WO2017119195A1 - H形鋼の製造方法及びh形鋼製品 - Google Patents

H形鋼の製造方法及びh形鋼製品 Download PDF

Info

Publication number
WO2017119195A1
WO2017119195A1 PCT/JP2016/084067 JP2016084067W WO2017119195A1 WO 2017119195 A1 WO2017119195 A1 WO 2017119195A1 JP 2016084067 W JP2016084067 W JP 2016084067W WO 2017119195 A1 WO2017119195 A1 WO 2017119195A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
mold
rolled
rolling
shaping
Prior art date
Application number
PCT/JP2016/084067
Other languages
English (en)
French (fr)
Inventor
浩 山下
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187020810A priority Critical patent/KR20180095065A/ko
Priority to CN201680076874.2A priority patent/CN108472697B/zh
Priority to EP16883695.5A priority patent/EP3388159A4/en
Priority to US16/067,356 priority patent/US20190023307A1/en
Priority to JP2017560042A priority patent/JP6593456B2/ja
Publication of WO2017119195A1 publication Critical patent/WO2017119195A1/ja
Priority to PH12018501348A priority patent/PH12018501348A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/307Torque sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the present invention relates to a manufacturing method for manufacturing H-section steel using, for example, a slab having a rectangular cross section as a raw material, and H-section steel products.
  • raw materials such as slabs and blooms extracted from a heating furnace are formed into a rough shape (so-called dogbone-shaped material to be rolled) by a roughing mill (BD), and intermediate universal rolling is performed.
  • the thickness of the rough profile web and flange is reduced by a machine, and the edge reduction mill near the intermediate universal rolling mill is subjected to width reduction and forging and shaping of the flange of the material to be rolled.
  • an H-section steel product is modeled by a finishing universal rolling mill.
  • Patent Document 1 discloses that a rectangular cross-section material is provided with a groove at the material end using an insertion protrusion formed in a roll collar between the box hole molds, and the box hole mold and the insertion protrusion are used in combination.
  • a technique for obtaining a large-sized rough steel piece (dogbone-shaped material) is disclosed.
  • Patent Document 2 after interrupting the slab end face in the first hole mold of the rough rolling process, the interrupt is widened in the second and subsequent hole molds, or the interrupt depth is deepened and edging is performed.
  • a technique is disclosed in which rolling is performed and the interruption of the end face of the slab is erased by a hole mold thereafter.
  • the object of the present invention is to provide a deep interruption with a protrusion having an acute tip shape on the end face of a material such as a slab in a rough rolling process using a hole mold when manufacturing an H-section steel.
  • a material such as a slab in a rough rolling process using a hole mold when manufacturing an H-section steel.
  • the object of the present invention is to provide a manufacturing technique of H-shaped steel that does not cause a shape defect in modeling using a flat modeling hole mold in a rolling process.
  • a method for producing an H-section steel comprising a rough rolling process, an intermediate rolling process, and a finish rolling process
  • a rolling mill that performs the rough rolling process includes: A plurality of five or more hole molds for forming the rolled material are engraved. In the plurality of hole molds, one or a plurality of passes of the material to be rolled are formed, and the first hole mold and the second hole mold among the plurality of hole molds are formed.
  • the hole mold is formed with a protrusion that vertically interrupts the width direction of the material to be rolled, and the end surface of the material to be rolled in the formation of at least one pass after the second hole mold among the plurality of hole molds.
  • the reduction is performed in a state in which the peripheral surface of the hole mold is in contact, and a step of sequentially bending the divided parts formed by the interruption is performed after the third hole mold except the final hole mold among the plurality of hole molds, Of the plurality of hole molds, the final hole mold is a flat mold hole mold.
  • Kicking rolling molding is characterized in that it is conducted in the rolling conditions for the pull-down rate is 1.0 or less, the production method of the H-beams is provided.
  • the pull-down rate indicates "flange width reduction amount / web thickness reduction amount" of the material to be rolled in the flat shaping hole mold.
  • the rolling shaping in the flat shaping hole mold may be performed under rolling conditions in which the web thickness of the material to be rolled after rolling shaping is 160 mm or more.
  • H-section steel products manufactured by the manufacturing method of H-section steel of the above-mentioned, Comprising: The flange width is over 400 mm, H-section steel products characterized by the above-mentioned are provided. .
  • the end face of the material such as the slab is deeply interrupted by the protrusion portion having an acute tip shape, and thereby formed.
  • the flange part sequentially, the occurrence of shape defects in the material to be rolled is suppressed, and H-shaped steel products having a larger flange width than that of the prior art are manufactured efficiently and stably, and the flat shaped hole in the rough rolling process
  • mold is implement
  • FIG. 1 is an explanatory diagram of an H-section steel production line T including a rolling facility 1 according to the present embodiment.
  • a heating furnace 2 a sizing mill 3, a roughing mill 4, an intermediate universal rolling mill 5, and a finishing universal rolling mill 8 are arranged in order from the upstream side on the production line T.
  • an edger rolling mill 9 is provided in the vicinity of the intermediate universal rolling mill 5.
  • the steel materials in the production line T will be collectively referred to as “rolled material A” for the sake of explanation, and the shape may be appropriately illustrated using broken lines, diagonal lines, etc. in each drawing.
  • a material A to be rolled such as a slab 11 extracted from the heating furnace 2 is roughly rolled in a sizing mill 3 and a roughing mill 4.
  • intermediate rolling is performed in the intermediate universal rolling mill 5.
  • the edger rolling machine 9 reduces the end of the material to be rolled or the like (a flange portion 80 described later) as necessary.
  • the rolls of the sizing mill 3 and the roughing mill 4 are engraved with about 4 to 6 holes, and the H-shaped roughing is performed by reverse rolling of about 10 or more passes through these rolls.
  • a profile 13 is formed, and the H-shaped rough profile 13 is subjected to a plurality of passes of reduction by using a rolling mill row composed of two rolling mills, the intermediate universal rolling mill 5-edger rolling mill 9. 14 is formed. Then, the intermediate material 14 is finish-rolled into a product shape in the finish universal rolling mill 8 to produce an H-section steel product 16.
  • FIG. 1 is schematic explanatory views of the sizing mill 3 for performing the rough rolling process and the hole mold formed in the rough rolling mill 4.
  • FIG. 1 the first to fourth hole molds to be described may be all engraved in, for example, the sizing mill 3, and the sizing mill 3 and the roughing mill 4 have five holes of the first to fifth hole molds.
  • the hole mold may be engraved separately. That is, the first hole type to the fourth hole type may be engraved over both the sizing mill 3 and the rough rolling mill 4, or may be engraved in either one of the rolling mills.
  • modeling is performed in one or a plurality of passes in each of these perforations.
  • the number of hole types is not necessarily a five-hole type, and a plurality of five or more hole types may be used. It may be. In other words, any hole configuration suitable for modeling the H-shaped rough member 13 may be used. 2 to 6, the approximate final path shape of the material A to be rolled at the time of shaping in each hole mold is illustrated by a broken line.
  • FIG. 2 is a schematic explanatory diagram of the first hole mold K1.
  • the first hole mold K1 is engraved in the upper hole roll 20 and the lower hole roll 21 which are a pair of horizontal rolls, and the material A to be rolled is placed in the roll gap between the upper hole roll 20 and the lower hole roll 21. Reduced and shaped. Further, on the peripheral surface of the upper hole type roll 20 (that is, the upper surface of the first hole type K1), a protruding portion 25 that protrudes toward the inside of the hole type is formed. Further, a projection 26 is formed on the peripheral surface of the lower hole roll 21 (that is, the bottom surface of the first hole mold K1) protruding toward the inside of the hole mold.
  • projecting portions 25 and 26 have a tapered shape, and the projecting length and other dimensions are equal between the projecting portion 25 and the projecting portion 26.
  • the height (projection length) of the protrusions 25 and 26 is h1, and the tip angle is ⁇ 1a.
  • the protrusions 25 and 26 are pressed against the upper and lower ends (slab end surfaces) of the material A to be rolled, and interrupts 28 and 29 are formed.
  • the tip end angle (also referred to as wedge angle) ⁇ 1a of the protrusions 25 and 26 is preferably, for example, 25 ° or more and 40 ° or less.
  • the hole width of the first hole mold K1 is substantially equal to the thickness of the material A to be rolled (that is, the slab thickness). Specifically, by making the hole mold width and the slab thickness the same at the tips of the protrusions 25 and 26 formed in the first hole mold K1, the right and left centering property of the material to be rolled A is suitably secured. Is done. Moreover, by setting it as such a hole-type dimension, as shown in FIG.
  • the first holes are formed on the upper and lower ends of the slabs, which are partly in contact with the material A to be rolled, and divided into four elements (parts) by interruptions 28 and 29. It is preferable that no positive reduction is performed on the top and bottom surfaces of the mold K1. This is because the reduction by the top and bottom surfaces of the hole mold causes the material A to be elongated in the longitudinal direction, thereby reducing the generation efficiency of the flange (flange portion 80 described later).
  • the protrusions 25 and 26 are pressed against the upper and lower ends (slab end surfaces) of the material A to be rolled, and the reduction in the protrusions 25 and 26 when the interrupts 28 and 29 are formed.
  • the amount (wedge tip reduction amount) is sufficiently larger than the reduction amount (slab end surface reduction amount) at the upper and lower ends of the slab, whereby interrupts 28 and 29 are formed.
  • FIG. 3 is a schematic explanatory diagram of the second hole type K2.
  • mold K2 is engraved by the upper hole type
  • a protruding portion 35 that protrudes toward the inside of the hole type is formed.
  • a projection 36 that protrudes toward the inside of the hole mold is formed on the peripheral surface of the lower hole roll 31 (that is, the bottom surface of the second hole mold K2).
  • These projecting portions 35 and 36 have a tapered shape, and the projecting length and other dimensions are configured to be equal between the projecting portion 35 and the projecting portion 36. It is desirable that the tip end angle of the projections 35 and 36 is a wedge angle ⁇ 1b of 25 ° or more and 40 ° or less.
  • the wedge angle ⁇ 1a of the first hole mold K1 is a wedge angle of the second hole mold K2 in the subsequent stage in order to secure the tip end thickness of the flange-corresponding portion, increase the inductivity, and ensure the stability of rolling.
  • the angle is preferably the same as ⁇ 1b.
  • the height (projection length) h2 of the protrusions 35 and 36 is configured to be higher than the height h1 of the protrusions 25 and 26 of the first hole type K1, and h2> h1.
  • the material A to be rolled after the first hole K1 passing material is further shaped.
  • the height h2 of the protrusions 35 and 36 formed on the second hole mold K2 is higher than the height h1 of the protrusions 25 and 26 formed on the first hole mold K1, and the material A to be rolled A Similarly, the length of penetration into the upper and lower ends (slab end face) of the second hole mold K2 is longer.
  • the penetration depth of the projections 35 and 36 into the material to be rolled A in the second hole mold K2 is the same as the height h2 of the projections 35 and 36. That is, the penetration depth h1 ′ of the protrusions 25 and 26 into the rolled material A in the first hole mold K1, and the penetration depth of the protrusions 35 and 36 into the rolled material A in the second hole mold K2.
  • h2 has a relationship of h1 ′ ⁇ h2. Further, an angle ⁇ f formed by the hole top surfaces 30a and 30b and the hole bottom surfaces 31a and 31b facing the upper and lower ends (slab end surfaces) of the material A to be rolled and the inclined surfaces of the protrusions 35 and 36 is shown in FIG. The four locations shown are each configured at about 90 ° (substantially at right angles).
  • the intrusion length of the protrusion when pressed against the upper and lower ends (slab end face) of the material A is long, in the second hole type K2, the first hole type K1.
  • Modeling is performed so that the interrupts 28 and 29 formed in step 1 are further deepened, and interrupts 38 and 39 are formed.
  • the flange piece width at the end of the flange shaping process in the rough rolling process is determined based on the dimensions of the interrupts 38 and 39 formed here.
  • the second hole mold K2 is formed by multiple passes, but in the multipass formation, the upper and lower ends (slab end surfaces) of the material A to be rolled and the hole upper surface 30a facing it in the final pass. , 30b and the hole bottom surfaces 31a and 31b are shaped. This is because if the upper and lower ends of the material to be rolled A and the inside of the hole mold are not in contact with each other in the second hole mold K2, the flange equivalent part (the part corresponding to the flange part 80 described later) is asymmetrical. This is because there is a possibility that a shape defect such as being formed will occur, and there is a problem in terms of material permeability.
  • FIG. 4 is a schematic explanatory diagram of the third hole type K3.
  • the third hole type K3 is engraved in the upper hole type roll 40 and the lower hole type roll 41 which are a pair of horizontal rolls.
  • a protrusion 45 that protrudes toward the inside of the hole type is formed.
  • a projection 46 is formed on the peripheral surface of the lower hole roll 41 (that is, the bottom surface of the third hole mold K3) protruding toward the inside of the hole mold.
  • the protrusions 45 and 46 have a tapered shape, and the protrusion 45 and the protrusion 46 have the same dimensions such as the protrusion length.
  • the tip end angle ⁇ 2 of the projections 45 and 46 is configured to be wider than the angle ⁇ 1b, and the penetration depth h3 of the projections 45 and 46 into the material to be rolled A is the penetration depth of the projections 35 and 36.
  • the length is shorter than h2 (that is, h3 ⁇ h2).
  • an angle ⁇ f formed by the hole top surfaces 40a and 40b and the hole bottom surfaces 41a and 41b facing the upper and lower ends (slab end surfaces) of the material A to be rolled and the inclined surfaces of the protrusions 45 and 46 is shown in FIG.
  • the four locations shown are each configured at about 90 ° (substantially at right angles).
  • the shaping with the third hole mold K3 shown in FIG. 4 is performed by at least one pass, and at least one of these passes is the upper and lower ends (slab end surface) of the material A to be rolled and the inside of the hole mold (second This is performed in a state in which the top surface and the bottom surface of the three-hole mold K3 are in contact with each other. In a state where the upper and lower end portions (slab end surfaces) of the material A to be rolled are in contact with the inside of the hole mold, it is preferable that the end portions are lightly reduced.
  • FIG. 5 is a schematic explanatory diagram of the fourth hole type K4.
  • mold K4 is engraved by the upper hole type
  • a protrusion 55 is formed that protrudes toward the inside of the hole mold.
  • a projection 56 that protrudes toward the inside of the hole mold is formed on the peripheral surface of the lower hole roll 51 (that is, the bottom surface of the fourth hole mold K4).
  • These projecting portions 55 and 56 have a tapered shape, and the projecting length and other dimensions are configured to be equal between the projecting portion 55 and the projecting portion 56.
  • the tip end angle ⁇ 3 of the projections 55 and 56 is configured to be wider than the angle ⁇ 2, and the penetration depth h4 of the projections 55 and 56 into the rolled material A is the penetration depth of the projections 45 and 46.
  • the length is shorter than h3 (that is, h4 ⁇ h3).
  • the angle ⁇ f formed by the hole top surfaces 50a and 50b and the hole bottom surfaces 51a and 51b facing the upper and lower ends (slab end surfaces) of the material A to be rolled and the inclined surfaces of the protrusions 55 and 56 is the third angle.
  • the four locations shown in FIG. 5 are each configured at about 90 ° (substantially perpendicular).
  • the projections 55 and 56 are pressed against each other, they are expanded and interrupts 58 and 59 are generated. That is, in the final pass in modeling with the fourth hole mold K4, the deepest part angle of the interrupts 58 and 59 (hereinafter also referred to as the interrupt angle) is ⁇ 3.
  • modeling is performed such that the divided part (part corresponding to the flange portion 80 described later) which is modeled with the formation of the interrupts 48 and 49 in the third hole mold K3 is further bent outward.
  • the portions of the upper and lower end portions of the material A to be rolled thus formed are portions corresponding to the flanges of the subsequent H-shaped steel product, and are referred to as flange portions 80 here.
  • the modeling with the fourth hole mold K4 shown in FIG. 5 is performed by at least one pass, and at least one of these passes is the upper and lower ends (slab end face) of the material A to be rolled and the inside of the hole mold (fourth hole). This is performed in a state where the upper surface and the bottom surface of the mold K4 are in contact with each other. In a state where the upper and lower end portions (slab end surfaces) of the material A to be rolled are in contact with the inside of the hole mold, it is preferable that the end portions are lightly reduced.
  • FIG. 6 is a schematic explanatory view of the fifth hole type K5.
  • the fifth hole type K5 includes an upper hole type roll 85 and a lower hole type roll 86 which are a pair of horizontal rolls.
  • the material A to be rolled formed up to the fourth hole mold K4 is rotated by 90 ° or 270 °, and until the fourth hole mold K4, the material A of the material to be rolled A is rotated.
  • the flange portions 80 located at the upper and lower ends are arranged so as to be on the rolling pitch line.
  • the dimension adjustment of the flange width is performed by reducing the web part 82 which is a connection part which connects the two flange parts 80, and the flange front-end
  • a so-called dogbone-shaped H-shaped rough shape (H-shaped rough shape 13 shown in FIG. 1) is formed.
  • mold K5 reduces the thickness by pressing down the web part 82, it is also called a web thickness reduction hole type
  • a multi-pass reverse rolling is performed on the H-shaped rough shaped material 13 formed in this way by using a rolling mill row consisting of two rolling mills, an intermediate universal rolling mill 5-edger rolling mill 9, which is a known rolling mill. Is added to form the intermediate material 14. And the intermediate material 14 is finish-rolled by the finishing universal rolling mill 8 to a product shape, and the H-section steel product 16 is manufactured (refer FIG. 1).
  • the upper and lower ends (slab end surfaces) of the material A to be rolled are interrupted using the first hole mold K1 to the fourth hole mold K4 according to the present embodiment, and the left and right parts are divided by the interrupts.
  • Forming the H-shaped rough shape 13 without substantially rolling down the upper and lower end surfaces of the material A (slab) to be rolled by forming the flange portion 80 by performing a process of bending the portion left and right. It can be carried out. That is, compared with the conventional rough rolling method in which the end face of the slab is always squeezed, the flange width can be widened to form the H-shaped rough shape 13, and as a result, a final product having a large flange width ( H-shaped steel) can be manufactured.
  • the shape of the flange portion 80 of the material A to be rolled formed by the first hole mold K1 to the fourth hole mold K4 described above is the conventional manufacturing. Compared to the shape of the flange part before flat hole shaping in the method, the shape is close to the shape of the product flange. This is based on the fact that it adopts a modeling technique that performs the process of bending the segmented part (flange portion 80) that is modeled with interruption without changing the end shape of the material (slab) having a rectangular cross section used as the material. to cause.
  • the second hole mold K2 to the fourth hole mold K4 two hole mold upper surfaces facing the upper and lower end portions (slab end surfaces) of the material A to be rolled and 2
  • the angle ⁇ f formed between the bottom surface of the hole mold and the inclined surface of the protrusion formed in the hole mold is configured to be approximately 90 ° (substantially right angle), and the upper and lower ends of the material A to be rolled are interrupted.
  • it is divided into two parts, and the tip part of the flange part 80 is thicker than the conventional method.
  • the reduction of the web part 82 and the reduction of the tip of the flange part 80 in the flat shaping hole mold described above as the fifth hole mold K5 are performed under the same conditions as in the conventional manufacturing method.
  • the present inventors verified the problems of the rolling conditions in the conventional flat shaping hole mold, and were shaped by the first hole mold K1 to the fourth hole mold K4 in the manufacturing method according to the present embodiment.
  • FIG. 7 shows a web portion using a flat shaping hole mold 90 (corresponding to the fifth hole mold K5) having a known configuration and shape for the material A to be rolled after shaping with the fourth hole mold K4. It is explanatory drawing at the time of implementing modeling including thickness reduction of 82, (a) has shown before modeling and (b) has shown after modeling. In FIG. 7, a part of the material to be rolled A is enlarged so as to enlarge the flange portion 80 in order to show the shape change of the flange portion 80.
  • the flange 80 formed by the first hole mold K1 to the fourth hole mold K4 according to the present embodiment has a flat metal flow when the web part 82 is pressed down. It flows to the outside of the shaping hole mold 90 (that is, the flange portion 80), and the steel material is pressed against the side wall of the flat shaping hole mold 90.
  • pulling down of the flange 80 occurs in the process of reducing the thickness of the web 82 (flange shrinkage due to web thinning).
  • the pull-down is large because the width of the web portion 82 is relatively larger than the flange portion 80.
  • the present inventors use a known flat shaping hole mold.
  • the rolling conditions in the flat shaping hole mold are set to conditions suitable for the material to be rolled A shaped by the first hole mold K1 to the fourth hole mold K4.
  • the present inventors have found that the above-mentioned problems such as shape defects are solved and that efficient rolling modeling can be performed. Hereinafter, this knowledge will be described.
  • FIG. 8 is a perspective view of a flange when the material A to be rolled formed by the first hole mold K1 to the fourth hole mold K4 is formed by rolling in a plurality of passes in the fifth hole mold K5 (that is, the flat shaping hole mold 90). It is a graph regarding the conditions in which the front-end
  • the pull-down rate indicates the flange width reduction amount / web thickness reduction amount.
  • the pull-down rate exceeds 1.0, the flange width reduction amount increases with respect to the web thickness reduction amount, and the flange width decreases. This means that the tip of the portion 80 is separated from the roll.
  • the pull-down increases as the proportion of the web portion 82 occupying the entire cross section of the material A to be rolled increases, and the metal flow from the web portion 82 to the flange portion 80 is induced. The pull-down is smaller.
  • the pull-down rate is about 0.8 (that is, less than 1.0) when the web thickness is thick, but the pull-down rate increases as the web thickness decreases, and the web thickness becomes about 160 mm to 180 mm. It can be seen that the value becomes 1.0 at the stage, and when the web thickness is further reduced, the pull-down rate tends to increase greatly.
  • the condition that the front end of the flange portion 80 in the flat shaping hole mold (fifth hole mold K5) according to the present embodiment is separated from the roll is a condition that the flange width reduction amount becomes larger than the web thickness reduction amount.
  • the pull-down rate shown in FIG. 8 exceeds 1.0, the tip of the flange 80 is separated from the roll. That is, in the rolling shaping in the flat shaping hole mold under the condition that the pull-down rate is 1.0 or less, the front end portion of the flange portion 80 remains in contact with the roll. Therefore, the flange portion 80 described above with reference to FIG. It becomes possible to carry out rolling modeling without causing problems such as shape defects.
  • the upper and lower ends (slab end surfaces) of the material to be rolled A are interrupted using the first hole mold K1 to the fourth hole mold K4.
  • the rough shape member 13 can be shaped. That is, compared with the conventional rough rolling method in which the end face of the slab is always squeezed, it is possible to form the H-shaped rough profile 13 by widening the flange width. As a result, for example, the web height exceeds 600 mm, A final product (H-shaped steel) having a large flange width such as a flange width exceeding 400 mm can be manufactured.
  • the shape in the flange portion 80 can be achieved by setting the rolling conditions in the flat shaping hole mold (fifth hole mold K5) in the rough rolling process to be suitable conditions such that the pull-down rate is 1.0 or less. It becomes possible to carry out rolling modeling without causing defects. As a result, an H-section steel product having a larger flange width than conventional ones can be produced efficiently and stably.
  • a rolling modeling in the case of manufacturing an H-section steel having a dimension of 1500 mm ⁇ 600 mm from a slab material having a width of 2300 mm ⁇ a thickness of 300 mm will be described as an example.
  • the rolling conditions in the fifth hole mold K5) are limited until the thickness of the web portion 82 is 160 mm or more, the technology of the present invention is not limited to this.
  • the rolling conditions may be appropriately changed according to the dimensions of the slab material, the desired dimensions of the H-shaped steel product, and the like.
  • the technique for forming the material A to be rolled using four hole molds of the first hole mold K1 to the fourth hole mold K4 has been described. Is not limited to this. That is, the number of hole molds engraved in the sizing mill 3 or the rough rolling mill 4 can be arbitrarily changed, and is appropriately changed to such an extent that the rough rolling process can be suitably performed.
  • the slab has been described as an example of the material (rolled material A) for manufacturing the H-shaped steel
  • the present invention is naturally applicable to other materials having similar shapes. That is, for example, the present invention can also be applied to the case where an H-shaped steel is manufactured by shaping a beam blank material.
  • the present invention can be applied to a manufacturing method for manufacturing H-section steel using, for example, a slab having a rectangular cross section as a raw material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

【課題】従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造すると共に、粗圧延工程での平造形孔型を用いた造形において形状不良を生じさせない。 【解決手段】粗圧延工程を行う圧延機には、被圧延材を造形する5以上の複数の孔型が刻設され、当該複数の孔型では被圧延材の1又は複数パス造形が行われ、複数の孔型のうち第1孔型及び第2孔型には、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成され、複数の孔型のうち第2孔型以降では少なくとも1パス以上の造形において被圧延材の端面と孔型周面とが接触した状態で圧下が行われ、複数の孔型のうち最終孔型を除く第3孔型以降では前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、複数の孔型のうち最終孔型は平造形孔型であり、当該平造形孔型における圧延造形はプルダウン率を1.0以下とする圧延条件で行われる。

Description

H形鋼の製造方法及びH形鋼製品
 (関連出願の相互参照)
 本願は、2016年1月7日に日本国に出願された特願2016-002072号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、例えば矩形断面であるスラブ等を素材としてH形鋼を製造する製造方法及びH形鋼製品に関する。
 H形鋼を製造する場合には、加熱炉から抽出されたスラブやブルーム等の素材を粗圧延機(BD)によって粗形材(所謂ドッグボーン形状の被圧延材)に造形し、中間ユニバーサル圧延機によって上記粗形材のウェブやフランジの厚さを圧下し、併せて前記中間ユニバーサル圧延機に近接したエッジャー圧延機によって被圧延材のフランジに対し幅圧下や端面の鍛錬と整形が施される。そして、仕上ユニバーサル圧延機によってH形鋼製品が造形される。
 このようなH形鋼の製造方法において、矩形断面であるスラブ素材から所謂ドッグボーン形状の粗形材を造形する方法として種々の技術が創案されている。例えば特許文献1には、矩形断面素材に対し、ボックス孔型間のロールカラー部に形成された割り入れ突部を用いて素材端部に溝を入れ、ボックス孔型と割り入れ突部を併用して大サイズの粗形鋼片(ドッグボーン形状素材)を得る技術が開示されている。また、例えば特許文献2には、粗圧延工程の第1の孔型においてスラブ端面に割り込みを入れた後、第2以降の孔型において当該割り込みを割広げる、又は、割り込み深さを深くさせエッジング圧延を行い、それ以降の孔型にてスラブ端面の割り込みを消去する技術が開示されている。
特開昭60-21101号公報 特開平7-88501号公報
 近年、構造物等の大型化に伴い大型のH形鋼製品の製造が望まれている。特にH形鋼の強度・剛性に大きく寄与するフランジを従来に比べて広幅化した製品が望まれている。フランジが広幅化されたH形鋼製品を製造するためには、粗圧延工程における造形から従来に比べフランジ幅の大きな被圧延材を造形する必要がある。
 しかしながら、上記特許文献1に記載の技術では、割り込みを入れたスラブ等の素材に対して、特に割り込み形状の変遷等を経ずに、即座に底面がフラット形状のボックス孔型によってエッジング圧延を行い、フランジ相当部を造形しており、このような方法では被圧延材の形状を急激に変化させることに伴う形状不良が生じやすい。特に、このような造形における被圧延材の形状変化は、被圧延材とロールとの接触部の力と、被圧延材の曲げ剛性との関係によって定まるものであり、従来に比べフランジ幅の大きなH形鋼を製造する場合には形状不良がより生じやすいといった問題がある。
 また、例えば上記特許文献2に開示されている技術では、スラブ等の素材の端面(スラブ端面)に割り込みを入れ、当該端面をエッジングし、その幅拡がりを利用して粗圧延を行う方法では、フランジの広幅化に限界がある。即ち、従来の粗圧延方法においてフランジの広幅化を図るためにはウェッジ設計(割り込み角度の設計)、圧下調整、潤滑調整といった技術により幅拡がりの向上が図られるが、いずれの方法もフランジ幅に大幅に寄与するものではないため、エッジング量に対するフランジ幅の拡がり量の比率を示す幅拡がり率は、エッジングの初期段階の効率が最も高い条件でも0.8程度であり、同一孔型でエッジングを繰り返す条件では、フランジ幅の拡がり量が大きくなるにつれて低下し、最終的には0.5程度になることが知られている。また、スラブ等の素材自体を大型化し、エッジング量を大きくすることも考えられるが、粗圧延機の設備規模や圧下量等には装置限界があるため十分な製品フランジの広幅化が実現されないといった事情がある。
 また、フランジが広幅化されたH形鋼製品を製造する際には、粗圧延工程における造形から従来に比べフランジ幅の大きな被圧延材を造形するために、粗圧延工程やその後の圧延工程において従来にはなかった形状不良等の問題点があることが懸念され、その解消方法の実現が求められている。
 このような事情に鑑み、本発明の目的は、H形鋼を製造する際の孔型を用いた粗圧延工程において、スラブ等の素材の端面に鋭角の先端形状をした突起部で深く割り込みを入れ、それによって形成されたフランジ部を順次折り曲げることによって、被圧延材における形状不良の発生を抑制させ、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造すると共に、粗圧延工程での平造形孔型を用いた造形において形状不良を生じさせないようなH形鋼の製造技術を提供することにある。
 前記の目的を達成するため、本発明によれば、粗圧延工程、中間圧延工程、仕上圧延工程を備えたH形鋼の製造方法であって、前記粗圧延工程を行う圧延機には、被圧延材を造形する5以上の複数の孔型が刻設され、当該複数の孔型では被圧延材の1又は複数パス造形が行われ、前記複数の孔型のうち第1孔型及び第2孔型には、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成され、前記複数の孔型のうち第2孔型以降では少なくとも1パス以上の造形において被圧延材の端面と孔型周面とが接触した状態で圧下が行われ、前記複数の孔型のうち最終孔型を除く第3孔型以降では前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、前記複数の孔型のうち最終孔型は平造形孔型であり、当該平造形孔型における圧延造形はプルダウン率を1.0以下とする圧延条件で行われることを特徴とする、H形鋼の製造方法が提供される。
 なお、プルダウン率とは、平造形孔型における被圧延材の、「フランジ幅減少量/ウェブ厚減少量」を示すものである。
 寸法1500mm×600mmH形鋼の製造において、前記平造形孔型における圧延造形は、圧延造形後の被圧延材のウェブ厚みが160mm以上となる圧延条件で行われても良い。
 また、本発明によれば、上記記載のH形鋼の製造方法によって製造されるH形鋼製品であって、フランジ幅が400mm超であることを特徴とする、H形鋼製品が提供される。
 本発明によれば、H形鋼を製造する際の孔型を用いた粗圧延工程において、スラブ等の素材の端面に鋭角の先端形状をした突起部で深く割り込みを入れ、それによって形成されたフランジ部を順次折り曲げることによって、被圧延材における形状不良の発生を抑制させ、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造すると共に、粗圧延工程での平造形孔型を用いた造形において形状不良を生じさせないようなH形鋼の製造技術が実現される。
H形鋼の製造ラインについての概略説明図である。 第1孔型の概略説明図である。 第2孔型の概略説明図である。 第3孔型の概略説明図である。 第4孔型の概略説明図である。 第5孔型(平造形孔型)の概略説明図である。 第4孔型での造形後の被圧延材に対し、従来より既知の構成・形状を有する平造形孔型を用いて、従来の圧延条件にて圧延造形を実施した場合の概略説明図である。 第5孔型において圧延が進んだ時の、被圧延材のフランジ幅とウェブ厚との関係ならびに、ウェブ厚とプルダウン率との関係を示すグラフである。
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1は、本実施の形態にかかる圧延設備1を含むH形鋼の製造ラインTについての説明図である。図1に示すように、製造ラインTには上流側から順に、加熱炉2、サイジングミル3、粗圧延機4、中間ユニバーサル圧延機5、仕上ユニバーサル圧延機8が配置されている。また、中間ユニバーサル圧延機5に近接してエッジャー圧延機9が設けられている。なお、以下では、説明のために製造ラインTにおける鋼材を、総称して「被圧延材A」と記載し、各図において適宜その形状を破線・斜線等を用いて図示する場合がある。
 図1に示すように、製造ラインTでは、加熱炉2から抽出された例えばスラブ11等の被圧延材Aがサイジングミル3ならびに粗圧延機4において粗圧延される。次いで、中間ユニバーサル圧延機5において中間圧延される。この中間圧延時には、必要に応じてエッジャー圧延機9によって被圧延材の端部等(後述するフランジ部80)に対して圧下が施される。通常の場合、サイジングミル3及び粗圧延機4のロールには、合わせて4~6個程度の孔型が刻設されており、これらを経由して10数パス程度のリバース圧延でH形粗形材13が造形され、該H形粗形材13を前記中間ユニバーサル圧延機5-エッジャー圧延機9の2つの圧延機からなる圧延機列を用いて、複数パスの圧下が加えられ、中間材14が造形される。そして中間材14は、仕上ユニバーサル圧延機8において製品形状に仕上圧延され、H形鋼製品16が製造される。
 次に、以下では図1に示したサイジングミル3及び粗圧延機4に刻設される孔型構成や孔型形状について図面を参照して説明する。図2~図6は粗圧延工程を行うサイジングミル3及び粗圧延機4に刻設される孔型についての概略説明図である。ここで、説明する第1孔型~第4孔型は、例えばサイジングミル3に全て刻設されても良く、サイジングミル3及び粗圧延機4に第1孔型~第5孔型の5つの孔型が分けて刻設されても良い。即ち、第1孔型~第4孔型はサイジングミル3及び粗圧延機4の両方に亘って刻設されても良く、どちらか一方の圧延機に刻設されても良い。通常のH形鋼の製造における粗圧延工程では、これら各孔型において1又は複数パスでの造形が行われる。
 また、本実施の形態では刻設される孔型が5つの場合を例示して説明するが、その孔型数についても、必ずしも5孔型である必要はなく、5以上の複数の孔型数であっても良い。即ち、H形粗形材13を造形するために好適な孔型構成であれば良い。なお、図2~図6では、各孔型における造形時の被圧延材Aの概略最終パス形状を破線にて図示している。
 図2は第1孔型K1の概略説明図である。第1孔型K1は、一対の水平ロールである上孔型ロール20と下孔型ロール21に刻設され、これら上孔型ロール20と下孔型ロール21のロール隙において被圧延材Aが圧下・造形される。また、上孔型ロール20の周面(即ち、第1孔型K1の上面)には、孔型内部に向かって突出する突起部25が形成されている。更に、下孔型ロール21の周面(即ち、第1孔型K1の底面)には、孔型内部に向かって突出する突起部26が形成されている。これら突起部25、26はテーパー形状を有しており、その突出長さ等の寸法は、突起部25と突起部26とでそれぞれ等しく構成されている。突起部25、26の高さ(突出長さ)をh1とし、先端部角度をθ1aとする。
 この第1孔型K1においては、突起部25、26が被圧延材Aの上下端部(スラブ端面)に押し当てられ、割り込み28、29が形成される。ここで、突起部25、26の先端部角度(ウェッジ角度とも呼称される)θ1aは例えば25°以上40°以下であることが望ましい。
 ここで、第1孔型K1の孔型幅は、被圧延材Aの厚み(即ち、スラブ厚)とほぼ等しいことが好ましい。具体的には、第1孔型K1に形成された突起部25、26の先端部における孔型の幅と、スラブ厚を同一にすることで、被圧延材Aの左右センタリング性が好適に確保される。また、このような孔型寸法の構成とすることで、図2に示すように、第1孔型K1での造形時において、被圧延材Aの上下端部(スラブ端面)においては、上記突起部25、26及び孔型側面(側壁)の一部が被圧延材Aと接していて、割り込み28、29により4つの要素(部位)に分割されたスラブ上下端部に対して、第1孔型K1の上面及び底面にて積極的な圧下が行われない方が好ましい。孔型の上面及び底面による圧下は、被圧延材Aの長手方向への伸びを生じさせてしまい、フランジ(後述するフランジ部80)の生成効率を低下させてしまうからである。即ち、第1孔型K1においては、突起部25、26が被圧延材Aの上下端部(スラブ端面)に押し当てられ、割り込み28、29が形成される際の突起部25、26における圧下量(ウェッジ先端圧下量)は、スラブ上下端部における圧下量(スラブ端面圧下量)よりも十分に大きなものとされ、これにより割り込み28、29が形成される。
 図3は第2孔型K2の概略説明図である。第2孔型K2は、一対の水平ロールである上孔型ロール30と下孔型ロール31に刻設される。上孔型ロール30の周面(即ち、第2孔型K2の上面)には、孔型内部に向かって突出する突起部35が形成されている。更に、下孔型ロール31の周面(即ち、第2孔型K2の底面)には、孔型内部に向かって突出する突起部36が形成されている。これら突起部35、36はテーパー形状を有しており、その突出長さ等の寸法は、突起部35と突起部36とでそれぞれ等しく構成されている。これら突起部35、36の先端部角度は25°以上40°以下のウェッジ角度θ1bであることが望ましい。
 なお、上記第1孔型K1のウェッジ角度θ1aは、フランジ相当部の先端部厚みを確保し、誘導性を高め、圧延の安定性を担保するために、後段の第2孔型K2のウェッジ角度θ1bと同じ角度であることが好ましい。
 突起部35、36の高さ(突出長さ)h2は、上記第1孔型K1の突起部25、26の高さh1より高く構成されており、h2>h1となっている。また、突起部35、36の先端部角度は上記第1孔型K1の突起部25、26の先端部角度と同じであることが圧延寸法精度上、好ましい。これら上孔型ロール30と下孔型ロール31のロール隙において、上記第1孔型K1通材後の被圧延材Aが更に造形される。
 ここで、第1孔型K1に形成される突起部25、26の高さh1より、第2孔型K2に形成される突起部35、36の高さh2の方が高く、被圧延材Aの上下端部(スラブ端面)への侵入長さも同様に第2孔型K2の方が長くなる。第2孔型K2での突起部35、36の被圧延材Aへの侵入深さは、突起部35、36の高さh2と同じである。即ち、第1孔型K1での突起部25、26の被圧延材Aへの侵入深さh1’と、第2孔型K2での突起部35、36の被圧延材Aへの侵入深さh2はh1’<h2との関係になっている。
 また、被圧延材Aの上下端部(スラブ端面)に対向する孔型上面30a、30b及び孔型底面31a、31bと、突起部35、36の傾斜面とのなす角度θfは、図3に示す4箇所ともに約90°(略直角)に構成されている。
 図3に示すように、被圧延材Aの上下端部(スラブ端面)へ押し当てられた時の突起部の侵入長さが長いことから、第2孔型K2においては、第1孔型K1において形成された割り込み28、29が更に深くなるように造形が行われ、割り込み38、39が形成される。なお、ここで形成される割り込み38、39の寸法に基づき粗圧延工程でのフランジ造形工程終了時のフランジ片幅が決定される。
 また、第2孔型K2での造形は多パスにより行われるが、当該多パス造形においては、最終パスにて被圧延材Aの上下端部(スラブ端面)と、それに対向する孔型上面30a、30b及び孔型底面31a、31bとが接触するような造形が行われる。これは、第2孔型K2での全てのパスにおいて被圧延材Aの上下端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80に対応する部位)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
 図4は第3孔型K3の概略説明図である。第3孔型K3は、一対の水平ロールである上孔型ロール40と下孔型ロール41に刻設される。上孔型ロール40の周面(即ち、第3孔型K3の上面)には、孔型内部に向かって突出する突起部45が形成されている。更に、下孔型ロール41の周面(即ち、第3孔型K3の底面)には、孔型内部に向かって突出する突起部46が形成されている。これら突起部45、46はテーパー形状を有しており、その突出長さ等の寸法は、突起部45と突起部46とでそれぞれ等しく構成されている。
 上記突起部45、46の先端部角度θ2は、上記角度θ1bに比べ広角に構成され、突起部45、46の被圧延材Aへの侵入深さh3は、上記突起部35、36の侵入深さh2よりも短くなっている(即ち、h3<h2)。
 また、被圧延材Aの上下端部(スラブ端面)に対向する孔型上面40a、40b及び孔型底面41a、41bと、突起部45、46の傾斜面とのなす角度θfは、図4に示す4箇所ともに約90°(略直角)に構成されている。
 図4に示すように、第3孔型K3では、第2孔型K2通材後の被圧延材Aに対し、被圧延材Aの上下端部(スラブ端面)において第2孔型K2において形成された割り込み38、39が、突起部45、46が押し当てられることにより、割り込み48、49となる。即ち、第3孔型K3での造形における最終パスでは、割り込み48、49の最深部角度(以下、割り込み角度とも呼称する)がθ2となる。換言すると、第2孔型K2において割り込み38、39の形成と共に造形された分割部位(後述するフランジ部80に対応する部位)が外側に折り曲げられるような造形が行われる。
 また、図4に示す第3孔型K3での造形は少なくとも1パス以上によって行われ、このうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第3孔型K3の上面及び底面)が接触した状態で行われる。この被圧延材Aの上下端部(スラブ端面)と孔型内部が接触した状態においては、当該端部の軽圧下が行われることが好ましい。
 図5は第4孔型K4の概略説明図である。第4孔型K4は、一対の水平ロールである上孔型ロール50と下孔型ロール51に刻設される。上孔型ロール50の周面(即ち、第4孔型K4の上面)には、孔型内部に向かって突出する突起部55が形成されている。更に、下孔型ロール51の周面(即ち、第4孔型K4の底面)には、孔型内部に向かって突出する突起部56が形成されている。これら突起部55、56はテーパー形状を有しており、その突出長さ等の寸法は、突起部55と突起部56とでそれぞれ等しく構成されている。
 上記突起部55、56の先端部角度θ3は、上記角度θ2に比べ広角に構成され、突起部55、56の被圧延材Aへの侵入深さh4は、上記突起部45、46の侵入深さh3よりも短くなっている(即ち、h4<h3)。
 また、被圧延材Aの上下端部(スラブ端面)に対向する孔型上面50a、50b及び孔型底面51a、51bと、突起部55、56の傾斜面とのなす角度θfは、上記第3孔型K3と同様に、図5に示す4箇所ともに約90°(略直角)に構成されている。
 第4孔型K4では、第3孔型K3通材後の被圧延材Aに対し、被圧延材Aの上下端部(スラブ端面)において第3孔型K3において形成された割り込み48、49が、突起部55、56が押し当てられることにより押し広げられ、割り込み58、59となる。即ち、第4孔型K4での造形における最終パスでは、割り込み58、59の最深部角度(以下、割り込み角度とも呼称する)がθ3となる。換言すると、第3孔型K3において割り込み48、49の形成と共に造形された分割部位(後述するフランジ部80に対応する部位)が更に外側に折り曲げられるような造形が行われる。このようにして造形された被圧延材Aの上下端部の部位は、後のH形鋼製品のフランジに相当する部位であり、ここではフランジ部80と呼称する。
 図5に示す第4孔型K4での造形は少なくとも1パス以上によって行われ、このうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第4孔型K4の上面及び底面)が接触した状態で行われる。この被圧延材Aの上下端部(スラブ端面)と孔型内部が接触した状態においては、当該端部の軽圧下が行われることが好ましい。
 図6は第5孔型K5の概略説明図である。第5孔型K5は、一対の水平ロールである上孔型ロール85と下孔型ロール86から構成される。図6に示すように、第5孔型K5では、第4孔型K4までに造形された被圧延材Aが90°あるいは270°回転させられ、第4孔型K4までは被圧延材Aの上下端に位置していたフランジ部80が、圧延ピッチライン上に来るような配置となる。そして、第5孔型K5では、2か所のフランジ部80を繋ぐ接続部であるウェブ部82の圧下及びフランジ部80のフランジ先端部を圧下することでフランジ幅の寸法調整が行われる。このようにしていわゆるドッグボーン形状のH形粗形材(図1に示すH形粗形材13)が造形される。なお、この第5孔型K5はウェブ部82を圧下して減厚させることから、ウェブ減厚孔型あるいは平造形孔型とも呼称される。
 このように造形されたH形粗形材13に対し、既知の圧延機である中間ユニバーサル圧延機5-エッジャー圧延機9の2つの圧延機からなる圧延機列を用いて、複数パスのリバース圧延が加えられ、中間材14が造形される。そして中間材14は、仕上ユニバーサル圧延機8において製品形状に仕上圧延され、H形鋼製品16が製造される(図1参照)。
 上述したように、本実施の形態にかかる第1孔型K1~第4孔型K4を用いて被圧延材Aの上下端部(スラブ端面)に割り込みを入れ、それら割り込みによって左右に分かれた各部分を左右に折り曲げる加工を行い、フランジ部80を形成するといった造形をすることで、被圧延材A(スラブ)の上下端面をほぼ上下方向に圧下することなくH形粗形材13の造形を行うことができる。即ち、従来行われていたスラブ端面を常に圧下する粗圧延方法に比べ、フランジ幅を広幅化させてH形粗形材13を造形することが可能となり、その結果、フランジ幅の大きな最終製品(H形鋼)を製造することができる。
 ここで、本実施の形態に係るH形鋼の製造方法においては、上述した第1孔型K1~第4孔型K4によって造形された被圧延材Aのフランジ部80の形状が、従来の製造方法における平孔型造形前のフランジ部の形状に比べ、製品フランジの形状に近い形状である。これは、素材として用いる矩形断面の素材(スラブ)の端部形状を変えることなく、割り込みを入れて造形した分割部位(フランジ部80)を折り曲げる加工を行うといった造形技術を採用していることに起因する。また、このような造形技術を採用するために、第2孔型K2~第4孔型K4においては、被圧延材Aの上下端部(スラブ端面)に対向する2箇所の孔型上面及び2箇所の孔型底面と、孔型に形成された突起部の傾斜面とのなす角度θfは約90°(略直角)に構成されており、また、被圧延材Aの上下端部が割り込みを形成することで2つに分割して造形され、フランジ部80の先端部の厚みが従来法に比べて厚い。
 本発明者らの検証によれば、第5孔型K5として上記説明した平造形孔型でのウェブ部82の圧下及びフランジ部80の先端部圧下を、従来の製造方法と同様の条件にて実施した場合には、上記フランジ部の形状の相違に起因する問題点が存在することが分かった。
 そこで、本発明者らは、従来の平造形孔型での圧延条件の問題点を検証すると共に、本実施の形態に係る製造方法において第1孔型K1~第4孔型K4によって造形された被圧延材Aに対する好適な圧延条件について鋭意検討を行った。以下、本検討について図面を参照して説明する。
 先ず、本実施の形態に係る第1孔型K1~第4孔型K4を用いた造形方法において、第4孔型K4での造形後、従来から既知の平造形孔型を従来の圧延条件にて用いた場合の問題点について説明する。
 図7は、第4孔型K4での造形後の被圧延材Aに対し、従来より既知の構成・形状を有する平造形孔型90(上記第5孔型K5に相当)を用いてウェブ部82の厚み圧下を含む造形を実施した場合の説明図であり、(a)は造形前、(b)は造形後を示している。なお、図7においては、フランジ部80の形状変化の様子を示すためにフランジ部80を拡大するように被圧延材Aの一部を拡大して図示している。
 図7(a)に示すように、本実施の形態に係る第1孔型K1~第4孔型K4によって造形されたフランジ部80は、ウェブ部82が圧下されると、そのメタルフローが平造形孔型90外側(即ち、フランジ部80)に流れ、当該平造形孔型90の側壁に鋼材が押し付けられる。これにより、ウェブ部82を減厚する過程でフランジ部80のプルダウン(ウェブ減厚によるフランジ肉引け)が発生する。特に、大型H形鋼においては、ウェブ部82の幅が相対的にフランジ部80に対して大きくなるために、プルダウンが大きい。従って、ウェブ部82を減厚する過程でフランジ部の幅が短くなる現象が起きる。即ち、図7(b)に示すように、フランジ部80が平造形孔型90外側に押し付けられると同時に、フランジ部80の先端部がプルダウンによってロールから離れてしまい、フランジ先端部が内側に張り出し(いわゆるオーバーハング)、図中破線部に示す箇所が疵などの原因となってしまう恐れがある。更には、ウェブ部82の厚み圧下量が大きくなると、フランジ部80へのメタルフローが大きくなり、フランジ部80の折れ曲がりといった形状不良も懸念される。
 また、図7(b)に示すような形状不良がフランジ部80において生じた場合、上記フランジ部80におけるオーバーハングに加え、付根部の形状悪化が生じてしまう。そのため、後段の工程である中間ユニバーサル圧延機5でのユニバーサル圧延(中間圧延工程)において、ロール形状と被圧延材Aとの形状が一致しないといった問題も懸念される。即ち、図7(b)のように、フランジ部80の先端部にオーバーハングによる形状不良が生じると、当該先端部を潰さないためにパススケジュール設計が制約を受け、疵の発生率が高まる。
 以上、図7を参照して説明したように、既知の平造形孔型を従来の圧延条件にて用いた造形法の問題点に鑑み、本発明者らは、既知の平造形孔型を用いて粗圧延工程を実施する際に、当該平造形孔型での圧延条件を、第1孔型K1~第4孔型K4によって造形された被圧延材Aに対し好適な条件に設定することで、形状不良等の上記問題点を解決し、効率的な圧延造形が実施可能であるとの知見を見出した。以下、本知見について説明する。
 図8は、第5孔型K5(即ち、平造形孔型90)において、第1孔型K1~第4孔型K4によって造形された被圧延材Aを複数パスで圧延造形した際に、フランジ部80の先端部がロール(上孔型ロール85あるいは下孔型ロール86)から離れる条件に関するグラフである。即ち、第5孔型K5において圧延が進んだ時の、被圧延材Aのフランジ幅とウェブ厚との関係ならびに、ウェブ厚とプルダウン率との関係を示すグラフである。なお、図8に示すグラフは、幅2300mm×厚み300mmのスラブ素材から寸法1500mm×600mmのH形鋼を製造する場合におけるシミュレーションに基づくグラフである。
 ここで、プルダウン率とは、フランジ幅減少量/ウェブ厚減少量を示しており、このプルダウン率が1.0を上回る場合、ウェブ厚減少量に対してフランジ幅の減少量が大きくなり、フランジ部80の先端部がロールから離れることを意味する。
 プルダウンと孔型ロール形状との関係としては、被圧延材Aの全断面に占めるウェブ部82の割合が大きくなるにつれてプルダウンは大きくなり、ウェブ部82からフランジ部80へのメタルフローを誘発する程プルダウンは小さくなる。
 図8に示すように、圧延が進みウェブ厚が薄くなるにつれてフランジ幅も減少する関係にある。一方、プルダウン率は、ウェブ厚の厚い段階では0.8程度(即ち、1.0未満)であるが、ウェブ厚が薄くなるにつれてプルダウン率は大きくなり、ウェブ厚が約160mm~180mmとなった段階で1.0となり、更にウェブ厚が薄くなるとプルダウン率も併せて大きく増加する傾向が分かる。これは、ウェブ厚が薄くなるほど圧下量が一定の条件において圧下率が高まり、被圧延材Aの長手方向への延伸作用が高まった結果、フランジ部80を長手方向に引き延ばすといった圧延の効果が高まるからである。
 本実施の形態に係る平造形孔型(第5孔型K5)でのフランジ部80の先端部がロールから離れる条件は、ウェブ厚の減少量に対してフランジ幅の減少量が大きくなる条件であり、図8に示すプルダウン率が1.0超となった段階でフランジ部80の先端部がロールから離れる。即ち、プルダウン率が1.0以下となる条件での平造形孔型における圧延造形では、フランジ部80の先端部がロールに接触したままとなるため、図7を参照して上述したフランジ部80の形状不良といった問題点を生じさせることなく圧延造形を実施することが可能となる。
 図8に示す結果から、具体的には、幅2300mm×厚み300mmのスラブ素材から寸法1500mm×600mmのH形鋼を本実施の形態に係る製造方法で圧延造形する場合に、平造形孔型(第5孔型K5)での圧延造形においてプルダウン率が1.0以下となるような条件に鑑み、ウェブ部82の厚みが160mm以上となるまでとの条件に留めるといった技術が創案される。これは、平造形孔型(第5孔型K5)での圧延造形でウェブ部82の厚みが160mm未満となるまで圧延造形してしまうと、図8に示すようにプルダウン率が1.0超となり、フランジ部80の先端部がロールから離れ、当該フランジ部80の形状不良につながるからである。
 以上説明した本実施の形態に係るH形鋼の製造方法によれば、第1孔型K1~第4孔型K4を用いて被圧延材Aの上下端部(スラブ端面)に割り込みを入れ、それら割り込みによって左右に分かれた各部分を左右に折り曲げる加工を行い、フランジ部80を形成するといった造形をすることで、被圧延材A(スラブ)の上下端面を上下方向に圧下することなくH形粗形材13の造形を行うことができる。即ち、従来行われていたスラブ端面を常に圧下する粗圧延方法に比べ、フランジ幅を広幅化させてH形粗形材13を造形することが可能となり、その結果、例えばウェブ高さ600mm超、フランジ幅400mm超といったフランジ幅の大きな最終製品(H形鋼)を製造することができる。
 加えて、特に粗圧延工程での平造形孔型(第5孔型K5)での圧延条件を、プルダウン率が1.0以下となるような好適な条件とすることで、フランジ部80における形状不良を生じさせることなく圧延造形を実施することが可能となる。これにより、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造することができる。
 以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 例えば、上記実施の形態においては、幅2300mm×厚み300mmのスラブ素材から寸法1500mm×600mmのH形鋼を製造する場合の圧延造形を例に挙げて説明し、その場合には平造形孔型(第5孔型K5)での圧延条件を、ウェブ部82の厚みが160mm以上となるまでに留めると説明したが、本発明技術はこれに限定されるものではない。当然、圧延条件は、スラブ素材の寸法や所望されるH形鋼製品の寸法等に応じて適宜変更すれば良い。
 また、上記実施の形態において、第1孔型K1~第4孔型K4の4つの孔型を用いて被圧延材Aの造形を行う技術を説明したが、粗圧延工程を実施する孔型数はこれに限られるものではない。即ち、サイジングミル3や粗圧延機4に刻設される孔型の数は任意に変更可能であり、好適に粗圧延工程を実施することができる程度に適宜変更される。
 また、H形鋼を製造する際の素材(被圧延材A)としてはスラブを例示して説明したが、類似形状のその他素材についても本発明は当然適用可能である。即ち、例えばビームブランク素材を造形してH形鋼を製造する場合にも適用できる。
 本発明は、例えば矩形断面であるスラブ等を素材としてH形鋼を製造する製造方法に適用できる。
  1…圧延設備
  2…加熱炉
  3…サイジングミル
  4…粗圧延機
  5…中間ユニバーサル圧延機
  8…仕上ユニバーサル圧延機
  9…エッジャー圧延機
  11…スラブ
  13…H形粗形材
  14…中間材
  16…H形鋼製品
  20…上孔型ロール(第1孔型)
  21…下孔型ロール(第1孔型)
  25、26…突起部(第1孔型)
  28、29…割り込み(第1孔型)
  30…上孔型ロール(第2孔型)
  31…下孔型ロール(第2孔型)
  35、36…突起部(第2孔型)
  38、39…割り込み(第2孔型)
  40…上孔型ロール(第3孔型)
  41…下孔型ロール(第3孔型)
  45、46…突起部(第3孔型)
  48、49…割り込み(第3孔型)
  50…上孔型ロール(第4孔型)
  51…下孔型ロール(第4孔型)
  55、56…突起部(第4孔型)
  58、59…割り込み(第4孔型)
  80…フランジ部
  82…ウェブ部
  90…平造形孔型
  K1…第1孔型
  K2…第2孔型
  K3…第3孔型
  K4…第4孔型
  K5…第5孔型(平造形孔型)
  T…製造ライン
  A…被圧延材

Claims (3)

  1. 粗圧延工程、中間圧延工程、仕上圧延工程を備えたH形鋼の製造方法であって、
    前記粗圧延工程を行う圧延機には、被圧延材を造形する5以上の複数の孔型が刻設され、
    当該複数の孔型では被圧延材の1又は複数パス造形が行われ、
    前記複数の孔型のうち第1孔型及び第2孔型には、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成され、
    前記複数の孔型のうち第2孔型以降では少なくとも1パス以上の造形において被圧延材の端面と孔型周面とが接触した状態で圧下が行われ、
    前記複数の孔型のうち最終孔型を除く第3孔型以降では前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、
    前記複数の孔型のうち最終孔型は平造形孔型であり、当該平造形孔型における圧延造形はプルダウン率を1.0以下とする圧延条件で行われることを特徴とする、H形鋼の製造方法。
  2. 寸法1500mm×600mmH形鋼の製造において、
    前記平造形孔型における圧延造形は、圧延造形後の被圧延材のウェブ厚みが160mm以上となる圧延条件で行われることを特徴とする、請求項1に記載のH形鋼の製造方法。
  3. 請求項1又は2に記載のH形鋼の製造方法によって製造されるH形鋼製品であって、
    フランジ幅が400mm超であることを特徴とする、H形鋼製品。
PCT/JP2016/084067 2016-01-07 2016-11-17 H形鋼の製造方法及びh形鋼製品 WO2017119195A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187020810A KR20180095065A (ko) 2016-01-07 2016-11-17 H형 강의 제조 방법 및 h형 강 제품
CN201680076874.2A CN108472697B (zh) 2016-01-07 2016-11-17 H型钢的制造方法和h型钢制品
EP16883695.5A EP3388159A4 (en) 2016-01-07 2016-11-17 PROCESS FOR THE PRODUCTION OF H STEEL BEAM AND STEEL H-BEAM PRODUCT
US16/067,356 US20190023307A1 (en) 2016-01-07 2016-11-17 Method for producing h-shaped steel and h-shaped steel product
JP2017560042A JP6593456B2 (ja) 2016-01-07 2016-11-17 H形鋼の製造方法及びh形鋼製品
PH12018501348A PH12018501348A1 (en) 2016-01-07 2018-06-22 Method for producing h-shaped steel and h-shaped steel product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016002072 2016-01-07
JP2016-002072 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017119195A1 true WO2017119195A1 (ja) 2017-07-13

Family

ID=59273587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084067 WO2017119195A1 (ja) 2016-01-07 2016-11-17 H形鋼の製造方法及びh形鋼製品

Country Status (7)

Country Link
US (1) US20190023307A1 (ja)
EP (1) EP3388159A4 (ja)
JP (1) JP6593456B2 (ja)
KR (1) KR20180095065A (ja)
CN (1) CN108472697B (ja)
PH (1) PH12018501348A1 (ja)
WO (1) WO2017119195A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589701A (ja) * 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法
JPS6021101A (ja) 1983-07-14 1985-02-02 Sumitomo Metal Ind Ltd 形鋼の粗形鋼片圧延方法
JPS6192701A (ja) * 1984-10-11 1986-05-10 Nippon Kokan Kk <Nkk> H形粗形鋼片の圧延方法
JPH0788501A (ja) 1993-09-21 1995-04-04 Nippon Steel Corp H形鋼用中間粗形鋼片の製造方法
JPH11347601A (ja) * 1998-06-03 1999-12-21 Nkk Corp 粗形鋼片の圧延方法
JP2004322105A (ja) * 2003-04-21 2004-11-18 Sumitomo Metal Ind Ltd H形鋼の製造方法及び孔型ロール
WO2016148030A1 (ja) * 2015-03-19 2016-09-22 新日鐵住金株式会社 H形鋼の製造方法
JP2016175098A (ja) * 2015-03-19 2016-10-06 新日鐵住金株式会社 H形鋼の製造方法及びh形鋼製品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953121B2 (ja) * 1981-03-05 1984-12-24 川崎製鉄株式会社 粗形鋼片用大型素材の幅出し圧延方法とその圧延用ロ−ル
JPS5893501A (ja) * 1981-11-30 1983-06-03 Kawasaki Steel Corp H形粗形鋼片の圧延方法
JP2727943B2 (ja) * 1993-12-16 1998-03-18 住友金属工業株式会社 粗形鋼片の製造方法
JP2004098102A (ja) * 2002-09-06 2004-04-02 Sumitomo Metal Ind Ltd 平鋼の製造法および製造設備
JP2004358541A (ja) * 2003-06-06 2004-12-24 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法及び孔型ロール
JP4954507B2 (ja) * 2004-07-28 2012-06-20 新日本製鐵株式会社 耐火性に優れたh形鋼およびその製造方法
JP4612530B2 (ja) * 2005-11-17 2011-01-12 新日本製鐵株式会社 極厚h形鋼の圧延方法
CN101712045B (zh) * 2009-12-15 2012-07-04 攀钢集团钢铁钒钛股份有限公司 H型钢轧制方法
CN102794298A (zh) * 2012-08-16 2012-11-28 中冶赛迪工程技术股份有限公司 H型钢的轧制工艺和装置
CN103056160A (zh) * 2013-01-24 2013-04-24 中冶赛迪工程技术股份有限公司 H型钢的x-i短流程轧制机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589701A (ja) * 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法
JPS6021101A (ja) 1983-07-14 1985-02-02 Sumitomo Metal Ind Ltd 形鋼の粗形鋼片圧延方法
JPS6192701A (ja) * 1984-10-11 1986-05-10 Nippon Kokan Kk <Nkk> H形粗形鋼片の圧延方法
JPH0788501A (ja) 1993-09-21 1995-04-04 Nippon Steel Corp H形鋼用中間粗形鋼片の製造方法
JPH11347601A (ja) * 1998-06-03 1999-12-21 Nkk Corp 粗形鋼片の圧延方法
JP2004322105A (ja) * 2003-04-21 2004-11-18 Sumitomo Metal Ind Ltd H形鋼の製造方法及び孔型ロール
WO2016148030A1 (ja) * 2015-03-19 2016-09-22 新日鐵住金株式会社 H形鋼の製造方法
JP2016175098A (ja) * 2015-03-19 2016-10-06 新日鐵住金株式会社 H形鋼の製造方法及びh形鋼製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388159A4

Also Published As

Publication number Publication date
PH12018501348A1 (en) 2019-02-18
CN108472697A (zh) 2018-08-31
EP3388159A4 (en) 2019-08-07
JPWO2017119195A1 (ja) 2018-10-04
JP6593456B2 (ja) 2019-10-23
KR20180095065A (ko) 2018-08-24
US20190023307A1 (en) 2019-01-24
EP3388159A1 (en) 2018-10-17
CN108472697B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2016148030A1 (ja) H形鋼の製造方法
CN109562420B (zh) H型钢的制造方法
JP6447286B2 (ja) H形鋼の製造方法及びh形鋼製品
WO2016148028A1 (ja) H形鋼の製造方法及びh形鋼製品
JP6536415B2 (ja) H形鋼の製造方法
JP6724672B2 (ja) H形鋼の製造方法
JP6593456B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6593457B2 (ja) H形鋼の製造方法及び圧延装置
JP6686809B2 (ja) H形鋼の製造方法
JP6668963B2 (ja) H形鋼の製造方法
JP6627641B2 (ja) H形鋼の製造方法
JP6597321B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6565691B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6569535B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6515365B1 (ja) H形鋼の製造方法
JP6614339B2 (ja) H形鋼の製造方法
JP6501047B1 (ja) H形鋼の製造方法
JP6699415B2 (ja) H形鋼の製造方法
JP6531653B2 (ja) H形鋼の製造方法
JP2019206010A (ja) H形鋼の製造方法
JP6855885B2 (ja) H形鋼の製造方法及びh形鋼製品
WO2019156078A1 (ja) H形鋼の製造方法
JP6447285B2 (ja) H形鋼の製造方法
JP2018089652A (ja) H形鋼の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560042

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12018501348

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883695

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187020810

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020810

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2016883695

Country of ref document: EP

Effective date: 20180713