WO2017119514A1 - 4-ヒドロキシイソロイシンの(2s,3r,4s)体及び(2s,3s,4r)体の製造方法 - Google Patents

4-ヒドロキシイソロイシンの(2s,3r,4s)体及び(2s,3s,4r)体の製造方法 Download PDF

Info

Publication number
WO2017119514A1
WO2017119514A1 PCT/JP2017/000513 JP2017000513W WO2017119514A1 WO 2017119514 A1 WO2017119514 A1 WO 2017119514A1 JP 2017000513 W JP2017000513 W JP 2017000513W WO 2017119514 A1 WO2017119514 A1 WO 2017119514A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
substituted
arginine
hydroxyisoleucine
tryptophan
Prior art date
Application number
PCT/JP2017/000513
Other languages
English (en)
French (fr)
Inventor
優 田之倉
宮川 拓也
玄 石
Original Assignee
株式会社バイオシンクタンク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイオシンクタンク filed Critical 株式会社バイオシンクタンク
Publication of WO2017119514A1 publication Critical patent/WO2017119514A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention relates to a method for producing (2S, 3R, 4S) and (2S, 3S, 4R) isomers of 4-hydroxyisoleucine.
  • 4-Hydroxyisoleucine (4-HIL) is one of the natural amino acids that do not constitute proteins, and has three asymmetric carbons, so it can take eight types of stereoisomers.
  • the major stereoisomer (2S, 3R, 4S) -4-HIL exhibits glucose-dependent insulinotropic activity when administered directly to isolated perfused rat pancreas and is directed against human pancreatic ⁇ cells Also show insulin secretion activity [Sauvaire, Y., Petit, P., Broca, C., Manteqhetti, M., Baissac, Y., Fernandez-Alvarez, J., Gross, R., Rove, M., Leconte , A., Gomis, R., Bibes, G. (1998) 4-Hydroxyisolecine: a novel amino acid potentiator of insulin secretion. Diabetes. 47, 206-210.].
  • (2S, 3R, 4S) -4-HIL insulin secretion activity is not shown except for (2S, 3R, 4S).
  • sulfonylurea one of insulin secretagogues
  • hypoglycemic symptoms appear as side effects
  • (2S, 3R, 4S) -4-HIL is an effective treatment with no side effects.
  • (2S, 3R, 4S) -4-HIL also has an effect of enhancing the activity of phosphoinositide 3 kinase (PI3K).
  • PI3K activates an insulin signal by phosphorylating and activating insulin receptor substrate-1 (IRS-1).
  • insulin-responsive glucose transporter 4 insulin-responsive glucose transporter 4
  • Glut4 insulin-responsive glucose transporter 4
  • (2S, 3R, 4S) -4-HIL is considered to show an effect of improving insulin resistance in each organ, and its effect is actually recognized in skeletal muscle and liver.
  • the yield of 4-HIL when extracted from fenugreek is as low as about 0.56 wt%.
  • (2S, 3R, 4S) -4-HIL as a therapeutic agent for diabetes or anti-obesity
  • Extraction is uneconomical [Broca, C., Manteghetti, M., Gross, R., Baissac, Y., Jacob, M., Petit, P., Sauvaire, Y., Bibes. G. (2000 ) 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. European Journal of Pharmacology. 390, 339-345.].
  • This 8-step synthesis method has the potential for industrial production of (2S, 3R, 4S) -4-HIL, but the reaction steps are complex, so that a simpler (2S, 3R, 4S) -4-HIL synthesis
  • a method has also been developed [Kumaraswamy, G., Jayaprakash, N., Sridhar, B. An Organocatalyzed enantioselective synthesis of (2S, 3R, 4S) -4-hydroxyisoleucine and its stereoisomers (2010). J. Org. Chem. 75, 3745-2747.].
  • HILDH AMKP reductase
  • Bacillus thuringiensis 2e2 that produces (2S, 3R, 4S) 4-HIL from the racemic form of (AMKP) was identified.
  • HILDH is an enzyme in the bypass pathway of the TCA cycle from L-isoleucine via 4-HIL and AMKP, and it is clear that NADH can be used as a coenzyme to reversibly catalyze the reduction reaction from AMKP to 4-HIL.
  • AMKP reductases have potential for construction of bioprocesses that asymmetrically synthesize (2S, 3R, 4S) -4-HIL, but their stereoselectivity is not strict. For this reason, the synthesis method for deriving (2S, 3R, 4S) -4-HIL from the AMKP racemate does not function sufficiently.
  • (2S, 3S, 4R) -4-HIL is used as a medicine for antitussives, antipyretics, therapeutics for menstrual disorders and mental illnesses, and as a food for spices. It was first extracted from Quararibea funebris flowers and then a chemical synthesis method was established, but it requires a complex multi-step reaction (Andrew et al Org. Biomol. Chem., 2004, vol.2, pp .808-809; Aouadi et al Tetrahedron Letters, 2012, vol.53, pp.2817-2821).
  • the object of the present invention is to provide a novel method for producing (2S, 3R, 4S) and (2S, 3S, 4R) isomers of 4-hydroxyisoleucine.
  • One embodiment according to the present invention is 4-hydroxyisoleucine dehydrogenase having any of the following mutations (1) to (5): (1) Arginine corresponding to the 88th arginine of SEQ ID NO: 1 Substituted with aspartic acid, cysteine, phenylalanine, glycine, alanine, glutamic acid, or histidine (2) Tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is replaced with glutamic acid, lysine, asparagine, glutamine, or arginine (3) Arginine corresponding to 88th arginine of SEQ ID NO: 1 is substituted with cysteine, and tryptophan corresponding to 242nd tryptophan of SEQ ID NO: 1 is glutamic acid, lysine, asparagine, or glutamine so (4) Arginine corresponding to the 88th arginine of SEQ ID NO: 1 is substituted with glycine, and trypto
  • Another embodiment of the present invention is 4-hydroxyisoleucine dehydrogenase having any of the following mutations (1) to (7): (1) Arginine corresponding to the 88th arginine of SEQ ID NO: 1 , Serine, lysine, glutamine, histidine, valine, threonine, isoleucine, or asparagine (2) Tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is arginine, serine, cysteine, threonine, alanine, or (3) Arginine corresponding to the 88th arginine of SEQ ID NO: 1 is substituted with glutamine, and tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is arginine, serine, or Substituted with cysteine 4) Arginine corresponding to 88th arginine of SEQ ID NO: 1 is substituted with glutamine, glutamic acid corresponding to 144th glutamic
  • the 4-hydroxyisoleucine dehydrogenase may be derived from Bacillus thuringiensis 2e2.
  • a further embodiment of the present invention is DNA encoding any of the above 4-hydroxyisoleucine dehydrogenases.
  • a further embodiment of the present invention is a process for producing a (2S, 3R, 4S) form of 4-hydroxyisoleucine, wherein one or more of any of the 4-hydroxyisoleucine dehydrogenases described above is 2-amino-3-methyl-4 -Reacting with a racemate of ketopentanoic acid.
  • a further embodiment according to the present invention is a process for producing a (2S, 3S, 4R) isomer of 4-hydroxyisoleucine, wherein one or more of any of the 4-hydroxyisoleucine dehydrogenases described above is 2-amino-3-methyl- Reacting with a racemate of 4-ketopentanoic acid.
  • a further embodiment of the present invention is a DNA encoding any of the 4-hydroxyisoleucine dehydrogenases described above.
  • a further embodiment according to the present invention is a method for measuring the amount of (2S, 3R, 4S) form of 4-hydroxyisoleucine, wherein 4-hydroxyisoleucine dehydrogenase having a mutation is converted to 2-amino-3-methyl-4.
  • a further embodiment according to the present invention is a method for measuring the amount of (2S, 3S, 4R) of 4-hydroxyisoleucine, wherein 4-hydroxyisoleucine dehydrogenase having a mutation is converted to 2-amino-3-methyl-4. -Reacting with a racemate of ketopentanoic acid and measuring the amount of (2S, 3S, 4R) of 4-hydroxyisoleucine in the reaction product.
  • the 4-hydroxyisoleucine dehydrogenase having the mutation may have 1 to 9 amino acid substitutions relative to the wild-type 4-hydroxyisoleucine dehydrogenase.
  • Example 1 it is a figure which shows the primer used for HILDH variant preparation. In an Example, it is a figure which shows the primer used for HILDH variant preparation. In an Example, it is a figure which shows the primer used for HILDH variant preparation. In Example 1, it is a figure which shows the result of having introduce
  • Example 4 it is a figure which shows the result of having introduce
  • HILDH 4-hydroxyisoleucine dehydrogenase
  • 4-hydroxyisoleucine dehydrogenase (HILDH) in one embodiment of the present invention is (1) Arginine corresponding to the 88th arginine of SEQ ID NO: 1 is substituted with aspartic acid, cysteine, phenylalanine, glycine, alanine, glutamic acid, or histidine, (2) the tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is substituted with glutamic acid, lysine, asparagine, glutamine, or arginine, (3) Arginine corresponding to the 88th arginine of SEQ ID NO: 1 is substituted with cysteine, and tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is substituted with glutamic acid, lysine, asparagine, or glutamine Or (4) Arginine corresponding to the 88th arginine of SEQ
  • HILDH 4-hydroxyisoleucine dehydrogenase
  • Arginine corresponding to 88th arginine of SEQ ID NO: 1 is substituted with serine, lysine, glutamine, histidine, valine, threonine, isoleucine, or asparagine
  • the tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is substituted with arginine, serine, cysteine, threonine, alanine, or glutamine
  • Arginine corresponding to the 88th arginine of SEQ ID NO: 1 is substituted with glutamine
  • tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 is substituted with arginine, serine or cysteine
  • Arginine corresponding to the 88th arginine of SEQ ID NO: 1 is substituted with glutamine, glutamic acid corresponding to the 144th glut
  • HIDH having the amino acid sequence of SEQ ID NO: 1 (FIG. 5A) is derived from Bacillus thuringiensis 2e2 (Bacillus thuringiensis 2e2), but the origin of HIDH used is not particularly limited, and is homologous to Bacillus thuringiensis 2e2HIDH
  • arginine corresponding to the 88th arginine of SEQ ID NO: 1 tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1
  • the degree of homology is preferably more than 40%, more preferably more than 60%, more preferably more than 80%, more preferably more than 90% when measured using BLAST. More preferably, it is more than 95%, further preferably more than 98%.
  • the homologues are specifically Bacillus ienthuringiensis Sporobolomyces gracilis, Cryptococcus albidus, Rhodotorula marina, Rhodotorula ormarina pallida), Flavobacterium esteroaromaticum, Bacillus thuringiensis, Agrobacterium radiobacter, Pullularia pullulans, Fusarium solulani (Pullularia pullulans) Fusarium solani), Gibberella fujikuroi, Mortierella isabellina, Mortierella humicola, Trichoderma reesei, Aure Aureobasidium pullulans, Cephalosporium coremioides, Verticillium albo-atrum, Pitomyces maydicum, Rhodoc
  • the arginine corresponding to the 88th arginine of SEQ ID NO: 1 means that the HILDH homologous to the HILDH of SEQ ID NO: 1 is aligned with the HILDH of SEQ ID NO: 1 based on the homology. It refers to arginine corresponding to arginine, and may not be the 88th in homologous HILDH.
  • tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1 and glutamic acid corresponding to the 144th glutamic acid of SEQ ID NO: 1 are understood in the same manner.
  • the tryptophan corresponding to the tryptophan of SEQ ID NO: 242 is SEQ ID NO: 1 HILDH that is homologous to HILDH of SEQ ID NO: 1 when aligned with HILDH of SEQ ID NO: 1 on the basis of homology, refers to tryptophan corresponding to the 242nd tryptophan of SEQ ID NO: 1, and is not 242nd in homologous HILDH May be.
  • the glutamic acid corresponding to the 144th glutamic acid of SEQ ID NO: 1 is the HIDHH homologous to the HILDH of SEQ ID NO: 1 when the HILDH of SEQ ID NO: 1 is aligned based on the homology. It refers to glutamic acid corresponding to glutamic acid, and may not be the 144th in homologous HILDH. The same applies to other amino acids.
  • HILDH (EC 1.1.1.100) is an enzyme that catalyzes the conversion reaction between AMKP and 4-hydroxyisoleucine (4-HIL) and has the ability to reduce the 4-position carbonyl group of AMKP. is there.
  • HIDH used in the present invention, as long as it has an activity of converting 2-amino-3-methyl-4-ketopentanoic acid into 4-hydroxyisoleucine, a crude microbial culture, a microbial cell, an air-dried microbial cell, and a crude cell lysate are used. Either purified enzyme or purified enzyme may be used.
  • the microorganism used here may be a transformant into which an expression vector expressing HIDH is introduced.
  • the purified enzyme may be a recombinant protein produced using a gene recombination technique.
  • a DNA encoding HILDH is cloned into an expression vector and transformed into a microorganism such as Escherichia coli. After cultivation, HIDH can be expressed in the microorganism.
  • This recombinant microorganism may be used, an extract of the recombinant microorganism, or a recombinant protein isolated in various purity from the recombinant microorganism.
  • the DNA used here may encode HILDH derived from Bacillus thuringiensis 2e2 having SEQ ID NO: 1, or may encode HILDH derived from other microorganisms as described above. Further, it is a DNA that hybridizes under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 1 and that encodes a protein having 4-hydroxyisoleucine dehydrogenase activity. May be.
  • 4-hydroxyisoleucine has a structure represented by the following formula (I).
  • 4-hydroxyisoleucine means (2S, 3S, 4S) -4-hydroxyisoleucine [(2S, 3S, 4S) -4-hydroxyisoleucine], (2R, 3R, 4R) -4-hydroxyisoleucine [(2R, 3R, 4R) -4-hydroxyisoleucine], (2S, 3R, 4R) -4-hydroxyisoleucine [(2S, 3R, 4R) -4-hydroxyisoleucine], (2R, 3S, 4S) -4- Hydroxyisoleucine [(2R, 3S, 4S) -4-hydroxyisoleucine], (2S, 3S, 4R) -4-hydroxyisoleucine [(2S, 3S, 4R) -4-hydroxyisoleucine], (2R, 3R, 4S)- 4-hydroxyisoleucine [(2R, 3R, 4S) -4-hydroxyisoleucine], (2S, 3R, 4S)- 4-hydroxyisoleucine [(2R, 3R, 4
  • the mutant HILDH may be (2S, 3R, Can the 4S) or (2S, 3S, 4R) isomers be the main product to promote the reaction, and (2S, 3R, 4S) or (2S, 3S, 4R) isomers be synthesized at a high rate? I can check.
  • HILDH having an amino acid mutation is 1 to 9, specifically 1, 2, 3, 4, 5, 6, 7, 8 in wild type HILDH.
  • a protein with 9 amino acid substitutions is not particularly limited, but is selected from the group consisting of amino acids corresponding to the 88th, 144th, and 242nd positions of SEQ ID NO: 1 when the (2S, 3R, 4S) body is measured.
  • the number is one or more.
  • (2S, 3S, 4R) one selected from the group consisting of amino acids corresponding to positions 88, 144, 188, and 242 of SEQ ID NO: 1. It is preferable that there be one or more.
  • Which amino acid is substituted is not particularly limited.
  • HILDH preferably has SEQ ID NO: 1, but is not limited as long as it has homology as described above.
  • the specific measuring method of the quantity of (2S, 3R, 4S) body and (2S, 3S, 4R) body may follow a well-known method, for example, the method of using HPLC is mention
  • the expression plasmid vector for HILDH for Escherichia coli is a DNA encoding the full-length amino acid sequence of HILDH derived from B. thuringiensis 2e2 (see SEQ ID NO: 1, FIG. 5A) (SEQ ID NO: 2, (See FIG. 5B) was inserted into the pET101 / D-TOPO vector (Invitrogen) (provided by Professor Jun Ogawa of the Department of Fermentation Physiology and Brewing Science, Department of Applied Biochemistry, graduate School of Agriculture, Kyoto University).
  • the site-specific mutation was introduced by PCR using the HIDH expression plasmid as a template.
  • PrimeSTAR Max (Takara Bio) as a DNA polymerase
  • a forward primer and a reverse primer (see Fig. 1 for primer sequences) are added to a final concentration of 0.02 ⁇ g / ⁇ l of HIDH expression vector solution to a final concentration of 0.3 ⁇ M.
  • the reaction solution was prepared by adding 25 ⁇ l of PrimeSTAR Max Premix.
  • the reaction conditions were 98 ° C. for 10 seconds ⁇ 55 ° C. for 15 seconds ⁇ 72 ° C. for 45 seconds for 35 cycles.
  • Veriti 96 (Applied Biosystems) was used.
  • XL1-Blue (Stratagene) was transformed with 2 ⁇ l of the PCR reaction solution, and plasmid DNA was extracted.
  • the DNA sequence service (Fasmac) was used for confirmation of the base sequence.
  • LB Lysogeny Broth
  • the cells were seeded on LB agar medium (containing 1.5% agar) containing 100 ⁇ g / ml ampicillin and 34 ⁇ g / ml chloramphenicol and cultured at 37 ° C. overnight.
  • Transformant colonies were inoculated into 20 ml of LB medium containing 100 ⁇ g / ml ampicillin and 34 ⁇ g / ml chloramphenicol and cultured overnight at 37 ° C. with shaking.
  • This culture solution was transferred to 2 ⁇ l of LB medium containing 100 ⁇ g / ml ampicillin and 34 ⁇ g / ml chloramphenicol, and cultured with shaking at 37 ° C.
  • IPTG was added to the culture solution to a final concentration of 0.5 mM for expression induction, and further cultured with shaking at 25 ° C. overnight.
  • the culture solution was centrifuged at 5,000 rpm for 10 minutes to remove the supernatant, and the cell pellet was stored at ⁇ 80 ° C.
  • Open column (resin capacity) filled with Ni-NTA superflow resin (QIAGEN) for affinity purification of AMKP reductase from supernatant using 6 ⁇ His tag fused to N-terminus or C-terminus of AMKP reductase 3 mL) was used.
  • the supernatant was loaded onto a column equilibrated with 20 mL of buffer A, adsorbed, washed with 150 mL of buffer A, and then 20 mL of buffer B (20 mM Tris-HCl, pH 7.4, 0.5 M NaCl, 200
  • the target protein was eluted with mM imidazole, 1 mM DTT).
  • the recovered solution was diluted 3 times with acetonitrile, 0.5% (v / v) triethylamine (TEA) and 5 mg / ml 2,3,4,6-tetra-O-acetyl- ⁇ -D-glucopyranosyl isothiocyanate (GITC) was added and derivatized at 25 ° C. for 30 minutes.
  • the derivatized solution was applied to a column in which two CAPCELLC 18 Type MG (Shiseido, 4.6 ⁇ 250 mm, 5 ⁇ m) columns were connected in series with the Shimadzu HPLC system LC-10Atvp, measuring temperature 40 ° C., flow rate 1 ml / min. Analyzed with
  • Example 1 mutations were introduced targeting Arg88 and Trp242 of HIDH and the reaction products of each mutant were analyzed by HPLC.
  • FIG. 2A for Arg88, when the mutants R88D, R88C, R88F, R88G, R88A, R88E, and R88H were used, 2S, 3R, and 4S isomers were generated with high selectivity (each Mutant selectivity is 93%, 92%, 88%, 80%, 87%, 74%, 56%, respectively).
  • Trp242 As shown in FIG. 2B, when mutants of W242E, W242K, W242N, W242Q, and W242R were used, 2S, 3R, and 4S bodies were generated with high selectivity (selectivity of each mutant). Are 93%, 90%, 88%, 68% and 60%, respectively). In addition, when the W242R, W242S, W242C, W242T, W242A, and W242Q mutants were used, the 2S, 3S, and 4R bodies were generated with high selectivity (the selectivity of each mutant was 55%, 47%, 46%, 34%, 33%, 33%).
  • Glu144 was introduced into Arg and Lys for 4 types of mutants of Arg88 (R88E, R88C, R88F, R88G) and 5 types of mutants of Trp242 (W242E, W242K, W242N, W242Q, W242R). And the reaction product of each double mutant was analyzed by HPLC. As a result, as shown in FIG. 4, 4-HIL peak was detected on the HPLC chromatogram in the four types of mutants of E144K / W242Q, E144K / W242R, E144K / W242N, and E144K / W242E.
  • the peak of 4-HIL is almost the peak of (2S, 3R, 4S), and only a few peaks of (2S, 3S, 4R) are detected (2S, 3R, 4S).
  • Produced with high selectivity was 99.1%, 96.8%, 93.7%, 92.5%).
  • the production amount of (2S, 3R, 4S body) of wild type HILDH is 157.0 ⁇ g / ml, whereas the production amount of E144K / W242Q mutant is 225.4 ⁇ g / ml, which is about 1.4 times the production. An increase in quantity was observed.
  • the triple of R88Q / E144A / W242A, R88S / E144A / W242A, R88T / E144A / W242A, R88V / E144A / W242A produced by introducing mutations of R88Q, R88S, R88T, and R88V into the E144A / W242A mutant. Even when the mutants were used, the 2S, 3S, and 4R isomers were generated with high selectivity as shown in FIG. 6 (the selectivity of each mutant was 65.0%, 39.1%, 26. 7%, 37.8%).
  • R88Q / E144A / W242A, R88Q / E242A, R88Q14, R88Q / E242A, R88Q / E242A, R88Q / E242A, R88Q / E242A, R88Q / E242A, and R88Q / E242A Triple mutants using / W242S, R88Q / E144A / W242Q, R88Q / E144A / W242T, R88Q / E144A / W242V, R88Q / E144A / W242F, R88Q / E144A / W242I, R88Q / E144A / W242M 2S, 3S, and 4R isomers were produced with high selectivity (selectivity of each mutant was 65.0%, 68.1%, 71.3%, 70.8%, 67.67, respectively).
  • the triple mutant of R88Q / E144I / W242Q and the quadruple mutant of R88Q / E144A / T188V / W242Q were also produced with high selectivity in each of the 2S, 3S, and 4R forms as shown in FIG.
  • the body selectivity is 52.3% and 77.4%, respectively).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

【課題】4-ヒドロキシイソロイシンの(2S,3R,4S)体の新規製造方法を提供すること。 【要約】配列番号1の88番目のArgが、Asp、Cys、Phe、Gly、またはHisで置換されているか、または242番目のTrpが、Glu、Lys、Asn、Gln、またはArgで置換されているか、88番目のArgが、CysまたはGlyで置換されており、かつ242番目のTrpが、Glu、Lys、Asn、またはGlnで置換されているか、88番目のArgが、Glyで置換されており、かつ242番目のTrpが、Argで置換されているか、144番目のGluがLysに置換され、かつ242番目のTrpが、Glu、Asn、Arg、またはGlnで置換されている4-ヒドロキシイソロイシンデヒドロゲナーゼを用いる。

Description

4-ヒドロキシイソロイシンの(2S,3R,4S)体及び(2S,3S,4R)体の製造方法
 本発明は4-ヒドロキシイソロイシンの(2S,3R,4S)体及び(2S,3S,4R)体の製造方法に関する。
 4-ヒドロキシイソロイシン(4-hydroxyisleucine,4-HIL)は、タンパク質を構成しない天然アミノ酸の1つであり、3つの不斉炭素をもつため8種類の立体異性体を取り得る。
 主要な立体異性体である(2S,3R,4S)-4-HILは、単離潅流ラット膵臓に直接投与した際に、グルコース依存的なインスリン分泌活性を示し、ヒトの膵臓β細胞に対してもインスリン分泌活性を示す[Sauvaire, Y., Petit, P., Broca, C., Manteqhetti, M., Baissac, Y., Fernandez-Alvarez, J., Gross, R., Rove, M., Leconte, A., Gomis, R., Bibes, G. (1998) 4-Hydroxyisolecine: a novel amino acid potentiator of insulin secretion. Diabetes. 47, 206-210.]。しかし、(2S,3R,4S)体以外はインスリン分泌活性を示さない。インスリン分泌促進剤の1つであるスルホニル尿素を用いた場合には副作用として低血糖症状が現れることが知られており、(2S,3R,4S)-4-HILは副作用のない効果的な治療薬として期待されている。さらに、(2S,3R,4S)-4-HILはホスホイノシチド3キナーゼ(phosphoinositide 3-kinase,PI3K)の活性を高める作用も示す。PI3Kはインスリン受容体基質-1(insulin receptor substrate-1,IRS-1)をリン酸化して活性化することにより、インスリンシグナルを活性化する。インスリンシグナルが活性化されると、インスリン応答性グルコース輸送体(insulin-responsible glucose transporter 4,Glut4)の作用により血中のグルコースが細胞内に吸収される[Broca, C., Breil, V., Criciani-guglielmacci, C., Manteghetti, M., Rouault, C., Derouet, M., Rizkalla, S., Pau, B., Petit, P., Ribes, G., Ktorza, A., Gross, R., Reach, G., Taouis, M. (2004) Insulinotropic agent ID-1101 (4-hydroxyisoleucine) activates insulin signaling in rat. Am J Physiol Endocrinol Metab. 287, 463-471.]。このため、(2S,3R,4S)-4-HILは各臓器においてインスリン抵抗性を改善する効果を示すと考えられており、実際に骨格筋と肝臓などでその効果が認められている。
 フェヌグリークから抽出した際の4-HILの収量は約0.56wt%とわずかであり、糖尿病治療薬や抗肥満治療薬としての(2S,3R,4S)-4-HILの産業利用において、フェヌブリークからの抽出は非経済的である[Broca, C., Manteghetti, M., Gross, R., Baissac, Y., Jacob, M., Petit, P., Sauvaire, Y., Bibes. G. (2000) 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. European Journal of Pharmacology. 390, 339-345.]。このため、(2S,3R,4S)-4-HILの製造法として化学合成法、さらに微生物の代謝反応を併用した合成法などが検討されてきた。これまでに、ethyl 2-methylacetoacetateを出発原料として収率39%で光学的に純粋な(2S,3R,4S)-4-HILを生成する8ステップ合成法が確立されている[Wang, Q., Quazzani, J., Sasaki, N. A., Potier, P. A Practical Synthesis of (2S,3R,4S)-4-Hydroxyisoleucine, A Potent Insulinotropic α-Amino Acid from Fenugreek (2002). Eur J Org Chem. 5, 834-839.]。この8ステップ合成法は(2S,3R,4S)-4-HILの工業生産のためのポテンシャルをもつが反応ステップが複雑であるため、より単純な(2S,3R,4S)-4-HIL合成法も開発されている[Kumaraswamy, G., Jayaprakash, N., Sridhar, B. An Organocatalyzed enantioselective synthesis of (2S,3R,4S)-4-hydroxyisoleucine and its stereoisomers(2010). J. Org. Chem. 75, 3745-2747.]。
 一方、(2S,3R,4S)-4-HILの不斉合成に有用な生体触媒として、2-アミノ-3-メチル-4-ケトペンタン酸(2-amino-3-methyl-4-ketopentanoic acid,AMKP)のラセミ体から(2S,3R,4S)体の4-HILを生成するBacillus thuringiensis 2e2由来AMKP還元酵素(HILDH)が同定された。HILDHは、L-イソロイシンから4-HIL及びAMKPを経由するTCAサイクルの迂回経路の酵素であり、その後にNADHを補酵素としてAMKPから4-HILへの還元反応を可逆的に触媒できることが明らかにされた[Ogawa, J., Kodera, T., Sergey, V. S., Hibi, M., Natalia, N. S., Koyama, R., Yamanaka., H., Mano, J., Kawashima, T., Yokozeki, K., Shimizu, S. A novel L-isoleucine metabolism in Bacillus thuringiensis generating (2S,3R,4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid(2011). Appl Microbiol Biotechmol. 89, 1929-1938.]。これらのAMKP還元酵素は (2S,3R,4S)-4-HILを不斉合成するバイオプロセス構築のためのポテンシャルをもつが、その立体選択性は厳密ではない。このため、AMKPラセミ体から(2S,3R,4S)-4-HILを導く合成法においては十分に機能しない。
 また、(2S,3S,4R)-4-HILは、医薬としては鎮咳薬、解熱剤、月経障害や精神疾患の治療薬などに用いられ、食品としても香辛料などに利用されている。最初、Quararibea funebrisの花から抽出され、その後化学合成法が確立されたが、複雑な多段階反応を必要とするものである(Andrew et al Org. Biomol. Chem., 2004,vol.2, pp.808-809;Aouadi et al Tetrahedron Letters, 2012, vol.53, pp.2817-2821)。
 本発明は、4-ヒドロキシイソロイシンの(2S,3R,4S)体及び(2S,3S,4R)体の新規製造方法を提供することを課題とする。
 本発明に係る一つの実施態様は、以下の(1)~(5)のいずれかの変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼである:(1)配列番号1の88番目のアルギニンに対応するアルギニンが、アスパラギン酸、システイン、フェニルアラニン、グリシン、アラニン、グルタミン酸、またはヒスチジンで置換されている(2)配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、リジン、アスパラギン、グルタミン、またはアルギニンで置換されている(3)配列番号1の88番目のアルギニンに対応するアルギニンが、システインで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、リジン、アスパラギン、またはグルタミンで置換されている(4)配列番号1の88番目のアルギニンに対応するアルギニンが、グリシンで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニンで置換されている(5)配列番号1の144番目のグルタミン酸に対応するグルタミン酸がリジンに置換され、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、アスパラギン、アルギニン、またはグルタミンで置換されている。
 本発明に係る他の実施態様は、以下の(1)~(7)のいずれかの変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼである:(1)配列番号1の88番目のアルギニンに対応するアルギニンが、セリン、リジン、グルタミン、ヒスチジン、バリン、スレオニン、イソロイシン、またはアスパラギンで置換されている (2)配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニン、セリン、システイン、スレオニン、アラニン、またはグルタミンで置換されている(3)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニン、セリン、またはシステインで置換されている(4)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、アラニンで置換されている(5)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、アラニン、システイン、セリン、グルタミン、スレオニン、バリン、フェニルアラニン、イソロイシン、またはメチオニンで置換されている(6)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニン、またはイソロイシンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミンで置換されている(7)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の188番目のスレオニンに対応するスレオニンが、バリンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミンで置換されている。前記4-ヒドロキシイソロイシンデヒドロゲナーゼがBacillus thuringiensis 2e2由来であってもよい。
 前記4-ヒドロキシイソロイシンデヒドロゲナーゼがBacillus thuringiensis 2e2由来であってもよい。
 本発明のさらなる実施態様は、上記いずれかの4-ヒドロキシイソロイシンデヒドロゲナーゼをコードするDNAである。
 本発明のさらなる実施態様は、4-ヒドロキシイソロイシンの(2S,3R,4S)体の製造方法であって、上記いずれかの4-ヒドロキシイソロイシンデヒドロゲナーゼの1以上を2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体に反応させる工程を含む。
 本発明に係るさらなる実施態様は、4-ヒドロキシイソロイシンの(2S,3S,4R)体の製造方法であって、上記いずれかの4-ヒドロキシイソロイシンデヒドロゲナーゼの1以上を2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体に反応させる工程を含む。本発明のさらなる実施態様は、上記いずれかの4-ヒドロキシイソロイシンデヒドロゲナーゼをコードするDNAである。
 本発明に係るさらなる実施態様は、4-ヒドロキシイソロイシンの(2S,3R,4S)体の量を測定する方法であって、変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼを2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体と反応させる工程と、反応産物中の4-ヒドロキシイソロイシンの(2S,3R,4S)体の量を測定する工程と、を含む方法である。
 本発明に係るさらなる実施態様は、4-ヒドロキシイソロイシンの(2S,3S,4R)体の量を測定する方法であって、変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼを2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体と反応させる工程と、反応産物中の4-ヒドロキシイソロイシンの(2S,3S,4R)体の量を測定する工程と、を含む方法である。
 前記変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼが、野生型4-ヒドロキシイソロイシンデヒドロゲナーゼに対して、1~9個のアミノ酸置換を有してもよい。
==関連文献とのクロスリファレンス==
 本出願は、2016年1月8日付で出願した米国仮特許出願62/276,423に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
実施例において、HILDH変異体作製に用いられたプライマーを示す図である。 実施例において、HILDH変異体作製に用いられたプライマーを示す図である。 実施例において、HILDH変異体作製に用いられたプライマーを示す図である。 実施例1において、HILDHに変異を導入し、各変異体の反応産物をHPLCにより分析した結果を示す図である。 実施例2において、HILDHに変異を導入し、各変異体の反応産物をHPLCにより分析した結果を示す図である。 実施例3において、HILDHに変異を導入し、各変異体の反応産物をHPLCにより分析した結果を示す図である。 B. thuringiensis 2e2由来HILDHのアミノ酸配列(A)と、コードする遺伝子の塩基配列(B) 実施例4において、HILDHに変異を導入し、各変異体の反応産物をHPLCにより分析した結果を示す図である。
 以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。
 実施の形態及び実施例に特に説明がない場合には、M. R. Green & J. Sambrook (Ed.), Molecular cloning, a laboratory manual (4th edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2012); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。
 なお、本発明の目的、特徴、利点、および、そのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をこれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==4-ヒドロキシイソロイシンデヒドロゲナーゼ==
 本発明の一実施態様における4-ヒドロキシイソロイシンデヒドロゲナーゼ(HILDH)は、
(1)配列番号1の88番目のアルギニンに対応するアルギニンが、アスパラギン酸、システイン、フェニルアラニン、グリシン、アラニン、グルタミン酸、またはヒスチジンで置換されているか、
(2)配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、リジン、アスパラギン、グルタミン、またはアルギニンで置換されているか、
(3)配列番号1の88番目のアルギニンに対応するアルギニンが、システインで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、リジン、アスパラギン、またはグルタミンで置換されているか、
(4)配列番号1の88番目のアルギニンに対応するアルギニンが、グリシンで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニンで置換されているか、
(5)配列番号1の144番目のグルタミン酸に対応するグルタミン酸がリジンに置換され、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、アスパラギン、アルギニン、またはグルタミンで置換されている。
 本発明の他の実施態様における4-ヒドロキシイソロイシンデヒドロゲナーゼ(HILDH)は、
(1)配列番号1の88番目のアルギニンに対応するアルギニンが、セリン、リジン、グルタミン、ヒスチジン、バリン、スレオニン、イソロイシン、またはアスパラギンで置換されているか、
(2)配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニン、セリン、システイン、スレオニン、アラニン、またはグルタミンで置換されているか、
(3)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニン、セリン、またはシステインで置換されているか、
(4)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、アラニンで置換されているか、
(5)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、アラニン、システイン、セリン、グルタミン、スレオニン、バリン、フェニルアラニン、イソロイシン、またはメチオニンで置換されているか、
(6)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニン、またはイソロイシンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミンで置換されているか、
(7)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の188番目のスレオニンに対応するスレオニンが、バリンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミンで置換されている。
 配列番号1のアミノ酸配列(図5A)を有するHILDHは、バチルス・チュリンジエンシス2e2(Bacillus thuringiensis 2e2)に由来するが、用いられるHILDHの由来は特に限定されず、バチルス・チュリンジエンシス2e2HILDHと相同性を有するホモログであればよいが、(2S,3R,4S)体を製造する場合は、配列番号1の88番目のアルギニンに対応するアルギニン、配列番号1の242番目のトリプトファンに対応するトリプトファン、配列番号1の144番目のグルタミン酸に対応するグルタミン酸のうちの1つ以上を有していればよく、(2S,3S,4R)体を製造する場合は、配列番号1の88番目のアルギニンに対応するアルギニン及び/又は配列番号1の242番目のトリプトファンに対応するトリプトファンを有していればよい。そのため、相同性の高さは、BLASTを用いて測定した場合、40%超であることが好ましく、60%超であることがより好ましく、80%超であることがより好ましく、90%超であることがより好ましく、95%超であることがさらに好ましく、98%超であることがさらに好ましい。そのホモログは、具体的には、バチルス・チュリンジエンシス(Bacillus thuringiensis)のスポロボロミセス・グラシリス(Sporobolomyces gracilis)、クリプトコッカス・アルビダス(Cryptococcus albidus)、ロドトゥルラ・マリナ(Rhodotorula marina)、ロドトゥルラ・パリダ(Rhodotorula pallida)、フラボバクテリウム・エステロアロマティクム(Flavobacterium esteroaromaticum)、バチルス・チュリンジエンシス(Bacillus thuringiensis)、アグロバクテリウム・ラディオバクター(Agrobacterium radiobacter)、プルラリア・プルランス(Pullularia pullulans)、フサリウム・ソラニ(Fusarium solani)、ジベレラ・フジクロイ(Gibberella fujikuroi)、モルティエレラ・イザベリナ(Mortierella isabellina)、モルティエレラ・フミコーラ(Mortierella humicola)、トリコデルマ・レーゼイ(Trichoderma reesei)、オーレオバシディウム・プルランス(Aureobasidium pullulans)、セファロスポリウム・コレミオイデス(Cephalosporium coremioides)、バーティシリウム・アルボ-アトラム(Verticillium albo-atrum)、ピトミセス・メイディカム(Pitomyces maydicum)、ロドコッカス・ルバー(Rhodococcus ruber)、ノカルディア・エスピー(Nocardia sp.)、ストレプトミセス・オリボクロモゲネス(Streptomyces olivochromogenes)、クリニペリス・スティピタリア(Crinipellis stipitaria)、フラムリナ・ベルティペス(Flammulina velutipes)、トリコロマ・マツタケ(Tricholoma matsutake)またはフォミトプシス・プベルタティス(Fomitopsis pubertatis)またはそれらの変異体に由来することが好ましい。なお、HILDHは複数の生物に由来する酵素の混合物でも構わない。
 ここで配列番号1の88番目のアルギニンに対応するアルギニンとは、配列番号1のHILDHに相同なHILDHを、相同性を基に配列番号1のHILDHとアラインしたとき、配列番号1の88番目のアルギニンに対応するアルギニンのことを言い、相同なHILDH内では、88番目になくてもよい。配列番号1の242番目のトリプトファンに対応するトリプトファン、配列番号1の144番目のグルタミン酸に対応するグルタミン酸も同様に解するものであり、配列番号242番目のトリプトファンに対応するトリプトファンとは、配列番号1のHILDHに相同なHILDHを、相同性を基に配列番号1のHILDHとアラインしたとき、配列番号1の242番目のトリプトファンに対応するトリプトファンのことを言い、相同なHILDH内では、242番目になくてもよい。また、配列番号1の144番目のグルタミン酸に対応するグルタミン酸とは、配列番号1のHILDHに相同なHILDHを、相同性を基に配列番号1のHILDHとアラインしたとき、配列番号1の144番目のグルタミン酸に対応するグルタミン酸のことを言い、相同なHILDH内では、144番目になくてもよい。他のアミノ酸の場合も同様に解するものとする。
 なお、HILDH(EC1.1.1.100)とは、AMKPと4-ヒドロキシイソロイシン(4-HIL)との相互間の変換反応を触媒し、AMKPの4位カルボニル基の還元能を有する酵素である。
==4-ヒドロキシイソロイシンデヒドロゲナーゼの製造方法==
 本発明において用いるHILDHとしては、2-アミノ-3-メチル-4-ケトペンタン酸を4-ヒドロキシイソロイシンに変換する活性を有する限り、微生物の培養物、菌体、風乾菌体、細胞破砕液による粗精製酵素、または精製酵素のいずれを用いてもよい。ここで用いる微生物は、HILDHを発現する発現ベクターを導入した形質転換体であってもよい。また、精製酵素は遺伝子組み換え技術を用いて作製された組換えタンパク質であってもよい。
 例えば、組換えタンパク質の場合、HILDHをコードするDNAを発現ベクターにクローニングし、大腸菌などの微生物に形質転換する。培養後、微生物中でHILDHを発現させることができる。この組換え微生物を用いてもよく、組換え微生物の抽出物でもよく、組換え微生物から様々な純度で単離した組換えタンパク質であってもよい。
 ここで用いられるDNAは、配列番号1を有するバチルス・チュリンジエンシス2e2由来のHILDHをコードしてもよく、上記のような他の微生物由来のHILDHをコードしてもよい。また、配列番号2の塩基配列または配列番号1のアミノ酸配列をコードする塩基配列を有するDNAとストリンジェントな条件下でハイブリダイズし、且つ4-ヒドロキシイソロイシンデヒドロゲナーゼ活性を有するタンパク質をコードするDNAであってもよい。
==2-アミノ-3-メチル-4-ケトペンタン酸からの4-ヒドロキシイソロイシンの製造方法==
 本発明に係る4-ヒドロキシイソロイシンの(2S,3R,4S)体または(2S,3S,4R)体の製造方法は、上述のHILDHを2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体に反応させる工程を含む。個々で用いるHILDHは、1種類の菌由来であっても、複数種類の菌由来であってもかまわない。
 4-ヒドロキシイソロイシンは、下記式(I)に示される構造を有する。
[化1] 
Figure JPOXMLDOC01-appb-I000001
 HILDH(AMKP還元酵素とも呼ばれる)が触媒する、2-アミノ-3-メチル-4-ケトペンタン酸が還元されて4-ヒドロキシイソロイシンが生成する反応は、下記式(II)に示される。
[化2] 
Figure JPOXMLDOC01-appb-I000002
 本明細書において、4-ヒドロキシイソロイシンとは、 (2S,3S,4S)-4- ヒドロキシイソロイシン[(2S,3S,4S)-4-hydroxyisoleucine]、(2R,3R,4R)-4- ヒドロキシイソロイシン[(2R,3R,4R)-4-hydroxyisoleucine]、(2S,3R,4R)-4-ヒドロキシイソロイシン[(2S,3R,4R)-4-hydroxyisoleucine]、(2R,3S,4S)-4-ヒドロキシイソロイシン[(2R,3S,4S)-4-hydroxyisoleucine]、(2S,3S,4R)-4-ヒドロキシイソロイシン [(2S,3S,4R)-4-hydroxyisoleucine]、(2R,3R,4S)-4-ヒドロキシイソロイシン[(2R,3R,4S)-4-hydroxyisoleucine]、(2S,3R,4S)-4-ヒドロキシイソロイシン [(2S,3R,4S)-4-hydroxyisoleucine]、及び(2R,3S,4R)-4-ヒドロキシイソロイシン [(2R,3S,4R)-4-hydroxyisoleucine]からなる群より選ばれる1種、または2種以上のジアステレオマー混合物をいう。
 2-アミノ-3-メチル-4-ケトペンタン酸とHILDHとの反応条件は、公知のものを用いることができる(例えば、WO2009060963など)。
==4-ヒドロキシイソロイシンの(2S,3R,4S)体または(2S,3S,4R)体の量を測定する方法==
 アミノ酸変異を有するHILDHを2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体と反応させて、合成された4-ヒドロキシイソロイシンの(2S,3R,4S)体または(2S,3S,4R)体の量を測定する。その変異HILDHが(2S,3R,4S)体または(2S,3S,4R)体を高い割合で合成することがすでに知られている場合、この反応によって、(2S,3R,4S)体または(2S,3S,4R)体を効率良く合成することができる。その変異HILDHが(2S,3R,4S)体または(2S,3S,4R)体を高い割合で合成することが知られていない場合、その変異HILDHが、4-ヒドロキシイソロイシンの(2S,3R,4S)体または(2S,3S,4R)体を主要な産物とする反応を促進し、(2S,3R,4S)体または(2S,3S,4R)体を高い割合で合成することができるかどうか調べることができる。それによって、(2S,3R,4S)体または(2S,3S,4R)体を効率良く合成する酵素を新たに特定することが可能になるので、(2S,3R,4S)体または(2S,3S,4R)体を高い割合で製造するためのHILDH誘導体をスクリーニングすることが可能になる。
 ここで、アミノ酸変異を有するHILDHすなわち変異HILDHとは、野生型HILDHにおいて1~9個、具体的には1つ、2つ、3つ、4つ、5つ、6つ、7つ、8つ、または9つのアミノ酸が置換しているタンパク質のことである。置換しているアミノ酸の位置は特に限定されないが、(2S,3R,4S)体を測定する場合、配列番号1の88番目、144番目、及び242番目に対応するアミノ酸からなる群から選択される一つ以上であることが好ましく、(2S,3S,4R)体を測定する場合、配列番号1の88番目、144番目、188番目、及び242番目に対応するアミノ酸からなる群から選択される一つ以上であることが好ましい。どのアミノ酸に置換するかは、特に限定されない。HILDHは配列番号1を有することが好ましいが、上述したような相同性を有するホモログであれば限定されない。
 なお、(2S,3R,4S)体及び(2S,3S,4R)体の量の具体的な測定方法は公知の方法に従えばよく、例えば、HPLCを用いる方法があげられる。
[方法1]HILDH変異体をコードする発現ベクターの調製
 HILDHの大腸菌用発現プラスミドベクターはB. thuringiensis 2e2由来HILDHの全長アミノ酸配列(配列番号1、図5A参照)をコードするDNA(配列番号2、図5B参照)をpET101/D-TOPOベクター(Invitrogen)に挿入して作製された(京都大学大学院農学研究科応用生命化学専攻発酵生理及び醸造学研究室の小川順教授より供与)。このプラスミドベクターを用いて大腸菌内で発現されるHILDHのC末端には、V5 epitopeと6×Hisタグを含むアミノ酸配列 (LEKGELNSKLEGKPIPNPLLGLDSTRTGHHHHHH)(配列番号3)が付加される。
 HILDHの発現プラスミドを鋳型として、PCRにより部位特異的に変異を導入した。PrimeSTAR Max(タカラバイオ)をDNAポリメラーゼとして用い、終濃度0.02μg/μlのHILDH発現ベクター溶液に順方向プライマーと逆方向プライマー(プライマー配列は図1参照)をそれぞれ終濃度0.3μMになるように添加し、25μlのPrimeSTAR Max Premixを添加することにより、反応溶液を調製した。反応条件は、98℃10秒→55℃15秒→72℃45秒を35サイクルとした。サーマルサイクラーは、Veriti 96(Applied Biosystems)を使用した。PCR反応溶液2μlを用いてXL1-Blue(Stratagene)を形質転換し、プラスミドDNAを抽出した。塩基配列の確認はDNAシーケンスサービス(ファスマック)を利用した。
[方法2]大腸菌発現系を用いたHILDHの生産
 [方法1]で作製したプラスミドを用いて、発現用宿主大腸菌Rosetta(DE3)(Novagen)を以下の手順で形質転換した。プラスミド溶液0.5μlを発現用宿主大腸菌Rosetta(DE3)50μlに添加し、混合溶液を氷上で10分間静置した。42°Cで45秒間インキュベートした後、再び氷上に5分間静置し、250μlのLysogeny Broth(LB)液体培地を添加した。37℃で1時間の振とう培養後に100μg/mlアンピシリン及び34μg/mlクロラムフェニコールを含むLB寒天培地(1.5%寒天を含む)にまき、37℃で一晩培養した。形質転換体のコロニーを100μg/mlアンピシリン及び34μg/mlクロラムフェニコールを含むLB培地20mlに植菌し、37°Cで一晩振とう培養した。この培養液を100μg/mlアンピシリン及び34μg/mlクロラムフェニコールを含むLB培地2μlに植え継ぎ、37°Cで振とう培養した。OD600値が0.6に達したところで、発現誘導のためにIPTGを終濃度0.5mMになるように培養液に添加し、さらに25°Cで一晩振とう培養した。培養液を5,000rpmで10分間遠心分離して上清を取り除き、菌体ペレットを-80゜Cで保存した。
[方法3]HILDHの精製
 菌体ペレットを解凍して緩衝液A(20 mM Tris-HCl, pH 7.4, 0.5 M NaCl, 30 mM imidazole,1 mM DTT)150mlに懸濁し、Sonifier 250D(Branson)を用いて氷上で超音波破砕した。破砕後のけん濁液を40,000×gで30分間遠心分離し、上清を回収した。AMKP還元酵素のN末端またはC末端に融合した6×Hisタグを利用して上清中からAMKP還元酵素をアフィニティ精製するために、Ni-NTA superflow樹脂(QIAGEN)を充填したオープンカラム(樹脂容量3mL)を用いた。20mLの緩衝液Aで平衡化したカラムに上清をロードして吸着させ、150mLの緩衝液Aで洗浄した後、20mLの緩衝液B(20 mM Tris-HCl, pH 7.4, 0.5 M NaCl, 200 mM imidazole,1 mM DTT)で目的タンパク質を溶出した。溶出液20mLをVivaspin 20 MWCO 10,000(Sartorius)を用いた限外ろ過により濃縮と反応用緩衝液(50 mM Tris-HCl pH 9.1)への交換を行い、最終的にタンパク質濃度10mg/mLまで濃縮した。タンパク質濃度はNano Drop ND-1000(Thermo Scientific)を用いて280nmの吸光度、HILDHのモル吸光係数(27,055)及び分子量(31,904)から計算した。
[方法4]HILDHとAMKPとの反応
 0.2mM HILDH、60mM AMKP、25mM NADH、50mM Tris-HCl(pH9.1)の組成の反応溶液を調製し、37℃で24時間反応させた後、反応混合物を18,000×gで5分間遠心分離して上清を回収した。アセトニトリルで回収液を3倍希釈し、0.5%(v/v)トリエチルアミン(TEA)及び5mg/ml 2,3,4,6-tetra-O-acetyl-β-D- glucopyranosyl isothiocyanate (GITC)を添加して、25℃で30分誘導化した。誘導化後の溶液は、Shimadzu HPLCシステム LC-10AtvpでCAPCELLC18 Type MG (Shiseido, 4.6×250 mm, 5 μm)カラムを2本直列に連結したカラムに供し、測定温度40℃、流速1ml/分で分析した。
[実施例1]
 本実施例では、HILDHのArg88とTrp242を標的として変異を導入し、各変異体の反応産物をHPLCにより分析した。その結果、図2Aに示すように、Arg88については、R88D、R88C、R88F、R88G、R88A、R88E、R88Hの変異体を用いた場合、2S,3R,4S体が高い選択性で生成した(各変異体の選択率は、それぞれ93%、92%、88%、80%、87%、74%、56%)。また、R88S、R88K、R88Q、R88H、R88V、R88T、R88I、R88Nの変異体を用いた場合、2S,3S,4R体が高い選択性で生成した(各変異体の選択率は、それぞれ55%、53%、49%、49%、41%、39%、38%、36%)。
 また、Trp242については、図2Bに示すように、W242E、W242K、W242N、W242Q、W242Rの変異体を用いた場合、2S,3R,4S体が高い選択性で生成した(各変異体の選択率は、それぞれ93%、90%、88%、68%、60%)。また、W242R、W242S、W242C、W242T、W242A、W242Qの変異体を用いた場合、2S,3S,4R体が高い選択性で生成した(各変異体の選択率は、それぞれ55%、47%、46%、34%、33%、33%)。
[実施例2]
 つぎに、2S,3R,4S体に高い選択性を示すW242変異体であるW242E、W242K、W242N、W242Q、W242Rに対し、(2S,3R,4S)体に高い選択性を示すArg88変異体であるR88E、R88C、R88F、R88Gを組み合わせ、各二重変異体の反応産物をHPLCにより分析した。その結果、4-HILのピークが検出された変異体は、R88G及びR88CにW242の変異を導入した二重変異体に限られており、いずれの二重変異体においても(2S,3R,4S)体のピークが観測されたが、図3に示すように、R88C/W242N、R88C/W242E、R88C/W242K、R88C/W242Q、R88G/W242Rの5変異体を用いた場合、(2S,3R,4S)体が高い選択性で生成した(各変異体の選択率は、91%、86%、81%、66%、74%)。これらの変異体では、(2S,3R,4S)体以外には、低レベルの(2S,3S,4R)体が検出されただけであった。
[実施例3]
 さらに、Arg88の4種類の変異体(R88E、R88C、R88F、R88G)とTrp242の5種類の変異体(W242E、W242K、W242N、W242Q、W242R)に対して、Glu144のArgとLysへの変異導入を行い、各二重変異体の反応産物をHPLCで分析した。その結果、図4に示すように、E144K/W242Q、E144K/W242R、E144K/W242N、E144K/W242Eの4種類の変異体において、HPLCのクロマトグラム上に4-HILのピークが検出されたが、4-HILのピークは、ほぼ(2S,3R,4S体)のピークであり、(2S,3S,4R)体のピークがわずかに検出されただけというように、(2S,3R,4S)体が高い選択性で生成した(各変異体の選択率は、99.1%、96.8%、93.7%、92.5%)。また、野生型HILDHの(2S,3R,4S体)の生成量が157.0μg/mlに対して、E144K/W242Q変異体の生成量は225.4μg/mlと、約1.4倍の生成量の向上が認められた。
[実施例4]
 同様に、R88QにW242R、W242S、W242Cの変異を導入して作製した、R88Q/W242R、R88Q/W242S、R88Q/W242Cの変異体を用いた場合、図6に示すように、2S,3S,4R体が高い選択性で生成した(各変異体の選択率は、それぞれ55.6%、53.3%、53.6%)。
 また、E144A/W242A変異体に、R88Q、R88S、R88T、R88Vの変異を導入して作製した、R88Q/E144A/W242A、R88S/E144A/W242A、R88T/E144A/W242A、R88V/E144A/W242Aの三重変異体を用いた場合も、図6に示すように、2S,3S,4R体が高い選択性で生成した(各変異体の選択率は、それぞれ65.0%、39.1%、26.7%、37.8%)。
 さらに、R88Q/E144A変異体に、W242A、W242C、W242S、W242Q、W242T、W242V、W242F、W242I、W242Mの変異を導入して作製した、R88Q/E144A/W242A、R88Q/E144A/W242C、R88Q/E144A/W242S、R88Q/E144A/W242Q、R88Q/E144A/W242T、R88Q/E144A/W242V、R88Q/E144A/W242F、R88Q/E144A/W242I、R88Q/E144A/W242Mの三重変異体を用いた場合も、図6に示すように、2S,3S,4R体が高い選択性で生成した(各変異体の選択率は、それぞれ65.0%、68.1%、71.3%、70.8%、67.3%、63.0%、51.1%、64.6%、60.9%)。
 さらに、R88Q/E144I/W242Qの三重変異体及びR88Q/E144A/T188V/W242Qの四重変異体も、それぞれ図6に示すように、2S,3S,4R体が高い選択性で生成した(各変異体の選択率は、それぞれ52.3%、77.4%)。
 本発明によって、4-ヒドロキシイソロイシンの(2S,3R,4S)体及び(2S,3S,4R)体の新規製造方法を提供することができるようになった。

Claims (9)

  1.  以下の(1)~(5)のいずれかの変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼ。
    (1)配列番号1の88番目のアルギニンに対応するアルギニンが、アスパラギン酸、システイン、フェニルアラニン、グリシン、アラニン、グルタミン酸、またはヒスチジンで置換されている、
    (2)配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、リジン、アスパラギン、グルタミン、またはアルギニンで置換されている、
    (3)配列番号1の88番目のアルギニンに対応するアルギニンが、システインで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、リジン、アスパラギン、またはグルタミンで置換されている、
    (4)配列番号1の88番目のアルギニンに対応するアルギニンが、グリシンで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニンで置換されている、
    (5)配列番号1の144番目のグルタミン酸に対応するグルタミン酸がリジンに置換され、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミン酸、アスパラギン、アルギニン、またはグルタミンで置換されている。
  2.  以下の(1)~(7)のいずれかの変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼ。
    (1)配列番号1の88番目のアルギニンに対応するアルギニンが、セリン、リジン、グルタミン、ヒスチジン、バリン、スレオニン、イソロイシン、またはアスパラギンで置換されている、
    (2)配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニン、セリン、システイン、スレオニン、アラニン、またはグルタミンで置換されている、
    (3)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、かつ配列番号1の242番目のトリプトファンに対応するトリプトファンが、アルギニン、セリン、またはシステインで置換されている、
    (4)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、アラニンで置換されている、
    (5)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、アラニン、システイン、セリン、グルタミン、スレオニン、バリン、フェニルアラニン、イソロイシン、またはメチオニンで置換されている、
    (6)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニン、またはイソロイシンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミンで置換されているか、
    (7)配列番号1の88番目のアルギニンに対応するアルギニンが、グルタミンで置換されており、配列番号1の144番目のグルタミン酸に対応するグルタミン酸が、アラニンで置換されており、配列番号1の188番目のスレオニンに対応するスレオニンが、バリンで置換されており、配列番号1の242番目のトリプトファンに対応するトリプトファンが、グルタミンで置換されている。
  3.  Bacillus thuringiensis 2e2由来である、請求項1または2に記載の4-ヒドロキシイソロイシンデヒドロゲナーゼ。
  4.  請求項1または2に記載の4-ヒドロキシイソロイシンデヒドロゲナーゼをコードするDNA。
  5.  4-ヒドロキシイソロイシンの(2S,3R,4S)体の製造方法であって、
     請求項1に記載の4-ヒドロキシイソロイシンデヒドロゲナーゼの1以上を2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体に反応させる工程を含む製造方法。
  6.  4-ヒドロキシイソロイシンの(2S,3S,4R)体の製造方法であって、
     請求項5に記載の4-ヒドロキシイソロイシンデヒドロゲナーゼの1以上を2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体に反応させる工程を含む製造方法。
  7.  4-ヒドロキシイソロイシンの(2S,3R,4S)体の量を測定する方法であって、 
     変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼを2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体と反応させる工程と、
     反応産物中の4-ヒドロキシイソロイシンの(2S,3R,4S)体の量を測定する工程と、
     を含む方法。
  8.  4-ヒドロキシイソロイシンの(2S,3S,4R)体の量を測定する方法であって、 
     変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼを2-アミノ-3-メチル-4-ケトペンタン酸のラセミ体と反応させる工程と、
     反応産物中の4-ヒドロキシイソロイシンの(2S,3S,4R)体の量を測定する工程と、
     を含む方法。
  9.  前記変異を有する4-ヒドロキシイソロイシンデヒドロゲナーゼが、野生型4-ヒドロキシイソロイシンデヒドロゲナーゼに対して、1~9個のアミノ酸置換を有する、請求項7また8に記載の方法。
PCT/JP2017/000513 2016-01-08 2017-01-10 4-ヒドロキシイソロイシンの(2s,3r,4s)体及び(2s,3s,4r)体の製造方法 WO2017119514A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662276423P 2016-01-08 2016-01-08
US62/276,423 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017119514A1 true WO2017119514A1 (ja) 2017-07-13

Family

ID=59273663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000513 WO2017119514A1 (ja) 2016-01-08 2017-01-10 4-ヒドロキシイソロイシンの(2s,3r,4s)体及び(2s,3s,4r)体の製造方法

Country Status (1)

Country Link
WO (1) WO2017119514A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060963A1 (ja) * 2007-11-07 2009-05-14 Ajinomoto Co., Inc. 4-ヒドロキシイソロイシン又は2-アミノ-3-メチル-4-ケトペンタン酸の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060963A1 (ja) * 2007-11-07 2009-05-14 Ajinomoto Co., Inc. 4-ヒドロキシイソロイシン又は2-アミノ-3-メチル-4-ケトペンタン酸の製造法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OGAWA, J. ET AL.: "A novel L-isoleucine metabolism in Bacillus thuringiensis generating (2S,3R,4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obestiy amino acid", APPL. MICROBIOL. BIOTECHNOL., vol. 89, no. 6, 2011, pages 1929 - 1938, XP019885648 *
SHI XUAN: "4-HIL Gosei ni Yuyo na AMKP Kangen Koso no X-sen Kessho Kozo Kaiseki", JAPAN SOCIETY FOR BIOSCIENCE , BIOTECHNOLOGY , AND AGROCHEMISTRY 2013 NENDO TAIKAI KOEN YOSHISHU, 5 March 2013 (2013-03-05), ISSN: 2186-7976 *

Similar Documents

Publication Publication Date Title
TWI773716B (zh) 變異型腈水合酶、編碼該變異型腈水合酶之核酸、含有該核酸之表現載體及轉形體、該變異型腈水合酶之製造方法、及醯胺化合物之製造方法
US11332767B2 (en) Nucleic acids and recombinant host cells expressing acetylserotonin O-methyltransferase (ASMT) variants and their use in producing melatonin
EP1999258A1 (en) Novel aldolase and production process of 4-hydroxy-l-isoleucine
JP2008523832A (ja) コリネフォルム細菌由来のproB遺伝子の突然変異体
CN109182283A (zh) Nadh依赖性的氨基酸脱氢酶及其在提高赖氨酸产量中的应用
CN113462678B (zh) 一种谷氨酸脱羧酶突变体
ES2903177T3 (es) Transaminasas
WO2017119514A1 (ja) 4-ヒドロキシイソロイシンの(2s,3r,4s)体及び(2s,3s,4r)体の製造方法
EP2559758A1 (en) Modified glyceraldehyde-3-phosphate dehydrogenase from corynebacterium glutamicum and uses thereof
KR20070014867A (ko) 절단형 글루타메이트 디카르복실라아제 변이체
KR20070014858A (ko) 글루타메이트 디카르복실라아제를 이용한 생물전환공정에의한 gaba의 제조방법
Ogura et al. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme
KR102212488B1 (ko) 신규 d-트레오닌 생산 효소 및 이를 이용한 d-트레오닌의 입체특이적 생산 방법
KR101778878B1 (ko) 박테로이데스 속 미생물 유래의 gaba 생성 고활성 글루탐산탈탄산효소 및 이의 용도
CN112522222A (zh) 一种新的色氨酸羟化酶突变体及其应用
KR101971931B1 (ko) 효소 반응법을 이용한 마이오-이노시톨로부터 d-카이로-이노시톨을 생산하는 방법
KR20200045978A (ko) 신규 알코올 탈수소효소와 그 돌연변이체, 및 이를 이용한 알데히드 화합물의 생산 방법
KR101379585B1 (ko) 무염 반응을 위한 신규한 글루타메이트 디카르복실라아제 변이체
EP3555271A1 (en) Arylalkylamine n-acetyltransferase and uses thereof
KR102424603B1 (ko) 알코올 탈수소효소 변이체, 및 이를 이용한 알데히드 화합물의 생산 방법
TWI756604B (zh) 鳥胺酸脫羧酶變異體、使用其製造丁二胺之方法、聚核苷酸、微生物、聚醯胺的製備方法以及聚醯胺製備用組成物
He et al. Cloning, expression, purification, and characterization of Nocardia sp. GTP cyclohydrolase I
JP5703455B2 (ja) キヌクリジノン還元酵素及びそれを用いた光学活性3−キヌクリジノールの製造方法
EP2574667A1 (en) Enzyme variants
JP2017530725A (ja) リアーゼおよびリアーゼをコードするdna、該dnaを含有するベクターおよび(s)−フェニルアセチルカルビノールの不斉合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17736051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP