WO2017119286A1 - パワー半導体モジュール - Google Patents

パワー半導体モジュール Download PDF

Info

Publication number
WO2017119286A1
WO2017119286A1 PCT/JP2016/088012 JP2016088012W WO2017119286A1 WO 2017119286 A1 WO2017119286 A1 WO 2017119286A1 JP 2016088012 W JP2016088012 W JP 2016088012W WO 2017119286 A1 WO2017119286 A1 WO 2017119286A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
conductor plate
semiconductor module
semiconductor element
heat radiating
Prior art date
Application number
PCT/JP2016/088012
Other languages
English (en)
French (fr)
Inventor
ひろみ 島津
晃 松下
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017560092A priority Critical patent/JPWO2017119286A1/ja
Publication of WO2017119286A1 publication Critical patent/WO2017119286A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors

Definitions

  • the present invention relates to a power semiconductor module, and more particularly to a power semiconductor module used in a power conversion device that controls a motor for driving a vehicle.
  • the power semiconductor module described in Patent Document 1 is sealed with a resin in a state where the front and back surfaces of the power semiconductor chip are soldered to a conductive plate and the conductive plate is exposed.
  • This sealing body is housed in a metal case having first and second heat radiating members, and a thermally conductive insulating adhesive (insulating member) is provided between each of the first and second heat radiating members and the conductor plate. It is adhered by.
  • the stress generated in the insulating resin will increase under the usage environment where the thermal cycle is loaded. There is concern about separation at the joint.
  • an object of the present invention is to provide a highly reliable power semiconductor that suppresses the radiating portion from being separated from the conductor plate without generating a high stress in the insulating resin even in a use environment where a thermal cycle is loaded. To provide a module.
  • a power semiconductor module includes a power semiconductor element, a conductor plate electrically connected to the power semiconductor element, and a seal that seals the power semiconductor element and the conductor plate. And a heat radiating member facing the circuit body with an insulating member interposed therebetween, wherein the conductive plate is partially exposed from the sealing resin and the insulating member.
  • the heat radiating member has a thin portion where a portion facing the outer edge of the contact portion is thinner than other portions.
  • the stress generated in the insulating member when the power semiconductor element repeatedly generates heat can be reduced, and the separation between the electrode plate of the power semiconductor module and the insulating member can be suppressed.
  • the module's heat dissipation performance is improved and a highly reliable power converter can be realized.
  • FIG. 2 is an exploded perspective view of the power conversion device 200 illustrated in FIG. 1.
  • 1 is an external plan view as an embodiment of a power semiconductor module 100 of the present embodiment.
  • FIG. 4 is a longitudinal sectional view of the power semiconductor module 100 shown in FIG. 3 taken along the line AA ′.
  • 3 is a cross-sectional view of a metal case 40.
  • FIG. 3 is a cross-sectional view of a circuit body 30.
  • FIG. FIG. 7 is an external plan view of the circuit body 30 illustrated in FIG. 6.
  • It is sectional drawing of the power semiconductor module which shows Embodiment 2 of this invention. It is a figure which shows the effect of this embodiment. It is a figure explaining distribution of insulating member interface stress of conventional structure It is a figure explaining the width dimension of the recessed part 45 of the heat radiating member 41 surface.
  • FIG. 1 is an external perspective view as an embodiment of the power conversion device 200 of the present embodiment.
  • FIG. 2 is an exploded perspective view of the power conversion apparatus 200 illustrated in FIG.
  • the power conversion device 200 is used as a power supply device for an electric vehicle or a hybrid vehicle. Although not shown, the power conversion device 200 includes an inverter circuit connected to the motor generator, and includes a booster circuit connected to an external battery and a control circuit for controlling the whole.
  • the power conversion device 200 includes a housing 201 formed of an aluminum-based metal such as aluminum or an aluminum alloy, and a bottom lid 202 fastened to the housing 201 by a fastening member (not shown).
  • the housing 201 and the bottom cover 202 can also be formed by integral molding.
  • An upper lid (not shown) is fastened to the upper portion of the housing 201 by a fastening member to form a sealed container.
  • a peripheral wall 211 for forming a cooling flow path is formed inside the housing 201, and a cooling chamber 210 is formed by the peripheral wall 211 and the bottom lid 202.
  • a support member 220 having a plurality of (four in FIG. 2) side walls 221 and a plurality (three in FIG. 2) of power semiconductor modules 100 disposed between the side walls 221 are housed. . Details of the power semiconductor module 100 will be described later.
  • a pair of through holes are provided on one side of the housing 201, one of the through holes is provided with an inlet pipe 203a, and the other of the through holes is provided with an outlet pipe 203b.
  • a cooling medium such as cooling water flows into the cooling chamber 210 from the inlet pipe 203a, flows out through the cooling path between the side wall 221 of the support member 220 and each power semiconductor module 100, and flows out from the outlet pipe 203b. To do.
  • the cooling medium flowing out from the outlet pipe 203b is cooled by a cooling device such as a radiator (not shown), and circulates again so as to flow into the cooling chamber 210 from the inlet pipe 203a.
  • the cooling chamber 210 is sealed by a cover member 240 with a seal member 231 interposed.
  • the cover member 240 has an opening 241 through which the DC positive electrode terminal 35 a of the power semiconductor element built in the power semiconductor module 100 is inserted.
  • the peripheral edge portion of the cover member 240 is fixed to the upper portion of the peripheral wall 211 forming the cooling chamber 210 by a fastening member (not shown).
  • a capacitor module 250 including a plurality of capacitor elements 251 for smoothing DC power supplied to the inverter circuit is housed in an outer region of the cooling chamber 210 of the housing 201.
  • the DC bus bar assembly 261 is disposed on the capacitor module 250 and the power semiconductor module 100.
  • the DC bus bar assembly 261 transmits DC power between the capacitor module 250 and the power semiconductor module 100.
  • a control circuit board assembly 262 including a driver circuit unit for controlling the inverter circuit is disposed above the DC side bus bar assembly 261 and the cover member 240.
  • the AC bus bar assembly 263 is connected to the power semiconductor module 100 and transmits AC power.
  • AC bus bar assembly 263 includes a current sensor.
  • the power semiconductor module 100 will be described with reference to FIGS.
  • FIG. 3 is an external plan view as an embodiment of the power semiconductor module 100 of the present embodiment.
  • 4 is a vertical cross-sectional view of the power semiconductor module 100 shown in FIG.
  • the power semiconductor module 100 has a metal case 40, and the circuit body 30 is accommodated in the metal case 40.
  • FIG. 5 is a cross-sectional view of the metal case 40.
  • the power semiconductor module shown in FIG. 6 is housed in the metal case 40 shown in FIG. 5, and between the circuit body 30 and the pair of heat radiation members 41, as shown in FIG.
  • a thermally conductive insulating layer 51 is interposed.
  • the insulating layer 51 conducts heat generated from the circuit body 30 to the heat radiating member 41, and is formed of a material having high thermal conductivity and high withstand voltage.
  • the insulating layer 51 can be a thin film such as aluminum oxide (alumina) or aluminum nitride, or an insulating sheet or adhesive containing these fine powders.
  • conductor plates 33 and 34 to which the power semiconductor element 31 is joined by, for example, soldering are exposed on both the front and back surfaces of the circuit body 30.
  • couple bonds the conductor plates 33 and 34 and the thermal radiation member 41 so that heat conduction is possible.
  • the gap between the circuit body 30 is filled with the second sealing resin 49.
  • the metal case 40 includes a pair of heat radiating members 41 having a plurality of heat radiating fins 42 and a frame body 43. As shown in FIGS. 3 and 4, a recess 44 is formed on the surface of the heat dissipation member 41. As shown in FIG. 4, the recessed portion 44 is a heat radiating member 41, which is a portion of the heat radiating member facing the outer peripheral ends of the conductor plates 33 and 34 that are partially exposed from the first sealing resin 6. Is provided.
  • the pair of heat radiating members 41 are joined at the respective side wall portions 43.
  • As the joining for example, FSW (friction stir welding), laser welding, brazing or the like can be applied.
  • FSW frequency stir welding
  • the metal case having such a shape as a member for housing the circuit body 30 even if the power semiconductor module 100 is inserted into a flow path through which a coolant such as water, oil, or organic matter flows, the cooling medium can be used. Intrusion into the power semiconductor module 100 can be prevented with a simple configuration.
  • the heat radiating member 41 and the frame body 43 are shown as separate members. However, the heat radiating member 41 and the frame body 43 may be the same member or may be integrated.
  • the metal case 40 is a cooler having a flat cylindrical shape having an insertion port 17 on one surface and a bottom on the other surface, for example.
  • the metal case 40 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C. ing.
  • FIG 5 and 6 show the case where the thin portion 45 is provided on the outer peripheral portion of the fin.
  • the recess 44 is provided inside the thin portion 45.
  • the metal case 40 has the flange portion 11 on the insertion port 17 side, and can be used as a seal portion when housed in the cooling chamber 210 shown in FIG. However, the flange portion 11 may not be provided.
  • circuit body 30 As shown in FIGS. 6 and 7, the electrodes of the power semiconductor elements 31 a to 31 d are sandwiched between the conductor plate 33 and the conductor plate 34, the conductor plate 35, and the conductor plate 36 arranged to face the respective electrode surfaces. Have a structure. The power semiconductor elements 31 a to 31 d and the conductor plates 33 to 36 are joined by a joining material 32. The circuit body 30 is formed by sealing them with the first sealing resin 6. The first sealing resin 6 exposes the surface 33 a of the conductor plate 33, the surface 34 a of the conductor plate 34, the surface 35 a of the conductor plate 35, and the surface 36 a of the conductor plate 36 on the surface side of the circuit body 30. The entire circumference of 33 to 36 is covered. The surface of the first sealing resin 6 is flush with the surfaces 33a to 36d.
  • the conductor plates 33 to 36 are made of, for example, copper, copper alloy, aluminum, aluminum alloy, or the like.
  • the power semiconductor elements 31a to 31d are IGBTs, but other configurations such as MOSFETs may be used.
  • the conductor plates 33 and 34 are lead-connected or formed integrally with the conductor plates 33 and 34 as necessary. Further, a temperature sensor for detecting the temperature of the conductor plate 36, that is, the temperature of the power semiconductor element 31 may be provided.
  • a recess 44 is formed on the surface of the heat dissipation member 41 constituting the metal case 40. As shown in FIG. 4, the recessed portion 44 is provided in a heat radiation member at a portion facing the outer peripheral end portions 33 b and 34 b of the conductor plates 33 and 34 that are partially exposed from the first sealing resin 6. .
  • a portion facing the outer peripheral end portion 33 b and the outer peripheral end portion 34 b of the conductive plate 33 and the conductive plate 34, which is opposite to the surface bonded to the insulating member 51, is rigid.
  • the recess 45 is formed thin and easily deforms, so that it easily follows the deformation of the conductor plate, and the outer peripheral end where the stress of the insulating member 51 is maximized.
  • the stress of the insulating member due to the difference in deformation amount between the conductor plate and the heat radiating member 51 during chip heat generation can be reduced.
  • the thickness 45C of the recessed portion 45 is preferably smaller than the thickness 34C of the conductor plate 34.
  • the recessed portion 4545 is more easily followed by deformation of the conductor plate 34 than the outer peripheral end portion 34b, the position of the center 45b in the width direction of the recessed portion 45 is the outer peripheral end portion. A higher effect can be obtained if it is the same as 34b or on the conductor plate 34 side.
  • FIG. 8 shows a modification of the power semiconductor module shown in FIGS.
  • Each electrode of the power semiconductor element 31 is bonded to the conductor plate 35 by a bonding material 32. These are sealed with a first sealing resin 6.
  • the first sealing resin 6 exposes the surface 35 a of the conductor plate 35.
  • the conductor plate 35 is made of, for example, copper, copper alloy, aluminum, aluminum alloy, or the like.
  • the conductor plate 35 and the heat radiating member 46 are coupled to each other through an insulating layer 52 so as to be able to conduct heat.
  • a recess 47 is formed on the surface of the gold heat radiating member 46, that is, the surface opposite to the surface coupled to the insulating member 52.
  • the recess 47 is provided in the heat radiating member 46 at a portion facing the outer peripheral end 35 b of the conductor plate 35 exposed from the first sealing resin 6. Thereby, the effect similar to Embodiment 1 is acquired.
  • the shape of the heat radiation fin 42 of the heat radiation member 41 is a pin fin, but other shapes such as a straight fin or a corrugated fin may be used.
  • an in-vehicle power conversion device mounted on an electric vehicle or a hybrid vehicle has been described as an example.
  • the power conversion device has a cooling structure in which a power semiconductor module is immersed in a cooling medium, The present invention can be similarly applied.

Abstract

信頼性の高いパワー半導体モジュールを提供することにある。 本発明に係るパワー半導体モジュールは、パワー半導体素子と、前記パワー半導体素子と電気的に接続される導体板と、前記パワー半導体素子及び前記導体板を封止する封止樹脂と、を有する回路体と、絶縁部材を挟んで前記回路体と向き合う放熱部材と、を備え、前記導体板は、当該導体板の一部が前記封止樹脂から露出して前記絶縁部材と接触する接触部を有し、前記放熱部材は、前記接触部の外縁と対向する部分が他の部分よりも薄くなる薄肉部を有する。

Description

パワー半導体モジュール
 本発明は、パワー半導体モジュールに関し、特に車両駆動用のモータを制御する電力変換装置に用いられるパワー半導体モジュールに関する。
 近年、環境への負荷低減のため、ハイブリッド自動車や電気自動車の普及が急務である。ハイブリッド自動車や電気自動車においては搭載される部品の小型化や低コスト化が重要視され、電力変換装置も、小型化や低コスト化が求められている。
 その結果、発熱密度が高くなるため、電力変換装置を構成する電子部品の中で発熱量が大きいパワー半導体モジュールにおいても、冷却性能を向上させる必要がある。パワー半導体モジュールの冷却方式としては、例えば、両面直接冷却方式が知られている(例えば、特許文献1参照)。
 特許文献1に記載のパワー半導体モジュールは、パワー半導体チップの表裏両面を導電板に半田付けし、導体板を露出した状態で樹脂により封止される。この封止体が第1および第2の放熱部材を有する金属製ケースに収納され、第1および第2の放熱部材のそれぞれと導体板との間は熱伝導性の絶縁接着剤(絶縁部材)により接着されている。
特開2012-257369号公報
 このようなパワー半導体モジュールにおいては、導通動作時にパワー半導体チップで発生する熱を、放熱部材を介して外部へ逃がす必要がある。そのため、発熱部と放熱部材の結合部分には発熱部から放熱部材への熱伝達を良好に行うため、熱伝導性の絶縁性樹脂を介在させ、熱圧着させている。この絶縁性樹脂による結合部に離間が生じると放熱性が悪化することが懸念される。
 今後パワー半導体モジュールがさらに小型化し、パワー密度が向上した場合、熱サイクルが負荷される使用環境下で、絶縁性樹脂に発生する応力は高くなることが懸念され、その場合発熱部と放熱部材の結合部分で離間することが懸念される。
 そこで、本発明の目的は、熱サイクルが負荷される使用環境下でも、絶縁性樹脂に高い応力を発生させることなく、放熱部が導体板から離間するのを抑制し、信頼性の高いパワー半導体モジュールを提供することにある。
上記課題を解決するために、本発明に係るパワー半導体モジュールは、パワー半導体素子と、前記パワー半導体素子と電気的に接続される導体板と、前記パワー半導体素子及び前記導体板を封止する封止樹脂と、を有する回路体と、絶縁部材を挟んで前記回路体と向き合う放熱部材と、を備え、前記導体板は、当該導体板の一部が前記封止樹脂から露出して前記絶縁部材と接触する接触部を有し、前記放熱部材は、前記接触部の外縁と対向する部分が他の部分よりも薄くなる薄肉部を有する。
 本発明によれば、パワー半導体素子が繰り返し発熱した場合の絶縁部材に発生する応力を低減することができ、パワー半導体モジュールの電極板と絶縁部材との離間を抑制することができるため、パワー半導体モジュールの放熱性能が向上し,信頼性の高い電力変換装置が実現できる。
本実施形態の電力変換装置200の一実施の形態としての外観斜視図である。 図1に図示された電力変換装置200の分解斜視図である。 本実施形態のパワー半導体モジュール100の一実施の形態としての外観平面図である。 図3に図示されたパワー半導体モジュール100のA-A´線縦断面図である。 金属製ケース40の断面図である。 回路体30の断面図である。 図6に図示された回路体30の外観平面図である。 本発明の実施形態2を示すパワー半導体モジュールの断面図である。 本実施形態の効果を示す図である。 従来構造の絶縁部材界面応力の分布を説明する図である 放熱部材41表面の凹み部45の幅寸法を説明する図である。
(実施形態1)
[電力変換装置200]
 以下、図を参照して、本実施形態に係る電力変換装置200の一実施の形態を説明する。
 図1は、本実施形態の電力変換装置200の一実施の形態としての外観斜視図である。図2は、図1に図示された電力変換装置200の分解斜視図である。
 電力変換装置200は、電気自動車やハイブリッド自動車の電源装置として用いられる。図示はしないが、電力変換装置200は、モータジェネレータに接続されたインバータ回路を内蔵し、また、外部のバッテリに接続された昇圧回路および全体を制御する制御回路を備えている。
 電力変換装置200は、アルミニウム、アルミニウム合金等のアルミニウム系金属により形成された筐体201および筐体201に締結部材(不図示)により締結される底蓋202を有する。筐体201と底蓋202とは、一体成型により形成することもできる。筐体201の上部には、不図示の上蓋が締結部材により締結され、密閉状の容器が形成される。
 筐体201の内部には、冷却流路を形成するための周壁211が形成され、周壁211と底蓋202とにより冷却用室210が形成されている。
 冷却用室210内には、複数(図2では4つ)の側壁221を有する支持部材220および各側壁221間に配置される複数(図2では3つ)のパワー半導体モジュール100が収納される。パワー半導体モジュール100の詳細は後述する。
 筐体201の一側部には、一対の貫通孔が設けられ、貫通孔の一方には、入口用配管203aが設けられ、貫通孔の他方には、出口用配管203bが設けられている。冷却水などの冷却媒体は、入口用配管203aから冷却用室210内に流入し、支持部材220の側壁221と各パワー半導体モジュール100との間の冷却路を流通して出口用配管203bから流出する。出口用配管203bから流出した冷却媒体は、不図示のラジエータ等の冷却装置によって冷却されて、再び、入口用配管203aから冷却用室210内に流入するように循環する。
 冷却用室210は、シール部材231を介在して、カバー部材240により密封される。カバー部材240は、パワー半導体モジュール100に内蔵されたパワー半導体素子の直流正極端子35aが挿通される開口部241を有する。カバー部材240の周縁部は冷却用室210を形成する周壁211の上部に、不図示の締結部材により固定される。
 筐体201の冷却用室210の外側領域には、インバータ回路に供給される直流電力を平滑化するための複数のコンデンサ素子251を備えるコンデンサモジュール250が収納される。
 コンデンサモジュール250とパワー半導体モジュール100の上部に、直流側バスバーアセンブリ261が配置される。直流側バスバーアセンブリ261は、コンデンサモジュール250とパワー半導体モジュール100の間に直流電力を伝達する。
 直流側バスバーアセンブリ261およびカバー部材240の上方には、インバータ回路を制御するドライバ回路部を含む制御回路基板アセンブリ262が配置されている。
 交流側バスバーアセンブリ263は、パワー半導体モジュール100と接続され、交流電力を伝達する。また、交流側バスバーアセンブリ263は、電流センサを有する。
 [パワー半導体モジュール100]
 図3ないし図4を参照してパワー半導体モジュール100について説明する。
 図3は、本実施形態のパワー半導体モジュール100の一実施の形態としての外観平面図である。図4は、図3に図示されたパワー半導体モジュール100のA-A´線縦断面図である。
 図3及び図4に示されるように、パワー半導体モジュール100は、金属製ケース40を有し、この金属製ケース40内に、回路体30が収納されている。
 図5は、金属製ケース40の断面図である。図5に示される金属製ケース40内に、図6に示されるパワー半導体モジュールが収納されており、回路体30と一対の放熱部材41との間には、図4に図示されるように、熱伝導性の絶縁層51が介装されている。絶縁層51は、回路体30から発生する熱を放熱部材41に熱伝導するものであり、熱伝導率が高く、かつ、絶縁耐圧が大きい材料で形成されている。例えば、絶縁層51は、酸化アルミニウム(アルミナ)、窒化アルミニウム等の薄膜、あるいは、これらの微粉末を含有する絶縁シートまたは接着剤を用いることができる。
 後述するが、図6及び図7に示されるように、回路体30の表裏両面には、パワー半導体素子31を例えば半田付けなどで接合される導体板33、34が表出しており、絶縁層51は、導体板33及び34と放熱部材41とを熱伝導可能に結合している。
 また、金属製ケース40と絶縁層51は、回路体30との隙間は第2封止樹脂49により、埋められている。
 金属製ケース40は、複数の放熱フィン42を有する一対の放熱部材41と枠体43とから構成されている。放熱部材41の表面には、図3及び図4に示されるように、凹み部44が形成されている。この凹み部44は、図4に示すように、放熱部材41であって、第1封止樹脂6から一部露出している導体板33及び34の外周端部と対向する部分の放熱部材に設けられている。
 一対の放熱部材41は、それぞれの側壁部43において接合されている。接合としては、例えば、FSW(摩擦攪拌接合)、レーザ溶接、ろう付等を適用することができる。回路体30を収納する部材として、このような形状の金属製のケースを用いることで、パワー半導体モジュール100を水や油、有機物などの冷媒が流れる流路内に挿入しても、冷却媒体がパワー半導体モジュール100の内部に侵入するのを簡易な構成で防ぐことができる。本実施形態においては、放熱部材41と枠体43が別部材のばあいについて示したが、放熱部材41と枠体43は同一部材であってもよく、一体化されていてもよい。
 図5に示されるように、金属製ケース40は、例えば一面に挿通口17を、他面に底部を有する扁平状の筒型形状をした冷却器である。金属製ケース40は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成されている。
 図5および図6では、フィン外周部に薄肉部45が設けられた場合について示した。凹み部44はこの薄肉部45の内側に設けられている。
 金属製ケース40の挿入口17側にはフランジ部11を有し、図2に示した冷却用室210内に収納する際のシール部として使用することが可能である。ただし、フランジ部11はなくてもよい。
 [回路体30]
  図6及び図7に示されるように、パワー半導体素子31aないし31dの各電極はそれぞれの電極面に対向して配置される導体板33と導体板34や導体板35と導体板36によって挟まれた構造をしている。このパワー半導体素子31aないし31dと導体板33ないし36とは接合材32によって接合されている。回路体30は、これらを第1封止樹脂6で封止されたものである。第1封止樹脂6は、回路体30の表面側において、導体板33の面33aと導体板34の面34aと導体板35の面35aと導体板36の面36aを露出して、導体板33ないし36の周囲全体を被覆している。第1封止樹脂6の表面は、面33aないし面36dと面一となっている。
 導体板33ないし36は、例えば、銅、銅合金、あるいはアルミニウム、アルミニウム合金などにより形成されている。本実施形態は、パワー半導体素子31aないし31dはIGBTであるが、MOSFET等の他の構成であってもよい。
 図6および7では省略しているが、実際には、導体板33、34には、必要に応じて、リード接続されているか、リードが一体に形成されている。また導体板36の温度、すなわち、パワー半導体素子31の温度を検出するための温度センサを備えていてもよい。
 [効果]
 図3及び図4に示されるように、本実施形態におけるパワー半導体モジュール100においては、金属製ケース40を構成する放熱部材41の表面には、凹み部44が形成されている。この凹み部44は、図4に示すように、第1封止樹脂6から一部露出している導体板33と34の外周端部33bと34bと対向する部分の放熱部材に設けられている。
 パワー半導体素子31が繰り返し発熱時には、その熱は導体板33ないし36および、絶縁部材51を介して放熱部材41に熱伝導し、外部に放熱される。この時、この熱により各部材の温度は上昇し伸び変形が生じるが、導体板33ないし36と放熱部材41の変形量の差により絶縁部材51に応力発生し、絶縁部材51のはく離の原因になる。有限要素シミュレーションの結果、図10に示すように、絶縁部材51の応力は、外周端部34bが最大となり、端部から離れるに従い減少することを明らかにした。
 そこで、放熱部材41において、導体板33と導体板34の外周端部33bと外周端部34bと対向する部分であって、絶縁部材51と接着している面とは反対側の面に、剛性を減少させるための、凹み部45を設けることにより、局所的に放熱部材に薄肉部を設け、その部分の剛性を低下させている。
 図9に示すように、本実施形態による構造では、凹み部45は薄肉に形成され、変形しやすくなるため、導体板の変形に追従しやすくなり、絶縁部材51の応力が最大となる外周端部34bにおいて、チップ発熱時の導体板と放熱部材51との変形量の差による絶縁部材の応力を低減することができる。
 図10に示されるように、少なくとも凹み部45がない場合の絶縁部材51の応力は、外周端部34bからの距離が離れるに従い減少するが、0.5mm離れるとほぼ飽和していることが分かる。そこで図11に示されるように、凹み部45の幅(図11中45a)の寸法は、少なくとも0.5mm以上とすることにより、高い応力低減効果が得られる。
 また、凹み部45(薄肉部)は、導体板34の変形に追従させやすくすることが目的であるので、凹み部45の厚み45Cは、導体板34の厚み34Cよりも小さくすることが好ましい。
 また、凹み部4545は外周端部34bよりも導体板34の中央部側にある方が導体板34の変形に追従しやすくなるので、凹み部45の幅方向の中心45bの位置は外周端部34bと同じか、導体板34側にある方がより高い効果が得られる。
 これにより、パワー半導体モジュール100の導体板33ないし36と絶縁部材51との離間を抑制することができるため、パワー半導体モジュール100の放熱性能の低下を抑制し,信頼性の高い電力変換装置が実現できる。
(実施形態2)
 上述した実施の形態では、両面冷却のパワー半導体モジュールの例を示したが、図8に示すような片面冷却のパワー半導体モジュールにも適用することが可能である。図8は、図3および図4に示すパワー半導体モジュールの変形例を示す。 
 パワー半導体素子31の各電極は導体板35に接合材32によって接合されている。これらを第1封止樹脂6で封止されている。第1封止樹脂6は、導体板35の表面35aを露出している。導体板35は、例えば、銅、銅合金、あるいはアルミニウム、アルミニウム合金などにより形成されている。
 導体板35と放熱部材46とは絶縁層52を介して、熱伝導可能に結合している。
 金放熱部材46の表面、つまり絶縁部材52と結合している面とは反対の面には、凹み部47が形成されている。この凹み部47は、第1封止樹脂6から露出している導体板35の外周端部35bと対向する部分の放熱部材46に設けられている。これにより、実施形態1と同様の効果が得られる。
 上述した実施の形態では、放熱部材41の放熱フィン42の形状をピンフィンとしたが、他の形状、例えばストレートフィンやコルゲートフィンであっても良い。
 また、上述した実施の形態では、電気自動車やハイブリッド自動車に搭載される車載用の電力変換装置を例に説明したが、パワー半導体モジュールを冷却媒体中に浸す冷却構造の電力変換装置であれば、本発明を同様に適用することができる。
 その他、本発明は、上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で、種々変形して適用することが可能である。
6…第1封止樹脂、11…シール部、17…挿通口、30…回路体、31…パワー半導体素子、32…接合材、33…導体板、33a…面、33b…外周端部、34…導体板、34a…面、34b…外周端部、35…導体板、35b…外周端部、40…金属製ケース、41…放熱部材、42…放熱フィン、43…枠体、44…凹み部、49…第2封止樹脂、51…絶縁層、100…パワー半導体モジュール、121…上下アーム直列回路、200…電力変換装置、201…筐体、202…底蓋、203a…入口用配管、203b…出口用配管、210…冷却用室、211…周壁、221…側壁、220…支持部材、231…シール部材、240…カバー部材、250…コンデンサモジュール、251…コンデンサ素子、261…直流側バスバーアセンブリ、262…制御回路基板アセンブリ、263…交流側バスバーアセンブリ

Claims (4)

  1.  パワー半導体素子と、前記パワー半導体素子と電気的に接続される導体板と、前記パワー半導体素子及び前記導体板を封止する封止樹脂と、を有する回路体と、
     絶縁部材を挟んで前記回路体と向き合う放熱部材と、を備え、
     前記導体板は、当該導体板の一部が前記封止樹脂から露出して前記絶縁部材と接触する接触部を有し、
     前記放熱部材は、前記接触部の外縁と対向する部分が他の部分よりも薄くなる薄肉部を有するパワー半導体モジュール。
  2.  請求項1に記載されたパワー半導体モジュールであって、
     前記絶縁部材は、前記薄肉部と前記放熱部材に接合されるパワー半導体モジュール。
  3.  請求項1または2に記載のパワー半導体モジュールであって、
     前記薄肉部の幅方向の中心が、前記導体板において前記接触部の外縁より内側に位置するパワー半導体モジュール。
  4.  請求項1または2に記載のパワー半導体モジュールであって、
     前記導体板は、前記パワー半導体素子を挟んで互いに対向して配置される第1の導体板及び第2の導体板により構成され、
     前記第1の導体板及び前記第2の導体板は、前記パワー半導体素子が配置された側とは反対側の面に放熱面を有するパワー半導体モジュール。
PCT/JP2016/088012 2016-01-04 2016-12-21 パワー半導体モジュール WO2017119286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017560092A JPWO2017119286A1 (ja) 2016-01-04 2016-12-21 パワー半導体モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-000034 2016-01-04
JP2016000034 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017119286A1 true WO2017119286A1 (ja) 2017-07-13

Family

ID=59274173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088012 WO2017119286A1 (ja) 2016-01-04 2016-12-21 パワー半導体モジュール

Country Status (2)

Country Link
JP (1) JPWO2017119286A1 (ja)
WO (1) WO2017119286A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105407A1 (ja) * 2018-11-21 2020-05-28 日立オートモティブシステムズ株式会社 パワー半導体装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004358A (ja) * 2010-06-17 2012-01-05 Denso Corp 半導体モジュール実装構造
WO2013145918A1 (ja) * 2012-03-30 2013-10-03 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いた電力変換装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492447B2 (ja) * 2009-04-28 2014-05-14 日立オートモティブシステムズ株式会社 パワーモジュール
JP5879238B2 (ja) * 2012-09-26 2016-03-08 日立オートモティブシステムズ株式会社 パワー半導体モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004358A (ja) * 2010-06-17 2012-01-05 Denso Corp 半導体モジュール実装構造
WO2013145918A1 (ja) * 2012-03-30 2013-10-03 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いた電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105407A1 (ja) * 2018-11-21 2020-05-28 日立オートモティブシステムズ株式会社 パワー半導体装置
JP2020088074A (ja) * 2018-11-21 2020-06-04 日立オートモティブシステムズ株式会社 パワー半導体装置
JP7141316B2 (ja) 2018-11-21 2022-09-22 日立Astemo株式会社 パワー半導体装置
US11967584B2 (en) 2018-11-21 2024-04-23 Hitachi Astemo, Ltd. Power semiconductor device

Also Published As

Publication number Publication date
JPWO2017119286A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6286320B2 (ja) パワーモジュール
JP5502805B2 (ja) パワーモジュールおよびそれを用いた電力変換装置
JP4292913B2 (ja) 半導体冷却ユニット
JP5206822B2 (ja) 半導体装置
JP6215151B2 (ja) 電力変換装置
WO2014061178A1 (ja) 冷却構造体及び発熱体
WO2014020806A1 (ja) 冷却構造体及び電力変換装置
JP3646665B2 (ja) インバータ装置
WO2018131301A1 (ja) パワー半導体装置
JP2004072959A (ja) 電力変換装置
WO2021053975A1 (ja) 電力変換装置およびモータ一体型電力変換装置
WO2017119286A1 (ja) パワー半導体モジュール
WO2014024361A1 (ja) 冷却構造体及び電力変換装置
JP7030535B2 (ja) パワー半導体装置
JP6782748B2 (ja) パワーモジュール及び電力変換装置
JP5879292B2 (ja) 電力変換装置
WO2014020807A1 (ja) 冷却構造体及び電力変換装置
CN111009494A (zh) 冷却器及其基板、以及半导体装置
JP6771835B2 (ja) 電力変換装置
JP6430584B2 (ja) 電力変換装置
JP2014045014A (ja) パワー半導体モジュール、電力変換装置、およびパワー半導体モジュールの製造方法
CN116133322A (zh) 功率转换装置
CN116157917A (zh) 功率半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883785

Country of ref document: EP

Kind code of ref document: A1