題点がある。この点(問題点)については、特許文献1の実施例3では、筐体の周囲に電波吸収体を配置して電波の漏れを防いでいることからも明らかである。
 本開示は、2つの通信装置間で、筐体を接触又は近接させた状態で通信を行うに当たって、筐体外部への電波の漏れに起因する伝送特性の劣化を抑えることが可能なコネクタ装置、通信装置、及び、通信システムを提供することを目的とする。
 上記の目的を達成するための本開示のコネクタ装置は、
 高周波の信号を伝送する2つの導波管と、
 2つの導波管の接続状態を監視する状態監視部と、
 2つの導波管のうち高周波の信号を送信する送信側の導波管側に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、
 を備えるコネクタ装置である。
 上記の目的を達成するための本開示の通信装置は、
 導波管を備える他の通信装置との間で高周波の信号を伝送するコネクタ装置を有し、
 コネクタ装置は、
 他の通信装置の導波管との間で高周波の信号を伝送する導波管と、
 他の通信装置との間における2つの導波管の接続状態を監視する状態監視部と、
 状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える、
 通信装置である。
 上記の目的を達成するための本開示の通信システムは、
 2つの通信装置と、
 2つの通信装置間において高周波の信号を伝送するコネクタ装置と、を有し、
 コネクタ装置は、
 2つの通信装置の各々に設けられた2つの導波管と、
 2つの導波管の接続状態を監視する状態監視部と、
 2つの導波管のうち高周波の信号を送信する送信側の導波管側に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える、
 通信システムである。
 上記の構成のコネクタ装置、通信装置、あるいは、通信システムにおいて、2つの導波管の接続状態を監視し、その接続状態が例えば接続部において電波漏れが発生する状態にあるとき、高周波の信号の送信を停止する。高周波の信号の送信を停止することで、2つの導波管の接続状態がその接続部において電波漏れが発生する状態にあったとしても、2つの通信装置間における外部への電波の漏れを抑制できる。
 本開示によれば、外部へ電波が漏れるのを抑制できるため、電波の漏れに起因する伝送特性の劣化を抑えることができる。
 尚、ここに記載された効果に必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。また、本明細書に記載された効果はあくまで例示であって、これに限定されるものではなく、また付加的な効果があってもよい。
図1は、本開示の一実施形態に係る通信システムの基本的な構成を示す、一部断面を含む平面図である。 図2Aは、送信部の具体的な構成の一例を示すブロック図であり、図2Bは、受信部の具体的な構成の一例を示すブロック図である。 図3は、チョーク構造を用いる漏れ防止構造を有するコネクタ装置の構成の一例を示す断面図である。 図4Aは、第1の通信装置と第2の通信装置とが近接した状態のシステム構成を示すブロック図であり、図4Bは、第1の通信装置と第2の通信装置とが所定の距離Δx以上離間した状態のシステム構成を示すブロック図である。 図5は、本開示の第1実施形態に係る通信システムのシステム構成例を示すブロック図である。 図6は、実施例1に係る状態監視部を有する通信システムのシステム構成例を示すブロック図である。 図7は、実施例2に係る状態監視部を有する通信システムのシステム構成例を示すブロック図である。 図8は、本開示の第ふ実施形態に係る通信システムのシステム構成例を示すブロック図である。
 以下、本開示の技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示の技術は実施形態に限定されるものではなく、実施形態における種々の数値などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示のコネクタ装置、通信装置、及び、通信システム、全般に関する説明
2.本開示の技術が適用される通信システム
 2-1.通信システムの基本的な構成
 2-2.送信部及び受信部の具体的な構成
 2-3.漏れ防止構造の具体的な構成
3.第1実施形態
 3-1.実施例1(状態監視部が漏れ検知器から成る場合)
 3-2.実施例2(状態監視部が距離検知器から成る場合)
4.第2実施形態
<本開示のコネクタ装置、通信装置、及び、通信システム、全般に関する説明>
 本開示のコネクタ装置、通信装置、及び、通信システムにあっては、状態監視部について、送信側の導波管側に設けられている構成とすることができる。また、状態監視部について、2つの導波管の接続状態がその接続部において電波漏れが発生する状態にあるか否かを監視する構成とすることができる。
 上述した好ましい構成を含む本開示のコネクタ装置、通信装置、及び、通信システムにあっては、少なくとも送信側の導波管側には、2つの導波管の接続状態が、2つの導波管の開口端が接触又は近接した状態にあるときに、接続部からの電波の漏れを防止する漏れ防止構造が設けられている構成とすることができる。このとき、漏れ防止構造について、少なくとも送信側の導波管の開口端の周辺部に設けられたチョーク構造を有する構成とすることができる。チョーク構造の溝の深さは、2つの導波管間で伝送する高周波の波長の1/4であることが好ましい。チョーク構造は、受信側の導波管の開口端の周辺部に設けられてもよい。
 更に、上述した好ましい構成を含む本開示のコネクタ装置、通信装置、及び、通信システムにあっては、状態監視部について、2つの導波管の接続部において漏れた電波の信号と、2つの導波管間で伝送する信号との相関から電波の漏れを検知する漏れ検知器から成る構成とすることができる。あるいは又、状態監視部について、2つの導波管の間の距離が所定の距離を超えたことを検知する距離検知器から成る構成とすることができる。
 更に、上述した好ましい構成を含む本開示のコネクタ装置、通信装置、及び、通信システムにあっては、状態監視部について、高周波の信号を受信する受信側の導波管側に設けられ、監視結果に応じたリターン制御信号を送信側の制御部に送信する構成とすることができる。また、リターン制御信号について、高周波の信号とすることができる。
 更に、上述した好ましい構成を含む本開示のコネクタ装置、通信装置、及び、通信システムにあっては、高周波の信号についてミリ波帯の信号とすることができる。通信の形態が、高周波の信号としてミリ波帯の信号を用いた通信、所謂、ミリ波通信であることで、次のような利点がある。
a)ミリ波通信は通信帯域を広く取れるため、データレートを大きくとることが簡単にできる。
b)伝送に使う周波数が他のベースバンド信号処理の周波数から離すことができ、ミリ波とベースバンド信号の周波数の干渉が起こり難い。
c)ミリ波帯は波長が短いため、波長に応じて決まる結合構造並びに導波構造を小さくできる。加えて、距離減衰が大きく回折も少ないため電磁シールドが行ない易い。
d)通常の無線通信では、搬送波の安定度については、干渉などを防ぐために厳しい規制がある。そのような安定度の高い搬送波を実現するためには、高い安定度の外部周波数基準部品と逓倍回路やPLL(位相同期ループ回路)などが用いられ、回路規模が大きくなる。これに対して、ミリ波通信では、容易に外部に漏れないようにできるとともに、電波が外部に漏れないため、安定度の低い搬送波を伝送に使用することができ、回路規模の増大を抑えることができる。
<本開示の技術が適用される通信システム>
[通信システムの基本的な構成]
 図1は、本開示の技術が適用される通信システムの基本的な構成を示す、一部断面を含む平面図である。本適用例に係る通信システム10は、異なる通信装置(デバイス)間において、具体的には、第1の通信装置20と第2の通信装置30との間において、筐体同士(装置本体同士)を接触又は近接させた状態で、複数系統の伝送路を通して通信を行う構成となっている。
 第1の通信装置20は、筐体21の内部に送信部22及び導波管23を収納した構成となっている。同様に、第2の通信装置30も、筐体31の内部に受信部32及び導波管33を収納した構成となっている。第1の通信装置20の筐体21及び第2の通信装置30の筐体31は、例えば矩形形状を有し、誘電体、例えば、誘電率=3、厚み=0.2[mm]程度の樹脂から成る。すなわち、第1の通信装置20の筐体21及び第2の通信装置30の筐体31は、樹脂性の筐体である。
 第1の通信装置20及び第2の通信装置30を含む通信システム10は、両通信装置20,30間において、好ましくは、筐体21及び筐体31の平面同士を接触又は近接させた状態で、高周波の信号、例えばミリ波帯の信号を用いて通信を行う。ここで、「近接」とは、高周波の信号がミリ波帯の信号であることから、ミリ波帯の信号の伝送範囲を制限できる限りにおいてであればよく、典型的には、放送や一般的な無線通信で使用される通信装置相互間の距離に比べて距離が短い状態が「近接」させた状態に該当する。
 第1の通信装置20において、送信部22の出力端と第2の通信装置30側の樹脂板(樹脂層)21Aの内面との間には、送信部22から送信されるミリ波帯の信号を伝送する伝送路を形成する導波管23が設けられている。第2の通信装置30においても同様に、受信部32の入力端と第1の通信装置20側の樹脂板(樹脂層)31Aの内面との間には、受信するミリ波帯の信号を伝送する伝送路を形成する導波管33が設けられている。第1の通信装置20側の導波管23と、第2の通信装置30側の導波管33とは、双方の開口端が樹脂板21A及び樹脂板31Aを挟んで接触又は近接した状態で配置される。筐体21及び筐体31の平面同士が近接した状態では、樹脂板21Aと樹脂板31Aとの間には空気層が介在することになる。
 導波管の種類として、中空導波管や誘電体導波管などを例示することができる。第1の通信装置20側の導波管23及び第2の通信装置30側の導波管33としては、中空導波管及び誘電体導波管のいずれを用いることも可能である。ここでは、中空導波管、特に、断面形状が長方形の矩形導波管を用いることとする。矩形導波管としては、断面の長辺と短辺との寸法比が2:1の導波管が好ましい。2:1の矩形導波管は、高次モードの発生を防ぎ、効率よく伝送できる利点がある。但し、導波管23,33として、断面形状が長方形以外の導波管、例えば、断面形状が正方形又は円形の導波管の使用を排除するものではない。また、薄い導波管の場合、例えば厚さが0.2[mm]程度の導波管の場合、単位長さあたりの伝送損失は増えるが、長辺と短辺との寸法比が10:1や15:1というような場合もある。
 導波管23,33は各開口端の周辺部に、電波の漏れを防止するための漏れ防止構造24,34を有する構成となっている。導波管23,33は、漏れ防止構造24,34を有することで、当該漏れ防止構造24,34の作用によって、導波管23,33の外部への電波の漏れを抑制することができる。ここでは、漏れ防止構造24,34が導波管23,33の双方に備えられているとしたが、少なくとも送信側の導波管23に備えられていればよい。漏れ防止構造24,34の具体的な構成については後述する。
 送信部22は、伝送対象の信号をミリ波帯の信号に変換し、導波管23へ出力する処理を行う。受信部32は、導波管33を通して伝送されるミリ波帯の信号を受信し、元の伝送対象の信号に戻す(復元する)処理を行う。
[送信部及び受信部の具体的な構成]
 以下に、送信部22及び受信部32の具体的な構成について説明する。図2Aに、送信部22の具体的な構成の一例を示し、図2Bに、受信部32の具体的な構成の一例を示している。
 送信部22は、例えば、伝送対象の信号を処理してミリ波帯の信号を生成する信号生成部221を有している。信号生成部221は、伝送対象の信号をミリ波帯の信号に変換する信号変換部であり、例えば、ASK(Amplitude Shift Keying:振幅偏移)変調回路から成る構成となっている。具体的には、信号生成部221は、発振器222から与えられるミリ波帯の信号と伝送対象の信号とを乗算器223で乗算することによってミリ波帯のASK変調波を生成し、バッファ224を介して出力する構成となっている。
 送信部22と導波管23との間には、コネクタ装置25が介在している。コネクタ装置25は、例えば、容量結合、電磁誘導結合、電磁界結合、共振器結合などによって、送信部22と導波管23とを結合する。導波管23は、その開口端面が筐体21の第2の通信装置30側の壁を形成する樹脂板21Aの内面に接するように、コネクタ装置25と樹脂板21Aとの間に設けられている。
 受信部32は、例えば、導波管33を通して与えられるミリ波帯の信号を処理して元の伝送対象の信号を復元する信号復元部321を有している。信号復元部321は、受信したミリ波帯の信号を、元の伝送対象の信号に変換する信号変換部であり、例えば、自乗(二乗)検波回路から成る構成となっている。具体的には、信号復元部321は、バッファ322を通して与えられるミリ波帯の信号(ASK変調波)を乗算器323で自乗することによって元の伝送対象の信号に変換し、バッファ324を通して出力する構成となっている。
 導波管33と受信部32との間には、コネクタ装置35が介在している。コネクタ装置35は、例えば、容量結合、電磁誘導結合、電磁界結合、共振器結合などによって、導波管33と受信部32とを結合する。導波管33は、その開口端面が筐体31の第1の通信装置20側の壁を形成する樹脂板31Aの内面に接するように、樹脂板31Aとコネクタ装置35との間に設けられている。
 上述したように、本適用例に係る通信システム10は、通信の形態が、第1の通信装置20と第2の通信装置30との間で、筐体21及び筐体31の平面同士(筐体同士)を接触又は近接させた状態で、高周波の信号としてミリ波帯の信号を用いて通信を行うミリ波通信である。この通信システム10において、導波管23,33の各開口端面には、誘電体板、具体的には、筐体21,31の一部を構成する樹脂板21A,31Aが設けられている。そして、導波管23,33は、第1の通信装置20と第2の通信装置30との間を、各開口端が接触又は近接した状態で誘電体板を介して結合するコネクタ装置を構成している。
 上記の構成のコネクタ装置を用いた本適用例に係る通信システム10にあっては、2つの導波管23,33の開口端を接触又は近接した状態での通信であるため、スロットアンテナを用いる無線通信に比べて広帯域な伝送が可能である。また、導波管23,33の外部へ電波が漏れるのを抑制できる。特に、導波管23,33が開口端の周辺部に漏れ防止構造24,34を有する構成となっているために、当該漏れ防止構造24,34の作用によって、導波管23,33の外部への電波の漏れをより確実に抑制することができる。これにより、電波の漏れに起因する導波管23-導波管33間の伝送特性の劣化を抑えることができる。また、漏れ防止構造24,34の作用によって、外部からの余分な信号の導波管23,33への入力、例えばミリ波帯の妨害波の導波管23,33への入力を抑制できる。
[漏れ防止構造の具体的な構成]
 漏れ防止構造24,34の具体的な構成について説明する。漏れ防止構造24,34としては、電波を損失させる構造、あるいは、電波を反射する構造のものを用いることができる。電波を損失させる漏れ防止構造としては、例えばゴム状弾性体を用いる構造を例示することができる。電波を反射する漏れ防止構造としては、例えばチョーク構造を例示することができる。以下では、チョーク構造を用いる漏れ防止構造の具体的な構成について説明する。
 図3は、チョーク構造を用いる漏れ防止構造を有するコネクタ装置の構成の一例を示す断面図である。図3に示すように、導波管23,33の開口端の周辺部には、導波管23,33の中心軸Oの周りに環状(例えば、矩形環状)に形成された溝24A,34Aを有するチョーク構造の漏れ防止構造24,34が設けられている。チョーク構造の溝24A,34Aの深さについては、導波管23,33が伝送する高周波(本例では、ミリ波)の波長λの1/4(λ/4)に設定されことが好ましい。溝24A,34Aのピッチについても、λ/4に設定されることが好ましい。ここで、「λ/4」とは、厳密にλ/4である場合の他、実質的にλ/4である場合も含む意味であり、設計上あるいは製造上生ずる種々のばらつきの存在は許容される。
 漏れ防止構造24,34のチョーク構造にあっては、溝24A,34Aの深さがλ/4のときに、定常状態では、入射波と溝24A,34Aで生じた反射波とが逆相になる。従って、入射波が溝24A,34Aで生じた反射波で打ち消されるため、チョーク構造の外側へ進行しなくなる。その結果、導波管23と導波管33とを、各開口端を接触又は近接させた状態で樹脂板21A,31Aを介して結合するコネクタ装置にあっては、外部への電波の漏れを抑制することができる。
 ここで例示した漏れ防止構造24,34については、一例であって、上記の構成のものに限られるものではない。具体的には、上記の構成では、溝24A,34Aの段数が2段の構成のものを例示したが、2段に限られるものではなく、1段であっても、あるいは、3段以上の多段であってもよい。但し、溝24A,34Aの段数が多い方が、外部への電波の漏れを抑制する効果が大きい。
 また、樹脂板21A,31Aの内面における導波管23,33の開口端面の中央部に対応する部位に、樹脂板21A,31Aの内面からの高さが例えばλ/2の誘電体突起部を有する構成とすることもできる。樹脂板21A,31Aの内面からの誘電体突起部25,35の高さがλ/2であることで、導波管23,33を伝搬する電波に対して、共振する帯域の電波だけを通過させるλ/2の共振器を形成することができる。その結果、導波管23,33によってミリ波帯の信号を伝送する際に、導波管23,33の開口端面と樹脂板21A,31Aとの接触面での電波の反射を抑制することができる。従って、第1の通信装置20と第2の通信装置30との間の伝送特性、より具体的には、電波の反射に起因する導波管23と導波管33との間の伝送特性の劣化を抑えることができる。
 漏れ防止構造24,34の作用について、図4Aを用いてより具体的に説明する。図4Aは、第1の通信装置20と第2の通信装置30とが近接した状態のシステム構成を示すブロック図である。漏れ防止構造24,34は、導波管23,33の各開口端を接触又は近接させたときに、両者間に誘電体板(樹脂板21A,31A)が介在する場合や、ゴミやほこりが存在する場合でも、ミリ波希望波信号が導波管23が外部の空間に漏れ出さないように電波の漏れを防止する。更に、漏れ防止構造24,34は、第1の通信装置20及び第2の通信装置30の外部のミリ波帯の妨害波が導波管23,33に飛び込まないように阻止する。これにより、誘電体板の介在、ゴミやほこりの存在などによって、導波管23,33間に小さな隙間があっても、導波管23,33内に電波を閉じ込めつつ確実に伝送できる。
 しかし、何らかの原因により、図4Bに示すように、第1の通信装置20の導波管23と第2の通信装置30の導波管33との間の距離が所定の距離Δx以上離間すると、導波管23が伝送する電波が装置外部の空間に漏れたり、あるいは、装置外部の妨害波が導波管33内に飛び込む場合がある。ここで、所定の距離Δxとは、実際に、導波管23が伝送する電波が漏れ防止構造24,34で阻止されることなく装置外部の空間に漏れたり、あるいは、装置外部の妨害波が漏れ防止構造24,34で阻止されることなく導波管33内に飛び込む状況が発生する距離を言う。この距離Δxは、漏れ防止構造24,34で規定される。
<第1実施形態>
 図5は、本開示の第1実施形態に係る通信システムのシステム構成例を示すブロック図である。図5に示すように、本実施形態に係る通信システム10において、送信側の第1の通信装置20は、図1に示す送信部22、導波管23、及び、漏れ防止構造24に加えて、状態監視部26及び制御部27を有する構成となっている。送信部22としては、例えば図2Aに示す構成の送信部が用いられる。受信側の第2の通信装置30は、図1と同様に、受信部32、導波管33、及び、漏れ防止構造34を有する構成となっている。受信部32としては、例えば図2Bに示す構成の受信部が用いられる。
 送信側の第1の通信装置20において、状態監視部26は、送信側の導波管23と受信側の導波管33との接続状態、具体的には、その接続状態がその接続部において電波漏れが発生する状態にあるか否かを監視する。制御部27は、状態監視部26が監視する2つの導波管23,33の接続状態に応じて、具体的には、状態監視部26が導波管23,33の接続状態がその接続部において電波漏れが発生する状態にあると判断したときに、その判断結果を受けて送信部22の信号出力を停止する制御を行う。
 このように、2つの導波管23,33の接続状態を送信側で監視し、その接続状態が電波の漏れが発生する状態にあると判断したとき、高周波の信号(本例では、ミリ波帯の信号)の送信を停止することで、次のような作用、効果を得ることができる。すなわち、第1の通信装置20の導波管23と第2の通信装置30の導波管33との間の距離が所定の距離Δx以上離間した状態にあったとしても(図4B参照)、導波管23が伝送する電波(~3THz)が装置外部(筐体外部)の空間に漏れることはない。これにより、電波の漏れに起因する伝送特性の劣化を抑えることができる。また、装置外部からの妨害波が漏れ防止構造24,34で阻止されることなく、導波管33に到来したとしても、送信部22の信号出力が停止されているため、装置外部からの妨害波に対しても強いコネクタ装置を実現できる。
 尚、第1実施形態では、送信側及び受信側の双方に、漏れ防止構造24,34を備える構成を前提としているが、これに限られるものではなく、少なくとも送信側に備えていればよい。更には、送信側にも漏れ防止構造24が備えられていなくても、状態監視部26及び制御部27の作用によって、装置外部への電波の漏れを防止できるとともに、装置外部からの妨害波にも強いコネクタ装置を実現できる。この点については、後述する第2実施形態でも同様である。
 以下に、第1実施形態に係る通信システム10における状態監視部26の具体的な実施例について説明する。
[実施例1]
 図6は、実施例1に係る状態監視部26を有する通信システムのシステム構成例を示すブロック図である。図6において、実施例1に係る状態監視部26は、送信側の第1の通信装置20内に設けられた漏れ検知器26Aから成る構成となっている。漏れ検知器26Aは、2つの導波管23,33の接続部で漏れた電波の信号と、送信部22から出力されるミリ波希望波の信号との相関から電波の漏れを検知する。具体的には、例えば、接続部で漏れた電波の信号のパターンと、ミリ波希望波の信号のパターンとを比較し、両者が同じパターンの場合に、2つの導波管23,33の接続部において電波漏れが生じたことを検知する。制御部27は、漏れ検知器26Aの検知結果を受けて、送信部22の信号出力を停止する制御を行う。
 実施例1に係る状態監視部26、即ち漏れ検知器26Aによれば、2つの導波管23,33の接続部において電波が実際に漏れたか否かを検知できる。従って、2つの導波管23,33の接続部における電波の漏れを送信側の第1の通信装置20側で素早く、且つ、確実に検知して電波漏れを防止することが可能となる。
[実施例2]
 図7は、実施例2に係る状態監視部26を有する通信システムのシステム構成例を示すブロック図である。実施例2では、2つの導波管23,33の接続部における電波の漏れと2つの導波管23,33間の距離との間には相関があることに着目している。具体的には、図4Bを用いて説明したように、第1の通信装置20の導波管23と第2の通信装置30の導波管33との間の距離が所定の距離Δx以上離間すると、導波管23が伝送する電波が装置外部の空間に漏れたり、あるいは、装置外部の妨害波が導波管33内に飛び込む現象が発生する。
 実施例2に係る状態監視部26は、送信側の第1の通信装置20内に設けられ、上述した電波の漏れと距離との相関から、第1の通信装置20と第2の通信装置30との間の距離を検知する距離検知器26Bから成る構成となっている。距離検知器26Bは、導波管23と導波管33との間の距離が、漏れ防止構造24,34で規定される所定の距離Δx(図4B参照)を超えたことを検知する。制御部27は、距離検知器26Bの検知結果を受けて、送信部22の信号出力を停止する制御を行う。
 距離検知器26Bの距離検知方式としては、周知の検知方式を用いることができる。例えば、検知対象(本例では、第2の通信装置30)と距離検知器26Bとの間の電気的な容量の変化に基づいて検知する容量形の検知方式や、検知対象に配された金属体に発生する渦電流を利用して検知する磁気形の検知方式などを例示することができる。容量形や磁気形の他にも、インダクタンス形、超音波形、音波/振動形、光学形の検知方式を用いることもできる。例えば、光学形の検知方式としては、距離変化によるCMOS等の受光素子の結像位置を距離に換算する三角測距式や、検知対象に光を照射してから、検知対象で反射された光を受光するまでの時間を測定し、距離に換算するタイム・オブ・フライト式などが知られている。
 実施例1に係る漏れ検知器26Aの場合には、ミリ波帯など高い周波数を検知することになるため、高周波的な設計が必要になる。これに対して、実施例2に係る距離検知器26Bの場合には、ミリ波帯など高い周波数の検知が不要であり、簡易な周知の距離検知方式によって電波漏れが発生する所定の距離Δxを検知することができる。これにより、2つの導波管23,33の接続部における、電波漏れが発生する接続状態を送信側の第1の通信装置20側で素早く、且つ、確実に検知して電波漏れを確実に防止することが可能となる。
<第2実施形態>
 図8は、本開示の第2実施形態に係る通信システムのシステム構成例を示すブロック図である。第1実施形態に係る通信システムでは、送信側の第1の通信装置20に状態監視部26を設ける構成を採っている。これに対し、第2実施形態に係る通信システムでは、受信側の第2の通信装置30に状態監視部36を設ける構成を採っている。状態監視部36としては、第1実施形態と同様に、実施例1に係る漏れ検知器26Aを用いることができるし、実施例2に係る距離検知器26Bを用いることができる。
 図8に示すように、受信側の第2の通信装置30は、受信部32、導波管33、及び、漏れ防止構造34に加えて、状態監視部36、送信部37、及び、導波管38を有する構成となっている。状態監視部36は、状態監視部26と同様に、送信側の導波管23と、受信側の導波管33との接続状態、具体的には、2つの導波管23,33の接続状態がその接続部において電波漏れが発生する状態にあるか否かを監視する。そして、状態監視部36は、電波漏れが発生する状態にあると判断したら、電波漏れ検出信号を送信部37に対して出力する。
 送信部37は、基本的に、第1の通信装置20側の送信部22と同様の構成となっており、状態監視部36から電波漏れ検出信号が供給されると、当該電波漏れ検出信号を高周波の信号、例えばミリ波帯の信号に変換し、ミリ波帯のリターン制御信号として導波管38に対して出力する。導波管38は、送信部37から出力されるミリ波帯のリターン制御信号を第1の通信装置20側に伝送する。
 送信側の第1の通信装置20は、送信部22、導波管23、漏れ防止構造24、及び、制御部27に加えて、導波管28及び受信部29を有する構成となっている。導波管28は、第2の通信装置30側の導波管38によって伝送されたミリ波帯のリターン制御信号を受け、受信部29に伝送する。受信部29は、基本的に、第2の通信装置30側の受信部32と同様の構成となっており、導波管28によって伝送されたミリ波帯のリターン制御信号を処理して、元の電波漏れ検出信号に復元して制御部27に供給する。制御部27は、電波漏れ検出信号を受けて送信部22の信号出力を停止する制御を行う。
 上述した第2実施形態に係る通信システムにおいても、第1実施形態に係る通信システムと同様の作用、効果を得ることができる。すなわち、第1の通信装置20の導波管23と第2の通信装置30の導波管33との間の距離が所定の距離Δx以上離間した状態にあったとしても(図4B参照)、導波管23が伝送する電波(~3THz)が装置外部(筐体外部)の空間に漏れることはない。これにより、電波の漏れに起因する伝送特性の劣化を抑えることができる。また、装置外部からの妨害波が漏れ防止構造24,34で阻止されることなく、導波管33に到来したとしても、送信部22の信号出力が停止されているため、装置外部からの妨害波に対しても強いコネクタ装置を実現できる。
 尚、本開示は以下のような構成をとることもできる。
[1]高周波の信号を伝送する2つの導波管と、
 2つの導波管の接続状態を監視する状態監視部と、
 2つの導波管のうち高周波の信号を送信する送信側の導波管側に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、
 を備えるコネクタ装置。
[2]状態監視部は、送信側の導波管側に設けられている、
 上記[1]に記載のコネクタ装置。
[3]状態監視部は、2つの導波管の接続状態がその接続部において電波漏れが発生する状態にあるか否かを監視する、
 上記[1]又は[2]に記載のコネクタ装置。
[4]少なくとも送信側の導波管側には、2つの導波管の接続状態が、2つの導波管の開口端が接触又は近接した状態にあるときに、接続部からの電波の漏れを防止する漏れ防止構造が設けられている、
 上記[1]から[3]のいずれかに記載のコネクタ装置。
[5]漏れ防止構造は、少なくとも送信側の導波管の開口端の周辺部に設けられたチョーク構造を有する、
 上記[4]に記載のコネクタ装置。
[6]チョーク構造の溝の深さは、2つの導波管間で伝送する高周波の波長の1/4である、
 上記[5]に記載のコネクタ装置。
[7]状態監視部は、2つの導波管の接続部において漏れた電波の信号と、2つの導波管間で伝送する信号との相関から電波の漏れを検知する漏れ検知器から成る、
 上記[1]から[6]のいずれかに記載のコネクタ装置。
[8]状態監視部は、2つの導波管の間の距離が所定の距離を超えたことを検知する距離検知器から成る、
 上記[1]から[6]のいずれかに記載のコネクタ装置。
[9]状態監視部は、高周波の信号を受信する受信側の導波管側に設けられており、監視結果に応じたリターン制御信号を送信側の制御部に送信する、
 上記[1]に記載のコネクタ装置。
[10]リターン制御信号は、高周波の信号である、
 上記[9]に記載のコネクタ装置。
[11]高周波の信号は、ミリ波帯の信号である、
 上記[1]から[10]のいずれかに記載のコネクタ装置。
[12]導波管を備える他の通信装置との間で高周波の信号を伝送するコネクタ装置を有し、
 コネクタ装置は、
 他の通信装置の導波管との間で高周波の信号を伝送する導波管と、
 他の通信装置との間における2つの導波管の接続状態を監視する状態監視部と、
 状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える、
 通信装置。
[13]高周波の信号は、ミリ波帯の信号である、
 上記[12]に記載の通信装置。
[14]2つの通信装置と、
 2つの通信装置間において高周波の信号を伝送するコネクタ装置と、を有し、
 コネクタ装置は、
 2つの通信装置の各々に設けられた2つの導波管と、
 2つの導波管の接続状態を監視する状態監視部と、
 2つの導波管のうち高周波の信号を送信する送信側の導波管側に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える、
 通信システム。
[15]高周波の信号は、ミリ波帯の信号である、
 上記[14]に記載の通信システム。
 10・・・通信システム、20・・・第1の通信装置、30・・・第2の通信装置、21,31・・・筐体、21A,31A・・・樹脂板(誘電体板)、22,37・・・送信部、23,33,28,38・・・導波管、24,34・・・漏れ防止構造、25,35・・・コネクタ装置、26,36・・・状態監視部、26A・・・漏れ検知器、26B・・・距離検知器、27・・・制御部、29,32・・・受信部、221・・・信号生成部(信号変換部)、222・・・発振器、223,323・・・乗算器、224,322,324・・・バッファ、321・・・信号復元部(信号変換部)

Claims (15)

  1.  高周波の信号を伝送する2つの導波管と、
     2つの導波管の接続状態を監視する状態監視部と、
     2つの導波管のうち高周波の信号を送信する送信側の導波管側に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、
     を備えるコネクタ装置。
  2.  状態監視部は、送信側の導波管側に設けられている、
     請求項1に記載のコネクタ装置。
  3.  状態監視部は、2つの導波管の接続状態がその接続部において電波漏れが発生する状態にあるか否かを監視する、
     請求項1に記載のコネクタ装置。
  4.  少なくとも送信側の導波管側には、2つの導波管の接続状態が、2つの導波管の開口端が接触又は近接した状態にあるときに、接続部からの電波の漏れを防止する漏れ防止構造が設けられている、
     請求項1に記載のコネクタ装置。
  5.  漏れ防止構造は、少なくとも送信側の導波管の開口端の周辺部に設けられたチョーク構造を有する、
     請求項4に記載のコネクタ装置。
  6.  チョーク構造の溝の深さは、2つの導波管間で伝送する高周波の波長の1/4である、
     請求項5に記載のコネクタ装置。
  7.  状態監視部は、2つの導波管の接続部において漏れた電波の信号と、2つの導波管間で伝送する信号との相関から電波の漏れを検知する漏れ検知器から成る、
     請求項1に記載のコネクタ装置。
  8.  状態監視部は、2つの導波管の間の距離が所定の距離を超えたことを検知する距離検知器から成る、
     請求項1に記載のコネクタ装置。
  9.  状態監視部は、高周波の信号を受信する受信側の導波管側に設けられており、監視結果に応じたリターン制御信号を送信側の制御部に送信する、
     請求項1に記載のコネクタ装置。
  10.  リターン制御信号は、高周波の信号である、
     請求項9に記載のコネクタ装置。
  11.  高周波の信号は、ミリ波帯の信号である、
     請求項1に記載のコネクタ装置。
  12.  導波管を備える他の通信装置との間で高周波の信号を伝送するコネクタ装置を有し、
     コネクタ装置は、
     他の通信装置の導波管との間で高周波の信号を伝送する導波管と、
     他の通信装置との間における2つの導波管の接続状態を監視する状態監視部と、
     状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える、
     通信装置。
  13.  高周波の信号は、ミリ波帯の信号である、
     請求項12に記載の通信装置。
  14.  2つの通信装置と、
     2つの通信装置間において高周波の信号を伝送するコネクタ装置と、を有し、
     コネクタ装置は、
     2つの通信装置の各々に設けられた2つの導波管と、
     2つの導波管の接続状態を監視する状態監視部と、
     2つの導波管のうち高周波の信号を送信する送信側の導波管に設けられ、状態監視部が監視する2つの導波管の接続状態に応じて高周波の信号の送信を停止する制御部と、を備える、
     通信システム。
  15.  高周波の信号は、ミリ波帯の信号である、
     請求項14に記載の通信システム。
PCT/JP2015/084631 2015-02-27 2015-12-10 コネクタ装置、通信装置、及び、通信システム WO2016136091A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/549,335 US10374273B2 (en) 2015-02-27 2015-12-10 Connector device, communication device, and communication system
CN201580076569.9A CN107251442A (zh) 2015-02-27 2015-12-10 连接器装置、通信装置、和通信系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015038619 2015-02-27
JP2015-038619 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136091A1 true WO2016136091A1 (ja) 2016-09-01

Family

ID=56789235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084631 WO2016136091A1 (ja) 2015-02-27 2015-12-10 コネクタ装置、通信装置、及び、通信システム

Country Status (3)

Country Link
US (1) US10374273B2 (ja)
CN (1) CN107251442A (ja)
WO (1) WO2016136091A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061793A1 (ja) * 2016-09-27 2018-04-05 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、及び、電子機器
WO2018066349A1 (ja) * 2016-10-03 2018-04-12 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、及び、電子機器
CN109716586A (zh) * 2016-09-27 2019-05-03 索尼半导体解决方案公司 通信设备、通信方法和电子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108793A (ko) * 2020-02-26 2021-09-03 삼성전자주식회사 무접점 무선 전력 및 데이터 통신 전송 구조를 포함하는 전자 장치
JP2022125444A (ja) * 2021-02-17 2022-08-29 古野電気株式会社 導波管接続構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238901A (ja) * 1990-02-16 1991-10-24 Toshiba Corp 電波漏洩防止構造
JPH04288729A (ja) * 1991-03-18 1992-10-13 Fujitsu Ltd マイクロ波漏洩防止機能付き無線装置
JPH07135196A (ja) * 1993-06-29 1995-05-23 Nec Kyushu Ltd 半導体基板アッシング装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065700A (ja) 2004-08-27 2006-03-09 Ricoh Co Ltd 無線通信システム。
JP4882578B2 (ja) * 2005-11-30 2012-02-22 ミツミ電機株式会社 電子部品接続用コネクタ
US7592887B2 (en) * 2006-06-30 2009-09-22 Harris Stratex Networks Operating Corporation Waveguide interface having a choke flange facing a shielding flange
JP4833026B2 (ja) * 2006-10-31 2011-12-07 三菱電機株式会社 導波管の接続構造
EP2426782B1 (en) * 2009-04-28 2020-06-10 Mitsubishi Electric Corporation Waveguide conversion portion connection structure, method of fabricating same, and antenna device using this connection structure
US9100056B2 (en) * 2011-12-23 2015-08-04 Tyco Electronics Corporation Waveguide structure for a contactless connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238901A (ja) * 1990-02-16 1991-10-24 Toshiba Corp 電波漏洩防止構造
JPH04288729A (ja) * 1991-03-18 1992-10-13 Fujitsu Ltd マイクロ波漏洩防止機能付き無線装置
JPH07135196A (ja) * 1993-06-29 1995-05-23 Nec Kyushu Ltd 半導体基板アッシング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061793A1 (ja) * 2016-09-27 2018-04-05 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、及び、電子機器
CN109716586A (zh) * 2016-09-27 2019-05-03 索尼半导体解决方案公司 通信设备、通信方法和电子装置
WO2018066349A1 (ja) * 2016-10-03 2018-04-12 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、及び、電子機器

Also Published As

Publication number Publication date
US20180025882A1 (en) 2018-01-25
CN107251442A (zh) 2017-10-13
US10374273B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2016136091A1 (ja) コネクタ装置、通信装置、及び、通信システム
JP6140092B2 (ja) コネクタ装置、通信装置、及び、通信システム
WO2017126327A1 (ja) コネクタモジュール、通信基板、および電子機器
US20050017825A1 (en) Method and system for high-speed communication over power line
JP5487965B2 (ja) ミリ波信号を改善するためのシステム及び方法
US20100222012A1 (en) Wireless communication apparatus and method
EP1454422A1 (en) Method and system for high-speed communication over power line
US9116366B2 (en) Tunable RF filter device using optical waveguide paths with splitter and combiner pairs and related methods
US9002143B2 (en) Tunable RF filter device using optical waveguides with dispersion slopes of opposite signs and related methods
US10283833B2 (en) Connector device and communication device
JP6138076B2 (ja) 通信装置、通信システム、及び、通信方法
CN101651503A (zh) 一种检测天馈系统驻波比的方法及装置
WO2018061793A1 (ja) 通信装置、通信方法、及び、電子機器
WO2017033668A1 (ja) コネクタ装置及び通信装置
US10511465B2 (en) Transmitter, transmission method, receiver, and reception method
JP2011119872A (ja) 無線通信装置
WO2018061794A1 (ja) 通信装置、通信方法、及び、電子機器
JP2015133580A (ja) 平面伝送線路導波管変換器
CN102045090B (zh) 实现波导管信号无缝覆盖的方法和装置
US10193221B2 (en) Reflector antenna and reflector antenna feed
KR100964338B1 (ko) 레이더 수신기의 송신신호 제거장치
JP2015050491A (ja) 高周波遮断フィルタ、マイクロ波出力装置、伝送回路、およびレーダ装置
JP2017127037A (ja) 通信装置、通信システム、及び、通信方法
JPH01206739A (ja) 警報回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549335

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15883381

Country of ref document: EP

Kind code of ref document: A1