EP1454422A1 - Method and system for high-speed communication over power line - Google Patents
Method and system for high-speed communication over power lineInfo
- Publication number
- EP1454422A1 EP1454422A1 EP02789083A EP02789083A EP1454422A1 EP 1454422 A1 EP1454422 A1 EP 1454422A1 EP 02789083 A EP02789083 A EP 02789083A EP 02789083 A EP02789083 A EP 02789083A EP 1454422 A1 EP1454422 A1 EP 1454422A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- line
- signal
- wave
- guide
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2203/00—Indexing scheme relating to line transmission systems
- H04B2203/54—Aspects of powerline communications not already covered by H04B3/54 and its subgroups
- H04B2203/5429—Applications for powerline communications
- H04B2203/5441—Wireless systems or telephone
Definitions
- the present invention relates to a communication system for transmission of data signals over a power line comprising at least one data generating arrangement, transceivers and line couplers for coupling data to said line power.
- the applicant has developed a solution for transforming the power line network into a high-class information infrastructure capable of handling the high demands that users and network operators have on the next generation IP-based multimedia services.
- the technology is in a suite of products ranging from plug and play end-user modems to reliable and robust network infrastructure.
- the benefits of using the power line network for communication is that the network is already in place and that it is omni-present, a normal house has power sockets in almost every corner. To the user, this means, for example convenient and cost effective Internet access.
- a new method for transmitting digital information over the mains network and/or distribution network is provided.
- the schematic view of Fig.l illustrates an example of a solution provided by the applicant.
- information such as digital, voice and/or image data is modulated and transformed onto the mains distribution network in a medium voltage transformer.
- a medium voltage transformer Before supplying the power to household, it is transformed into low voltage electricity, i.e. block B, in a low voltage transformer.
- the information on the power line is transformed to suitable data by means of modems connected directly to the power line, block C.
- US 6,243,571 a method and system for the reception, conversion and distribution of wireless communication signals received from such communication devices as PCS, Cellular, and Satellite over AC power lines commonly found within a building, office, home or other structure is disclosed.
- This invention specifically provides for the distribution of wireless signals in structures where otherwise signal degradation and/or blockage are common.
- this invention takes advantage of the existing AC power lines to create a communication channel avoiding the necessity of rewiring the building or other structure.
- This invention provides important improvements to the signal coverage and reception of wireless transmitted signals within buildings and other structures and does so in an efficient and cost effective manner.
- This invention does not consider high voltage power lines (main lines) hanging over the ground, which means that the invention cannot be applied in such applications.
- the arrangement according to the present invention allows fast data transmission, high transmission efficiency (low attenuation), and possibility to communicate over long distances in both one and two way communications.
- the system comprises a microwave transmitter between said transceiver and said line coupler, which transceivs said data signal as electrical field on a surface of said power line.
- the transmitter comprises microwave antennas connected to the transceiver and said line coupler.
- the antenna is a parabolic reflector antenna.
- the antenna comprises a dish, a coaxial connector, a feeder, a feeder dipole, and a primary reflector.
- the incoming and outgoing microwave signals are excited by said dipole and reflected towards the primary reflector aiming to the dish.
- there is a direct path to the dish from the dipole to obtain a very narrow beam pointing out in a substantially tapering lobe from the dish.
- the lobe has an angle of approximately about 0.5 to 2.0 degrees.
- the transmitter comprises a dielectric wave- guide.
- the wave-guide comprises wave-guide horns at each end and a dielectric waveguide part.
- An injected signal, injected by a ⁇ /4 probe, to one side of said wave-guide is transferred by means of said dielectric wave-guide to the wave-guide horn to the other side and a corresponding probe in it.
- the reflections in the wave-guide appear due to the different dielectric properties between the wave-guide (polyethylene) and the surrounding air.
- the coupler is a Goubau horn, which comprises a substantially conical body, a compartment section, having an end section with a small opening for passage of said power line, a wall with an aperture, and an external connection part.
- the space between the end section and the wall builds a cavity functioning as bandpass filter.
- the conical body functions as matching horn.
- a coupling loop is arranged coaxially to the external connection part.
- the transceiver comprises a base-band processor, on the transmitter side: a mixer modulator, an IF stage, mixer, amplifier, on the receiver side: a mixer demodulator, an IF stage, mixer, amplifier, a duplexer, a first oscillator and a second oscillator synthesizer.
- the base band processor prepares data for transmitting and receiving and handles the preambles package sizing and CRC, the mixer (modulator/demodulator), on the TX side the base band signal is modulated and lifted to the intermediate frequency as the IF signal to a higher power signal, on the RX side: the if signal is demodulated to the base band frequency, microwave amplifier amplifies the low level signal to a higher power signal, IF-stage is a high amplification stage, the front-end amplifier is a low noise input amplifier that will increase the signal, the first oscillator is used to lift the base band frequency to the IF-frequency on the TX side and the opposite on the RX side, the second oscillator, synthesizer mixes the IF signal to the carrier frequency on the TX side and the opposite on the RX side, the synthesizer selects different oscillator frequency for different carrier frequencies, and the duplexer distinguishes between TX frequencies and RX frequencies and combines them towards the antenna output.
- the mixer modulator/demodulator
- the microwave transmitter is connected to a cavity working as a bandpass filter.
- the invention also relates to a method in a communication system for transmission of data signals over a power line, the system comprising at least one data generating arrangement, transceivers and line couplers for coupling data to said line power.
- the method comprises the step of arranging a microwave transmitter between said transceiver and said line coupler.
- Fig. 1 is a block diagram of transmission system
- Fig. 2 is a general block diagram of the invention
- Fig. 3 is a block diagram of a first embodiment of the invention
- Fig. 4 is a block diagram of a transceiver
- Fig. 5 is a cross-sectional view of an antenna arrangement
- Fig. 6 is a cross-sectional view of a line coupler
- Fig. 7 is a block diagram of a second embodiment of the invention.
- Fig. 8 is a cross-sectional view of a wave-guide arrangement
- Fig. 9 is a block diagram of a connection example.
- Block diagram of Fig. 2 illustrates the main parts of a transmission system 10 according to the present invention.
- the system comprises, at both transmitter (T) and receiver (R) sides, a Communication Manager (CM) 11, a Communication Manager Transceiver (CMT) 12, a Link Transceiver (LT) 13 and a Line Coupler (LC) 14.
- CM Communication Manager
- CMT Communication Manager Transceiver
- LT Link Transceiver
- LC Line Coupler
- FIG. 3 A more detailed block diagram of the system according to the invention according to a first embodiment is illustrated in Fig. 3.
- similar reference numerals refer to similar functional units.
- the CM 31 comprises a media converter 311 and a server computer 312.
- the media converter 311 translates the signal between, e.g. optical fibres to electrical conductors.
- the server 312 handles, for example higher levels of protocols when connecting to several networks and stacks the data information if possible. It also can manage the remote monitoring of other devices.
- the CMT 32 and LM 33 are used for data information preparation for redundant communication. It also modulates/demodulates data signal from, e.g., binary to analogue, having high frequency properties by means of a base band processor and necessary analogue RF, preferably microwave modules. Mixers, oscillators and amplifiers utilize these modules.
- the function of CMT and LM is assumed to be known by a skilled person.
- the CMT 32 comprises a base-band processor 3201, on the transmitter side: a mixer modulator 3202, an IF stage 3203, mixer 3204, amplifier 3205 (for u-wave); on the receiver side: a mixer demodulator 3207, an IF stage 3208, mixer 3209, amplifier 3210 (front end).
- CMT also comprises a duplexer 3206,a first oscillator 3211 and a second oscillator synthesizer 3212.
- the base band processor prepares data for transmitting and receiving and handles the preambles package sizing and CRC.
- the base-band signal is lifted and modulated to the intermediate frequency as the IF signal to a higher power signal; on the RX side, the IF signal is shifted and demodulated to the base band frequency.
- a microwave amplifier amplifies the low level signal to a higher power signal.
- IF-stage is a high amplification stage.
- the front-end amplifier is a low noise input amplifier that will increase the signal.
- the first oscillator is used to lift the base band frequency to the IF-frequency on the TX side and the opposite on the RX side (shift down).
- the second oscillator, synthesizer mixes the IF signal to the carrier frequency on the TX side and the opposite on the RX side.
- the synthesizer selects different oscillator frequency for different carrier frequencies.
- the duplexer distinguishes between TX frequencies and RX frequencies and combines them towards the antenna connection.
- the communication between the transceivers is performed by means of antennas 32 and 33; preferably microwave antennas of known type, for broadband communication.
- a microwave signal is fed or received through the microwave antennas.
- the main lobe of the microwave antenna 32 is directed towards the power line cable, which is equipped with another microwave antenna 33.
- Fig. 5 illustrates an exemplary embodiment of a parabolic reflector antenna 32.
- the antenna comprises a dish 321, a coaxial connector 322, a feeder 323, a feeder dipole 324, and a primary reflector 325.
- Incoming and outgoing microwave signals 326 are excited by the dipole 324 and reflected towards the primary reflector 325 aiming to the dish 321. There is also a direct path to the dish from the dipole.
- the purpose of this solution is to obtain a very narrow beam pointing out in a "pencil” like lobe from the dish, approximately with an angle of about 1 to 1,5 degrees.
- the microwave antenna is connected to a cavity working as a band pass filter.
- the produced electrical RF field, orthogonal to the cable surface is prolonged along the cable through an opening of the cavity into a line coupler, such as a Goubau horn.
- Fig. 6 illustrates a cross-sectional view through a Goubau horn 14.
- the horn comprises a substantially conical body 141 and a compartment section 142.
- the compartment section has an end section 143 with a small opening for the passage of the power wire 15, a wall 145 with an aperture 146, and an external connection part 147.
- the space between the end section 143 and the wall 145 builds a cavity 148 functioning as a bandpass filter.
- the conical body 141 functions as matching horn.
- a coupling loop 149 is arranged coaxially to the external connection part 147.
- the external connection part 147 works as an input/output for the microwave signals. It can be connected to a parabolic dish antenna (e.g. as described above) or other isolated waveguide.
- the cavity/bandpass filter 148 is the connecting link between a ground link to the power wire 15. It filters the noise and disturbances outside the frequency pass band.
- the coupling loop or a ⁇ /4 probe is a coupling device, which transfers the RF-energy into the cavity.
- the aperture 146 is a substantially circular opening surrounding the wire that will leak the energy out onto the surface of the wire.
- the matching horn 141 is the unit that expands the E-field from the aperture and releases the E-field as a standing wave on the surface of the wire and matches the impedance to suppress standing waves in the injection point.
- the RF energy is then transmitted or received along the power line.
- the Goubau horn matches the cavity impedance to the cable impedance, thus a minimum of reflection occurs.
- the microwave antenna is connected to a cavity working as a band pass filter.
- the created electrical RF field, orthogonal to the cable surface is prolonged along the cable through an opening of the cavity into the Goubau horn.
- the RF energy is then transmitted or received along the power line.
- the Goubau horn matches the cavity impedance to the cable impedance such that minimum of reflections occurs.
- the system 70 comprises a microwave guide 79 to transmit the information between the transceiver 31 and the line coupler 34.
- Functional units having same function as in Fig. 3 are designated with same reference numbers.
- Fig. 8 illustrates an embodiment of a dielectric wave-guide.
- the wave-guide 79 comprises wave-guide horns 791 and 792 at each end and a dielectric wave-guide part 793.
- An injected RF-signal injected by a ⁇ /4 probe to one side is transferred by means of the dielectric wave-guide to the wave-guide horn to the other side and a corresponding probe in it. Reflections in the wave-guide appear due to the different dielectric properties between the wave-guide (polyethylene) and the surrounding air.
- the microwave signal is fed through an open wave-guide into the dielectric waveguide and transformed between the line couplers.
- This solution is more efficient compared to the antenna solution, because the leakage through the guide surface is less than the antenna transmission.
- Attached to the power line is the other part of the dielectric wave-guide, which is completed with another open wave-guide.
- Fig. 9 illustrates an embodiment wherein a number of transceiver systems are connected, providing a repeater system.
- the repeater system can be arranged as a system with taps along the line with high voltage wires. Every tap is equipped with complete back-to-back transceivers with a possibility to drop data information to the data network, here network B.
- the invention is not limited to the shown embodiments but can be varied in a number of ways, e.g. through combination of two or more embodiments shown, without departing from the scope of the appended claims and the arrangement and the method can be implemented in various ways depending on application, functional units, needs and requirements etc.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
The present invention relates to a communication system (10, 30) for transmission of data signals over a power line (15, 35) comprising at least one data generating arrangement (11, 31), transceivers and line couplers (14, 34) for coupling data to said line power. The system comprises a microwave transmitter between said transceiver and said line coupler, which transceivs said data signal as electrical field on a surface of said power line.
Description
Method and system for high-speed communication over power line
Technical field of the invention
The present invention relates to a communication system for transmission of data signals over a power line comprising at least one data generating arrangement, transceivers and line couplers for coupling data to said line power.
Background of the invention
The applicant has developed a solution for transforming the power line network into a high-class information infrastructure capable of handling the high demands that users and network operators have on the next generation IP-based multimedia services. The technology is in a suite of products ranging from plug and play end-user modems to reliable and robust network infrastructure. The benefits of using the power line network for communication is that the network is already in place and that it is omni-present, a normal house has power sockets in almost every corner. To the user, this means, for example convenient and cost effective Internet access.
Thus, a new method for transmitting digital information over the mains network and/or distribution network is provided. The schematic view of Fig.l illustrates an example of a solution provided by the applicant. In a first step, shown in block A, information, such as digital, voice and/or image data is modulated and transformed onto the mains distribution network in a medium voltage transformer. Before supplying the power to household, it is transformed into low voltage electricity, i.e. block B, in a low voltage transformer. At the user's premises, e.g. a house, the information on the power line is transformed to suitable data by means of modems connected directly to the power line, block C.
Prior art fails to disclose an arrangement according to the invention. In, for example, US 6,243,571 is disclosed a method and system for the reception, conversion and distribution of wireless communication signals received from such communication devices as PCS, Cellular, and Satellite over AC power lines commonly found within a building, office, home or other structure is disclosed. This invention specifically provides for the distribution of wireless signals in structures where otherwise signal degradation and/or
blockage are common. Moreover, this invention takes advantage of the existing AC power lines to create a communication channel avoiding the necessity of rewiring the building or other structure. This invention provides important improvements to the signal coverage and reception of wireless transmitted signals within buildings and other structures and does so in an efficient and cost effective manner. This invention does not consider high voltage power lines (main lines) hanging over the ground, which means that the invention cannot be applied in such applications.
Summery of the invention
Thus, there is need for an arrangement for transferring data from a data source onto the power transmission line. The arrangement according to the present invention allows fast data transmission, high transmission efficiency (low attenuation), and possibility to communicate over long distances in both one and two way communications.
For these reasons, wherein the system comprises a microwave transmitter between said transceiver and said line coupler, which transceivs said data signal as electrical field on a surface of said power line.
According to one aspect of the invention, the transmitter comprises microwave antennas connected to the transceiver and said line coupler. The antenna is a parabolic reflector antenna. The antenna comprises a dish, a coaxial connector, a feeder, a feeder dipole, and a primary reflector. The incoming and outgoing microwave signals are excited by said dipole and reflected towards the primary reflector aiming to the dish. Preferably, there is a direct path to the dish from the dipole, to obtain a very narrow beam pointing out in a substantially tapering lobe from the dish. The lobe has an angle of approximately about 0.5 to 2.0 degrees.
According to another aspect of the invention, the transmitter comprises a dielectric wave- guide. The wave-guide comprises wave-guide horns at each end and a dielectric waveguide part. An injected signal, injected by a λ/4 probe, to one side of said wave-guide is transferred by means of said dielectric wave-guide to the wave-guide horn to the other side and a corresponding probe in it. The reflections in the wave-guide appear due to the different dielectric properties between the wave-guide (polyethylene) and the surrounding air.
Most advantageously, the coupler is a Goubau horn, which comprises a substantially conical body, a compartment section, having an end section with a small opening for
passage of said power line, a wall with an aperture, and an external connection part. The space between the end section and the wall builds a cavity functioning as bandpass filter. The conical body functions as matching horn. A coupling loop is arranged coaxially to the external connection part.
The transceiver comprises a base-band processor, on the transmitter side: a mixer modulator, an IF stage, mixer, amplifier, on the receiver side: a mixer demodulator, an IF stage, mixer, amplifier, a duplexer, a first oscillator and a second oscillator synthesizer. The base band processor prepares data for transmitting and receiving and handles the preambles package sizing and CRC, the mixer (modulator/demodulator), on the TX side the base band signal is modulated and lifted to the intermediate frequency as the IF signal to a higher power signal, on the RX side: the if signal is demodulated to the base band frequency, microwave amplifier amplifies the low level signal to a higher power signal, IF-stage is a high amplification stage, the front-end amplifier is a low noise input amplifier that will increase the signal, the first oscillator is used to lift the base band frequency to the IF-frequency on the TX side and the opposite on the RX side, the second oscillator, synthesizer mixes the IF signal to the carrier frequency on the TX side and the opposite on the RX side, the synthesizer selects different oscillator frequency for different carrier frequencies, and the duplexer distinguishes between TX frequencies and RX frequencies and combines them towards the antenna output.
The microwave transmitter is connected to a cavity working as a bandpass filter.
The invention also relates to a method in a communication system for transmission of data signals over a power line, the system comprising at least one data generating arrangement, transceivers and line couplers for coupling data to said line power. The method comprises the step of arranging a microwave transmitter between said transceiver and said line coupler.
Short description of the drawings
The invention is described with reference to a number of embodiments illustrated in attached drawings, in which:
Fig. 1 is a block diagram of transmission system,
Fig. 2 is a general block diagram of the invention,
Fig. 3 is a block diagram of a first embodiment of the invention,
Fig. 4 is a block diagram of a transceiver,
Fig. 5 is a cross-sectional view of an antenna arrangement,
Fig. 6 is a cross-sectional view of a line coupler,
Fig. 7 is a block diagram of a second embodiment of the invention,
Fig. 8 is a cross-sectional view of a wave-guide arrangement, and Fig. 9 is a block diagram of a connection example.
Detailed description of the embodiments
Block diagram of Fig. 2, illustrates the main parts of a transmission system 10 according to the present invention. The system comprises, at both transmitter (T) and receiver (R) sides, a Communication Manager (CM) 11, a Communication Manager Transceiver (CMT) 12, a Link Transceiver (LT) 13 and a Line Coupler (LC) 14. A signal transmission is made over the power line 15.
A more detailed block diagram of the system according to the invention according to a first embodiment is illustrated in Fig. 3. In the drawings similar reference numerals refer to similar functional units.
In the system 30, the CM 31 comprises a media converter 311 and a server computer 312. The media converter 311 translates the signal between, e.g. optical fibres to electrical conductors. The server 312 handles, for example higher levels of protocols when connecting to several networks and stacks the data information if possible. It also can manage the remote monitoring of other devices.
The CMT 32 and LM 33 are used for data information preparation for redundant communication. It also modulates/demodulates data signal from, e.g., binary to analogue, having high frequency properties by means of a base band processor and necessary analogue RF, preferably microwave modules. Mixers, oscillators and amplifiers utilize these modules. The function of CMT and LM is assumed to be known by a skilled person.
In the following a CMT 32 is described, as an example, bearing in mind that the LM 33, consists of same parts. Referring to Fig. 4, the CMT 32 comprises a base-band processor 3201, on the transmitter side: a mixer modulator 3202, an IF stage 3203, mixer 3204, amplifier 3205 (for u-wave); on the receiver side: a mixer demodulator 3207, an IF stage 3208, mixer 3209, amplifier 3210 (front end). CMT also comprises a duplexer 3206,a first oscillator 3211 and a second oscillator synthesizer 3212.
The base band processor prepares data for transmitting and receiving and handles the preambles package sizing and CRC. In the mixer (modulator/demodulator), on the TX side, the base-band signal is lifted and modulated to the intermediate frequency as the IF signal to a higher power signal; on the RX side, the IF signal is shifted and demodulated to the base band frequency. A microwave amplifier amplifies the low level signal to a higher power signal. On TX-side, IF-stage is a high amplification stage. The front-end amplifier is a low noise input amplifier that will increase the signal. The first oscillator is used to lift the base band frequency to the IF-frequency on the TX side and the opposite on the RX side (shift down). The second oscillator, synthesizer mixes the IF signal to the carrier frequency on the TX side and the opposite on the RX side. The synthesizer selects different oscillator frequency for different carrier frequencies. The duplexer distinguishes between TX frequencies and RX frequencies and combines them towards the antenna connection.
According this embodiment, the communication between the transceivers is performed by means of antennas 32 and 33; preferably microwave antennas of known type, for broadband communication. A microwave signal is fed or received through the microwave antennas. The main lobe of the microwave antenna 32 is directed towards the power line cable, which is equipped with another microwave antenna 33.
Fig. 5 illustrates an exemplary embodiment of a parabolic reflector antenna 32. The antenna comprises a dish 321, a coaxial connector 322, a feeder 323, a feeder dipole 324, and a primary reflector 325.
Incoming and outgoing microwave signals 326 are excited by the dipole 324 and reflected towards the primary reflector 325 aiming to the dish 321. There is also a direct path to the dish from the dipole. The purpose of this solution is to obtain a very narrow beam pointing out in a "pencil" like lobe from the dish, approximately with an angle of about 1 to 1,5 degrees.
The microwave antenna is connected to a cavity working as a band pass filter. The produced electrical RF field, orthogonal to the cable surface is prolonged along the cable through an opening of the cavity into a line coupler, such as a Goubau horn.
Fig. 6 illustrates a cross-sectional view through a Goubau horn 14. The horn comprises a substantially conical body 141 and a compartment section 142. The compartment section has an end section 143 with a small opening for the passage of the power wire 15, a wall 145 with an aperture 146, and an external connection part 147. The space between the end section 143 and the wall 145 builds a cavity 148 functioning as a bandpass filter. The
conical body 141 functions as matching horn. A coupling loop 149 is arranged coaxially to the external connection part 147.
The external connection part 147 works as an input/output for the microwave signals. It can be connected to a parabolic dish antenna (e.g. as described above) or other isolated waveguide. The cavity/bandpass filter 148 is the connecting link between a ground link to the power wire 15. It filters the noise and disturbances outside the frequency pass band. The coupling loop or a λ/4 probe is a coupling device, which transfers the RF-energy into the cavity. The aperture 146 is a substantially circular opening surrounding the wire that will leak the energy out onto the surface of the wire. The matching horn 141 is the unit that expands the E-field from the aperture and releases the E-field as a standing wave on the surface of the wire and matches the impedance to suppress standing waves in the injection point.
Using the antennas and the horn, the RF energy is then transmitted or received along the power line. The Goubau horn matches the cavity impedance to the cable impedance, thus a minimum of reflection occurs. The microwave antenna is connected to a cavity working as a band pass filter. The created electrical RF field, orthogonal to the cable surface is prolonged along the cable through an opening of the cavity into the Goubau horn. The RF energy is then transmitted or received along the power line. The Goubau horn matches the cavity impedance to the cable impedance such that minimum of reflections occurs.
Using microwave antennas is only one way of transmitting signals between the transceivers and the couplers. In the embodiment of Fig. 7, the system 70 comprises a microwave guide 79 to transmit the information between the transceiver 31 and the line coupler 34. Functional units having same function as in Fig. 3 are designated with same reference numbers.
Fig. 8 illustrates an embodiment of a dielectric wave-guide. The wave-guide 79 comprises wave-guide horns 791 and 792 at each end and a dielectric wave-guide part 793. An injected RF-signal injected by a λ/4 probe to one side is transferred by means of the dielectric wave-guide to the wave-guide horn to the other side and a corresponding probe in it. Reflections in the wave-guide appear due to the different dielectric properties between the wave-guide (polyethylene) and the surrounding air.
Thus, the microwave signal is fed through an open wave-guide into the dielectric waveguide and transformed between the line couplers. This solution is more efficient compared to the antenna solution, because the leakage through the guide surface is less
than the antenna transmission. Attached to the power line is the other part of the dielectric wave-guide, which is completed with another open wave-guide.
Fig. 9 illustrates an embodiment wherein a number of transceiver systems are connected, providing a repeater system. The repeater system can be arranged as a system with taps along the line with high voltage wires. Every tap is equipped with complete back-to-back transceivers with a possibility to drop data information to the data network, here network B.
The invention is not limited to the shown embodiments but can be varied in a number of ways, e.g. through combination of two or more embodiments shown, without departing from the scope of the appended claims and the arrangement and the method can be implemented in various ways depending on application, functional units, needs and requirements etc.
Claims
1. A communication system (10, 30) for transmission of data signals over a power line (15, 35) comprising at least one data generating arrangement (11, 31), transceivers and line couplers (14, 34) for coupling data to said power line, wherein the system comprises a microwave transmitter between said transceiver and said line coupler, which transceivs said data signal as electrical field on a surface of said power line.
2. The system according to claim 1, wherein said transmitter comprises microwave antennas (32, 33) connected to said transceiver and said line coupler.
3. The system according to claim 1, wherein said antenna is a parabolic reflector antenna.
4. The system according to claim 3, wherein said antenna comprises a dish (321), a coaxial connector (322), a feeder (323), a feeder dipole (324), and a primary reflector (325).
5. The system according to claim 4, wherein incoming and outgoing microwave signals (326) are excited by said dipole (324) and reflected towards the primary reflector
(325) aiming to the dish (321).
6. The system according to claim 5, wherein there is a direct path to the dish from the dipole, to obtain a very narrow beam pointing out in a substantially tapering lobe from the dish
7. The system according to claim 5, wherein said lobe has an angle of approximately about 0.5 to 2.0 degrees.
8. The system according to claim 1, wherein said transmitter comprises a dielectric wave- guide (79).
9. The system according to claim 8, wherein said wave-guide (79) comprises waveguide horns (791, 792) at each end and a dielectric wave-guide part (793).
10. The system according to claim 9, wherein an injected signal, injected by a Lambda/4 probe, to one side of said wave-guide is transferred by means of said dielectric waveguide to the wave-guide horn to the other side and a corresponding probe in it.
11. The system according to claim 10, wherein reflections in the wave-guide appear due to the different dielectric properties between the wave-guide (polyethylene) and the surrounding air.
12. The system according to claim 1, wherein said coupler is a Goubau horn (14, 24, 34).
13. The system according to claim 1, wherein said Goubau horn comprises a substantially conical body (141), a compartment section (142), having an end section (143) with a small opening for passage of said power line, a wall (145) with an aperture (146), and a external connection part (147).
14. The system according to claim 13, wherein the space between the end section (143) and the wall (145) builds a cavity (148) functioning as bandpass filter.
15. The system according to claim 13 or 14, wherein the conical body (141) functions as matching horn.
16. The system according to claim 13, wherein a coupling loop (149) is arranged coaxially to the external connection part (147).
17. The system according to any of preceding claims, wherein said transceiver comprises a base-band processor (3201), on the transmitter side: a mixer modulator (3202), an IF stage (3203), mixer (3204), amplifier (3205), on the receiver side: a mixer demodulator (3207), an IF stage (3208), mixer (3209), amplifier (3210), a duplexer (3206), a first oscillator (3211) and a second oscillator synthesizer (3212).
18. The system according to claim 17, wherein the base band processor prepares data for transmitting and receiving and handles the preambles package sizing and CRC, the mixer (modulator/demodulator), on the TX side the base band signal is modulated and lifted to the intermediate frequency as the IF signal to a higher power signal, on the RX side: the if signal is demodulated to the base band frequency, microwave amplifier amplifies the low level signal to a higher power signal, IF-stage is a high amplification stage, the front-end amplifier is a low noise input amplifier that will increase the signal, the first oscillator is used to lift the base band frequency to the IF-frequency on the TX side and the opposite on the RX side, the second oscillator, synthesizer mixes the IF signal to the carrier frequency on the TX side and the opposite on the RX side, the synthesizer selects different oscillator frequency for different carrier frequencies, and the duplexer distinguishes between TX frequencies and RX frequencies and combines them towards the antenna output.
19. The system according to any of preceding claims, wherein the microwave transmitter is connected to a cavity working as a bandpass filter.
20. The system according to claim 1, wherein produced electrical radio frequency field, orthogonal to a surface of sad power line is prolonged along said line through an opening of the cavity into a line coupler.
21. The system according to claim 1, wherein the electrical field is released as a standing wave on the surface of the line.
22. A method in a communication system (10, 30) for transmission of data signals over a power line (15, 35), the system comprising at least one data generating arrangement
(11, 31), transceivers and line couplers (14, 34) for coupling data to said line power, the method comprising the step of arranging a microwave transmitter between said transceiver and said line coupler.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33246901P | 2001-11-21 | 2001-11-21 | |
SE0103901 | 2001-11-21 | ||
US332469P | 2001-11-21 | ||
SE0103901A SE527599C2 (en) | 2001-11-21 | 2001-11-21 | Method and system for high-speed communication over a power line |
PCT/SE2002/002131 WO2003044981A1 (en) | 2001-11-21 | 2002-11-21 | Method and system for high-speed communication over power line |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1454422A1 true EP1454422A1 (en) | 2004-09-08 |
Family
ID=26655598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02789083A Withdrawn EP1454422A1 (en) | 2001-11-21 | 2002-11-21 | Method and system for high-speed communication over power line |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1454422A1 (en) |
AU (1) | AU2002353711A1 (en) |
WO (1) | WO2003044981A1 (en) |
Cited By (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016176030A1 (en) * | 2015-04-28 | 2016-11-03 | At&T Intellectual Property I, Lp | Magnetic coupling device and methods for use therewith |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9571209B2 (en) | 2014-10-21 | 2017-02-14 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9661505B2 (en) | 2013-11-06 | 2017-05-23 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9699785B2 (en) | 2012-12-05 | 2017-07-04 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9794003B2 (en) | 2013-12-10 | 2017-10-17 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US10812123B1 (en) | 2019-12-05 | 2020-10-20 | At&T Intellectual Property I, L.P. | Magnetic coupler for launching and receiving electromagnetic waves and methods thereof |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4345850B2 (en) * | 2006-09-11 | 2009-10-14 | ソニー株式会社 | Communication system and communication apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3201724A (en) * | 1964-01-07 | 1965-08-17 | Hafner Theodore | Suspension system for surface wave transmission line |
US5437052A (en) * | 1993-04-16 | 1995-07-25 | Conifer Corporation | MMDS over-the-air bi-directional TV/data transmission system and method therefor |
US6243571B1 (en) * | 1998-09-21 | 2001-06-05 | Phonex Corporation | Method and system for distribution of wireless signals for increased wireless coverage using power lines |
-
2002
- 2002-11-21 EP EP02789083A patent/EP1454422A1/en not_active Withdrawn
- 2002-11-21 WO PCT/SE2002/002131 patent/WO2003044981A1/en not_active Application Discontinuation
- 2002-11-21 AU AU2002353711A patent/AU2002353711A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO03044981A1 * |
Cited By (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9788326B2 (en) | 2012-12-05 | 2017-10-10 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US10194437B2 (en) | 2012-12-05 | 2019-01-29 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9699785B2 (en) | 2012-12-05 | 2017-07-04 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9930668B2 (en) | 2013-05-31 | 2018-03-27 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10091787B2 (en) | 2013-05-31 | 2018-10-02 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US10051630B2 (en) | 2013-05-31 | 2018-08-14 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9661505B2 (en) | 2013-11-06 | 2017-05-23 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9674711B2 (en) | 2013-11-06 | 2017-06-06 | At&T Intellectual Property I, L.P. | Surface-wave communications and methods thereof |
US9876584B2 (en) | 2013-12-10 | 2018-01-23 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9794003B2 (en) | 2013-12-10 | 2017-10-17 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US10096881B2 (en) | 2014-08-26 | 2018-10-09 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US9906269B2 (en) | 2014-09-17 | 2018-02-27 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9998932B2 (en) | 2014-10-02 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9973416B2 (en) | 2014-10-02 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9866276B2 (en) | 2014-10-10 | 2018-01-09 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9847850B2 (en) | 2014-10-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9912033B2 (en) | 2014-10-21 | 2018-03-06 | At&T Intellectual Property I, Lp | Guided wave coupler, coupling module and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9876587B2 (en) | 2014-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9525210B2 (en) | 2014-10-21 | 2016-12-20 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9948355B2 (en) | 2014-10-21 | 2018-04-17 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9871558B2 (en) | 2014-10-21 | 2018-01-16 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9705610B2 (en) | 2014-10-21 | 2017-07-11 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9954286B2 (en) | 2014-10-21 | 2018-04-24 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9960808B2 (en) | 2014-10-21 | 2018-05-01 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9571209B2 (en) | 2014-10-21 | 2017-02-14 | At&T Intellectual Property I, L.P. | Transmission device with impairment compensation and methods for use therewith |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9577307B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9596001B2 (en) | 2014-10-21 | 2017-03-14 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9531427B2 (en) | 2014-11-20 | 2016-12-27 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US9742521B2 (en) | 2014-11-20 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US9712350B2 (en) | 2014-11-20 | 2017-07-18 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9749083B2 (en) | 2014-11-20 | 2017-08-29 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9876571B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US9831912B2 (en) | 2015-04-24 | 2017-11-28 | At&T Intellectual Property I, Lp | Directional coupling device and methods for use therewith |
US9793955B2 (en) | 2015-04-24 | 2017-10-17 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US10432259B2 (en) | 2015-04-28 | 2019-10-01 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US10630343B2 (en) | 2015-04-28 | 2020-04-21 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
CN107567687A (en) * | 2015-04-28 | 2018-01-09 | At&T知识产权部有限合伙公司 | Magnetic coupling device and its application method |
US10476551B2 (en) | 2015-04-28 | 2019-11-12 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
WO2016176030A1 (en) * | 2015-04-28 | 2016-11-03 | At&T Intellectual Property I, Lp | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US10069537B2 (en) | 2015-04-28 | 2018-09-04 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US10193596B2 (en) | 2015-04-28 | 2019-01-29 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US9887447B2 (en) | 2015-05-14 | 2018-02-06 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US10797781B2 (en) | 2015-06-03 | 2020-10-06 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US10050697B2 (en) | 2015-06-03 | 2018-08-14 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9967002B2 (en) | 2015-06-03 | 2018-05-08 | At&T Intellectual I, Lp | Network termination and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10396887B2 (en) | 2015-06-03 | 2019-08-27 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US9912382B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US9935703B2 (en) | 2015-06-03 | 2018-04-03 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10142010B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US10027398B2 (en) | 2015-06-11 | 2018-07-17 | At&T Intellectual Property I, Lp | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9882657B2 (en) | 2015-06-25 | 2018-01-30 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10069185B2 (en) | 2015-06-25 | 2018-09-04 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US10090601B2 (en) | 2015-06-25 | 2018-10-02 | At&T Intellectual Property I, L.P. | Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium |
US9787412B2 (en) | 2015-06-25 | 2017-10-10 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US9947982B2 (en) | 2015-07-14 | 2018-04-17 | At&T Intellectual Property I, Lp | Dielectric transmission medium connector and methods for use therewith |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9929755B2 (en) | 2015-07-14 | 2018-03-27 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9806818B2 (en) | 2015-07-23 | 2017-10-31 | At&T Intellectual Property I, Lp | Node device, repeater and methods for use therewith |
US10074886B2 (en) | 2015-07-23 | 2018-09-11 | At&T Intellectual Property I, L.P. | Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9838078B2 (en) | 2015-07-31 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10225842B2 (en) | 2015-09-16 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method, device and storage medium for communications using a modulated signal and a reference signal |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10349418B2 (en) | 2015-09-16 | 2019-07-09 | At&T Intellectual Property I, L.P. | Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
US10812123B1 (en) | 2019-12-05 | 2020-10-20 | At&T Intellectual Property I, L.P. | Magnetic coupler for launching and receiving electromagnetic waves and methods thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2002353711A1 (en) | 2003-06-10 |
WO2003044981A1 (en) | 2003-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050017825A1 (en) | Method and system for high-speed communication over power line | |
WO2003044981A1 (en) | Method and system for high-speed communication over power line | |
EP1397870B1 (en) | A method and an apparatus for passive interference cancellation | |
US8159933B2 (en) | Method and system for providing broadband access to a data network via gas pipes | |
US8010061B2 (en) | Combining multimedia signaling and wireless network signaling on a common communication medium | |
US6963305B2 (en) | Electromagnetic coupler system | |
JP2005514852A (en) | Analog regenerative transponder including regenerative transponder system | |
US8238821B2 (en) | Remote antenna system | |
JP2011044953A (en) | Wired transmission line for av device | |
WO2003024027A9 (en) | An interface for local area networks | |
JP2002033691A (en) | Active reflector and wireless data communication system | |
US11689346B2 (en) | Switched amplifier for data transmission | |
US20090295643A1 (en) | Multiple Feedpoint Antenna | |
EP0884863A2 (en) | Distributed antenna for personal communication system | |
AU3610699A (en) | Device for transmitting and receiving microwaves subjected to circular polarisation | |
WO2007130033A1 (en) | Wireless repeater assembly | |
JP4731402B2 (en) | Wireless communication method and apparatus | |
GB2374203A (en) | Transmit / receive antenna system with higher receive gain | |
KR19990029554A (en) | Modular, distributed radio architecture and dual carrier access using the same antenna | |
JP4460677B2 (en) | Signal transmitter / receiver | |
EP1540833B1 (en) | Emission device intended to be coupled with a reception device | |
KR100358976B1 (en) | ASK Transceiver | |
GB2521187A (en) | Method and system for transferring Wi-Fi signals | |
KR20020068967A (en) | Apparatus for measuring antenna standing wave ratio | |
GB2157131A (en) | Cordless telephone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040607 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20071213 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080531 |