WO2017115675A1 - グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸 - Google Patents

グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸 Download PDF

Info

Publication number
WO2017115675A1
WO2017115675A1 PCT/JP2016/087689 JP2016087689W WO2017115675A1 WO 2017115675 A1 WO2017115675 A1 WO 2017115675A1 JP 2016087689 W JP2016087689 W JP 2016087689W WO 2017115675 A1 WO2017115675 A1 WO 2017115675A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide
molecular weight
ratio
heparosan
glcn
Prior art date
Application number
PCT/JP2016/087689
Other languages
English (en)
French (fr)
Inventor
森 健一
友梨子 土倉
山崎 俊介
朋子 清水
康博 三原
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201680082662.5A priority Critical patent/CN108699580B/zh
Priority to ES16881651T priority patent/ES2947291T3/es
Priority to EP16881651.0A priority patent/EP3399045B9/en
Priority to JP2017558935A priority patent/JP7006275B2/ja
Priority to HRP20230820TT priority patent/HRP20230820T1/hr
Publication of WO2017115675A1 publication Critical patent/WO2017115675A1/ja
Priority to US16/018,487 priority patent/US10889656B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a novel sulfated polysaccharide having anticoagulant activity.
  • Sulfated polysaccharides having anticoagulant activity are useful, for example, in the medical field.
  • heparin various heparan sulfates such as heparin are known as sulfated polysaccharides having anticoagulant activity. That is, heparin is an anticoagulant and is used for the treatment of thromboembolism and disseminated intravascular coagulation (DIC), prevention of blood coagulation in artificial dialysis and extracorporeal circulation, etc. .
  • Heparin exhibits anticoagulant action through activation of antithrombin III, an anticoagulant factor.
  • Antithrombin III inhibits thrombin, factor Xa (an active form of factor X), and other serine proteases by binding to their active serine sites.
  • Thrombin is a blood coagulation factor
  • factor Xa is a factor involved in thrombin maturation. Heparin binds to this antithrombin III and changes its structure to activate the inhibitory action.
  • Thrombin has a higher affinity for the heparin-antithrombin III complex than factor Xa.
  • low molecular weight heparin having an average molecular weight of 4000 to 6000 Da obtained by enzymatic / chemical treatment and fractionation of heparin has few bleeding side effects and has been frequently used in recent years.
  • Low molecular weight heparin has a short sugar chain and can bind to antithrombin III, but hardly binds to thrombin.
  • thrombin needs to bind to heparin, whereas in the inhibition of factor Xa by the heparin-antithrombin III complex, factor Xa becomes heparin. There is no need to join. Therefore, low molecular weight heparin hardly inhibits the action of thrombin, whereas it can inhibit the action of factor Xa.
  • heparosan which is a sugar chain skeleton of heparin
  • heparosan is produced by fermentation using microorganisms such as Escherichia coli K5 strain, and an anticoagulant polysaccharide similar to heparin using chemical or enzymatic methods.
  • lowering the molecular weight using chemical, enzymatic, or physical techniques is a method of linking sugar chains from 1 by chemical synthesis (Patent Document 1).
  • the heparin-like polysaccharide produced by a method mainly using chemical conversion has a high 3-O-sulfation ratio of the glucosamine residue, but a part of the glucuronic acid residue is also 3-O-sulfated.
  • This 3-O-sulfated glucuronic acid residue has a structure that does not exist in animal-derived heparin, and there are concerns about side reactions in vivo.
  • a heparin-like polysaccharide produced by a method mainly using enzyme conversion has the same sulfation pattern as animal-derived heparin, but its anticoagulant activity is about half that of animal-derived products.
  • An object of the present invention is to provide a novel sulfated polysaccharide having anticoagulant activity.
  • the inventors of the present application have included a repeating structure of a disaccharide unit consisting of a hexuronic acid (HexA) residue and an ⁇ -D-glucosamine (GlcN) residue, and the 3-O-sulfation of the GlcN residue.
  • HexA hexuronic acid
  • GlcN ⁇ -D-glucosamine
  • a polysaccharide having anticoagulant activity comprising a repeating structure of disaccharide units represented by the following general formula (I):
  • R 1 to R 5 satisfy the following conditions:
  • R 1 , R 2 , R 4 , and R 5 each independently represent hydrogen or a sulfate group;
  • R 3 represents hydrogen, a sulfate group, or an acetyl group; At least a portion of R 3 is a sulfate group;
  • the ratio of sulfate groups in R 4 is 13% or more; Ratio of sulfate groups in R 5 is 50% or more.
  • the polysaccharide, wherein the ratio of sulfate groups in R 1 is 0% to 80%.
  • Ratio of sulfate groups in R 1 of the iduronic acid residue is a 0% to 100%, the polysaccharide.
  • the polysaccharide, wherein the ratio of sulfate groups in R 1 of the glucuronic acid residue is 0% to 50%.
  • the polysaccharide, wherein the ratio of sulfate groups in R 2 is less than 1%.
  • the polysaccharide, wherein the ratio of sulfate groups in R 3 is 70% to 100%.
  • GlcA-GlcN (NS3S6S), GlcA (2S) -GlcN (NS6S), IdoA (2S) -GlcN (NS6S), GlcA-GlcN (NS6S), IdoA (2S) -GlcN (NS), IdoA1 (NS), S
  • the polysaccharide comprising one or more disaccharide units selected from (NS3S), IdoA-GlcN (NS6S), and GlcA-GlcN (NS), with a total content of 50% or more.
  • the polysaccharide wherein the ratio of Anti-Factor Xa activity / Anti-Factor IIa activity is 1.5 or more.
  • the said polysaccharide whose ratio (Mw / Mn) of the weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography using pullulan as a standard is 1.5 or less.
  • the polysaccharide which is a free form, a pharmacologically acceptable salt thereof, or a mixture thereof.
  • the polysaccharide, wherein the salt is selected from an ammonium salt, a sodium salt, a lithium salt, and a calcium salt.
  • a pharmaceutical composition comprising the polysaccharide.
  • the composition is used for prevention, amelioration, and / or treatment of symptoms caused by blood coagulation.
  • the composition as described above, wherein the symptom is disseminated intravascular coagulation syndrome, thromboembolism, blood coagulation in artificial dialysis, or blood coagulation in extracorporeal circulation.
  • a novel sulfated polysaccharide having anticoagulant activity can be provided.
  • the polysaccharide of the present invention is a novel sulfated polysaccharide having anticoagulant activity.
  • the polysaccharide of the present invention may be referred to as “heparan sulfate”.
  • the polysaccharide of the present invention may be composed of a single type of sugar chain or a mixture of a plurality of types of sugar chains.
  • the polysaccharide of the present invention is usually obtained as a mixture of a plurality of types of sugar chains.
  • “A mixture of a plurality of types of sugar chains” refers to a combination of two or more types of sugar chains having different structures (number of sugar linkages, molecular weight, types and positions of substituents, etc.).
  • each parameter for specifying the polysaccharide of the present invention indicates a corresponding parameter in the sugar chain unless otherwise specified.
  • each parameter that specifies the polysaccharide of the present invention indicates an average value of the corresponding parameter in the entire mixture unless otherwise specified. The same applies to other polysaccharides such as intermediates in producing the polysaccharide of the present invention.
  • Each parameter specifying the polysaccharide of the present invention can be determined by a known method used for detection or identification of a compound such as a polysaccharide.
  • a technique for example, disaccharide analysis, molecular weight analysis (for example, gel permeation chromatography (GPC)), ultraviolet-visible absorbance detector (UV) and differential refractive index detector (RI) are used.
  • GPC gel permeation chromatography
  • UV ultraviolet-visible absorbance detector
  • RI differential refractive index detector
  • Disaccharide analysis can be performed by a conventional method.
  • the disaccharide analysis can be performed by, for example, a previously reported (T.Imanari, et.al., “High-performance liquid chromatographic analysis of glycosaminominoglycan-derived oligosaccharides.”, 27. It can be implemented according to conditions. That is, for example, if necessary, N-sulfated polysaccharide is decomposed into unsaturated disaccharide using heparinase, and the amount of each constituent disaccharide can be quantified by separating and quantifying the decomposed product. it can.
  • heparinase examples include heparinase I, heparinase II, and heparinase III.
  • Heparinase can be used alone or in appropriate combination.
  • the heparinase to be used can be appropriately selected according to various conditions such as the type of hexuronic acid (HexA) residue contained in the polysaccharide.
  • Heparinase II and III can be used in combination for disaccharide analysis of polysaccharides containing ⁇ -D-glucuronic acid (GlcA) residues.
  • heparinase I and II can be used in combination for the disaccharide analysis of a polysaccharide containing an ⁇ -L-iduronic acid (IdoA) residue.
  • the amount of each constituent disaccharide can be quantified by decomposing the polysaccharide into nitrous acid and separating and quantifying the decomposed product. Separation and quantification of the decomposed product can be performed by, for example, a known technique used for identification of a compound such as HPLC or LC / MS.
  • Specific examples of the conditions for disaccharide analysis include the conditions described in the Examples. Based on the amount of each constituent disaccharide, the content of the target disaccharide unit can be calculated.
  • the bond between C4 and C5 is usually a double bond in the resulting non-reducing end HexA residue.
  • the HexA residue in which the bond between C4 and C5 is a double bond has no distinction between an IdoA residue and a GlcA residue. Therefore, when it is necessary to distinguish between an IdoA residue and a GlcA residue, IdoA such as nitrite decomposition is used.
  • a disaccharide analysis may be performed by a technique that can distinguish a residue from a GlcA residue.
  • the parameters for specifying other polysaccharides such as intermediates in producing the polysaccharide of the present invention can be determined in the same manner.
  • the average molecular weight (number average molecular weight (Mn) and weight average molecular weight (Mw)) of heparan sulfate can be directly measured using pullulan as a standard unless otherwise specified.
  • the true average molecular weight of heparan sulfate may be indirectly calculated by proportional calculation based on a molecule whose true average molecular weight is known (eg, enoxabalin sodium).
  • the average molecular weight of heparan sulfate may be measured directly or indirectly, but it is preferably measured directly.
  • the polysaccharide of the present invention is specifically a polysaccharide having anticoagulant activity, which contains a repeating structure of disaccharide units represented by the following general formula (I).
  • each of R 1 , R 2 , R 4 , and R 5 independently represents hydrogen (—H) or a sulfate group (—SO 3 H).
  • R 3 represents hydrogen (—H), a sulfate group (—SO 3 H), or an acetyl group (—COCH 3 ).
  • R 1 ⁇ R 5 are both selected independently in each repeating unit and each sugar chain.
  • the type of hexuronic acid (HexA) residue is also independently selected for each repeating unit and each sugar chain.
  • the polysaccharide of the present invention may contain the above repeating structure as a main component.
  • “The polysaccharide of the present invention contains the above repeating structure as a main constituent” means that 90% or more, 95% or more, 97% or more, 99% or more, or 100% (all) of the polysaccharide of the present invention. It may consist of the above repeating structure.
  • the phrase “the polysaccharide of the present invention contains the above-mentioned repeating structure as a main constituent” substantially means that 90% or more, 95% or more, 97% or more, 99% or more, or 100% of the polysaccharide of the present invention ( All) may be composed of the above disaccharide units (the disaccharide units represented by the general formula (I)).
  • the ratio of the portion consisting of the disaccharide unit is also referred to as “the content rate of the disaccharide unit”. That is, the content rate of the said disaccharide unit in the polysaccharide of this invention may be 90% or more, 95% or more, 97% or more, 99% or more, or 100%, for example.
  • the content rate of the said disaccharide unit can be measured by disaccharide analysis, for example. That is, the content rate of the disaccharide unit can be calculated, for example, as a ratio (molar ratio) of the total amount of the disaccharide unit to the total amount of the disaccharide when the polysaccharide of the present invention is subjected to disaccharide analysis.
  • the average number of repeating disaccharide units, the average number of sugar linkages, the number average molecular weight (Mn), and the weight average molecular weight (Mw) can all be set as appropriate.
  • the average repeating number of the disaccharide unit may be, for example, 3 or more, 4 or more, 5 or more, or 6 or more, and is 50 or less, 30 or less, 20 or less, 15 or less, 12 or less, or 9 or less. It may be a combination thereof.
  • the average number of repetitions of the disaccharide unit may be, for example, 3 to 15, or 6 to 9.
  • the average number of sugar linkages may be, for example, 6 or more, 8 or more, 10 or more, or 12 or more, and is 100 or less, 60 or less, 40 or less, 30 or less, 24 or less, or 18 or less. It may be present or a combination thereof. Specifically, the average number of sugar linkages may be, for example, 6 to 60, 6 to 30, or 12 to 18 residues.
  • the average number of repetitions and the average number of sugar linkages can be determined, for example, by a technique used for detection or identification of the compounds as exemplified above. Specifically, the average number of repetitions and the average number of sugar linkages can be determined based on, for example, molecular weight. The molecular weight can be measured by a conventional method.
  • the molecular weight is measured by gel permeation chromatography (Gel Permeation Chromatography; GPC), and water-based size exclusion chromatography (SEC) (SEC) using an ultraviolet-visible absorbance detector (UV) and a differential refractive index detector (RI) (SEC). -RI / UV method, European Pharmacopoeia (EP) compliant).
  • GPC Gel Permeation Chromatography
  • SEC water-based size exclusion chromatography
  • UV ultraviolet-visible absorbance detector
  • RI differential refractive index detector
  • EP European Pharmacopoeia
  • the number average molecular weight (Mn) may be, for example, 7000 or more, 8000 or more, 10,000 or more, 12000 or more, 15000 or more, or 18000 or more as a value measured by GPC using pullulan as a standard, 150,000 or less, 100,000 Hereinafter, it may be 60000 or less, 50000 or less, 43000 or less, or 40000 or less, or a combination thereof.
  • the number average molecular weight (Mn) is a value measured by GPC using pullulan as a standard. Specifically, the number average molecular weight (Mn) may be, for example, 8000 to 60000, or 12000 to 40000, or 18000 to 43000. Good.
  • the weight average molecular weight (Mw) may be, for example, 9000 or more, 10000 or more, 12000 or more, 15000 or more, 21000 or more, or 25000 or more as a value measured by GPC using pullulan as a standard. Hereinafter, it may be 100,000 or less, 80,000 or less, 60000 or less, or 50000 or less, or a combination thereof.
  • the weight average molecular weight (Mw) is a value measured by GPC using pullulan as a standard. Specifically, the weight average molecular weight (Mw) may be, for example, 10,000 to 100,000, or 15,000 to 50,000, or 25,000 to 60,000. Good.
  • the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is a value measured by GPC using pullulan as a standard. 9.9 or less, 1.8 or less, 1.7 or less, 1.6 or less, 1.55 or less, 1.5 or less, 1.45 or less, 1.4 or less, 1.35 or less, 1.3 or less, 1 .25 or less, or 1.2 or less, or a combination thereof.
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is a value measured by GPC using pullulan as a standard, specifically, for example, 1 to 1.6, 1 to 1.5, or 1 to 1.4 may be sufficient.
  • the disaccharide unit is composed of a hexuronic acid (HexA) residue (in the formula, the left sugar residue) and an ⁇ -D-glucosamine (GlcN) residue (in the formula, the right sugar residue).
  • HexA hexuronic acid
  • GlcN ⁇ -D-glucosamine
  • the HexA residue side (left side) is also referred to as “non-reducing end side”
  • the GlcN residue side (right side) is also referred to as “reducing end side”.
  • the hexuronic acid residue is a ⁇ -D-glucuronic acid (GlcA) residue or an ⁇ -L-iduronic acid (IdoA) residue.
  • hexuronic acid (HexA) is used as a general term for ⁇ -D-glucuronic acid (GlcA) and ⁇ -L-iduronic acid (IdoA).
  • ⁇ -D-glucosamine (GlcN) encompasses all possible derivatives depending on the choice of R 3 , R 4 , and R 5 unless otherwise specified.
  • the polysaccharide of the present invention may have the above repeating structure so that the disaccharide unit is present in part or all of the non-reducing end.
  • 90% or more, 95% or more, 97% or more, 99% or more, or 100% of the disaccharide units at the non-reducing terminal of the polysaccharide of the present invention may be the above disaccharide units. That is, for example, 90% or more, 95% or more, 97% or more, 99% or more, or 100% of the sugar residues at the non-reducing terminal of the polysaccharide of the present invention may be HexA residues.
  • the polysaccharide of the present invention may have the above repeating structure so that the disaccharide unit is present at a part or all of the reducing end.
  • 90% or more, 95% or more, 97% or more, 99% or more, or 100% of the disaccharide unit at the reducing end of the polysaccharide of the present invention may be the disaccharide unit. That is, for example, 90% or more, 95% or more, 97% or more, 99% or more, or 100% of the reducing end of the polysaccharide of the present invention may be a GlcN residue.
  • the said disaccharide unit exists in the terminal of sugar chain, you may read appropriately the terminal glycosidic bond as a suitable structure as a terminal.
  • the glycosidic bond at the C-4 position of the HexA residue at the non-reducing end may be read as, for example, a hydroxyl group (—OH) or as a double bond between C4 and C5.
  • the HexA residue in which the bond between C4 and C5 is a double bond has no distinction between an IdoA residue and a GlcA residue
  • when calculating each parameter specifying a polysaccharide such as the polysaccharide of the present invention Unless otherwise specified, it corresponds to a HexA residue, but is treated as not corresponding to either an IdoA residue or a GlcA residue.
  • the glycosidic bond at the C-1 position of the GlcN residue at the reducing end may be read as, for example, a hydroxyl group (—OH).
  • the polysaccharide of the present invention may contain a structure represented by the following general formula (II).
  • a part or all of the polysaccharide of the present invention may have a structure represented by the following general formula (II).
  • a structure represented by the following general formula (II) For example, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, 99% or more, or 100% of the number of sugar chains constituting the polysaccharide of the present invention May have a structure represented by the following general formula (II).
  • all of R 1 to R 5 are as described above.
  • n represents the number of repeating disaccharide units in the formula.
  • N means that the polysaccharide of the present invention can achieve the average number of repeating disaccharide units, the average number of sugar linkages, the number average molecular weight (Mn), the weight average molecular weight (Mw), or a combination thereof as described above. May be set. “N” can be calculated by further converting the weight average molecular weight in terms of pullulan using the molecular weight of the low molecular weight heparin preparation enoxaparin sodium (Sanofi-Aventis (France)).
  • the value 3.75 obtained by dividing the GPC method measurement value 16215 of enoxaparin sodium by the measurement value 4325 of the EP-compliant SEC-RI / UV method is used as a conversion factor, and the weight molecular weight in terms of pullulan conversion of the polysaccharide of the present invention is calculated. It can be determined by dividing by a conversion factor of 3.75 and a heparin disaccharide average molecular weight of 665.4. In each sugar chain, “n” may be, for example, 3 to 200, 3 to 100, or 3 to 50.
  • n is specifically an average value of the entire mixture of sugar chains, for example, the average number of repeating disaccharide units in the polysaccharide of the present invention exemplified above (for example, 3 to 30, 3 to 15 Or 6-9).
  • the ratio of IdoA residues to HexA residues may be, for example, 0% or more, 10% or more, 20% or more, 30% or more, 40% or more, or 50% or more. It may be 100% or less, 90% or less, 80% or less, 70% or less, or 60% or less, or a combination thereof. Specifically, the epimerization rate may be, for example, 0% to 70%, 20% to 70%, or 30% to 60%.
  • the “HexA residue” in calculating the epimerization rate means an IdoA residue and a GlcA residue, and excludes a HexA residue in which the bond between C4-C5 is a double bond.
  • the epimerization rate can be measured, for example, by disaccharide analysis. That is, when the polysaccharide of the present invention was subjected to a disaccharide analysis, the epimerization rate was determined based on the total amount of the above disaccharide units in which the HexA residue was an IdoA residue or a GlcA residue. It can be calculated as a ratio (molar ratio) of the amount of a certain disaccharide unit.
  • the bond between C4 and C5 of the HexA residue may be a double bond.
  • the position of the HexA residue where the bond between C4 and C5 is a double bond is not particularly limited.
  • the bond between C4 and C5 may be a double bond in the non-reducing terminal HexA residue. That is, for example, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, 99% or more of the HexA residue in which the bond between C4-C5 is a double bond, or 100 % May be present at the non-reducing end. Further, for example, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, 97% or more, 99% or more, or 100% of HexA residues in which the bond between C4-C5 is not a double bond May exist other than at the non-reducing end.
  • the bond may be a double bond.
  • the bond may not be a double bond.
  • R 1 represents hydrogen (—H) or a sulfate group (—SO 3 H).
  • the ratio of sulfate groups in R 1 may or may not be the same for the IdoA residue and the GlcA residue.
  • the ratio of sulfate groups in R 1 of all HexA residues also referred to as “2-O-sulfation rate of HexA residues”
  • the ratio of sulfate groups in R 1 of IdoA residues (“2- also called O- sulfation ratio ")
  • 2-O- sulfation ratio of GlcA residue "in R 1 of GlcA residues) respectively, for example, 0% or more, 5% 10% or more, 15% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, or 100% Or less, 95% or less, 90% or less, 85% or less, 80% or less, 70% or less
  • the 2-O-sulfation rate of the HexA residue may be, for example, 0% to 80%, 10% to 70%, or 15% to 70%.
  • the 2-O-sulfation rate of the IdoA residue may be, for example, 0% to 100%, 15% to 100%, or 30% to 100%.
  • the 2-O-sulfation rate of the GlcA residue may be, for example, 0% to 50%, 0% to 40%, or 0% to 30%.
  • the ratio of sulfate groups in R 1 can be measured, for example, by disaccharide analysis.
  • the 2-O-sulfation rate of the HexA residue is the HexA residue in which the HexA residue is 2-O-sulfated with respect to the total amount of the above disaccharide units when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of the amount of the disaccharide unit as a residue. Further, the 2-O-sulfation rate of the IdoA residue is determined by the ratio of the HexA residue to the total amount of the above disaccharide units in which the HexA residue is an IdoA residue when the polysaccharide of the present invention is subjected to disaccharide analysis.
  • the 2-O-sulfation rate of the GlcA residue is determined by the ratio of the HexA residue to the total amount of the above disaccharide units in which the HexA residue is a GlcA residue when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of the amount of the disaccharide unit which is a 2-O-sulfated GlcA residue.
  • R 2 represents hydrogen (—H) or a sulfate group (—SO 3 H).
  • the ratio of sulfate groups in R 2 may or may not be the same for the IdoA residue and the GlcA residue.
  • Sulfate group R 2 is not present in the native heparin. Thus, for example, in view of concerns about side reactions in vivo, the ratio of sulfate groups in R 2 can be be less is preferable.
  • the ratio of sulfate groups in R 2 of the entire HexA residue (also referred to as “3-O-sulfation rate of HexA residue”), the ratio of sulfate groups in R 2 of IdoA residue (“3- The ratio of sulfate groups in R 2 of the GlcA residue (also referred to as “3-O-sulfation rate of the GlcA residue”) is, for example, less than 15% and 10%, respectively. Less than, less than 5%, less than 3%, less than 1%, less than 0.5%, less than 0.1%, or zero.
  • the ratio of sulfate groups in R 2 can be measured, for example, by disaccharide analysis.
  • the 3-O-sulfation rate of the HexA residue is the HexA residue in which the HexA residue is 3-O-sulfated with respect to the total amount of the above disaccharide units when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of the amount of the disaccharide unit as a residue. Further, the 3-O-sulfation rate of the IdoA residue is determined by the ratio of the HexA residue to the total amount of the above disaccharide units in which the HexA residue is an IdoA residue when the polysaccharide of the present invention is subjected to disaccharide analysis.
  • the 3-O-sulfation rate of the GlcA residue is determined by the ratio of the HexA residue to the total amount of the above disaccharide units in which the HexA residue is a GlcA residue when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of the amount of the disaccharide unit which is a 3-O-sulfated GlcA residue.
  • R 3 represents hydrogen (—H), a sulfate group (—SO 3 H), or an acetyl group (—COCH 3 ). At least a part of R 3 is a sulfate group.
  • the ratio of sulfate groups in R 3 (also referred to as “N-sulfation rate”) may be, for example, 60% or more, 70% or more, or 80% or more, 100% or less, 95% or less, or 90% % Or less, or a combination thereof. Specifically, the N-sulfation rate may be, for example, 70% to 100%, or 80% to 95%.
  • the ratio of the acetyl group in R 3 (also referred to as "N- acetylation ratio”) is, for example, 0% or more, more than 1%, 1.5% or more, 3% or more, more than 5%, 7% or more, 9% Or may be 11% or more, and may be 50% or less, 45% or less, 40% or less, 35% or less, 33% or less, 30% or less, 25% or less, 20% or less, or 17% or less. It may be a combination thereof. Specifically, the N-acetylation rate may be, for example, 0% to 33%, 1% to 33%, 7% to 33%, 7% to 30%, or 11% to 17%.
  • the N-sulfation rate and N-acetylation rate can be measured, for example, by disaccharide analysis. That is, the N-sulfation rate is the above-mentioned disaccharide unit in which the GlcN residue is a Nlc-sulfated GlcN residue with respect to the total amount of the disaccharide unit when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio).
  • the N-acetylation rate is the above-mentioned disaccharide in which the GlcN residue is a GlcN residue having an N-acetylation rate relative to the total amount of the disaccharide unit when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of unit quantities.
  • the position of the GlcN residue in which R 3 is hydrogen, sulfate group, or acetyl group is not particularly limited.
  • R 3 may be hydrogen or an acetyl group.
  • R 4 represents hydrogen (—H) or a sulfate group (—SO 3 H).
  • Also referred to as "GlcN 3-O-sulfation ratio of residue" or simply “3-O-sulfation ratio” ratio of sulfate groups in R 4 is more than 13%.
  • the 3-O-sulfation rate of the GlcN residue may be, for example, 45% or less, 40% or less, or 33% or less. Specifically, the 3-O-sulfation rate of the GlcN residue may be, for example, 13% to 45%, 13% to 40%, or 13% to 33%.
  • the 3-O-sulfation rate of the GlcN residue can be measured, for example, by disaccharide analysis.
  • the 3-O-sulfation rate of the GlcN residue is determined based on the GlcN in which the GlcN residue is 3-O-sulfated with respect to the total amount of the disaccharide unit when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of the amount of the disaccharide unit as a residue.
  • R 5 represents hydrogen (—H) or a sulfate group (—SO 3 H). At least a portion of R 5 is sulfuric acid group.
  • the ratio of sulfate groups in R 5 (also referred to as “6-O-sulfation rate of GlcN residue” or simply “6-O-sulfation rate”) is, for example, 50% or more, 60% or more, 70% or more. 80% or more, or 90% or more, 100% or less, or 95% or less, or a combination thereof.
  • the 6-O-sulfation rate may be, for example, 50 to 100%, 60 to 100%, or 70 to 100%.
  • the 6-O-sulfation rate can be measured, for example, by disaccharide analysis.
  • the 6-O-sulfation rate is a GlcN residue in which the GlcN residue is 6-O-sulfated with respect to the total amount of the disaccharide unit when the polysaccharide of the present invention is subjected to disaccharide analysis. It can be calculated as a ratio (molar ratio) of the above disaccharide units.
  • polysaccharide of the present invention examples include GlcA-GlcN (NS3S6S), GlcA (2S) -GlcN (NS6S), IdoA (2S) -GlcN (NS6S), GlcA-GlcN (NS6S), IdoA (2S). ) -GlcN (NS), IdoA (2S) -GlcN (NS3S), IdoA-GlcN (NS6S), and GlcA-GlcN (NS), including, for example, all disaccharide units May be.
  • GlcA-GlcN (NS3S6S), GlcA (2S) -GlcN (NS6S), IdoA (2S) -GlcN (NS6S), GlcA-GlcN (NS6S), IdoA (2S) -GlcN (NS), GlcA (2S) -GlcN (NS)
  • the total content of (2S) -GlcN (NS3S), IdoA-GlcN (NS6S), and GlcA-GlcN (NS) is, for example, 50% or more, 60% or more, 70% or more, 80% or more, or 90% It may be above.
  • the total content can be measured, for example, by disaccharide analysis.
  • the total content is, for example, GlcA-GlcN (NS3S6S), GlcA (2S) -GlcN (NS6S), IdoA (2S) relative to the total amount of disaccharide when the polysaccharide of the present invention is subjected to disaccharide analysis.
  • the position and type of the substituent are indicated in parentheses, and R 1 to R 5 not indicated in parentheses indicate hydrogen (—H).
  • the polysaccharide of the present invention has anticoagulant activity.
  • the anticoagulant activity specifically means anticoagulant activity.
  • Anti-coagulant activity includes Anti-Factor Xa activity and Anti-Factor IIa activity.
  • the polysaccharide of the present invention may have, for example, at least Anti-Factor Xa activity.
  • the Anti-Factor Xa activity in the polysaccharide of the present invention may be, for example, 100 IU / mg or more, 200 IU / mg or more, 300 IU / mg or more, or 400 IU / mg or more.
  • the anti-factor Xa activity in the polysaccharide of the present invention is not particularly limited, and may be, for example, 5000 IU / mg or less, 2000 IU / mg or less, or 1000 IU / mg or less.
  • the polysaccharide of the present invention may have a high Anti-Factor Xa activity / Anti-Factor IIa activity ratio.
  • the ratio of Anti-Factor Xa activity / Anti-Factor IIa activity in the polysaccharide of the present invention may be, for example, 1.5 or more, 2 or more, 2.5 or more, or 3 or more.
  • the anti-factor Xa activity / anti-factor IIa activity ratio in the polysaccharide of the present invention is not particularly limited, but may be, for example, 50 or less, 20 or less, or 10 or less.
  • Both Anti-Factor Xa activity and Anti-Factor IIa activity can be measured by conventional methods. Specific examples of methods for measuring Anti-Factor Xa activity and Anti-Factor IIa activity include the methods described in the Examples.
  • the polysaccharide of the present invention may be a free form, a salt, or a mixture thereof. That is, the term “polysaccharide of the present invention (eg, heparan sulfate)” means a free polysaccharide, a salt thereof, or a mixture thereof, unless otherwise specified. That is, any functional group capable of forming a salt present in the polysaccharide of the present invention may be a free form, a salt, or a combination thereof, unless otherwise specified. . Specifically, for example, any functional group capable of forming a salt in general formula (I) and general formula (II) may be a free form or a salt unless otherwise specified. It may be a combination thereof.
  • any functional group capable of forming a salt in general formula (I) and general formula (II) may be a free form or a salt unless otherwise specified. It may be a combination thereof.
  • sulfate groups of R 1 ⁇ R 5 (-SO 3 H), R 3 is hydrogen (-H) GlcN
  • examples thereof include an amino group (—NH 2 ) of a residue and a carboxyl group (—COOH) of a HexA residue. That is, for example, the term “sulfate group” indicates a free-form sulfate group, a sulfate-formed sulfate group, or a combination thereof, unless otherwise specified.
  • the description of the sulfate group can be applied to other functional groups capable of forming a salt.
  • the salt include a pharmacologically acceptable salt.
  • the pharmacologically acceptable salt can be appropriately selected according to various conditions such as the utilization mode of the polysaccharide of the present invention.
  • the pharmacologically acceptable salt include the following. That is, for example, as a salt for an acidic group such as a sulfate group, specifically, an ammonium salt, a salt with an alkali metal such as sodium, potassium or lithium, a salt with an alkaline earth metal such as calcium or magnesium, aluminum And salts with organic amines such as salts, zinc salts, triethylamine, ethanolamine, morpholine, pyrrolidine, piperidine, piperazine, dicyclohexylamine, and salts with basic amino acids such as arginine and lysine.
  • a salt for a basic group such as an amino group
  • a salt with an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, hydrobromic acid, acetic acid, citric acid, benzoic acid
  • organic carboxylic acids such as maleic acid, fumaric acid, tartaric acid, succinic acid, tannic acid, butyric acid, hybenzic acid, pamoic acid, enanthic acid, decanoic acid, teocric acid, salicylic acid, lactic acid, oxalic acid, mandelic acid, malic acid
  • organic sulfonic acid such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid.
  • the salt may be selected from, for example, ammonium salt, sodium salt, lithium salt, calcium salt.
  • 1 type of salt may be used and 2
  • the method for producing the polysaccharide of the present invention is not particularly limited.
  • the polysaccharide of the present invention can be produced, for example, by induction from another polysaccharide (that is, using another polysaccharide as a raw material).
  • Other polysaccharides include glycosaminoglycan (GAG).
  • GAG glycosaminoglycan
  • Examples of GAG include N-acetylheparosan (also simply referred to as “heparosan”) and heparan sulfate other than the polysaccharide of the present invention.
  • Heparosan is a disaccharide repeating structure consisting of a glucuronic acid (GlcA) residue and an N-acetyl-D-glucosamine (GlcNAc) residue [ ⁇ 4) - ⁇ -GlcA- (1 ⁇ 4) - ⁇ -GlcNAc- (
  • the polysaccharide of the present invention using other polysaccharides as a raw material can be produced, for example, by a physical method, a chemical method, an enzymatic method, or a combination thereof.
  • a polysaccharide can be produced, and the polysaccharide of the present invention can be totally synthesized from raw materials such as a monosaccharide.
  • the polysaccharide of the present invention can be produced by, for example, partially N-deacetylating heparosan and then depolymerizing it with heparinase III, and converting the resulting low molecular weight product into the polysaccharide of the present invention. That is, the method for producing the polysaccharide of the present invention includes (A) a step of partially N-deacetylating heparosan, (B) a step of reducing the molecular weight of the product of step A with heparinase III, and ( C) The process of producing
  • Step A is also referred to as “N-deacetylation step”, step B as “low molecular weight reduction step”, and step C as “heparan sulfate production step”. According to this method, in particular, the polysaccharide of the present invention having a desired average molecular weight can be produced efficiently.
  • Heparosan can be produced, for example, by fermentation using a bacterium having the ability to produce heparosan (also referred to as “heparosan producing bacteria”) (WO2015 / 050184).
  • the term “bacteria having heparosan-producing ability (heparosan-producing bacteria)” refers to bacteria having an ability to accumulate heparosan in a medium so that heparosan can be produced and recovered when cultured in the medium.
  • the bacterium having heparosan-producing ability may be, for example, a bacterium that can accumulate heparosan in an amount of 50 mg / L or more, 100 mg / L or more, 200 mg / L or more, or 300 mg / L or more in the medium.
  • Bacterium type is not particularly limited.
  • Examples of the bacterium include bacteria belonging to the genus Escherichia.
  • Examples of the genus Escherichia include, but are not particularly limited to, bacteria classified into the genus Escherichia by classification known to experts in microbiology.
  • Examples of Escherichia bacteria include, for example, the book by Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some derivatives of Escherichia coli. (Ed.), Listed in Escherichia coli and Salmonella Cellular and Molecular Biology / Second Edition, American Society for Microbiology, Washington, DC).
  • Examples of Escherichia bacteria include Escherichia coli.
  • Escherichia coli examples include Escherichia coli K-12 strain such as W3110 strain (ATCC 27325) and MG1655 strain (ATCC 47076); Escherichia coli K5 strain (ATCC 23506); BL21 (DE3) strain, etc. Coli B strains; and their derivatives.
  • strains can be distributed, for example, from the American Type Culture Collection (address 12301, Parklawn Drive, Rockville, Maryland 20852, P.O. Box 1549, Manassas, VA 20108, United States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive distribution using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the BL21 (DE3) strain is available, for example, from Life Technologies (product number C6000-03).
  • the bacterium having heparosan-producing ability may be inherently heparosan-producing ability or may be modified to have heparosan-producing ability.
  • Escherichia coli K5 strain ATCC 23506
  • Bacteria having heparosan-producing ability can be obtained, for example, by imparting heparosan-producing ability to the bacteria as described above.
  • a bacterium that originally has heparosan-producing ability may be modified and used so that heparosan-producing ability is increased.
  • Heparosan production ability can be imparted by introducing a gene encoding a protein involved in heparosan production.
  • proteins involved in heparosan production include glycosyltransferases and heparosan excretion carrier proteins.
  • one kind of gene may be introduced, or two or more kinds of genes may be introduced.
  • the gene can be introduced in the same manner as the method for increasing the number of gene copies described below.
  • glycosyltransferase as used herein has the activity of catalyzing the reaction of extending a heparosan chain by adding N-acetyl-D-glucosamine (GlcNAc) and / or glucuronic acid (GlcA) to the non-reducing end of the sugar chain. It refers to protein. This activity is also referred to as “glycosyltransferase activity”. Examples of the gene encoding glycosyltransferase include kfiA gene, kfiC gene, and pmHS1 gene.
  • Examples of the kfiA gene and the kfiC gene include the kfiA gene and the kfiC gene of Escherichia coli K5 strain.
  • the KfiA protein encoded by the kfiA gene of Escherichia coli K5 strain adds GlcNAc to the sugar chain non-reducing end using UDP-GlcNAc as a substrate.
  • the KfiC protein encoded by the kfiC gene of Escherichia coli K5 strain adds GlcA to the sugar chain non-reducing end using UDP-GlcA as a substrate.
  • the kfiA and kfiC genes of the Escherichia coli K5 strain together with the kfiB and kfiD genes constitute the kfiABCD operon (also referred to as Region 2).
  • the base sequence of the region containing the kfiABCD operon of Escherichia coli K5 strain is shown in SEQ ID NO: 1.
  • the kfiA, kfiB, kfiC, and kfiD genes correspond to the sequence at positions 445 to 1164, the sequence at positions 1593 to 3284, the sequence at positions 4576 to 6138, and the sequence at positions 6180 to 7358, respectively.
  • the amino acid sequences of the KfiA, KfiB, KfiC, and KfiD proteins of Escherichia coli K5 strain are shown in SEQ ID NOs: 2 to 5, respectively.
  • PmHS1 gene includes pmHS1 gene of Pasteurella multocida type D strain.
  • the PmHS1 protein encoded by the pmHS1 gene of Pasteurella multocida type D strain adds GlcNAc and GlcA alternately to the non-reducing end of the sugar chain using both UDP-GlcNAc and UDP-GlcA as substrates.
  • heparosan excretion carrier protein refers to a protein having an activity to excrete heparosan chains out of the cell membrane. This activity is also referred to as “heparosan excretion activity”.
  • Genes encoding heparosan efflux carrier proteins include the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes.
  • Examples of the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes include the kpsC, kpsD, kpsE, kpsM, kpsS, and kpsT genes of the Escherichia coli K5 strain and the Escherichia coli B strain.
  • the kpsC, kpsD, kpsE, and kpsS genes of these strains together with the kpsF and kpsU genes constitute the kpsFEDUCS operon (also referred to as Region 1).
  • the kpsM and kpsT genes of these strains constitute the kpsMT operon (also referred to as Region 3).
  • the gene to be introduced can be appropriately selected according to the type of bacteria used. That is, the ability to produce heparosan can be imparted to a bacterium by modifying the bacterium to have both a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein.
  • Escherichia coli B strain has a gene encoding a heparosan efflux carrier protein but does not have a gene encoding a glycosyltransferase. Therefore, the ability to produce heparosan can be imparted to the Escherichia coli B strain by introducing a gene encoding a glycosyltransferase.
  • Escherichia coli K-12 strain does not have both a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein. Therefore, by introducing both a gene encoding a glycosyltransferase and a gene encoding a heparosan efflux carrier protein, the ability to produce heparosan can be imparted to Escherichia coli K-12 strain.
  • examples of the Escherichia bacterium having heparosan-producing ability include, for example, Escherichia coli K5 strain; Escherichia coli B strain such as BL21 (DE3) strain into which kfiA gene and kfiC gene derived from Escherichia coli K5 strain are introduced.
  • Escherichia coli K-12 strain such as the W3110 strain and the MG1655 strain; , KpsS, and kpsT genes introduced strains; and derivatives thereof.
  • Escherichia coli BL21 (DE3) / pVK9-kfiABCD described in the Examples as a strain obtained by introducing the kfiA gene and the kfiC gene derived from the Escherichia coli K5 strain into the Escherichia coli B strain (WO2015 / 050184).
  • a bacterium having heparosan-producing ability may be modified so that expression of a gene originally possessed by the bacterium among genes encoding proteins involved in heparosan production is enhanced. That is, for example, Escherichia coli K5 strain may be modified so that expression of one or more genes encoding proteins involved in heparosan production is enhanced. Further, for example, Escherichia coli B strain may be modified so that expression of one or more genes encoding heparosan excretion carrier protein is enhanced.
  • the bacterium having heparosan-producing ability may be modified in other ways as long as the heparosan-producing ability is not impaired.
  • a bacterium having the ability to produce heparosan may be modified to enhance expression of one or more genes selected from the kfiB, kfiD, kpsF, and kpsU genes. That is, for example, when introducing a gene encoding a glycosyltransferase, Region 2 may be introduced together, and when introducing a gene encoding a glycosyltransferase and a gene encoding a heparosan excretion carrier protein, Region 1 ⁇ 3 may be introduced together.
  • Examples of the kfiB gene and the kfiD gene include the kfiB gene and the kfiD gene of Escherichia coli K5 strain.
  • Examples of the kpsF gene and kpsU gene include the kpsF gene and kpsU gene of Escherichia coli K5 strain and Escherichia coli B strain.
  • Bacteria having the ability to produce heparosan are rbsR, rbsK, rbsB, hsrA, glgB, glgX, micF, rcsD, rcsB, ybiX, ybiI, ybiJ, ybiC, ybiB, rfaH, nusG, pcoR, coS, hSr.
  • yhcO aaeB, aaeA, aaeX, g1455, alpA, g1453, yrbA, mlaB, mlaC, mlaD, mlaE, mlaF, yrbG, norW, ybjI, ybjJ, ybjK, rybB, yjthr, thjr, thr psuK, ytfT, yjfF, fbp, yagU, paoA, paoB, gsiC, gsiD, yliE, irp2, irp1, bhsA, ycfS, lepB, rnc, era, dapA gcvR, bcp, hyfA, rpoE, nadB, yfiC, srmB, g1414, g1413,
  • “enhanced gene expression” not only means that the expression level of the target gene is increased in the strain in which the target gene is originally expressed, but also in the strain in which the target gene is not originally expressed.
  • “enhanced gene expression” includes, for example, introducing the gene into a strain that does not retain the target gene and expressing the gene.
  • Gene expression can be enhanced, for example, by increasing the copy number of the gene or increasing transcription or translation of the gene.
  • the gene copy number can be increased, for example, by introducing a vector carrying the gene into the host or introducing the gene onto the host chromosome.
  • the gene to be introduced can be obtained, for example, by cloning from an organism having the gene or chemical synthesis. The acquired gene can be used as it is or after being appropriately modified.
  • Gene transcription and translation can be increased by modifying gene expression regulatory sequences such as promoters and SD sequences.
  • NCBI http://www.ncbi.nlm.nih.gov/
  • NCBI http://www.ncbi.nlm.nih.gov/
  • NCBI is the base sequence of a gene used for modification of bacteria such as conferring heparosan-producing ability, and the amino acid sequence of the protein encoded by the gene.
  • a public database such as WO2015 / 050184 or published technical report number 2015-501775.
  • the gene used for modification of bacteria encodes a protein in which the original function is maintained
  • it is not limited to the above-exemplified genes and genes having a known base sequence. It may be.
  • Variants include known gene homologues and artificially modified forms. “The original function was maintained” means that, for example, in glycosyltransferases, protein variants have glycosyltransferase activity, and in heparosan excretion carrier proteins, protein variants have heparosan excretion activity It means having.
  • one or several genes at one or several positions in the amino acid sequence of a known protein may be used for modification of bacteria such as imparting heparosan production ability.
  • 1-30, preferably 1-20, more preferably 1-10, even more preferably 1-5, particularly preferably 1-3) amino acids are substituted, deleted, inserted or added It may be a gene encoding a protein having an amino acid sequence.
  • the gene used for modification of bacteria such as imparting heparosan-producing ability is, for example, 50% or more, 65% or more, 80% or more, preferably 90% or more with respect to the amino acid sequence of a known protein.
  • it may be a gene encoding a protein having an identity of 95% or more, more preferably 97% or more, particularly preferably 99% or more.
  • the description about such variants can be applied mutatis mutandis to other proteins such as heparinase III and genes encoding the same.
  • Heparosan is accumulated in the medium by culturing heparosan-producing bacteria.
  • the culture conditions for heparosan-producing bacteria are not particularly limited as long as a desired amount of heparosan is obtained.
  • the culture conditions for heparosan-producing bacteria can be appropriately set according to various conditions such as the configuration of the expression system of the gene involved in heparosan production and the type of host.
  • the culture can be carried out aerobically at 30 to 37 ° C. for 16 to 72 hours using a liquid medium containing various organic components and inorganic components such as a carbon source, a nitrogen source, and micronutrients. (WO2015 / 050184).
  • Heparosan may be used in the N-deacetylation step while contained in the culture solution, or may be collected from the culture solution and then used in the N-deacetylation step.
  • the means for recovering heparosan from the culture solution is not particularly limited. Examples of means for recovering heparosan include known techniques used for separation and purification of compounds, such as membrane treatment and precipitation.
  • the culture supernatant can be separated from the culture solution, and then heparosan in the supernatant can be precipitated and recovered by adding an organic solvent miscible with water such as ethanol or methanol (WO2015 / 050184).
  • the amount of the organic solvent to be added may be, for example, 2.5 to 3.5 times the amount of the supernatant.
  • Heparosan may be appropriately subjected to a treatment such as purification, dilution, concentration, drying, and dissolution, and then subjected to an N-deacetylation step. Purification may be performed to the desired degree. These treatments may be performed alone or in appropriate combination.
  • N-deacetylation process is a process in which heparosan is partially N-deacetylated.
  • the N-deacetylation step produces partially N-deacetylated heparosan.
  • the product of the N-deacetylation step (partially N-deacetylated heparosan) is also referred to as “N-deacetylated heparosan”.
  • “Partial N-deacetylation of heparosan” means that heparosan is N-deacetylated so that a part of the N-acetyl group of heparosan remains.
  • the site of the glucosamine residue having an N-acetyl group can be preferentially cleaved in the molecular weight reduction step, and thus has a desired average molecular weight.
  • the polysaccharide of the present invention can be produced efficiently.
  • the degree of N-deacetylation is not particularly limited as long as the polysaccharide of the present invention can be produced.
  • the N-deacetylation step can be carried out, for example, so that the residual ratio of N-acetyl groups has the following value.
  • the residual ratio of N-acetyl groups may be, for example, 1% or more, 1.5% or more, 3% or more, 5% or more, 7% or more, 9% or more, or 11% or more. % Or less, 45% or less, 40% or less, 35% or less, 33% or less, 30% or less, 25% or less, 20% or less, or 17% or less, or a combination thereof.
  • the residual ratio of the N-acetyl group may be, for example, 1% to 33%, 7% to 33%, 7% to 30%, or 11% to 17%.
  • the residual rate of N-acetyl groups of 7% to 30% is generally present in a ratio of one N-acetyl group to 6-28 sugar residues (one disaccharide unit to 3-14 units). Is equivalent to In addition, for example, the remaining ratio of N-acetyl groups of 11% to 17% is generally at a ratio of one N-acetyl group per 12-18 sugar residues (one disaccharide unit per 6-9 units). Equivalent to existing.
  • the degree of N-deacetylation that is, the residual ratio of N-acetyl groups
  • the residual ratio of N-acetyl groups can be measured as the above-mentioned N-acetylation ratio.
  • the remaining N-acetyl group may be appropriately removed after the molecular weight reduction step.
  • N-deacetylation may be further performed at any timing after the molecular weight reduction step, or N-deacetylation and N-sulfation may be further performed.
  • the means for performing the N-deacetylation step is not particularly limited as long as the desired degree of N-deacetylation is obtained.
  • the N-deacetylation step can be performed chemically using, for example, a deacetylating agent.
  • a deacetylating agent include sodium hydroxide and hydrazine.
  • N-deacetylation using sodium hydroxide include, for example, a previously reported (Kuberan B. et al., (2003) “Chemogeneticmatic Synthesis of Classical and Non-Classical Anticoagulant Heparan. 278 (52): 52613-52621. And US2011128820A1) can be referred to. That is, N-deacetylation can be carried out, for example, by dissolving heparosan in an aqueous sodium hydroxide solution and heating. The concentration of each component in the reaction system, the reaction temperature, and the reaction time can be appropriately set so as to obtain a desired degree of N-deacetylation.
  • the heparosan concentration may be, for example, 0.05% (w / v) to 50% (w / v).
  • the sodium hydroxide concentration may be, for example, 1M-5M.
  • the reaction temperature may be, for example, 40-80 ° C.
  • the reaction time may be, for example, 5 minutes to 30 hours.
  • N-deacetylation using hydrazine The conditions for N-deacetylation using hydrazine are described in, for example, the previously reported ([1] Glycobiology, 10 (2000) 159-171 [2] Carbohydrate Research, 290 (1996) 87-96 [3] Biochem. 217 (1984) 187-197).
  • Specific examples of N-deacetylation conditions using hydrazine include the conditions described in the Examples. That is, N-deacetylation can be performed, for example, by dissolving heparosan in an aqueous hydrazine solution containing sulfuric acid or hydrazine sulfate, replacing the gas phase with an inert gas such as nitrogen, and heating.
  • hydrazine examples include anhydrous hydrazine and hydrazine monohydrate.
  • hydrazine monohydrate may be used as a hydrazine aqueous solution as it is or after being appropriately diluted.
  • the reaction can be stopped by ice cooling. Subsequently, the sugar chain terminal can be reduced with iodine.
  • the concentration of each component in the reaction system, the reaction temperature, and the reaction time can be appropriately set so as to obtain a desired degree of N-deacetylation.
  • the heparosan concentration may be, for example, 0.05% (w / v) to 50% (w / v).
  • the hydrazine concentration may be, for example, 10% (w / v) to 70% (w / v).
  • the concentration of sulfuric acid or hydrazine sulfate may be, for example, 0.01M to 0.1M.
  • the reaction temperature may be, for example, 60-118 ° C.
  • the reaction time may be, for example, 5 minutes to 20 hours. Specifically, for example, when N-deacetylation is performed under the conditions described in the examples, the reaction time may be, for example, 4 to 5 hours.
  • N-deacetylated heparosan By carrying out N-deacetylation in this manner, N-deacetylated heparosan is produced.
  • N-deacetylated heparosan may be used in the molecular weight reduction step while contained in the reaction solution in the N-deacetylation step, or may be recovered from the reaction solution and used in the molecular weight reduction step.
  • the means for recovering N-deacetylated heparosan from the reaction solution is not particularly limited. Examples of means for recovering N-deacetylated heparosan include known techniques used for separation and purification of compounds, such as membrane treatment and precipitation.
  • N-deacetylated heparosan may be subjected to treatments such as purification, neutralization, desalting, dilution, concentration, drying, dissolution, etc., as appropriate, and then to the molecular weight reduction step. Purification may be performed to the desired degree. These treatments may be performed alone or in appropriate combination.
  • Low molecular weight reduction step is a step of reducing the molecular weight by cleaving N-deacetylated heparosan with heparinase III. N-deacetylated heparosan having a low molecular weight is generated by the low molecular weight process.
  • the product obtained by the molecular weight reduction process (low molecular weight N-deacetylated heparosan) is also referred to as “low molecular weight N-deacetylated heparosan”.
  • the degree of molecular weight reduction is not particularly limited as long as the polysaccharide of the present invention can be produced.
  • the average molecular weight of the low molecular weight N-deacetylated heparosan described later is the average molecular weight of the polysaccharide of the present invention described later (for example, 1000 to 150,000 as a value measured by GPC using pullulan as a standard, preferably Can be carried out so as to have a number average molecular weight (Mn) of 8000 to 60,000 and a weight average molecular weight (Mw) of 2,000 to 300,000, preferably 10,000 to 100,000.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the degree of molecular weight reduction can be confirmed, for example, by measuring the molecular weight.
  • the molecular weight can be measured by a conventional method.
  • the molecular weight was measured by gel permeation chromatography (Gel Permeation Chromatography; GPC), water-based size exclusion chromatography (SEC) using an ultraviolet-visible absorbance detector (UV) and a differential refractive index detector (RI) (SEC-).
  • GPC Gel Permeation Chromatography
  • SEC water-based size exclusion chromatography
  • UV ultraviolet-visible absorbance detector
  • RI differential refractive index detector
  • EP European Pharmacopoeia
  • Specific examples of conditions for measuring molecular weight by GPC include the conditions described in Examples.
  • the number average molecular weight (Mn) of the low molecular weight N-deacetylated heparosan may be, for example, 1000-150,000, 3000-36000, or 4000-26000 as measured by GPC using pullulan as a standard, or It may be 5000-36000, or 12000-26000.
  • the weight average molecular weight (Mw) of the low molecular weight N-deacetylated heparosan is, for example, 2000 to 300000, 5000 to 60000, 6000 to 70000, or 9000 to 35000 as a value measured by GPC using pullulan as a standard. Alternatively, it may be 7000-60000, or 17000-35000.
  • the molecular weight can be measured after performing a part or all of the heparan sulfate production step such as the sulfation step described later to confirm the degree of molecular weight reduction.
  • a change in molecular weight according to the performed step can be taken into consideration.
  • the number average molecular weight (Mn) of the product is, for example, 1000 to 150,000 as a value measured by GPC using pullulan as a standard.
  • the weight average molecular weight (Mw) of the product is, for example, 2000-300000, 5000-150,000, 5000-100000, 8000- It may be 70000, 8000-41000, or 21000-41000.
  • Heparinase III refers to an enzyme (typically EC 4.2.2.8, which cleaves the site of an N-sulfated or N-acetylated glucosamine residue in glycosaminoglycans such as heparosan. ).
  • the heparinase III used in the present invention is not particularly limited as long as it can preferentially cleave the site of the glucosamine residue having an N-acetyl group in N-deacetylated heparosan.
  • “Preferentially cleave the site of the glucosamine residue having an N-acetyl group” means that the site of the glucosamine residue having an N-acetyl group is more than the site of a glucosamine residue having no N-acetyl group. It means cutting with priority. “Preferentially cleave a glucosamine residue site having an N-acetyl group” means a glucosamine residue that cleaves a glucosamine residue site having an N-acetyl group but does not have an N-acetyl group. The site may be substantially uncut. “Cleaving the glucosamine residue site” means that the ⁇ -1,4 glycosidic bond between the glucosamine residue and the downstream (reducing terminal side) glucuronic acid (GlcA) residue is cleaved.
  • heparinase III The origin of heparinase III is not particularly limited, and any origin such as a microorganism, an animal, or a plant may be used. Moreover, as heparinase III, variants, such as a well-known heparinase III homolog or artificially modified substance, may be used. Specific examples of heparinase III include bacterial heparinase III such as Flavobacterium heparinum, Bacteroides thetaiomicron, Bacteroides eggerthii.
  • the nucleotide sequence of the hepC gene encoding the heparinase III of Flavobacterium heparinum ATCC 13125 and the amino acid sequence of heparinase III (HepC) are shown in SEQ ID NOs: 16 and 17, respectively.
  • Heparinase III can be produced by expressing the same gene in a host having a gene encoding heparinase III (heparinase III gene).
  • a host having a heparinase III gene is also referred to as a host having heparinase III.
  • the host having the heparinase III gene may originally have the heparinase III gene, or may be modified so as to have the heparinase III gene. Examples of the host having the heparinase III gene inherently include bacteria from which heparinase III is derived.
  • Examples of the host modified to have the heparinase III gene include a host into which the heparinase III gene has been introduced.
  • the host into which the heparinase III gene is introduced is not particularly limited as long as it can express a functional heparinase III.
  • Hosts include bacteria, actinomycetes, yeasts, fungi, plant cells, insect cells, and animal cells.
  • bacteria include Enterobacteriaceae bacteria and coryneform bacteria.
  • Examples of Enterobacteriaceae include bacteria belonging to the genus Escherichia such as Escherichia coli.
  • Examples of coryneform bacteria include bacteria belonging to the genus Corynebacterium such as Corynebacterium glutamicum.
  • a host that originally has a heparinase III gene may be used by modifying it so that expression of the heparinase III gene is enhanced.
  • the heparinase III gene can be expressed, and a culture containing heparinase III is obtained.
  • the culture conditions of the host can be appropriately set according to various conditions such as the configuration of the expression system of the heparinase III gene and the type of host.
  • Heparinase III can also be produced by expressing the heparinase III gene in a cell-free protein synthesis system.
  • heparinase III a commercially available product can be used.
  • Heparinase III may be used as it is contained in the culture or the like, or may be used after being recovered from the culture or the like. That is, as heparinase III, purified heparinase III (purified enzyme) may be used, or any fraction containing heparinase III may be used. The recovery of heparinase III can be carried out by a known technique for separating and purifying proteins. Heparinase III may be purified to the desired extent. Heparinase III may be used in a free state, or may be used in the state of an immobilized enzyme immobilized on a solid phase such as a resin.
  • the fraction containing heparinase III is not particularly limited as long as heparinase III is contained so that heparinase III can act on N-deacetylated heparosan.
  • a fraction containing heparinase III a culture of a host having the heparinase III gene, a cell recovered from the same culture (cultured cell), a crushed product of the cell, a lysate of the cell, Extracts of cells (cell-free extract), treated cells such as immobilized cells obtained by immobilizing the same cells with a carrier such as acrylamide or carrageenan, culture supernatants collected from the same culture, partial purification of them Product (crude product). Any of these fractions may be used alone or together with purified heparinase III.
  • the molecular weight reduction step can be performed by allowing heparinase III to act on N-deacetylated heparosan. Specifically, the action of heparinase III on N-deacetylated heparosan can be achieved by allowing heparinase III and N-deacetylated heparosan to coexist in the reaction solution. That is, the molecular weight reduction step can be performed in an appropriate reaction solution.
  • the molecular weight reduction step may be performed by a batch method or a column method.
  • the step of reducing the molecular weight can be carried out by mixing heparinase III and N-deacetylated heparosan in the reaction solution in the reaction vessel.
  • the molecular weight reduction step may be performed by standing or may be performed by stirring or shaking.
  • the step of reducing the molecular weight can be carried out by passing a reaction solution containing N-deacetylated heparosan through a column packed with immobilized bacterial cells or immobilized enzyme.
  • the reaction solution include an aqueous medium (aqueous solvent) such as water and an aqueous buffer solution.
  • the reaction solution may contain components other than N-deacetylated heparosan, if necessary, in addition to N-deacetylated heparosan.
  • components other than N-deacetylated heparosan include metal ions and pH buffering agents.
  • the kind and concentration of components contained in the reaction solution can be appropriately set according to various conditions such as the properties of heparinase III used.
  • reaction solution pH, reaction temperature, reaction time, concentration of various components, etc. are not particularly limited as long as the desired degree of molecular weight reduction can be obtained. That is, the reaction conditions can be appropriately set so as to obtain a desired degree of molecular weight reduction. Specific examples of the reaction conditions include the conditions described in the examples.
  • concentration of N-deacetylated heparosan in the reaction solution may be, for example, 0.05% (w / v) to 50% (w / v).
  • the concentration of heparinase III in the reaction solution is, for example, 6.3 IU / L to 6.3 ⁇ 10 4 IU / L, or 6.3 ⁇ 10 1 IU / L to 6.3 ⁇ 10 3 IU / L. Good.
  • the pH of the reaction solution may be, for example, usually 6.0 to 10.0, preferably 6.5 to 9.0.
  • the reaction temperature may be, for example, usually 15 to 50 ° C., preferably 15 to 45 ° C., more preferably 20 to 40 ° C.
  • the reaction time may be, for example, usually 5 minutes to 20 hours, preferably 10 minutes to 10 hours.
  • the reaction time may be, for example, 5 to 10 hours.
  • the flow rate of the reaction solution may be a rate such that the reaction time is in the range of the reaction time exemplified above.
  • the activity of heparinase III can be measured, for example, based on the enzyme and substrate-dependent production of unsaturated hexuronic acid by carrying out an enzyme reaction at pH 7.0 and 37 ° C. using heparosan as a substrate.
  • the production of unsaturated hexuronic acid can be measured as an increase in A232 nm.
  • the amount of enzyme that produces 1 ⁇ mol of unsaturated hexuronic acid per minute is defined as one international unit (IU).
  • heparinase III, N-deacetylated heparosan, and other components may be additionally supplied to the reaction solution alone or in any combination. These components may be supplied once or a plurality of times, or may be supplied continuously.
  • reaction conditions may be uniform from the start to the end of the low molecular weight process, or may change during the process of the low molecular weight process.
  • the reaction conditions change during the process of reducing the molecular weight is not limited to the reaction conditions changing temporally, but includes that the reaction conditions change spatially.
  • reaction conditions change spatially means that, for example, when a low molecular weight reduction step is performed using a column type, the reaction conditions such as reaction temperature and enzyme concentration differ depending on the position on the flow path. Say.
  • low molecular weight N-deacetylated heparosan is generated.
  • the low molecular weight N-deacetylated heparosan may be used in the heparan sulfate production step while being contained in the reaction solution in the low molecular weight production step, or may be recovered from the reaction solution and used in the heparan sulfate production step.
  • the means for recovering the low molecular weight N-deacetylated heparosan from the reaction solution is not particularly limited. Examples of means for recovering low molecular weight N-deacetylated heparosan include known techniques used for separation and purification of compounds, such as membrane treatment and precipitation.
  • the low molecular weight N-deacetylated heparosan may be subjected to a treatment such as purification, dilution, concentration, drying, and dissolution as appropriate, and then to a heparan sulfate production step. Purification may be performed to the desired degree. These treatments may be performed alone or in appropriate combination.
  • Heparan sulfate production step is a step of producing the polysaccharide of the present invention from low molecular weight N-deacetylated heparosan.
  • the heparan sulfate production step includes, for example, converting low molecular weight N-deacetylated heparosan to N-sulfation, C5-epimerization, 2-O-sulfation, 3-O-sulfation of GlcN residues, and 6- One or more, for example all, steps selected from O-sulfating steps may be included.
  • the kind of process included in the heparan sulfate production process is not particularly limited as long as the polysaccharide of the present invention is obtained. That is, the type of process included in the heparan sulfate production process can be appropriately set according to the structure of the polysaccharide of the present invention.
  • the heparan sulfate production step may include, for example, at least N-sulfation, 3-O-sulfation of GlcN residues, and 6-O-sulfation.
  • the execution order of each step included in the heparan sulfate production step is not particularly limited as long as the polysaccharide of the present invention is obtained.
  • the execution order of each step included in the heparan sulfate production step can be appropriately set according to various conditions such as means for performing each step and substrate specificity of the enzyme used in each step.
  • the steps included in the heparan sulfate generation step may or may not be performed separately. That is, some or all of the steps included in the heparan sulfate production step may be performed simultaneously in part or all of the time period.
  • the heparan sulfate production step may be performed, for example, in the order of the following steps C1 and C3: (C1) N-sulfation; (C3) 3-O-sulfation and 6-O-sulfation of GlcN residues.
  • the heparan sulfate production step may be performed, for example, in the order of the following steps C1, C2, and C3: (C1) N-sulfation; (C2) C5-epimerization and 2-O-sulfation; (C3) 3-O-sulfation and 6-O-sulfation of GlcN residues.
  • Step C2 may be performed in the order of C5-epimerization and 2-O-sulfation, or may be performed in the order of 2-O-sulfation and C5-epimerization. Further, in step C2, C5-epimerization and 2-O-sulfation may be carried out simultaneously in part or all of the periods.
  • Step C3 may be performed, for example, in the order of 3-O-sulfation and 6-O-sulfation of GlcN residues, and in the order of 6-O-sulfation and 3-O-sulfation of GlcN residues. May be implemented.
  • the heparan sulfate production step is performed in the order of N-sulfation, C5-epimerization, 2-O-sulfation, 3-O-sulfation of GlcN residues, and 6-O-sulfation.
  • Each process will be described on the assumption that this is done.
  • the types of steps included in the heparan sulfate production step and the execution order of the steps are different from those, the description can be appropriately read according to the type of the selected step and the set execution order.
  • N-sulfation is a step of sulfating the amino group of low molecular weight N-deacetylated heparosan.
  • N-sulfation can be performed chemically using, for example, a sulfating reagent.
  • the sulfating reagent include sulfur trioxide complexes such as sulfur trioxide pyridine complex (PySO 3 ) and sulfur trioxide trimethylamine complex (TMASO 3 ).
  • the reaction conditions for N-sulfation can be appropriately set by those skilled in the art.
  • the reaction conditions for N-sulfation include, for example, a previously reported (Kuberan B.
  • N-sulfation reaction conditions include those described in the Examples.
  • the degree of N-sulfation is not particularly limited as long as the polysaccharide of the present invention is obtained. That is, N-sulfation can be performed, for example, so as to obtain the N-sulfation rate exemplified above.
  • N-sulfation can be performed, for example, such that 90% or more, 95% or more, 99% or more, or all of the N-deacetylated glucosamine residues are N-sulfated.
  • the degree of N-sulfation (that is, N-sulfation rate) can be confirmed by, for example, disaccharide analysis.
  • C5 epimerization is a step of isomerizing a glucuronic acid (GlcA) residue in a product obtained by N-sulfation to an iduronic acid (IdoA) residue.
  • C5 epimerization can be carried out enzymatically using, for example, C5-epimerase.
  • C5-epimerase is not particularly limited as long as it can catalyze the isomerization of a glucuronic acid (GlcA) residue to an iduronic acid (IdoA) residue.
  • C5-epimerase having an appropriate substrate specificity may be selected and used.
  • C5-epimerase may be derived from any source such as animals, plants, and microorganisms.
  • C5-epimerase for example, human C5-epimerase can be used.
  • C5-epimerase variants such as known C5-epimerase homologs and artificially modified products may be used.
  • the description of the production method and utilization mode of C5-epimerase the description of the production method and utilization mode of heparinase III can be applied mutatis mutandis.
  • the reaction conditions for C5 epimerization can be appropriately set by those skilled in the art.
  • Reaction conditions for C5 epimerization include, for example, the previously reported (Chen J, et al., “Enzymatic redesigning of bioactive heparan sulfate.” J Biol. Chem. 2005 Dec. 30: 228: 252). Can be referred to. Specific examples of the reaction conditions for C5 epimerization include the conditions described in the examples. The degree of C5 epimerization is not particularly limited as long as the polysaccharide of the present invention is obtained. That is, C5 epimerization can be performed so as to obtain the epimerization rate exemplified above.
  • 2-O-sulfation is a step of sulfating the 2-O position of the IdoA residue in the product obtained by C5 epimerization.
  • 2-O-sulfation can be carried out enzymatically using, for example, 2-O-sulfating enzyme (2-OST).
  • the 2-OST is not particularly limited as long as it can catalyze the sulfation of the 2-O position of the IdoA residue.
  • 2-OST may also be able to catalyze sulfation at the 2-O position of the GlcA residue.
  • 2-OST may also be capable of catalyzing sulfation at the 2-O position of the HexA residue where the bond between C4-C5 is a double bond.
  • 2-OST having an appropriate substrate specificity may be selected and used.
  • 2-OST may be derived from any of animals, plants, microorganisms and the like.
  • 2-OST for example, hamster 2-OST can be used.
  • 2-OST variants such as known 2-OST homologs and artificially modified products may be used.
  • the description of the production method and utilization mode of heparinase III can be applied mutatis mutandis.
  • the reaction conditions for 2-O-sulfation can be appropriately set by those skilled in the art.
  • reaction conditions for 2-O-sulfation for example, the previously reported (Chen J, et al., “Enzymatic redeching of bioactive heparan sulfate.” J Biol. Chem. 2005 Dec. ) Conditions can be referred to. Specific examples of the reaction conditions for 2-O-sulfation include the conditions described in the examples.
  • the degree of 2-O-sulfation is not particularly limited as long as the polysaccharide of the present invention is obtained. That is, 2-O-sulfation can be carried out so as to obtain the 2-O-sulfation rate exemplified above.
  • Isomerization of GlcA residue to IdoA residue by C5-epimerase is a reversible equilibrium reaction. That is, when C5 epimerization is performed using C5-epimerase, a part of the IdoA residue generated by C5 epimerization can be converted back to a GlcA residue.
  • 2-O-sulfated hexuronic acid (HexA) residues are generally not substrates for C5-epimerase.
  • the IdoA residue generated by C5 epimerization can be sequentially 2-O-sulfated, and thus IdoA Residues can be prevented from being converted back to GlcA residues. Therefore, for example, the C5 epimerization rate can be increased by coupling C5 epimerization and 2-O-sulfation.
  • C5 epimerization and 2-O-sulfation may be carried out simultaneously in part or all of the periods.
  • C5 epimerization and 2-O-sulfation can be performed together by allowing the product of N-sulfation, C5-epimerase and 2-OST to coexist in the reaction system.
  • Specific examples of the conditions for the coupling reaction of C5 epimerization and 2-O-sulfation include the conditions described in the Examples.
  • 6-O-sulfation is a step of sulfating the 6-O position of the N-sulfated glucosamine (GlcNS) residue in the product of 2-O-sulfation.
  • 6-O-sulfation can be carried out enzymatically using, for example, 6-O-sulfating enzyme (6-OST).
  • 6-OST is not particularly limited as long as it can catalyze sulfation at the O-6 position of an N-sulfated glucosamine (GlcNS) residue.
  • 6-OST having an appropriate substrate specificity may be selected and used.
  • 6-OST may be derived from any of animals, plants, microorganisms and the like. Examples of 6-OST include 6-OST-1, 6-OST-2, and 6-OST-3. As 6-OST, for example, hamster 6-OST-1 or mouse 6-OST-3 can be used.
  • 6-OST a known 6-OST homolog or a variant such as an artificially modified product may be used.
  • the description of the production method and utilization mode of heparinase III can be applied mutatis mutandis.
  • the reaction conditions for 6-O-sulfation can be appropriately set by those skilled in the art.
  • the reaction conditions for 6-O-sulfation using 6-OST include, for example, a previously reported (Chen J, et al., “Enzymatic redesigning of biological heparan sulfate.” J Biol Chem. ): 42817-25.) Can be referred to.
  • 6-O-sulfation can also be performed chemically using, for example, a sulfating reagent.
  • a sulfating reagent examples include sulfur trioxide complexes such as sulfur trioxide pyridine complex (PySO 3 ) and sulfur trioxide trimethylamine complex (TMASO 3 ).
  • the reaction conditions for 6-O-sulfation can be appropriately set by those skilled in the art.
  • the reaction conditions for 6-O-sulfation using a sulfating reagent for example, the conditions described in the previous report (US 8227449 B2 (Jul. 24, 2012)) can be referred to.
  • Specific examples of the reaction conditions for 6-O-sulfation using a sulfating reagent include those described in the Examples.
  • 6-O-sulfation using a sulfating reagent can be carried out in an organic solvent such as N, N-dimethylformamide (DMF).
  • the reaction temperature of 6-O-sulfation may be, for example, -20 ° C to 5 ° C, preferably -20 ° C to 0 ° C.
  • the amount of the sulfating reagent used for 6-O-sulfation is, for example, 1.5 to 10 molar equivalents, preferably 2 to 5 molar equivalents relative to the amount of hydroxyl groups to be subjected to 6-O-sulfation. It may be.
  • the degree of 6-O-sulfation is not particularly limited as long as the polysaccharide of the present invention is obtained. That is, 6-O-sulfation can be carried out so as to obtain the 6-O-sulfation rate exemplified above.
  • the 3-O-sulfation of the GlcN residue is a step of sulfating the 3-O position of the N-sulfated / 6-O-sulfated glucosamine residue in the product by 6-O-sulfation.
  • the 3-O-sulfation of the GlcN residue can be performed enzymatically using, for example, 3-O-sulfating enzyme (3-OST).
  • 3-OST is not particularly limited as long as it can catalyze the sulfation of the O-3 position of the N-sulfated / 6-O-sulfated glucosamine residue.
  • 3-OST having an appropriate substrate specificity may be selected and used.
  • 3-OST may be derived from any source such as animals, plants, and microorganisms. Examples of 3-OST include 3-OST-1, 3-OST-2, 3-OST-3, 3-OST-4, and 3-OST-5.
  • 3-OST for example, mouse 3-OST-1 can be used.
  • 3-OST a known variant such as 3-OST homolog or artificially modified product may be used.
  • the description of the production method and utilization mode of heparinase III can be applied mutatis mutandis.
  • the reaction conditions for 3-O-sulfation of GlcN residues can be appropriately set by those skilled in the art.
  • As the reaction conditions for 3-O-sulfation of GlcN residues for example, the previously reported (Chen J, et al., “Enzymatic redesigning of biological heparan sulfate.” J Biol Chem. 30:52 Dec. 42817-25.) Can be referred to.
  • Specific examples of the reaction conditions for 3-O-sulfation of GlcN residues include the conditions described in the Examples.
  • the degree of 3-O-sulfation of the GlcN residue is not particularly limited as long as the polysaccharide of the present invention is obtained. That is, the 3-O-sulfation of the GlcN residue can be carried out so as to obtain the 3-O-sulfation rate of the GlcN residue exemplified above.
  • the product of each step may be used for the next step while being contained in the reaction solution of each step, or may be recovered from the reaction solution and used for the next step.
  • the means for recovering each product from the reaction solution is not particularly limited. Examples of means for recovering each product include known techniques used for separation and purification of compounds, such as membrane treatment and precipitation.
  • the product from each step may be subjected to treatment such as purification, dilution, concentration, drying, dissolution, enzyme deactivation, etc., as appropriate, and then to the next step. Purification may be performed to the desired degree. These treatments may be performed alone or in appropriate combination.
  • the polysaccharide of the present invention is produced.
  • the polysaccharide of the present invention can be appropriately recovered from the reaction solution.
  • the polysaccharide of the present invention can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination.
  • the polysaccharide of the present invention to be recovered may contain components such as components and water used in producing the polysaccharide of the present invention in addition to the polysaccharide of the present invention.
  • the polysaccharide of the present invention may be provided as a mixture containing the polysaccharide of the present invention, for example.
  • the polysaccharide of the present invention may be purified to a desired degree.
  • the polysaccharide of the present invention can be appropriately set according to various conditions such as the utilization mode of the polysaccharide of the present invention.
  • the polysaccharide of the present invention may be provided after being purified to a pharmacologically acceptable level so as to be formulated and used as an active ingredient of a pharmaceutical composition.
  • the purity of the polysaccharide of the present invention is, for example, 30% (w / w) or more, 50% (w / w) or more, 70% (w / w) or more, 80% (w / w) or more. , 90% (w / w) or more, or 95% (w / w) or more.
  • the polysaccharide of the present invention can be used by blending it in the composition as an active ingredient. That is, the present invention provides a composition containing the polysaccharide of the present invention.
  • the composition is also referred to as “the composition of the present invention”. Examples of the composition include a pharmaceutical composition.
  • the composition of the present invention may be for prevention, amelioration, and / or treatment of symptoms caused by blood coagulation, for example. That is, the composition of the present invention may be, for example, an agent for preventing, ameliorating, and / or treating symptoms caused by blood coagulation.
  • Symptoms caused by blood coagulation include disseminated intravascular coagulation syndrome (DIC), thromboembolism (venous thrombosis, myocardial infarction, pulmonary embolism, cerebral embolism, limb arterial thromboembolism, during and after surgery Thromboembolism), blood coagulation in artificial dialysis, blood coagulation in extracorporeal circulation.
  • DIC disseminated intravascular coagulation syndrome
  • thromboembolism venous thrombosis, myocardial infarction, pulmonary embolism, cerebral embolism, limb arterial thromboembolism, during and after surgery Thromboembolism
  • blood coagulation in artificial dialysis blood coagulation in extracorporeal circulation.
  • composition of the present invention contains the polysaccharide of the present invention.
  • the composition of the present invention may consist only of the polysaccharide of the present invention, or may contain other components.
  • the “other components” are not particularly limited as long as they are pharmacologically acceptable. Examples of the “other components” include components used by blending with pharmaceuticals.
  • composition of the present invention may be formulated in any dosage form.
  • dosage form include solutions, suspensions, powders, tablets, pills, capsules, and injections.
  • excipients for example, excipients, binders, disintegrants, lubricants, stabilizers, flavoring agents, flavoring agents, fragrances, diluents, surfactants and other pharmacologically acceptable additives.
  • excipients for example, excipients, binders, disintegrants, lubricants, stabilizers, flavoring agents, flavoring agents, fragrances, diluents, surfactants and other pharmacologically acceptable additives.
  • binders for example, excipients, binders, disintegrants, lubricants, stabilizers, flavoring agents, flavoring agents, fragrances, diluents, surfactants and other pharmacologically acceptable additives.
  • disintegrants for example, binders, disintegrants, lubricants, stabilizers, flavoring agents
  • the concentration of the polysaccharide of the present invention in the composition of the present invention is not particularly limited as long as it is an effective amount according to the use of the composition of the present invention. That is, the concentration of the polysaccharide of the present invention in the composition of the present invention may be a concentration effective for prevention, amelioration, and / or treatment of symptoms caused by blood coagulation, for example.
  • the concentration of the polysaccharide of the present invention in the composition of the present invention is appropriately set according to various conditions such as the anticoagulant activity of the polysaccharide of the present invention, the dosage form of the composition of the present invention, and the mode of use of the composition of the present invention. be able to.
  • the concentration of the polysaccharide of the present invention in the composition of the present invention is not particularly limited, and may be, for example, 0.01% or more, 0.1% or more, or 1% or more, and 100% or less, 10% or less. Or 1% or less, or a combination thereof.
  • the present invention provides a method for preventing, ameliorating, and / or treating a symptom caused by blood coagulation, which comprises administering a composition of the present invention to a subject.
  • a composition of the present invention may be added to blood outside the body.
  • administering the composition of the present invention to a subject is not limited to administration to living organisms such as humans, but includes addition to non-living organisms such as blood. That is, the “target” referred to here may be, for example, a living organism such as a human or a non-living organism such as blood.
  • composition of the present invention can be administered to a subject as it is, or diluted, dissolved, or dispersed with a pharmacologically acceptable solvent such as water, physiological saline, or a buffer solution. Needless to say, such dilution, dissolution, or dispersion is included in the range of the composition of the present invention.
  • the administration method is not particularly limited, and examples thereof include oral administration, invasive administration such as injection, and transdermal administration.
  • the administration method can be appropriately set according to various conditions such as the use of the composition of the present invention.
  • the dosage of the composition of the present invention can be appropriately set according to various conditions such as the anticoagulant activity of the polysaccharide of the present invention, the concentration of the polysaccharide of the present invention, the administration method, age, sex, and degree of symptoms.
  • Example 1 Preparation of heparosan (1) Heparosan fermentation Heparosan producing bacteria (Escherichia coli BL21 (DE3) / pVK9-kfiABCD strain) described in Example 1 of WO2015 / 050184 and a culture solution containing heparosan under culture conditions Got.
  • Heparosan fermentation Heparosan producing bacteria (Escherichia coli BL21 (DE3) / pVK9-kfiABCD strain) described in Example 1 of WO2015 / 050184 and a culture solution containing heparosan under culture conditions Got.
  • Example 2 N-Deacetylation of Heparosan 1) 61 mL of Hydrazine ⁇ H 2 O and 4.7 mL of 1N sulfuric acid were added to 1.22 g of heparosan, and the gas phase was replaced with nitrogen, followed by heating to 100 ° C. and 4.75. Reacted for hours. 2) After stopping the reaction by cooling with ice, 61 mL of 16% NaCl aqueous solution and 610 mL of MeOH were added and centrifuged, and the supernatant was removed. The obtained precipitate was dissolved in 50 mL of H 2 O, and then desalted and concentrated using an Amicon UF membrane (3 kDa).
  • Example 3 Reduction of molecular weight of N-deacetylated heparosan (1) Preparation of heparinase III ⁇ Construction of expression plasmid for hepC gene derived from Flavobacterium heparinum> A hepC gene encoding heparinase III was cloned from Flavobacterium heparinum (ATCC 13125) into a pMIV-Pnlp0 vector (US Patent Application Publication No. 20050196846) to construct a hepC gene expression plasmid pMIV-Pnlp0-hepC.
  • pMIV-Pnlp0-ter incorporates a strong nlp0 promoter (Pnlp0) and an rrnB terminator, and can function as an expression unit by inserting a target gene between the promoter and the terminator.
  • Pnlp0 indicates the promoter of the wild-type nlpD gene derived from Escherichia coli K-12 strain.
  • a DNA fragment containing about 300 bp of the promoter region (Pnlp0) of the nlpD gene was obtained by PCR using the chromosomal DNA of Escherichia coli MG1655 as a template and primer P1 (SEQ ID NO: 6) and primer P2 (SEQ ID NO: 7). Restriction enzyme SalI and PaeI sites are designed at the 5 'end of these primers, respectively.
  • the PCR cycle was as follows.
  • the obtained fragment was treated with SalI and PaeI and inserted into the SalI-PaeI site of pMIV-5JS (Japanese Patent Laid-Open No. 2008-99668) to obtain plasmid pMIV-Pnlp0.
  • the base sequence of the PaeI-SalI fragment of the Pnlp0 promoter inserted into this pMIV-Pnlp0 plasmid is as shown in SEQ ID NO: 8.
  • a DNA fragment (SEQ ID NO: 11) containing about 300 bp of the terminator region of rrnB gene is obtained by PCR using primer P3 (SEQ ID NO: 9) and primer P4 (SEQ ID NO: 10). did. Restriction enzymes XbaI and BamHI sites are designed at the 5 'ends of these primers, respectively.
  • the PCR cycle was as follows.
  • a DNA chain comprising the ORF (Su H. et. Al., Appl. Environ. Microbiol., 1996, 62: 2723-2734) of the hepC gene of Flavobacterium heparinum (ATCC 13125) was artificially synthesized.
  • the DNA fragment of the hepC gene was amplified by PCR using the DNA strand as a template and primer P5 (SEQ ID NO: 12) and primer P6 (SEQ ID NO: 13) as primers.
  • PrimeStar polymerase (TaKaRa) was used and the reaction composition described in the protocol was used. The PCR cycle was as follows. After 94 ° C. for 5 minutes, 98 ° C.
  • a DNA fragment of pMIV-Pnlp0 was obtained by PCR using pMIV-Pnlp0 as a template DNA and primers P7 (SEQ ID NO: 14) and primer P8 (SEQ ID NO: 15) as primers.
  • primers P7 SEQ ID NO: 14
  • primer P8 SEQ ID NO: 15
  • PrimeStar polymerase was used and the reaction composition described in the protocol was used. The PCR cycle was as follows. After 94 ° C. for 5 minutes, 98 ° C. for 5 seconds, 55 ° C. for 10 seconds, 72 ° C. for 6 minutes for 30 cycles, and finally 4 ° C. incubation.
  • Both obtained DNA fragments were ligated using an In-Fusion (registered trademark) HD cloning kit (Clontech) to construct a hepC gene expression plasmid pMIV-Pnlp0-hepC.
  • the base sequence of the cloned hepC gene is shown in SEQ ID NO: 16, and the amino acid sequence of heparinase III (HepC) encoded by it is shown in SEQ ID NO: 17.
  • HepC gene expression plasmid pMIV-Pnlp0-hepC was introduced into Escherichia coli BL21 (DE3) strain (Life Technologies) by electroporation (Cell; 80 ⁇ L, 200 ⁇ , 25 ⁇ F, 1.8 kV, cuvette; 0.1 mL)
  • Escherichia coli BL21 (DE3) / pMIV-Pnlp0-hepC strain was obtained. This strain was precultured overnight at 37 ° C.
  • Example 4 N-sulfation of low molecular weight N-deacetylated heparosan 1 g of low molecular weight N-deacetylated heparosan obtained in Example 3 was dissolved in 50 mL of milliQ water and 20 mg / mL NaHCO 3. / 20 mg / mL Trimethylamine ⁇ SO 3 aqueous solution (50 mL) was added and reacted at 55 ° C. overnight. 2) EtOH 1 L was added and mixed, centrifuged, and the supernatant was removed to obtain N-sulfated low molecular weight heparosan.
  • N-sulfated low molecular weight heparosan was dissolved in milliQ water to 500 ⁇ L, and disaccharide analysis was performed to determine the yield relative to N-deacetylated heparosan. Moreover, it used for GPC analysis and calculated
  • N-sulfated low molecular weight heparosan The disaccharide analysis of N-sulfated low molecular weight heparosan has been reported (T.Imanari, et.al., “High-performance liquid chromatographic analysis of glycosaminoglyc. -293 (1996)). That is, N-sulfated low molecular weight heparosan was decomposed into unsaturated disaccharides using heparinase II and III, and the decomposition products were analyzed by HPLC to quantify the amount of each constituent disaccharide.
  • N-deacetylated heparosan was performed.
  • the disaccharide analysis of N-deacetylated heparosan was conducted after N-deacetylated heparosan was N-sulfated. That is, after N-deacetylated heparosan was N-sulfated, it was decomposed into unsaturated disaccharides using heparinase II and III, and the decomposition products were analyzed by HPLC to quantify the amount of each constituent disaccharide. .
  • N-sulfation of N-deacetylated heparosan was performed in the same manner as N-sulfation of low molecular weight N-deacetylated heparosan.
  • the disaccharide analysis was performed according to the following procedure. 1) Heparinase II0.2U (Sigma), heparinase III 0.02-0.03 mIU, polysaccharide sample 5 ⁇ g, and enzyme digestion buffer (100 mM CH 3 COONa, 10 mM (CH 3 COO) 2 Ca, pH 7.0) 10 ⁇ L are mixed. Then, it was made up to 100 ⁇ L with milliQ water to prepare a reaction solution. 2) The reaction solution was reacted at 37 ° C. for 16 hours or longer, and then boiled at 100 ° C. for 2 minutes to stop the reaction.
  • enzyme digestion buffer 100 mM CH 3 COONa, 10 mM (CH 3 COO) 2 Ca, pH 7.0
  • the yield was calculated from the total amount of the constituent disaccharides generated from each polysaccharide sample. That is, the yield was calculated as the ratio (molar ratio) of the total amount of disaccharides produced from N-sulfated low molecular weight heparosan to the total amount of disaccharides produced from N-deacetylated heparosan. At this time, it was confirmed that 99% or more of the amino groups generated by N-deacetylation were N-sulfated in the obtained N-sulfated low molecular weight heparosan.
  • the residual ratio of N-acetyl groups in N-deacetylated heparosan was calculated based on the amount of each constituent disaccharide produced from N-deacetylated heparosan. That is, the residual ratio of acetyl groups was calculated as the ratio (molar ratio) of the amount of disaccharides having N-acetyl groups to the total amount of disaccharides. The residual ratio of acetyl groups was 14.9%.
  • N-sulfated low molecular weight heparosan and heparan sulfate were subjected to gel filtration by HPLC (GPC analysis).
  • GS520 Shodex, Asahipak GS-520HQ, 7.5 mm ⁇ 300 mm, particle diameter 7 ⁇ m
  • 100 mM potassium dihydrogen phosphate aqueous solution was used as the eluent
  • the flow rate was 0.6 mL / min
  • the column temperature was 40 ° C.
  • Analysis was performed at a detection wavelength of 200 nm.
  • Average molecular weights (Mn and Mw) were calculated using pullulan molecular weight markers (Shodex, STANDARD P-82, molecular weight range 5900 to 708000) as a standard.
  • Example 5 Coupling reaction of C5 epimerization and 2-O-sulfation (1) Expression and purification of C5-epimerase
  • C5-epimerase the catalytic site of human-derived C5-epimerase (Gln29-Asn617), A fusion protein (MBP-C5-epimerase) with maltose binding protein (MBP) was used. Therefore, the base sequence encoding the catalytic site was cloned into a pMAL-c2x vector (New England Biolabs) to construct an MBP-C5-epimerase expression plasmid pMAL-c2x-MBP-C5epi. According to the pMAL-c2x vector, the cloned gene is expressed as a fusion protein with MBP.
  • MBP-C5-c2x vector New England Biolabs
  • Jin-ping Li et al. Li J. et.al., Jour. Biol. Chem. 1997, 272: 28158- 28163 synthesized human C5-epimerase cDNA by means of artificial gene synthesis (Thermo Fisher). Prepared by Scientific Co., Ltd.).
  • the base sequence encoding the catalytic site of C5-epimerase (Gln29-Asn617) was obtained by PCR using C5-epi fw (SEQ ID NO: 18) and C5-epi rv (SEQ ID NO: 19) as primers. The containing DNA fragment was obtained.
  • PrimeStar polymerase (TaKaRa) was used and the reaction composition described in the protocol was used.
  • the PCR cycle was as follows. After 94 ° C. for 5 minutes, 98 ° C. for 5 seconds, 55 ° C. for 10 seconds, 72 ° C. for 2 minutes for 30 cycles, and finally 4 ° C. incubation.
  • a pMAL-c2x DNA fragment was obtained by PCR using pMAL-c2x (SEQ ID NO: 20, New England BioLabs) as a template DNA and the oligonucleotides of SEQ ID NO: 21 and SEQ ID NO: 22 as primers.
  • PrimeStar polymerase was used and the reaction composition described in the protocol was used.
  • the PCR cycle was as follows. After 94 ° C. for 5 minutes, 98 ° C. for 5 seconds, 55 ° C. for 10 seconds, 72 ° C. for 6 minutes for 30 cycles, and finally 4 ° C. incubation. Both DNA fragments obtained were ligated using an In-Fusion (registered trademark) HD cloning kit (Clontech), and the base sequence encoding the catalytic site of C5-epimerase and the MBP gene originally contained in pMAL-c2x were fused. The MBP-C5-epimerase expression plasmid pMAL-c2x-MBP-C5epi was constructed. SEQ ID NOs: 23 and 24 show the base sequence of the C5-epimerase insert fragment (base sequence encoding the catalytic site of C5-epimerase) and the amino acid sequence encoded by it.
  • MBP-C5-epimerase expression plasmid pMAL-c2x-MBP-C5epi and chaperonin expression plasmid pGro7 were electroporated to the Escherichia coli Origami B (DE3) strain (Novagen) (Cell; 80 ⁇ L, 200 ⁇ , 25 ⁇ F, 1.8 kV, cuvette; 0.1 mL) to obtain Origami B (DE3) / pMAL-c2x-MBP-C5epi / pGro7 strain.
  • This strain was added to LB medium (1.0% (w / v) peptone, 0.5% (w / v) yeast extract, 1.0% (w / v) NaCl) at 100 ⁇ g / mL ampicillin, 25 ⁇ g / mL.
  • the medium was inoculated into a medium supplemented with lamphenicol, and precultured overnight at 37 ° C. Thereafter, the culture solution was inoculated to a final concentration of 1% in LB medium in which 100 mL of Sakaguchi flask was spread. After shaking culture at 37 ° C.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • arabinose Wang Chemical Industries, Ltd.
  • 2-O-sulfating enzyme (2-OST) As 2-O-sulfating enzyme (2-OST), the 94th tyrosine residue of 2-OST derived from Chinese hamster is isoleucine. A fusion protein (MBP-2-OST) of the mutant catalytic site (Arg51-Asn356) and maltose-binding protein (MBP), which was converted to ⁇ , was used. Therefore, the base sequence encoding the catalytic site was cloned into a pMAL-c2x vector (New England Biolabs) to construct an expression plasmid pMAL-c2x-MBP-2OST for MBP-2-OST.
  • pMAL-c2x vector New England Biolabs
  • a pMAL-c2x DNA fragment was obtained by PCR using pMAL-c2x as a template DNA and oligonucleotides of SEQ ID NO: 21 and SEQ ID NO: 22 as primers.
  • PrimeStar polymerase was used and the reaction composition described in the protocol was used. The PCR cycle was as follows. After 94 ° C. for 5 minutes, 98 ° C. for 5 seconds, 55 ° C. for 10 seconds, 72 ° C. for 6 minutes for 30 cycles, and finally 4 ° C. incubation.
  • the MBP-2OST expression plasmid pMAL-c2x-MBP-2OST and the chaperonin expression plasmid pGro7 were introduced into Escherichia coli Origami B (DE3) strain (Novagen) in the same manner as in Example 5 (1).
  • Origami B (DE3) / pMAL-c2x-MBP-2OST / pGro7 strain was obtained. This strain was inoculated into a medium obtained by adding 100 ⁇ g / mL ampicillin and 25 ⁇ g / mL chloramphenicol to LB medium, and precultured overnight at 37 ° C.
  • the culture solution was inoculated to a final concentration of 1% in LB medium in which 100 mL of Sakaguchi flask was spread.
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • arabinose has a final concentration of 0.
  • the mixture was added to 2%, and further cultured at 22 ° C. overnight.
  • Purified MBP-2-OST was prepared from the culture solution by the following procedure. First, the culture solution was centrifuged, and the cells were collected. Subsequently, the microbial cells were ultrasonically crushed to obtain a microbial cell extract. Subsequently, the bacterial cell extract was mixed with Amyrose resin (New England Biolabs) equilibrated with 20 mM Tris (pH 7.5) and 200 mM NaCl to adsorb MBP-2-OST to the resin.
  • Amyrose resin New England Biolabs
  • ⁇ Test solution> Heparin standard solution: 1 mg / mL NaNO 2 aqueous solution: reagent 49.5mg dissolved aqueous citric acid solution H 2 O1mL: dissolve the reagents 384.2mg into H 2 O1mL DNPH solution: dissolve reagent 20.4mg (50% water) in acetonitrile 1mL
  • C5-epimerization rate (sum of the ratio of IdoA (2S) -GlcN (NS) and IdoA-GlcN (NS)) is 58%, 2-O-sulfation rate (GlcA (2S) -GlcN (NS) and IdoA) (2S) -GlcN (NS) ratio) was confirmed to be 65%.
  • Example 6 6-O-sulfation reaction ⁇ Purification before reaction> 30 mL of the enzyme reaction solution (reaction solution after C5 epimerization and 2-O-sulfation coupling reaction) obtained in Example 5 was centrifuged (7000 G, 30 minutes), and the supernatant was 0.45 ⁇ m. Filtered with a filter. Charge 27.3 g of filtrate into 15 g of weak anion exchange resin packed in a Pharmacia column (model number: XK26) (DIAION, WA-30 manufactured by Mitsubishi Chemical Co., Ltd., adjusted to pH 5.5 in advance with 25.6 mM NaH 2 PO 4 ).
  • the polysaccharide component was adsorbed and 480 mL of a washing solution (0.5 M NaCl + 25.6 mM NaH 2 PO 4 (pH 5.5)) was passed through (flow rate: 6.4 mL / min).
  • a washing solution 0.5 M NaCl + 25.6 mM NaH 2 PO 4 (pH 5.5)
  • 230 mL of the eluent (2M NaCl + 25.6 mM NaH 2 PO 4 (pH 5.5)
  • was passed flow rate 6.4 mL / min) to obtain an eluent containing a polysaccharide component.
  • the obtained eluent was charged in Amicon-3K (manufactured by Merck Millipore) and centrifuged (4000G). 100 mL of water was further added to the obtained concentrated liquid, and centrifugation was performed again. This washing operation was carried out three times to obtain 11 g of washing concentrate.
  • This washing operation was carried out twice to obtain 3.92 g of washing concentrate.
  • the obtained washing concentrate was sampled, and disaccharide composition analysis was performed by nitrous acid decomposition in the same procedure as in Example 5. As a result, it was confirmed that 76.5 mg of the reaction product (polysaccharide) was contained in 3.92 g of the washing concentrate in terms of the amount of disaccharide units.
  • Example 7 3-O-sulfation reaction of GlcN residue (1)
  • 3-O-sulfating enzyme (3-OST) expression strain Amino acid sequence of mouse-derived 3-OST-1 (NCBI-Protein ID: NP — 034604; SEQ ID NO: 29) was obtained from the KEGG (Kyoto Encyclopedia of Genes and Genes) database.
  • the 3-OST-1 catalyst optimized for codon usage of Escherichia coli with reference to a previous report (Edavettal SC et al., J Biol Chem. 2004; 279 (24) 25789-97)
  • a DNA fragment containing the base sequence (SEQ ID NO: 30) encoding the site (Gly48-His311) was synthesized.
  • the obtained DNA fragment was inserted into the EcoRI-SalI site of the pETDuet-1 vector (Novagen) to construct a 3-OST-1 expression plasmid pETDuet-3-OST-1.
  • 3-OST-1 since 3-OST-1 with His-Tag added to the N-terminal side is expressed, 3-OST-1 can be purified using a His tag.
  • This expression plasmid was introduced into Escherichia coli BL21 (DE3) strain in the same manner as in Example 5 (1) to obtain a 3-OST-1 expression strain pETDuet-3-OST-1 / BL21 (DE3) strain .
  • the cells obtained as a precipitate are suspended in 160 mL of equilibration buffer (50 mM sodium phosphate, 300 mM NaCl, pH 7.0), and centrifuged again (4 ° C., 8,000 rpm, 5 minutes). Washed. After the washing operation was repeated twice, the cells obtained as a precipitate were suspended again in 160 mL of equilibration buffer, and subjected to ultrasonic disruption (190 W, 20 minutes) while cooling with ice water. The disrupted solution was centrifuged (4 ° C., 8,000 rpm, 10 minutes), and the resulting supernatant was used as a cell-free extract.
  • equilibration buffer 50 mM sodium phosphate, 300 mM NaCl, pH 7.0
  • ultrasonic disruption 190 W, 20 minutes
  • the obtained cell-free extract was applied to a column in which 5 mL of a HisTALON Superflow Cartridge column (manufactured by Clontech) previously equilibrated with an equilibration buffer was connected to adsorb 3-OST-1 and washed buffer (50 mM) After washing with sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 7.0), 3-OST-1 was eluted with elution buffer (50 mM sodium phosphate, 300 mM NaCl, 150 mM imidazole, pH 7.0). An active fraction of -1 was obtained.
  • the obtained active fraction was subjected to buffer exchange (50 mM sodium phosphate, 300 mM NaCl, pH 7.0) using a PD-10 column (manufactured by GE Healthcare) according to the manual.
  • the enzyme solution after the buffer exchange was used as purified 3-OST-1 in subsequent experiments.
  • Example 8 Purification of reaction product 371 g of the enzyme reaction solution obtained in Example 7 (reaction solution after 3-O-sulfation reaction of GlcN residue) was centrifuged (8000 G, 30 minutes), and then The clear was filtered through a 0.45 ⁇ m filter. The filtrate was charged in Amicon-3K (manufactured by Merck Millipore) and centrifuged (4000G). To the obtained concentrated liquid, 200 mL of water was further added and centrifuged again. This washing operation was performed three times to obtain 11.6 g of a washing concentrate.
  • Amicon-3K manufactured by Merck Millipore
  • Example 9 Quality analysis of purified polysaccharide The items shown in Table 5 were measured for the purified polysaccharide obtained in Example 8. The measuring method will be described later. The results are shown in Table 5.
  • Example 10 Preparation of sulfated polysaccharides having different structures Preparation of multiple types of sulfated polysaccharides having different parameters such as epimerization rate, 2-O-sulfation rate, 3-O-sulfation rate of GlcN residues, Evaluation of anticoagulant activity was performed.
  • Preparation of Reagents / Substrate Solution One vial of substrate agent was dissolved in 20 mL of milli-Q water.
  • Antithrombin III solution 1 vial of antithrombin III agent was dissolved in 10 mL of milli-Q water.
  • -Factor Xa solution 1 vial of factor Xa agent was dissolved in 10 mL of milli-Q water.
  • Buffer solution The attached vial was used as it was.
  • Normal plasma 1 vial of normal plasma was dissolved in 1.0 mL of milli-Q water.
  • Reaction stop solution Milli-Q water was added to 20 mL of glacial acetic acid (special grade) to make the total volume 40 mL.
  • Heparin standard solution Primary diluted heparin solution (35 IU / mL): Heparin 1750 IU was dissolved in 50 mL of milli-Q water. Secondary diluted heparin solution (0.175 IU / mL): 900 ⁇ L of buffer solution was accurately added to 100 ⁇ L of primary diluted heparin solution and mixed. Further, 950 ⁇ L of the buffer solution was accurately added to 50 ⁇ L of the mixed solution and mixed. Heparin standard solution: The secondary diluted heparin solution was diluted and mixed as shown in Table 9.
  • Diluted solution A was obtained by diluting or dissolving purified polysaccharide with MilliQ so that the substrate concentration was 2 ⁇ g / mL. Reagents were added to diluent A at the ratios shown in Table 10 to prepare specimens.
  • Measurement Procedure A sample of 200 ⁇ L was accurately collected in each of the measurement and sample blank microtubes, and heated and stirred at 37 ° C. for 4 minutes. 100 ⁇ L of Factor Xa solution was added to the measurement microtube, mixed well, allowed to stand for 30 seconds, and then heated at 37 ° C. for exactly 30 seconds. 200 ⁇ L of a substrate solution preliminarily heated to 37 ° C. was added to the measurement microtube, mixed well, allowed to stand for 30 seconds, and then heated accurately at 37 ° C. for 180 seconds. 300 ⁇ L of the reaction stop solution was added to each microtube and mixed immediately. 800 ⁇ L of the reaction solution was dispensed into a UV cell, and the absorbance was measured at a wavelength of 405 nm.
  • Activated partial thromboplastin time (aPTT) measurement calcium chloride solution (0.025 mol / L GMY-300A) manufactured by Sysmex Corporation
  • Activated partial thromboplastin time kit Actin FSL GAC-200A manufactured by Sysmex Corporation Normal control plasma Did cytolol Level 1 GCA-110A Low molecular weight heparin standard product manufactured by Sysmex Corporation: Japanese Pharmacy Law standard product (Anti-Factor IIa: 670 IU manufactured by Pharmaceuticals and Medical Devices Regulatory Science Foundation)
  • -Equipment used Semi-automatic blood coagulation analyzer (CA-104, manufactured by Sysmex Corporation)
  • Measurement procedure A standard solution (diluted series of low molecular weight heparin standard) or a test solution (purified polysaccharide solution) 10 ⁇ L, actin 50 ⁇ L, and control plasma 50 ⁇ L were added to a cuvette, and immediately inserted into the detection section, and the light-shielding lid was closed. After stirring for 3 minutes, 50 ⁇ L of calcium chloride solution was added from the introduction part. The clotting time was automatically displayed. Based on the calibration curve calculated from the standard solution, the Anti-Factor IIa activity of the test solution was determined. The concentration at which 1 mL of blood coagulation was inhibited for 1 hour was defined as 1 IU / mL.
  • Foreign solution Foreign reagent (F9252-100 mL) manufactured by Aldrich was diluted 2-fold with water.
  • Albumin standard solution It was diluted to 0.125, 0.25, 0.5, 1 mg / mL using a standard solution (2 mg / mL) manufactured by Thermo Scientific.
  • ⁇ Disaccharide analysis> A disaccharide composition analysis was performed by nitrous acid decomposition in the same procedure as in Example 5, and the content of GlcA-GlcN (NS3S6S) was calculated.
  • Example 11 Reduction of molecular weight of N-sulfated heparosan having a high residual ratio of acetyl groups (1) N-deacetylation of heparosan 1) 6 mL of 2M NaOH was added to 120 mg of heparosan, heated to 48 ° C., and heated to 4 ° C. Reaction was performed for 1 hour. 2) After 2 mL of 6N HCl was added to stop the reaction, 45 mL of MeOH was added and centrifuged, and the supernatant was removed.
  • the obtained precipitate was dissolved in 8 mL of 0.25M NaHCO 3 and then desalted and concentrated using an Amicon UF membrane (3 kDa) to obtain 6 mL of an N-deacetylated heparosan solution.
  • the residual ratio of acetyl groups in the obtained N-deacetylated heparosan was 27.6% (described later).
  • Example 12 Control of molecular weight of low molecular weight N-sulfated heparosan depending on N-acetyl group residual ratio (1) N-deacetylation of heparosan N-deacetylation of heparosan in the same manner as in Example 11 Then, N-deacetylated heparosan having an N-acetyl group residual ratio of 2.6% to 29.6% was obtained by controlling the reaction time.
  • Example 13 Preparation of low molecular weight N-sulfated heparosan for observing the difference in activity depending on the molecular weight Since the residual amount of N-acetyl group affects the activity of heparan sulfate, the influence of the difference in molecular weight on the activity is examined. For the purpose, low molecular weight N-sulfated heparosan having different molecular weights with the same residual amount of N-acetyl groups was prepared. The molecular weight was controlled by the reaction time of the low molecular weight reaction.
  • N-deacetylation of heparosan Heparosan was subjected to an N-deacetylation reaction in the same manner as in Example 11 to obtain N-deacetylated heparosan having an N-acetyl group residual ratio of 29.4%.
  • (2) Reduction of molecular weight by heparinase III reaction Reduction of the molecular weight of N-deacetylated heparosan obtained in (1) was reacted with heparinase III under the same conditions as in Example 11, and the molecular weight was determined according to the amount of enzyme added and the reaction time. 4 types of low molecular weight N-deacetylated heparosan were obtained.
  • N-sulfation of low molecular weight N-deacetylated heparosan Four types of low molecular weight N-deacetylated heparosan obtained in (2) were subjected to N-sulfation reaction under the same conditions as in Example 11. To obtain N-sulfated low molecular weight heparosan. (4) The yield and molecular weight distribution of the obtained N-sulfated low molecular weight heparosan were determined by the same method as in Example 4.
  • Example 14 Preparation of sulfated polysaccharides with different molecular weights
  • C5-epimerase As C5-epimerase, a human C5-epimerase catalytic site (Gly101-Asn617) and a C-terminal 3 amino acid-substituted maltose binding protein (MBP *, previously reported (Rob J .Center, et.al., "Crystallization of a trimeric human T cell leukemia virus type 1 gp21 ectodomain fragment as a chimerb inte. (MBP * -C5-epimerase (G101)) was used.
  • MBP * C-terminal 3 amino acid-substituted maltose binding protein
  • a C-terminal region DNA fragment of MBP * was obtained by PCR reaction using pMAL-c2x (SEQ ID NO: 20, New England BioLabs) as a template DNA and oligonucleotides of SEQ ID NO: 31 and SEQ ID NO: 32 as primers. .
  • recognition sites for restriction enzymes BglII, BamHI, BamHI, SacI, XhoI, and NotI were added to the 5 'end and 3' end.
  • pMAL-c2x plasmid DNA and MBP * C-terminal region DNA fragment were cleaved with BglII and HindIII, and ligation reaction was performed to obtain pMAL-MBP * plasmid.
  • the base sequence of the pMAL-MBP * plasmid is shown in SEQ ID NO: 33.
  • a DNA fragment of C5-epimerase (G101) was obtained by PCR reaction using the pMAL-c2x-MBP-C5epi plasmid prepared in Example 5 as template DNA and the oligonucleotides of SEQ ID NO: 34 and SEQ ID NO: 35 as primers. .
  • a restriction enzyme NotI was added to the 5 'end and a recognition site for the restriction enzyme XhoI was added to the 3' end.
  • the pMAL-c2x-MBP-C5epi plasmid DNA and the C5-epimerase (G101) DNA fragment were cleaved with NotI and XhoI, and a ligation reaction was performed to obtain a pMAL-MBP * -C5epi (G101) plasmid.
  • the nucleotide sequence of the inserted fragment (the nucleotide sequence encoding the catalytic site of C5-epimerase (Gly101-Asn617)) and the amino acid sequence encoded by it are shown in SEQ ID NOs: 36 and 37.
  • Example 5 the MBP * -C5-epimerase (G101) expression plasmid pMAL-MBP * -C5epi (G101) and the chaperonin expression plasmid pGro7 (TaKaRa) were transformed into Escherichia coli Origami B (DE3) strain (Novagen) ) To obtain an Origami B (DE3) / pMAL-MBP * -C5epi (G101) / pGro7 strain. Using this strain, a bacterial cell extract was prepared in the same manner as in Example 5.
  • 2-O-sulfating enzyme (2-OST) As 2-O-sulfating enzyme (2-OST), the 94th tyrosine residue of 2-OST derived from Chinese hamster is isoleucine. A fusion protein (MBP * -2-OST (D68)) with the catalytic site (Asp68-Asn356) of the mutant converted to MB and MBP * was used.
  • a DNA fragment of 2-OST (D68) was obtained by PCR reaction using the pMAL-c2x-MBP-2OST plasmid prepared in Example 5 as template DNA and the oligonucleotides of SEQ ID NO: 38 and SEQ ID NO: 39 as primers. .
  • a restriction enzyme NotI was added to the 5 'end and a recognition site for the restriction enzyme XhoI was added to the 3' end.
  • the pMAL-c2x-MBP-2OST plasmid DNA and 2-OST (D68) DNA fragment were cleaved with NotI and XhoI, and ligation reaction was performed to obtain the pMAL-MBP * -2OST (D68) plasmid.
  • the nucleotide sequence of the inserted fragment (the nucleotide sequence encoding the catalytic site of 2-OST (Asp68-Asn356)) and the amino acid sequence encoded by it are shown in SEQ ID NOs: 40 and 41.
  • MBP * -2-OST (D68) expression plasmid pMAL-MBP * -2OST (D68) and chaperonin expression plasmid pGro7 (TaKaRa) were transformed into Escherichia coli Origami B (DE3) strain (Novagen) in the same manner as in Example 5.
  • Origami B (DE3) / pMAL-MBP * -2OST (D68) / pGro7 strain was obtained in the same manner as in Example 5.
  • 6-O-sulfation reaction 4-No For the enzyme reaction solution 9 (after the coupling reaction of C5 epimerization and 2-O-sulfation, or the reaction solution of C5 epimerization single reaction), purification and 6-O-sulfuric acid were carried out in the same manner as in Example 6. Reaction was performed to obtain a washing concentrate.
  • SEQ ID NO: 1 Nucleotide sequence of kfiABCD operon of Escherichia coli K5 strain
  • SEQ ID NO: 2 Amino acid sequence of KfiA protein of Escherichia coli K5 strain
  • SEQ ID NO: 3 Amino acid sequence of KfiB protein of Escherichia coli K5 strain
  • SEQ ID NO: 4 Escherichia -Amino acid sequence of KfiC protein of coli K5 strain
  • SEQ ID NO: 5 Amino acid sequence of KfiD protein of Escherichia coli K5 strain
  • SEQ ID NO: 12-15 primer SEQ ID NO: primer SEQ

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、抗凝固活性を有する新規な硫酸化多糖を提供する。具体的には、本発明は、ヘキスロン酸(HexA)残基とα-D-グルコサミン(GlcN)残基からなる二糖単位の繰り返し構造を含み、GlcN残基の3-O-硫酸化率が13%以上である、多糖を提供する。

Description

グルコサミン残基の3-O-硫酸化率が高いヘパラン硫酸
 本発明は、抗凝固活性を有する新規な硫酸化多糖に関する。抗凝固活性を有する硫酸化多糖は、例えば、医療分野で有用である。
 抗凝固活性を有する硫酸化多糖としては、例えば、ヘパリン(heparin)等の各種ヘパラン硫酸が知られている。すなわち、ヘパリンは抗凝固薬の一つであり、血栓塞栓症(thromboembolism)や播種性血管内凝固症候群(disseminated intravascular coagulation;DIC)の治療、人工透析や体外循環での血液凝固防止などに用いられる。
 ヘパリンは、抗凝固因子であるアンチトロンビンIIIの活性化を通じて、抗凝固作用を示す。アンチトロンビンIIIは、トロンビン、第Xa因子(第X因子の活性型)、およびその他のセリンプロテアーゼを、その活性セリン部位と結合することで阻害する。なお、トロンビンは血液凝固因子であり、第Xa因子はトロンビンの成熟に関与する因子である。ヘパリンは、このアンチトロンビンIIIと結合し、その構造を変化させて阻害作用を活性化する。トロンビンは、ヘパリン-アンチトロンビンIII複合体に対して、第Xa因子よりも高い親和性を有する。
 また、ヘパリンを酵素/化学処理および分画して得られる平均分子量4000-6000Daの低分子ヘパリンは、出血の副作用が少なく、近年使用頻度が増えてきている。低分子ヘパリンは、糖鎖が短いため、アンチトロンビンIIIとは結合できるが、トロンビンとはほとんど結合できない。ここで、ヘパリン-アンチトロンビンIII複合体によるトロンビンの阻害では、トロンビンがヘパリンに結合する必要があるのに対し、ヘパリン-アンチトロンビンIII複合体による第Xa因子の阻害では、第Xa因子がヘパリンに結合する必要はない。そのため、低分子ヘパリンは、トロンビンの作用をほとんど阻害しないのに対し、第Xa因子の作用は阻害できる。
 現在、大部分のヘパリン製剤は、豚腸粘膜からの抽出品である。しかしながら、2008年に不純物混入を原因とする死亡事故が発生したことから、品質管理された非動物由来ヘパリンの製造開発が検討されてきた。
 非動物由来ヘパリンを製造する方法は多数報告されており、それらの方法は大きく2つに大別される。1つ目は、Escherichia coli K5株等の微生物を用いてヘパリンの糖鎖骨格となるヘパロサン(heparosan)を発酵法で生産し、化学的または酵素的手法を用いてヘパリンに類似する抗凝固多糖類に変換し、次いで化学的、酵素的、または物理的手法を用いて低分子化する方法である(非特許文献1、2)。2つ目は、化学合成法で1から糖鎖を連結していく方法である(特許文献1)。
 ヘパロサンを出発物質としてヘパリンを製造する方法としては、化学変換を主とする方法と酵素変換を主とする方法が報告されており、生成されるヘパリン類似多糖類の構造上の特徴および抗凝固活性強度が異なる(特許文献2、3)。
 化学変換を主とする方法で生成されるヘパリン類似多糖類では、グルコサミン残基の3-O-硫酸化比率が高い反面、グルクロン酸残基の一部も3-O-硫酸化されている。この3-O-硫酸化されたグルクロン酸残基は動物由来ヘパリンには存在しない構造であり、生体内での副反応が懸念されている。
 一方、酵素変換を主とする方法で生成されるヘパリン類似多糖類では、動物由来ヘパリンと同一の硫酸化パターンを有する反面、抗凝固活性は動物由来品の半分程度である。
 以上の先行知見より、動物由来ヘパリンと同一の硫酸化パターンを有し、且つ、高い抗凝固活性を示すヘパリン類似多糖類は知られていない。
US20120116066 US8227449 US20120322114
Lindahl U. et al.(2005)J Med Chem 48(2):349-352 Zhang Z. et al.(2008)Journal of the American Chemical Society 130(39):12998-13007
 本発明は、抗凝固活性を有する新規な硫酸化多糖を提供することを課題とする。
 本願発明者らは、鋭意検討の結果、ヘキスロン酸(HexA)残基とα-D-グルコサミン(GlcN)残基からなる二糖単位の繰り返し構造を含み、GlcN残基の3-O-硫酸化率が高い、抗凝固活性を有する新規な硫酸化多糖を見出し、本発明を完成させた。
 すなわち、本発明は以下の通り例示できる。
[1]
 下記一般式(I)に示す二糖単位の繰り返し構造を含む、抗凝固活性を有する多糖:
Figure JPOXMLDOC01-appb-C000004
 式中、R~Rは、以下の条件を満たす:
 R、R、R、およびRは、それぞれ独立に、水素または硫酸基を示す;
 Rは、水素、硫酸基、またはアセチル基を示す;
 Rの少なくとも一部が硫酸基である;
 Rにおける硫酸基の比率が、13%以上である;
 Rにおける硫酸基の比率が、50%以上である。
[2]
 前記二糖単位の含有率が、90%以上である、前記多糖。
[3]
 前記多糖を構成する糖鎖の総数の50%以上の数の糖鎖が、下記一般式(II)に示す構造からなる、前記多糖:
Figure JPOXMLDOC01-appb-C000005
 式中、R~Rは、前記一般式(I)におけるR~Rと同一である;
 式中、nは、平均値として3~30である。
[4]
 前記多糖を構成する糖鎖の総数の50%以上の数の糖鎖が、下記一般式(II)に示す構造からなる、前記多糖:
Figure JPOXMLDOC01-appb-C000006
 式中、R~Rは、前記一般式(I)におけるR~Rと同一である;
 式中、nは、平均値として3~15である。
[5]
 平均糖連結数が6~60残基である、前記多糖。
[6]
 平均糖連結数が6~30残基である、前記多糖。
[7]
 プルランを標準としてゲル浸透クロマトグラフィーにより測定される数平均分子量が8000~60000である、前記多糖。
[8]
 プルランを標準としてゲル浸透クロマトグラフィーにより測定される数平均分子量が12000~40000である、前記多糖。
[9]
 プルランを標準としてゲル浸透クロマトグラフィーにより測定される重量平均分子量が10000~100000である、前記多糖。
[10]
 プルランを標準としてゲル浸透クロマトグラフィーにより測定される重量平均分子量が15000~50000である、前記多糖。
[11]
 前記二糖単位のヘキスロン酸残基におけるイズロン酸残基の比率が0%~70%である、前記多糖。
[12]
 Rにおける硫酸基の比率が、0%~80%である、前記多糖。
[13]
 イズロン酸残基のRにおける硫酸基の比率が、0%~100%である、前記多糖。
[14]
 グルクロン酸残基のRにおける硫酸基の比率が、0%~50%である、前記多糖。
[15]
 Rにおける硫酸基の比率が、1%未満である、前記多糖。
[16]
 Rにおける硫酸基の比率が、70%~100%である、前記多糖。
[17]
 Rにおけるアセチル基の比率が、0%~33%である、前記多糖。
[18]
 Rにおける硫酸基の比率が、45%以下である、前記多糖。
[19]
 Rにおける硫酸基の比率が、70%~100%である、前記多糖。
[20]
 GlcA-GlcN(NS3S6S)、GlcA(2S)-GlcN(NS6S)、IdoA(2S)-GlcN(NS6S)、GlcA-GlcN(NS6S)、IdoA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS3S)、IdoA-GlcN(NS6S)、およびGlcA-GlcN(NS)から選択される1またはそれ以上の二糖単位を、50%以上の総含有率で含む、前記多糖。
[21]
 Anti-Factor Xa活性/Anti-Factor IIa活性比が、1.5以上である、前記多糖。
[22]
 プルランを標準としてゲル浸透クロマトグラフィーにより測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5以下である、前記多糖。
[23]
 フリー体、もしくはその薬理学的に許容される塩、またはそれらの混合物である、前記多糖。
[24]
 前記塩が、アンモニウム塩、ナトリウム塩、リチウム塩、およびカルシウム塩から選択される、前記多糖。
[25]
 前記多糖を含む医薬組成物。
[26]
 血液凝固に起因する症状の予防、改善、および/または治療用である、前記組成物。
[27]
 前記症状が、播種性血管内凝固症候群、血栓塞栓症、人工透析における血液凝固、または体外循環における血液凝固である、前記組成物。
 本発明によれば、抗凝固活性を有する新規な硫酸化多糖を提供することができる。
 以下、本発明を詳細に説明する。
<1>本発明の多糖
 本発明の多糖は、抗凝固活性を有する新規な硫酸化多糖である。本発明の多糖を、「ヘパラン硫酸」という場合がある。本発明の多糖は、単一の種類の糖鎖からなるものであってもよく、複数の種類の糖鎖の混合物であってもよい。本発明の多糖は、通常は、複数種の糖鎖の混合物として得られる。「複数種の糖鎖の混合物」とは、構造(糖連結数、分子量、および置換基の種類や位置、等)の異なる2種またはそれ以上の糖鎖の組み合わせをいう。本発明の多糖が単一の種類の糖鎖からなるものである場合にあっては、本発明の多糖を特定する各パラメータは、特記しない限り、当該糖鎖における該当パラメータを示す。本発明の多糖が複数の種類の糖鎖の混合物である場合にあっては、本発明の多糖を特定する各パラメータは、特記しない限り、当該混合物全体における該当パラメータの平均値を示す。本発明の多糖を製造する際の中間体等の他の多糖についても同様である。
 本発明の多糖を特定する各パラメータは、例えば、多糖等の化合物の検出または同定に用いられる公知の手法により決定することができる。そのような手法としては、例えば、二糖分析、分子量分析(例えば、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography;GPC))、紫外可視吸光度検出器(UV)および示差屈折率検出器(RI)を使用した水系サイズ排除クロマトグラフィー(SEC)(SEC-RI/UV法)、HPLC、LC/MS、NMRが挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて用いることができる。これらの手法は、決定すべきパラメータの種類に応じて適宜選択できる。例えば、二糖構造やその含有率は、二糖分析により決定することができる。二糖分析は常法により実施できる。二糖分析は、例えば、既報(T.Imanari,et.al.,“High-performance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides.” J.O.Chromato.A,720,275-293(1996))の条件に従い実施することができる。すなわち、例えば、必要に応じてN-硫酸化した多糖をヘパリナーゼ(Heparinase)を用いて不飽和二糖に分解し、分解物を分離定量することにより、各構成二糖の量を定量することができる。ヘパリナーゼとしては、ヘパリナーゼI、ヘパリナーゼII、ヘパリナーゼIIIが挙げられる。ヘパリナーゼは、単独で、あるいは適宜組み合わせて利用できる。用いるヘパリナーゼは、多糖に含まれるヘキスロン酸(HexA)残基の種類等の諸条件に応じて適宜選択できる。例えば、β-D-グルクロン酸(GlcA)残基を含む多糖の二糖分析には、ヘパリナーゼIIおよびIIIを組み合わせて利用することができる。また、例えば、α-L-イズロン酸(IdoA)残基を含む多糖の二糖分析には、ヘパリナーゼIおよびIIを組み合わせて利用することができる。また、多糖を亜硝酸分解し、分解物を分離定量することにより、各構成二糖の量を定量することができる。分解物の分離定量は、例えば、HPLCやLC/MS等の化合物の同定に用いられる公知の手法により実施することができる。二糖分析の条件として、具体的には、例えば、実施例に記載の条件が挙げられる。各構成二糖の量に基づき、標的の二糖単位の含有率を算出することができる。なお、ヘパリナーゼIII等のヘパリナーゼで多糖を切断する場合、通常、それにより生じる非還元末端のHexA残基においてC4-C5間の結合が二重結合となる。C4-C5間の結合が二重結合であるHexA残基はIdoA残基とGlcA残基の区別がないため、IdoA残基とGlcA残基の区別が必要な場合は、亜硝酸分解等のIdoA残基とGlcA残基を区別できる手法により二糖分析を実施すればよい。本発明の多糖を製造する際の中間体等の他の多糖を特定する各パラメータについても同様に決定できる。
 本発明において、ヘパラン硫酸の平均分子量(数平均分子量(Mn)および重量平均分子量(Mw))は、特に断りがなければ、プルランを標準として直接的に測定することができる。あるいは、ヘパラン硫酸の真の平均分子量は、真の平均分子量が既知である分子(例、エノキサバリンナトリウム)を基準に比例計算により間接的に算出してもよい。本発明では、上記のとおりヘパラン硫酸の平均分子量を直接的に測定しても、間接的に算出してもよいが、直接的に測定することが好ましい。
 本発明の多糖は、具体的には、下記一般式(I)に示す二糖単位の繰り返し構造を含む、抗凝固活性を有する多糖である。
Figure JPOXMLDOC01-appb-C000007
 式中、R、R、R、およびRは、それぞれ独立に、水素(-H)または硫酸基(-SOH)を示す。式中、Rは、水素(-H)、硫酸基(-SOH)、またはアセチル基(-COCH)を示す。なお、R~Rは、いずれも、各繰り返し単位および各糖鎖において独立に選択される。また、ヘキスロン酸(HexA)残基の種類も、各繰り返し単位および各糖鎖において独立に選択される。
 本発明の多糖は、上記繰り返し構造を主要な構成要素として含んでいてよい。「本発明の多糖が上記繰り返し構造を主要な構成要素として含む」とは、本発明の多糖の90%以上、95%以上、97%以上、99%以上、または100%(全て)の部分が上記繰り返し構造からなることであってよい。「本発明の多糖が上記繰り返し構造を主要な構成要素として含む」とは、実質的には、本発明の多糖の90%以上、95%以上、97%以上、99%以上、または100%(全て)の部分が上記二糖単位(一般式(I)に示す二糖単位)からなることであってよい。上記二糖単位からなる部分の比率を「上記二糖単位の含有率」ともいう。すなわち、本発明の多糖における上記二糖単位の含有率は、例えば、90%以上、95%以上、97%以上、99%以上、または100%であってよい。上記二糖単位の含有率は、例えば、二糖分析により測定することができる。すなわち、上記二糖単位の含有率は、例えば、本発明の多糖を二糖分析に供した際の、二糖の総量に対する上記二糖単位の総量の比率(モル比)として算出できる。
 本発明の多糖における、上記二糖単位の平均繰り返し数、平均糖連結数、数平均分子量(Mn)、重量平均分子量(Mw)は、いずれも適宜設定できる。上記二糖単位の平均繰り返し数は、例えば、3以上、4以上、5以上、または6以上であってもよく、50以下、30以下、20以下、15以下、12以下、または9以下であってもよく、それらの組み合わせであってもよい。上記二糖単位の平均繰り返し数は、具体的には、例えば、3~15、または6~9であってもよい。平均糖連結数(残基数)は、例えば、6以上、8以上、10以上、または12以上であってもよく、100以下、60以下、40以下、30以下、24以下、または18以下であってもよく、それらの組み合わせであってもよい。平均糖連結数は、具体的には、例えば、6~60、6~30、または12~18残基であってもよい。平均繰り返し数や平均糖連結数は、例えば、上記例示したような化合物の検出または同定に用いられる手法により決定することができる。平均繰り返し数や平均糖連結数は、具体的には、例えば、分子量に基づいて決定することができる。分子量の測定は常法により実施できる。分子量の測定法としては、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography;GPC)、および紫外可視吸光度検出器(UV)および示差屈折率検出器(RI)を使用した水系サイズ排除クロマトグラフィー(SEC)(SEC-RI/UV法、ヨーロッパ薬局方(EP)準拠)が挙げられる。GPCによる分子量の測定条件として、具体的には、例えば、実施例に記載の条件が挙げられる。数平均分子量(Mn)は、プルランを標準としてGPCにより測定される値として、例えば、7000以上、8000以上、10000以上、12000以上、15000以上、または18000以上であってもよく、150000以下、100000以下、60000以下、50000以下、43000以下、または40000以下であってもよく、それらの組み合わせであってもよい。数平均分子量(Mn)は、プルランを標準としてGPCにより測定される値として、具体的には、例えば、8000~60000、または12000~40000であってもよく、あるいは、18000~43000であってもよい。重量平均分子量(Mw)は、プルランを標準としてGPCにより測定される値として、例えば、9000以上、10000以上、12000以上、15000以上、21000以上、または25000以上であってもよく、200000以下、150000以下、100000以下、80000以下、60000以下、または50000以下であってもよく、それらの組み合わせであってもよい。重量平均分子量(Mw)は、プルランを標準としてGPCにより測定される値として、具体的には、例えば、10000~100000、または15000~50000であってもよく、あるいは、25000~60000であってもよい。重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、プルランを標準としてGPCにより測定される値として、例えば、1以上であってもよく、2.0以下、1.9以下、1.8以下、1.7以下、1.6以下、1.55以下、1.5以下、1.45以下、1.4以下、1.35以下、1.3以下、1.25以下、または1.2以下であってもよく、それらの組み合わせであってもよい。重量平均分子量と数平均分子量の比(Mw/Mn)は、プルランを標準としてGPCにより測定される値として、具体的には、例えば、1~1.6、1~1.5、または1~1.4であってもよい。
 上記二糖単位は、ヘキスロン酸(HexA)残基(式中、左側の糖残基)とα-D-グルコサミン(GlcN)残基(式中、右側の糖残基)からなる。上記二糖単位において、HexA残基側(左側)を「非還元末端側」、GlcN残基側(右側)を「還元末端側」ともいう。ヘキスロン酸残基は、β-D-グルクロン酸(GlcA)残基またはα-L-イズロン酸(IdoA)残基である。すなわち、本発明において、「ヘキスロン酸(HexA)」という用語は、β-D-グルクロン酸(GlcA)およびα-L-イズロン酸(IdoA)の総称として用いる。「ヘキスロン酸(HexA)」という用語は、すなわち「β-D-グルクロン酸(GlcA)」および「α-L-イズロン酸(IdoA)」という用語は、特記しない限り、RおよびRの選択に応じて取り得る全ての誘導体を包含する。「α-D-グルコサミン(GlcN)」という用語は、特記しない限り、R、R、およびRの選択に応じて取り得る全ての誘導体を包含する。
 本発明の多糖は、非還元末端の一部または全部に上記二糖単位が存在するように、上記繰り返し構造を有していてよい。例えば、本発明の多糖の非還元末端の二糖単位の90%以上、95%以上、97%以上、99%以上、または100%が上記二糖単位であってよい。すなわち、例えば、本発明の多糖の非還元末端の糖残基の90%以上、95%以上、97%以上、99%以上、または100%がHexA残基であってよい。また、本発明の多糖は、還元末端の一部または全部に上記二糖単位が存在するように、上記繰り返し構造を有していてよい。例えば、本発明の多糖の還元末端の二糖単位の90%以上、95%以上、97%以上、99%以上、または100%が上記二糖単位であってよい。すなわち、例えば、本発明の多糖の還元末端の90%以上、95%以上、97%以上、99%以上、または100%がGlcN残基であってよい。なお、上記二糖単位が糖鎖の末端に存在する場合、末端のグリコシド結合は、末端として適切な構造として適宜読み替えてよい。すなわち、非還元末端におけるHexA残基のC-4位のグリコシド結合は、例えば、水酸基(-OH)として読み替えてもよいし、C4-C5間の二重結合として読み替えてもよい。なお、C4-C5間の結合が二重結合であるHexA残基は、IdoA残基とGlcA残基の区別がないため、本発明の多糖等の多糖を特定する各パラメータを算出する際には、特記しない限り、HexA残基には該当するが、IdoA残基とGlcA残基のいずれにも該当しないものとして扱う。また、還元末端のGlcN残基のC-1位のグリコシド結合は、例えば、水酸基(-OH)として読み替えてもよい。
 本発明の多糖は、より具体的には、下記一般式(II)に示す構造を含んでいてよい。例えば、本発明の多糖の一部または全部(すなわち、本発明の多糖を構成する糖鎖の一部または全部)が、下記一般式(II)に示す構造からなるものであってよい。例えば、本発明の多糖を構成する糖鎖の総数の50%以上、70%以上、80%以上、90%以上、95%以上、97%以上、99%以上、または100%の数の糖鎖が、下記一般式(II)に示す構造からなるものであってもよい。式中、R~Rは、いずれも、上述した通りである。式中、「n」は、同式における上記二糖単位の繰り返し数を示す。「n」は、本発明の多糖が上述したような上記二糖単位の平均繰り返し数、平均糖連結数、数平均分子量(Mn)、重量平均分子量(Mw)、またはそれらの組み合わせを達成できるように設定されてよい。「n」は、プルラン換算の重量平均分子量を低分子量ヘパリン製剤エノキサパリンナトリウム(サノフィ・アベンティス社(フランス))の分子量を用いてさらに換算することによって算出できる。具体的には、エノキサパリンナトリウムのGPC法測定値16215をEP準拠SEC-RI/UV法での測定値4325で除した値3.75を換算係数とし、本発明の多糖のプルラン換算の重量分子量を換算係数3.75およびヘパリン二糖平均分子量665.4で除することによって求めることができる。各糖鎖において、「n」は、例えば、3~200、3~100、または3~50であってよい。また、「n」は、具体的には、糖鎖の混合物全体における平均値として、例えば、上記例示した本発明の多糖における上記二糖単位の平均繰り返し数(例えば、3~30、3~15、または6~9)であってよい。
Figure JPOXMLDOC01-appb-C000008
 HexA残基におけるIdoA残基の比率(「エピメリ化率」ともいう)は、例えば、0%以上、10%以上、20%以上、30%以上、40%以上、または50%以上であってもよく、100%以下、90%以下、80%以下、70%以下、または60%以下であってもよく、それらの組み合わせであってもよい。エピメリ化率は、具体的には、例えば、0%~70%、20%~70%、または30%~60%であってもよい。ただし、エピメリ化率を算出する際の「HexA残基」とは、IdoA残基およびGlcA残基をいい、C4-C5間の結合が二重結合であるHexA残基は除くものとする。エピメリ化率は、例えば、二糖分析により測定することができる。すなわち、エピメリ化率は、本発明の多糖を二糖分析に供した際の、HexA残基がIdoA残基またはGlcA残基である上記二糖単位の総量に対する、HexA残基がIdoA残基である上記二糖単位の量の比率(モル比)として算出できる。HexA残基のC4-C5間の結合は二重結合であってもよい。C4-C5間の結合が二重結合であるHexA残基の位置は特に制限されない。例えば、特に、非還元末端のHexA残基においてC4-C5間の結合が二重結合であってもよい。すなわち、例えば、C4-C5間の結合が二重結合であるHexA残基の50%以上、70%以上、80%以上、90%以上、95%以上、97%以上、99%以上、または100%が、非還元末端に存在していてもよい。また、例えば、C4-C5間の結合が二重結合でないHexA残基の50%以上、70%以上、80%以上、90%以上、95%以上、97%以上、99%以上、または100%が、非還元末端以外に存在していてもよい。また、例えば、非還元末端のHexA残基の50%以上、70%以上、80%以上、90%以上、95%以上、97%以上、99%以上、または100%において、C4-C5間の結合が2重結合であってもよい。また、例えば、非還元末端以外のHexA残基の50%以上、70%以上、80%以上、90%以上、95%以上、97%以上、99%以上、または100%において、C4-C5間の結合が2重結合でなくてもよい。
 Rは、水素(-H)または硫酸基(-SOH)を示す。Rにおける硫酸基の比率は、IdoA残基とGlcA残基とで、同一であってもよく、なくてもよい。HexA残基全体でのRにおける硫酸基の比率(「HexA残基の2-O-硫酸化率」ともいう)、IdoA残基のRにおける硫酸基の比率(「IdoA残基の2-O-硫酸化率」ともいう)、GlcA残基のRにおける硫酸基の比率(「GlcA残基の2-O-硫酸化率」ともいう)は、それぞれ、例えば、0%以上、5%以上、10%以上、15%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、または90%以上であってもよく、100%以下、95%以下、90%以下、85%以下、80%以下、70%以下、60%以下、50%以下、40%以下、または30%以下であってもよく、それらの矛盾しない組み合わせであってもよい。HexA残基の2-O-硫酸化率は、具体的には、例えば、0%~80%、10%~70%、または15%~70%であってもよい。IdoA残基の2-O-硫酸化率は、具体的には、例えば、0%~100%、15%~100%、または30%~100%であってもよい。GlcA残基の2-O-硫酸化率は、具体的には、例えば、0%~50%、0%~40%、または0%~30%であってもよい。Rにおける硫酸基の比率は、例えば、二糖分析により測定することができる。すなわち、HexA残基の2-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、上記二糖単位の総量に対する、HexA残基が2-O-硫酸化されたHexA残基である上記二糖単位の量の比率(モル比)として算出できる。また、IdoA残基の2-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、HexA残基がIdoA残基である上記二糖単位の総量に対する、HexA残基が2-O-硫酸化されたIdoA残基である上記二糖単位の量の比率(モル比)として算出できる。また、GlcA残基の2-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、HexA残基がGlcA残基である上記二糖単位の総量に対する、HexA残基が2-O-硫酸化されたGlcA残基である上記二糖単位の量の比率(モル比)として算出できる。
 Rは、水素(-H)または硫酸基(-SOH)を示す。Rにおける硫酸基の比率は、IdoA残基とGlcA残基とで、同一であってもよく、なくてもよい。Rの硫酸基は、天然のヘパリンには存在しない。よって、例えば、生体内での副反応の懸念等の観点から、Rにおける硫酸基の比率は低いのが好ましい場合があり得る。HexA残基全体でのRにおける硫酸基の比率(「HexA残基の3-O-硫酸化率」ともいう)、IdoA残基のRにおける硫酸基の比率(「IdoA残基の3-O-硫酸化率」ともいう)、GlcA残基のRにおける硫酸基の比率(「GlcA残基の3-O-硫酸化率」ともいう)は、それぞれ、例えば、15%未満、10%未満、5%未満、3%未満、1%未満、0.5%未満、0.1%未満、またはゼロであってよい。Rにおける硫酸基の比率は、例えば、二糖分析により測定することができる。すなわち、HexA残基の3-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、上記二糖単位の総量に対する、HexA残基が3-O-硫酸化されたHexA残基である上記二糖単位の量の比率(モル比)として算出できる。また、IdoA残基の3-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、HexA残基がIdoA残基である上記二糖単位の総量に対する、HexA残基が3-O-硫酸化されたIdoA残基である上記二糖単位の量の比率(モル比)として算出できる。また、GlcA残基の3-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、HexA残基がGlcA残基である上記二糖単位の総量に対する、HexA残基が3-O-硫酸化されたGlcA残基である上記二糖単位の量の比率(モル比)として算出できる。
 Rは、水素(-H)、硫酸基(-SOH)、またはアセチル基(-COCH)を示す。Rの少なくとも一部は硫酸基である。Rにおける硫酸基の比率(「N-硫酸化率」ともいう)は、例えば、60%以上、70%以上、または80%以上であってもよく、100%以下、95%以下、または90%以下であってもよく、それらの組み合わせであってもよい。N-硫酸化率は、具体的には、例えば、70%~100%、または80%~95%であってもよい。Rにおけるアセチル基の比率(「N-アセチル化率」ともいう)は、例えば、0%以上、1%以上、1.5%以上、3%以上、5%以上、7%以上、9%以上、または11%以上であってもよく、50%以下、45%以下、40%以下、35%以下、33%以下、30%以下、25%以下、20%以下、または17%以下であってもよく、それらの組み合わせであってもよい。N-アセチル化率は、具体的には、例えば、0%~33%、1%~33%、7%~33%、7%~30%、または11%~17%であってもよい。N-硫酸化率およびN-アセチル化率は、例えば、二糖分析により測定することができる。すなわち、N-硫酸化率は、本発明の多糖を二糖分析に供した際の、上記二糖単位の総量に対する、GlcN残基がN-硫酸化されたGlcN残基である上記二糖単位の量の比率(モル比)として算出できる。また、N-アセチル化率は、本発明の多糖を二糖分析に供した際の、上記二糖単位の総量に対する、GlcN残基がN-アセチル化率されたGlcN残基である上記二糖単位の量の比率(モル比)として算出できる。Rが水素、硫酸基、またはアセチル基であるGlcN残基の位置は特に制限されない。例えば、特に、還元末端のGlcN残基においてRが水素またはアセチル基であってもよい。すなわち、例えば、Rが水素またはアセチル基であるGlcN残基の50%以上、70%以上、80%以上、90%以上、95%以上、97%以上、99%以上、または100%が、還元末端に存在していてもよい。
 Rは、水素(-H)または硫酸基(-SOH)を示す。Rにおける硫酸基の比率(「GlcN残基の3-O-硫酸化率」または単に「3-O-硫酸化率」ともいう)は、13%以上である。GlcN残基の3-O-硫酸化率は、例えば、45%以下、40%以下、または33%以下であってもよい。GlcN残基の3-O-硫酸化率は、具体的には、例えば、13%~45%、13%~40%、または13%~33%であってもよい。GlcN残基の3-O-硫酸化率は、例えば、二糖分析により測定することができる。すなわち、GlcN残基の3-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、上記二糖単位の総量に対する、GlcN残基が3-O-硫酸化されたGlcN残基である上記二糖単位の量の比率(モル比)として算出できる。
 Rは、水素(-H)または硫酸基(-SOH)を示す。Rの少なくとも一部は硫酸基である。Rにおける硫酸基の比率(「GlcN残基の6-O-硫酸化率」または単に「6-O-硫酸化率」ともいう)は、例えば、50%以上、60%以上、70%以上、80%以上、または90%以上であってよく、100%以下、または95%以下であってもよく、それらの組み合わせであってもよい。6-O-硫酸化率は、具体的には、例えば、50~100%、60~100%、または70~100%であってもよい。6-O-硫酸化率は、例えば、二糖分析により測定することができる。すなわち、6-O-硫酸化率は、本発明の多糖を二糖分析に供した際の、上記二糖単位の総量に対する、GlcN残基が6-O-硫酸化されたGlcN残基である上記二糖単位の量の比率(モル比)として算出できる。
 本発明の多糖は、具体的には、例えば、GlcA-GlcN(NS3S6S)、GlcA(2S)-GlcN(NS6S)、IdoA(2S)-GlcN(NS6S)、GlcA-GlcN(NS6S)、IdoA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS3S)、IdoA-GlcN(NS6S)、およびGlcA-GlcN(NS)から選択される1またはそれ以上、例えば全て、の二糖単位を含んでいてよい。本発明の多糖におけるGlcA-GlcN(NS3S6S)、GlcA(2S)-GlcN(NS6S)、IdoA(2S)-GlcN(NS6S)、GlcA-GlcN(NS6S)、IdoA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS3S)、IdoA-GlcN(NS6S)、およびGlcA-GlcN(NS)の総含有率は、例えば、50%以上、60%以上、70%以上、80%以上、または90%以上であってよい。上記総含有率は、例えば、二糖分析により測定することができる。すなわち、上記総含有率は、例えば、本発明の多糖を二糖分析に供した際の、二糖の総量に対するGlcA-GlcN(NS3S6S)、GlcA(2S)-GlcN(NS6S)、IdoA(2S)-GlcN(NS6S)、GlcA-GlcN(NS6S)、IdoA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS3S)、IdoA-GlcN(NS6S)、およびGlcA-GlcN(NS)の総量の比率(モル比)として算出できる。なお、このような二糖単位の表記において、括弧内に置換基の位置と種類を付記し、括弧内に付記されないR~Rは水素(-H)を示す。
 本発明の多糖は、抗凝固活性を有する。抗凝固活性とは、具体的には、抗凝血活性を意味する。抗凝固活性としては、Anti-Factor Xa活性やAnti-Factor IIa活性が挙げられる。本発明の多糖は、例えば、少なくともAnti-Factor Xa活性を有していてよい。本発明の多糖におけるAnti-Factor Xa活性は、例えば、100IU/mg以上、200IU/mg以上、300IU/mg以上、または400IU/mg以上であってよい。また、本発明の多糖におけるAnti-Factor Xa活性は、上限は特にないが、例えば、5000IU/mg以下、2000IU/mg以下、または1000IU/mg以下であってもよい。また、本発明の多糖は、高いAnti-Factor Xa活性/Anti-Factor IIa活性比を有していてよい。本発明の多糖におけるAnti-Factor Xa活性/Anti-Factor IIa活性比は、例えば、1.5以上、2以上、2.5以上、または3以上であってよい。また、本発明の多糖におけるAnti-Factor Xa活性/Anti-Factor IIa活性比は、上限は特にないが、例えば、50以下、20以下、または10以下であってもよい。Anti-Factor Xa活性およびAnti-Factor IIa活性は、いずれも、常法により測定することができる。Anti-Factor Xa活性およびAnti-Factor IIa活性の測定法として、具体的には、例えば、実施例に記載の方法が挙げられる。
 本発明の多糖は、フリー体であってもよく、塩であってもよく、それらの混合物であってもよい。すなわち、「本発明の多糖(例えばヘパラン硫酸)」という用語は、特記しない限り、フリー体の多糖、もしくはその塩、またはそれらの混合物を意味する。すなわち、本発明の多糖に存在する塩を形成し得る官能基は、いずれも、特記しない限り、フリー体であってもよく、塩を形成していてもよく、それらの組み合わせであってもよい。具体的には、例えば、一般式(I)および一般式(II)における塩を形成し得る官能基は、いずれも、特記しない限り、フリー体であってもよく、塩を形成していてもよく、それらの組み合わせであってもよい。一般式(I)および一般式(II)における塩を形成し得る官能基としては、R~Rの硫酸基(-SOH)、Rが水素(-H)である場合のGlcN残基のアミノ基(-NH)、HexA残基のカルボキシル基(-COOH)が挙げられる。すなわち、例えば、「硫酸基」という用語は、特記しない限り、フリー体の硫酸基、もしくは塩を形成した硫酸基、またはそれらの組み合わせを示す。当該硫酸基についての説明は、塩を形成し得る他の官能基にも準用できる。塩としては、薬理学的に許容される塩が挙げられる。薬理学的に許容される塩は、本発明の多糖の利用態様等の諸条件に応じて適宜選択できる。薬理学的に許容される塩としては、以下のようなものが挙げられる。すなわち、例えば、硫酸基等の酸性基に対する塩としては、具体的には、アンモニウム塩、ナトリウム、カリウム、リチウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩、アルミニウム塩、亜鉛塩、トリエチルアミン、エタノールアミン、モルホリン、ピロリジン、ピペリジン、ピペラジン、ジシクロへキシルアミン等の有機アミンとの塩、アルギニン、リジン等の塩基性アミノ酸との塩が挙げられる。また、例えば、アミノ基等の塩基性基に対する塩としては、具体的には、塩酸、硫酸、リン酸、硝酸、臭化水素酸等の無機酸との塩、酢酸、クエン酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸、タンニン酸、酪酸、ヒベンズ酸、パモ酸、エナント酸、デカン酸、テオクル酸、サリチル酸、乳酸、シュウ酸、マンデル酸、リンゴ酸等の有機カルボン酸との塩、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機スルホン酸との塩が挙げられる。塩は、例えば、アンモニウム塩、ナトリウム塩、リチウム塩、カルシウム塩から選択されてもよい。なお、塩としては、1種の塩を用いてもよく、2種またはそれ以上の塩を組み合わせて用いてもよい。
<2>本発明の多糖の製造法
 本発明の多糖を製造する手法は特に制限されない。本発明の多糖は、例えば、他の多糖からの誘導により(すなわち、他の多糖を原料として)製造することができる。他の多糖としては、グリコサミノグリカン(GAG)が挙げられる。GAGとしては、N-アセチルヘパロサン(単に「ヘパロサン」ともいう)や本発明の多糖以外のヘパラン硫酸が挙げられる。ヘパロサンは、グルクロン酸(GlcA)残基とN-アセチル-D-グルコサミン(GlcNAc)残基からなる二糖の繰り返し構造[→4)-β-GlcA-(1→4)-α-GlcNAc-(1→]より構成される多糖である。他の多糖を原料とする本発明の多糖の製造は、例えば、物理的手法、化学的手法、酵素法、またはそれらの組み合わせにより実施することができる。具体的には、他の多糖を原料として、例えば、所定の分子量への調整、所定の比率での異性化、所定の比率での官能基の導入または除去、またはそれらの組み合わせにより、本発明の多糖を製造することができる。また、本発明の多糖は、単糖等の原料から全合成することもできる。
 以下、ヘパロサンから本発明の多糖を製造する方法の一例を説明する。
 本発明の多糖は、例えば、ヘパロサンを部分的にN-脱アセチル化した後にヘパリナーゼIIIで低分子化し、生成した低分子化物を本発明の多糖に変換することにより、製造することができる。すなわち、本発明の多糖を製造する方法としては、(A)ヘパロサンを部分的にN-脱アセチル化する工程、(B)前記工程Aによる生成物をヘパリナーゼIIIで低分子化する工程、および(C)前記工程Bによる生成物から本発明の多糖を生成する工程、を含む、方法が挙げられる。工程Aを「N-脱アセチル化工程」、工程Bを「低分子化工程」、工程Cを「ヘパラン硫酸生成工程」ともいう。この方法によれば、特に、所望の平均分子量を有する本発明の多糖を効率よく製造することができる。
<2-1>ヘパロサンの製造
 ヘパロサンは、例えば、ヘパロサン生産能を有する細菌(「ヘパロサン生産菌」ともいう)を利用した発酵法により製造できる(WO2015/050184)。
 本発明において、「ヘパロサン生産能を有する細菌(ヘパロサン生産菌)」とは、培地で培養したときに、ヘパロサンを生成し、回収できる程度に培地中に蓄積する能力を有する細菌をいう。ヘパロサン生産能を有する細菌は、例えば、50mg/L以上、100mg/L以上、200mg/L以上、または300mg/L以上の量のヘパロサンを培地に蓄積することができる細菌であってもよい。
 細菌の種類は特に制限されない。細菌としては、エシェリヒア(Escherichia)属細菌が挙げられる。エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann,B.J.1996.Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12,p.2460-2488.Table 1.In F.D.Neidhardt(ed.),Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition,American Society for Microbiology Press,Washington,D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとしては、例えば、W3110株(ATCC 27325)やMG1655株(ATCC 47076)等のエシェリヒア・コリK-12株;エシェリヒア・コリK5株(ATCC 23506);BL21(DE3)株等のエシェリヒア・コリB株;およびそれらの派生株が挙げられる。
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive,Rockville,Maryland 20852 P.O.Box 1549,Manassas,VA 20108,United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。また、BL21(DE3)株は、例えば、ライフテクノロジーズ社より入手可能である(製品番号C6000-03)。
 ヘパロサン生産能を有する細菌は、本来的にヘパロサン生産能を有するものであってもよく、ヘパロサン生産能を有するように改変されたものであってもよい。本来的にヘパロサン生産能を有する細菌としては、エシェリヒア・コリK5株(ATCC 23506)が挙げられる。ヘパロサン生産能を有する細菌は、例えば、上記のような細菌にヘパロサン生産能を付与することにより取得できる。また、本来的にヘパロサン生産能を有する細菌を、ヘパロサン生産能が増大するよう改変して用いてもよい。
 ヘパロサン生産能は、ヘパロサン生産に関与するタンパク質をコードする遺伝子を導入することにより、付与できる。ヘパロサン生産に関与するタンパク質としては、グリコシルトランスフェラーゼやヘパロサン排出担体タンパク質が挙げられる。本発明においては、1種の遺伝子を導入してもよく、2種またはそれ以上の遺伝子を導入してもよい。遺伝子の導入は、後述する遺伝子のコピー数を増加させる手法と同様に行うことができる。
 ここでいう「グリコシルトランスフェラーゼ」とは、N-アセチル-D-グルコサミン(GlcNAc)および/またはグルクロン酸(GlcA)を糖鎖非還元末端に付加し、ヘパロサン鎖を伸長する反応を触媒する活性を有するタンパク質をいう。また、同活性を、「グリコシルトランスフェラーゼ活性」ともいう。グリコシルトランスフェラーゼをコードする遺伝子としては、kfiA遺伝子、kfiC遺伝子、pmHS1遺伝子が挙げられる。
 kfiA遺伝子およびkfiC遺伝子としては、エシェリヒア・コリK5株のkfiA遺伝子およびkfiC遺伝子が挙げられる。エシェリヒア・コリK5株のkfiA遺伝子がコードするKfiAタンパク質は、UDP-GlcNAcを基質として、GlcNAcを糖鎖非還元末端に付加する。エシェリヒア・コリK5株のkfiC遺伝子がコードするKfiCタンパク質は、UDP-GlcAを基質として、GlcAを糖鎖非還元末端に付加する。エシェリヒア・コリK5株のkfiAおよびkfiC遺伝子は、kfiBおよびkfiD遺伝子とともに、kfiABCDオペロン(Region2ともいう)を構成する。エシェリヒア・コリK5株のkfiABCDオペロンを含む領域の塩基配列を配列番号1に示す。配列番号1に示す塩基配列中、kfiA、kfiB、kfiC、kfiD遺伝子は、それぞれ、445~1164位の配列、1593~3284位の配列、4576~6138位の配列、6180~7358位の配列に相当する。エシェリヒア・コリK5株のKfiA、KfiB、KfiC、KfiDタンパク質のアミノ酸配列を、それぞれ、配列番号2~5に示す。
 pmHS1遺伝子としては、パスツレラ・ムルトシダ タイプD株のpmHS1遺伝子が挙げられる。パスツレラ・ムルトシダ タイプD株のpmHS1遺伝子がコードするPmHS1タンパク質は、UDP-GlcNAcおよびUDP-GlcAの両方を基質として、GlcNAcおよびGlcAを交互に糖鎖非還元末端に付加する。
 ここでいう「ヘパロサン排出担体タンパク質」とは、細胞膜を通してヘパロサン鎖を細胞外へ排出する活性を有するタンパク質をいう。また、同活性を、「ヘパロサン排出活性」ともいう。ヘパロサン排出担体タンパク質をコードする遺伝子としては、kpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子が挙げられる。kpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子としては、エシェリヒア・コリK5株やエシェリヒア・コリB株のkpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子が挙げられる。これらの株のkpsC、kpsD、kpsE、およびkpsS遺伝子は、kpsFおよびkpsU遺伝子とともに、kpsFEDUCSオペロン(Region1ともいう)を構成する。また、これらの株のkpsMおよびkpsT遺伝子は、kpsMTオペロン(Region3ともいう)を構成する。
 導入する遺伝子は、用いる細菌の種類等に応じて適宜選択できる。すなわち、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の両方を有するように細菌を改変することにより、細菌にヘパロサン生産能を付与することができる。例えば、エシェリヒア・コリB株は、ヘパロサン排出担体タンパク質をコードする遺伝子を有するが、グリコシルトランスフェラーゼをコードする遺伝子を有さない。よって、グリコシルトランスフェラーゼをコードする遺伝子を導入することにより、エシェリヒア・コリB株にヘパロサン生産能を付与することができる。また、例えば、エシェリヒア・コリK-12株は、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の両方を有さない。よって、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の両方を導入することにより、エシェリヒア・コリK-12株にヘパロサン生産能を付与することができる。
 すなわち、ヘパロサン生産能を有するエシェリヒア属細菌としては、例えば、エシェリヒア・コリK5株;BL21(DE3)株等のエシェリヒア・コリB株にエシェリヒア・コリK5株由来のkfiA遺伝子およびkfiC遺伝子を導入した株;W3110株やMG1655株等のエシェリヒア・コリK-12株にエシェリヒア・コリK5株由来のkfiA遺伝子およびkfiC遺伝子、ならびにエシェリヒア・コリK5株またはエシェリヒア・コリB株由来のkpsC、kpsD、kpsE、kpsM、kpsS、およびkpsT遺伝子を導入した株;ならびにそれらの派生株が挙げられる。エシェリヒア・コリB株にエシェリヒア・コリK5株由来のkfiA遺伝子およびkfiC遺伝子を導入した株として、具体的には、例えば、実施例に記載のエシェリヒア・コリBL21(DE3)/pVK9-kfiABCD(WO2015/050184)が挙げられる。
 また、ヘパロサン生産能を有する細菌は、ヘパロサン生産に関与するタンパク質をコードする遺伝子の内、同細菌がもともと有する遺伝子の発現が増強されるよう改変されていてもよい。すなわち、例えば、エシェリヒア・コリK5株を、ヘパロサン生産に関与するタンパク質をコードする1またはそれ以上の遺伝子の発現が増強されるよう改変してもよい。また、例えば、エシェリヒア・コリB株を、ヘパロサン排出担体タンパク質をコードする1またはそれ以上の遺伝子の発現が増強されるよう改変してもよい。
 また、ヘパロサン生産能を有する細菌は、ヘパロサン生産能を損なわない限り、その他の改変がなされていてもよい。例えば、ヘパロサン生産能を有する細菌は、kfiB、kfiD、kpsF、およびkpsU遺伝子から選択される1またはそれ以上の遺伝子の発現が増強されるよう改変されていてもよい。すなわち、例えば、グリコシルトランスフェラーゼをコードする遺伝子の導入の際には、Region2をまとめて導入してもよく、グリコシルトランスフェラーゼをコードする遺伝子とヘパロサン排出担体タンパク質をコードする遺伝子の導入の際には、Region1~3をまとめて導入してもよい。kfiB遺伝子およびkfiD遺伝子としては、エシェリヒア・コリK5株のkfiB遺伝子およびkfiD遺伝子が挙げられる。kpsF遺伝子およびkpsU遺伝子としては、エシェリヒア・コリK5株やエシェリヒア・コリB株のkpsF遺伝子およびkpsU遺伝子が挙げられる。
 また、ヘパロサン生産能を有する細菌は、rbsR、rbsK、rbsB、hsrA、glgB、glgX、micF、rcsD、rcsB、ybiX、ybiI、ybiJ、ybiC、ybiB、rfaH、nusG、pcoR、pcoS、pcoE、yhcN、yhcO、aaeB、aaeA、aaeX、g1455、alpA、g1453、yrbA、mlaB、mlaC、mlaD、mlaE、mlaF、yrbG、norW、ybjI、ybjJ、ybjK、rybB、yjjY、yjtD、thrL、thrA、thrB、fruA、psuK、ytfT、yjfF、fbp、yagU、paoA、paoB、gsiC、gsiD、yliE、irp2、irp1、bhsA、ycfS、lepB、rnc、era、dapA、gcvR、bcp、hyfA、rpoE、nadB、yfiC、srmB、g1414、g1413、nuoE、nuoF、nuoG、glmZ、hemY、hemX、hemD、rlmL、artQ、artM、artJ、rlmC、ybjO、yejO、yejM、yejL、rpoS、ygbN、ygbM、ygbL、g3798、g3797、g3796、g3795、g3794、g3793、g3792、ryjA、soxR、soxS、yjcC、yjcB、efeU、efeO、slyA、hns、pgm、galF、ugd、glmU、glmS、glmM、およびrcsA遺伝子から選択される1またはそれ以上の遺伝子の発現が増強されるように改変されていてもよい(WO2015/050184、公開技報番号2015-501775)。これらの遺伝子としては、Escherichia coli K-12 MG1655株、BL21(DE3)株、K5株等のEscherichia coliの遺伝子や、その他各種細菌の遺伝子が挙げられる。
 「遺伝子の発現が増強される」とは、もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が増強される」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。遺伝子の発現は、例えば、遺伝子のコピー数を増大させることや、遺伝子の転写や翻訳を増大させることにより、増強することができる。遺伝子のコピー数は、例えば、同遺伝子を搭載したベクターを宿主に導入することや、同遺伝子を宿主の染色体上に導入することにより、増大させることができる。導入する遺伝子は、例えば、同遺伝子を有する生物からのクローニングや、化学合成により、取得できる。取得した遺伝子は、そのまま、あるいは適宜改変して利用することができる。遺伝子の転写や翻訳は、プロモーターやSD配列等の遺伝子の発現調節配列を改変することにより、増大させることができる。
 ヘパロサン生産能の付与等の細菌の改変に使用される遺伝子の塩基配列、及び同遺伝子がコードするタンパク質のアミノ酸配列は、例えば、NCBI(http://www.ncbi.nlm.nih.gov/)等の公用データベースや、WO2015/050184や公開技報番号2015-501775等の文献から取得できる。
 なお、ヘパロサン生産能の付与等の細菌の改変に使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。バリアントとしては、公知の遺伝子のホモログや人為的改変体が挙げられる。「元の機能が維持された」とは、例えば、グリコシルトランスフェラーゼにあっては、タンパク質のバリアントがグリコシルトランスフェラーゼ活性を有することをいい、ヘパロサン排出担体タンパク質にあっては、タンパク質のバリアントがヘパロサン排出活性を有することをいう。例えば、ヘパロサン生産能の付与等の細菌の改変に使用される遺伝子は、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個(例えば、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個)のアミノ酸が置換、欠失、挿入、又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。また、例えば、ヘパロサン生産能の付与等の細菌の改変に使用される遺伝子は、公知のタンパク質のアミノ酸配列に対して、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の同一性を有するタンパク質をコードする遺伝子であってもよい。このようなバリアントについての記載は、ヘパリナーゼIII等の他のタンパク質やそれをコードする遺伝子にも準用できる。
 ヘパロサン生産菌を培養することにより、培地中にヘパロサンが蓄積する。ヘパロサン生産菌の培養条件は、所望の量のヘパロサンが得られる限り、特に制限されない。ヘパロサン生産菌の培養条件は、ヘパロサン生産に関与する遺伝子の発現系の構成や宿主の種類等の諸条件に応じて適宜設定できる。培養は、例えば、炭素源、窒素源、微量栄養素等の各種有機成分や無機成分を含有する液体培地を用いて、30~37℃で、16~72時間、好気的に実施することができる(WO2015/050184)。
 ヘパロサンは、培養液に含まれたままN-脱アセチル化工程に供してもよく、培養液から回収してからN-脱アセチル化工程に供してもよい。培養液からヘパロサンを回収する手段は、特に制限されない。ヘパロサンを回収する手段としては、膜処理法や沈殿法等の、化合物の分離精製に用いられる公知の手法が挙げられる。例えば、培養液から培養上清を分離し、次いで、エタノールやメタノール等の水と混和する有機溶媒の添加により上清中のヘパロサンを沈降させ、回収することができる(WO2015/050184)。添加する有機溶媒の量は、例えば、上清液量の2.5~3.5倍量であってよい。ヘパロサンは、適宜、精製、希釈、濃縮、乾燥、溶解等の処理に供してから、N-脱アセチル化工程に供してもよい。精製は所望の程度に実施してよい。これらの処理は、単独で、あるいは適宜組み合わせて実施してよい。
<2-2>N-脱アセチル化工程
 N-脱アセチル化工程は、ヘパロサンを部分的にN-脱アセチル化する工程である。N-脱アセチル化工程により部分的にN-脱アセチル化されたヘパロサンが生成する。N-脱アセチル化工程による生成物(部分的にN-脱アセチル化されたヘパロサン)を「N-脱アセチル化ヘパロサン」ともいう。「ヘパロサンを部分的にN-脱アセチル化する」とは、ヘパロサンのN-アセチル基の一部が残存するように、ヘパロサンをN-脱アセチル化することをいう。ヘパロサンのN-アセチル基の一部を残存させることにより、低分子化工程においてN-アセチル基を有するグルコサミン残基の部位を優先的に切断することができ、以て、所望の平均分子量を有する本発明の多糖を効率よく製造することができる。N-脱アセチル化の程度は、本発明の多糖を製造できる限り、特に制限されない。N-脱アセチル化工程は、例えば、N-アセチル基の残存率が下記のような値となるように実施することができる。すなわち、N-アセチル基の残存率は、例えば、1%以上、1.5%以上、3%以上、5%以上、7%以上、9%以上、または11%以上であってもよく、50%以下、45%以下、40%以下、35%以下、33%以下、30%以下、25%以下、20%以下、または17%以下であってもよく、それらの組み合わせであってもよい。N-アセチル基の残存率は、具体的には、例えば、1%~33%、7%~33%、7%~30%、または11%~17%であってもよい。例えば、N-アセチル基の残存率7%~30%は、概ね、N-アセチル基が6~28糖残基に1つ(二糖単位として3~14単位に1つ)の比率で存在していることに相当する。また、例えば、N-アセチル基の残存率11%~17%は、概ね、N-アセチル基が12~18糖残基に1つ(二糖単位として6~9単位に1つ)の比率で存在していることに相当する。N-脱アセチル化の程度(すなわちN-アセチル基の残存率)は、例えば、二糖分析により確認することができる。N-アセチル基の残存率は、上述したN-アセチル化率として測定できる。
 なお、残存するN-アセチル基は、低分子化工程後に適宜除去してもよい。例えば、低分子化工程後のいずれかのタイミングで、さらにN-脱アセチル化を実施してもよいし、さらにN-脱アセチル化とN-硫酸化を実施してもよい。
 N-脱アセチル化工程を実施する手段は、所望のN-脱アセチル化の程度が得られる限り、特に制限されない。N-脱アセチル化工程は、例えば、脱アセチル化剤を利用して化学的に実施できる。脱アセチル化剤としては、水酸化ナトリウムやヒドラジンが挙げられる。
 水酸化ナトリウムを利用したN-脱アセチル化の条件としては、例えば、既報(Kuberan B.et al.,(2003)“Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides.” J Biol Chem.,278(52):52613-52621.やUS2011281820A1)の条件を参照することができる。すなわち、N-脱アセチル化は、例えば、ヘパロサンを水酸化ナトリウム水溶液に溶解し、加熱することにより実施できる。各成分の反応系での濃度、反応温度、反応時間は、所望のN-脱アセチル化の程度が得られるように、適宜設定することができる。ヘパロサン濃度は、例えば、0.05%(w/v)~50%(w/v)であってよい。水酸化ナトリウム濃度は、例えば、1M~5Mであってよい。反応温度は、例えば、40~80℃であってよい。反応時間は、例えば、5分~30時間であってよい。
 ヒドラジンを利用したN-脱アセチル化の条件としては、例えば、既報([1]Glycobiology,10(2000)159-171 [2]Carbohydrate Research,290(1996)87-96 [3]Biochem.J.217(1984)187-197)の条件を参照することができる。また、ヒドラジンを利用したN-脱アセチル化の条件として、具体的には、例えば、実施例に記載の条件が挙げられる。すなわち、N-脱アセチル化は、例えば、ヘパロサンを、硫酸または硫酸ヒドラジンを含有するヒドラジン水溶液に溶解し、気相を窒素等の不活性ガスで置換し、加熱することにより実施できる。ヒドラジンとしては、無水ヒドラジンやヒドラジン1水和物が挙げられる。例えば、ヒドラジン1水和物を、そのまま、あるいは適宜希釈して、ヒドラジン水溶液として利用してよい。加熱後、氷冷により反応を停止することができる。次いで、ヨウ素により糖鎖末端を還元できる。各成分の反応系での濃度、反応温度、反応時間は、所望のN-脱アセチル化の程度が得られるように、適宜設定することができる。ヘパロサン濃度は、例えば、0.05%(w/v)~50%(w/v)であってよい。ヒドラジン濃度は、例えば、10%(w/v)~70%(w/v)であってよい。硫酸または硫酸ヒドラジン濃度は、例えば、0.01M~0.1Mであってよい。反応温度は、例えば、60~118℃であってよい。反応時間は、例えば、5分~20時間であってよい。具体的には、例えば、実施例に記載の条件でN-脱アセチル化を実施する場合、反応時間は、例えば、4~5時間であってもよい。
 このようにしてN-脱アセチル化を実施することにより、N-脱アセチル化ヘパロサンが生成する。N-脱アセチル化ヘパロサンは、N-脱アセチル化工程の反応液に含まれたまま低分子化工程に供してもよく、反応液から回収して低分子化工程に供してもよい。反応液からN-脱アセチル化ヘパロサンを回収する手段は、特に制限されない。N-脱アセチル化ヘパロサンを回収する手段としては、膜処理法や沈殿法等の、化合物の分離精製に用いられる公知の手法が挙げられる。N-脱アセチル化ヘパロサンは、適宜、精製、中和、脱塩、希釈、濃縮、乾燥、溶解等の処理に供してから、低分子化工程に供してもよい。精製は所望の程度に実施してよい。これらの処理は、単独で、あるいは適宜組み合わせて実施してよい。
<2-3>低分子化工程
 低分子化工程は、N-脱アセチル化ヘパロサンをヘパリナーゼIIIで切断し、低分子化する工程である。低分子化工程により低分子化されたN-脱アセチル化ヘパロサンが生成する。低分子化工程による生成物(低分子化されたN-脱アセチル化ヘパロサン)を「低分子化N-脱アセチル化ヘパロサン」ともいう。低分子化の程度は、本発明の多糖を製造できる限り、特に制限されない。低分子化工程は、例えば、低分子化N-脱アセチル化ヘパロサンの平均分子量が後述する本発明の多糖の平均分子量(例えば、プルランを標準としてGPCにより測定される値として、1000~150000、好ましくは、8000~60000の数平均分子量(Mn)および2000~300000、好ましくは、10000~100000の重量平均分子量(Mw))となるように実施することができる。
 低分子化の程度は、例えば、分子量を測定することにより確認することができる。分子量の測定は常法により実施できる。分子量の測定法としては、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography;GPC)および紫外可視吸光度検出器(UV)および示差屈折率検出器(RI)を使用した水系サイズ排除クロマトグラフィー(SEC)(SEC-RI/UV法、ヨーロッパ薬局方(EP)準拠)が挙げられる。GPCによる分子量の測定条件として、具体的には、例えば、実施例に記載の条件が挙げられる。低分子化N-脱アセチル化ヘパロサンの数平均分子量(Mn)は、プルランを標準としてGPCにより測定される値として、例えば、1000~150000、3000~36000、または4000~26000であってよく、あるいは、5000~36000、または12000~26000であってよい。低分子化N-脱アセチル化ヘパロサンの重量平均分子量(Mw)は、プルランを標準としてGPCにより測定される値として、例えば、2000~300000、5000~60000、6000~70000、または9000~35000であってよく、あるいは、7000~60000、または17000~35000であってよい。また、後述する硫酸化工程等のヘパラン硫酸生成工程の一部または全部を実施した後に分子量を測定して、低分子化の程度を確認することもできる。ヘパラン硫酸生成工程の一部または全部を実施した後に分子量を測定する場合は、実施した工程に応じた分子量の変動を考慮することができる。ヘパラン硫酸生成工程の一部または全部を実施した後の生成物の分子量を測定する場合、プルランを標準としてGPCにより測定される値として、同生成物の数平均分子量(Mn)は、例えば、1000~150000、2000~100000、4000~80000、7000~42000、または15000~30000であってよく、同生成物の重量平均分子量(Mw)は、例えば、2000~300000、5000~150000、5000~100000、8000~70000、8000~41000、または21000~41000であってよい。
 「ヘパリナーゼIII」とは、ヘパロサン等のグリコサミノグリカンの、N-硫酸化またはN-アセチル化されたグルコサミン残基の部位を切断する酵素(典型的には、EC 4.2.2.8)をいう。本発明において用いられるヘパリナーゼIIIは、N-脱アセチル化ヘパロサンの、N-アセチル基を有するグルコサミン残基の部位を優先的に切断できるものであれば、特に制限されない。「N-アセチル基を有するグルコサミン残基の部位を優先的に切断する」とは、N-アセチル基を有するグルコサミン残基の部位を、N-アセチル基を有さないグルコサミン残基の部位よりも優先的に切断することをいう。「N-アセチル基を有するグルコサミン残基の部位を優先的に切断する」とは、N-アセチル基を有するグルコサミン残基の部位は切断するが、N-アセチル基を有さないグルコサミン残基の部位は実質的に切断しないことであってもよい。「グルコサミン残基の部位を切断する」とは、グルコサミン残基とその下流(還元末端側)のグルクロン酸(GlcA)残基との間のα-1,4グリコシド結合を切断することをいう。
 ヘパリナーゼIIIの由来は特に制限されず、微生物、動物、植物等いずれの由来のものを用いてもよい。また、ヘパリナーゼIIIとしては、公知のヘパリナーゼIIIのホモログや人為的改変体等のバリアントを利用してもよい。ヘパリナーゼIIIとして、具体的には、Flavobacterium heparinum、Bacteroides thetaiotaomicron、Bacteroides eggerthii等の細菌のヘパリナーゼIIIが挙げられる。Flavobacterium heparinum ATCC 13125のヘパリナーゼIIIをコードするhepC遺伝子の塩基配列およびヘパリナーゼIII(HepC)のアミノ酸配列を配列番号16および17にそれぞれ示す。
 ヘパリナーゼIIIは、ヘパリナーゼIIIをコードする遺伝子(ヘパリナーゼIII遺伝子)を有する宿主に同遺伝子を発現させることにより製造できる。ヘパリナーゼIII遺伝子を有する宿主を、ヘパリナーゼIIIを有する宿主ともいう。ヘパリナーゼIII遺伝子を有する宿主は、本来的にヘパリナーゼIII遺伝子を有するものであってもよく、ヘパリナーゼIII遺伝子を有するように改変されたものであってもよい。本来的にヘパリナーゼIII遺伝子を有する宿主としては、上記のようなヘパリナーゼIIIが由来する細菌が挙げられる。ヘパリナーゼIII遺伝子を有するように改変された宿主としては、ヘパリナーゼIII遺伝子が導入された宿主が挙げられる。ヘパリナーゼIII遺伝子を導入する宿主は、機能するヘパリナーゼIIIを発現できるものであれば特に制限されない。宿主としては、細菌、放線菌、酵母、真菌、植物細胞、昆虫細胞、および動物細胞が挙げられる。細菌としては、腸内細菌科(Enterobacteriaceae)の細菌やコリネ型細菌が挙げられる。腸内細菌科の細菌としては、エシェリヒア・コリ(Escherichia coli)等のエシェリヒア(Escherichia)属細菌が挙げられる。コリネ型細菌としては、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)等のコリネバクテリウム(Corynebacterium)属細菌が挙げられる。また、本来的にヘパリナーゼIII遺伝子を有する宿主を、ヘパリナーゼIII遺伝子の発現が増強されるよう改変して用いてもよい。ヘパリナーゼIII遺伝子を有する宿主を培養することにより、ヘパリナーゼIII遺伝子を発現させることができ、ヘパリナーゼIIIを含有する培養物が得られる。宿主の培養条件は、ヘパリナーゼIII遺伝子の発現系の構成や宿主の種類等の諸条件に応じて適宜設定できる。
 また、ヘパリナーゼIIIは、ヘパリナーゼIII遺伝子を無細胞タンパク質合成系で発現させることによっても製造できる。
 また、ヘパリナーゼIIIとしては、市販品を用いることもできる。
 ヘパリナーゼIIIは、培養物等に含まれたまま使用してもよく、培養物等から回収してから使用してもよい。すなわち、ヘパリナーゼIIIとしては、精製されたヘパリナーゼIII(精製酵素)を使用してもよく、ヘパリナーゼIIIを含有する任意の画分を使用してもよい。ヘパリナーゼIIIの回収は、タンパク質を分離精製する公知の手法により実施することができる。ヘパリナーゼIIIは、所望の程度に精製されていてよい。ヘパリナーゼIIIは、遊離の状態で利用されてもよいし、樹脂等の固相に固定化された固定化酵素の状態で利用されてもよい。ヘパリナーゼIIIを含有する画分は、ヘパリナーゼIIIがN-脱アセチル化ヘパロサンに作用できるように含有される限り特に制限されない。ヘパリナーゼIIIを含有する画分としては、ヘパリナーゼIII遺伝子を有する宿主の培養物、同培養物から回収した菌体(培養菌体)、同菌体の破砕物、同菌体の溶解物、同菌体の抽出物(無細胞抽出液)、同菌体をアクリルアミドやカラギーナン等の担体で固定化した固定化菌体等の菌体処理物、同培養物から回収した培養上清、それらの部分精製物(粗精製物)が挙げられる。これらの画分は、いずれも、単独で利用されてもよく、精製されたヘパリナーゼIIIと共に利用されてもよい。
 低分子化工程は、ヘパリナーゼIIIをN-脱アセチル化ヘパロサンに作用させることにより、実施できる。ヘパリナーゼIIIをN-脱アセチル化ヘパロサンに作用させることは、具体的には、ヘパリナーゼIIIとN-脱アセチル化ヘパロサンとを反応液中に共存させることにより達成できる。すなわち、低分子化工程は、適当な反応液中で実施できる。低分子化工程は、バッチ式で実施してもよく、カラム式で実施してもよい。バッチ式の場合は、例えば、反応容器内の反応液中で、ヘパリナーゼIIIとN-脱アセチル化ヘパロサンとを混合することにより、低分子化工程を実施できる。低分子化工程は、静置して実施してもよく、撹拌や振盪して実施してもよい。カラム式の場合は、例えば、固定化菌体または固定化酵素を充填したカラムにN-脱アセチル化ヘパロサンを含有する反応液を通液することにより、低分子化工程を実施できる。反応液としては、水や水性緩衝液等の水性媒体(水性溶媒)が挙げられる。
 反応液は、N-脱アセチル化ヘパロサンに加えて、N-脱アセチル化ヘパロサン以外の成分を必要に応じて含有してよい。N-脱アセチル化ヘパロサン以外の成分としては、金属イオンやpH緩衝剤が挙げられる。反応液に含有される成分の種類や濃度は、用いるヘパリナーゼIIIの性質等の諸条件に応じて適宜設定できる。
 低分子化工程の条件(反応液のpH、反応温度、反応時間、各種成分の濃度等)は、所望の低分子化の程度が得られる限り特に制限されない。すなわち、反応条件は、所望の低分子化の程度が得られるように、適宜設定することができる。反応条件として、具体的には、例えば、実施例に記載の条件が挙げられる。反応液中のN-脱アセチル化ヘパロサンの濃度は、例えば、0.05%(w/v)~50%(w/v)であってよい。反応液中のヘパリナーゼIII濃度は、例えば、6.3IU/L~6.3×10IU/L、または6.3×10IU/L~6.3×10IU/Lであってよい。反応液のpHは、例えば、通常6.0~10.0、好ましくは6.5~9.0であってよい。反応温度は、例えば、通常15~50℃、好ましくは15~45℃、より好ましくは20~40℃であってよい。反応時間は、例えば、通常5分~20時間、好ましくは10分~10時間であってよい。具体的には、例えば、実施例に記載の条件で低分子化を実施する場合、反応時間は、例えば、5~10時間であってもよい。カラム法の場合、反応液の通液速度は、例えば、反応時間が上記例示した反応時間の範囲となるような速度であってよい。
 ヘパリナーゼIIIの活性は、例えば、ヘパロサンを基質としてpH7.0、37℃で酵素反応を実施し、酵素および基質依存的な不飽和ヘキスロン酸の生成に基づいて測定できる。不飽和ヘキスロン酸の生成は、A232nmの増加として測定できる。1分間に1μmolの不飽和ヘキスロン酸を生成する酵素量を1国際単位(IU)と定義する。
 低分子化工程の過程において、ヘパリナーゼIII、N-脱アセチル化ヘパロサン、およびその他の成分を単独で、あるいは任意の組み合わせで、追加的に反応液に供給してもよい。これらの成分は、1回または複数回供給されてもよく、連続的に供給されてもよい。
 また、反応条件は、低分子化工程の開始から終了まで均一であってもよく、低分子化工程の過程において変化してもよい。「反応条件が低分子化工程の過程において変化する」とは、反応条件が時間的に変化することに限られず、反応条件が空間的に変化することを含む。「反応条件が空間的に変化する」とは、例えば、カラム式で低分子化工程を実施する場合に、反応温度や酵素濃度等の反応条件が流路上の位置に応じて異なっていることをいう。
 このようにして低分子化工程を実施することにより、低分子化N-脱アセチル化ヘパロサンが生成する。低分子化N-脱アセチル化ヘパロサンは、低分子化工程の反応液に含まれたままヘパラン硫酸生成工程に供してもよく、反応液から回収してヘパラン硫酸生成工程に供してもよい。反応液から低分子化N-脱アセチル化ヘパロサンを回収する手段は、特に制限されない。低分子化N-脱アセチル化ヘパロサンを回収する手段としては、膜処理法や沈殿法等の、化合物の分離精製に用いられる公知の手法が挙げられる。低分子化N-脱アセチル化ヘパロサンは、適宜、精製、希釈、濃縮、乾燥、溶解等の処理に供してから、ヘパラン硫酸生成工程に供してもよい。精製は所望の程度に実施してよい。これらの処理は、単独で、あるいは適宜組み合わせて実施してよい。
<4>ヘパラン硫酸生成工程
 ヘパラン硫酸生成工程は、低分子化N-脱アセチル化ヘパロサンから本発明の多糖を生成する工程である。ヘパラン硫酸生成工程は、例えば、低分子化N-脱アセチル化ヘパロサンを、N-硫酸化、C5-エピメリ化、2-O-硫酸化、GlcN残基の3-O-硫酸化、および6-O-硫酸化する工程から選択される1またはそれ以上、例えば全て、の工程を含んでいてよい。ヘパラン硫酸生成工程に含まれる工程の種類は、本発明の多糖が得られる限り、特に制限されない。すなわち、ヘパラン硫酸生成工程に含まれる工程の種類は、本発明の多糖の構造に応じて適宜設定できる。ヘパラン硫酸生成工程は、例えば、少なくとも、N-硫酸化、GlcN残基の3-O-硫酸化、および6-O-硫酸化の工程を含んでいてよい。
 ヘパラン硫酸生成工程に含まれる各工程の実施順序は、本発明の多糖が得られる限り、特に制限されない。ヘパラン硫酸生成工程に含まれる各工程の実施順序は、各工程を実施する手段や各工程に用いられる酵素の基質特異性等の諸条件に応じて適宜設定できる。ヘパラン硫酸生成工程に含まれる工程は、それぞれ別個に実施してもよく、そうでなくてもよい。すなわち、ヘパラン硫酸生成工程に含まれる工程の一部または全部を、一部または全部の期間において同時に実施してもよい。
 ヘパラン硫酸生成工程は、例えば、下記工程C1およびC3の順に実施されてよい:
(C1)N-硫酸化;
(C3)GlcN残基の3-O-硫酸化および6-O-硫酸化。
 ヘパラン硫酸生成工程は、例えば、下記工程C1、C2、およびC3の順に実施されてよい:
(C1)N-硫酸化;
(C2)C5-エピメリ化および2-O-硫酸化;
(C3)GlcN残基の3-O-硫酸化および6-O-硫酸化。
 工程C2は、C5-エピメリ化および2-O-硫酸化の順に実施されてもよいし、2-O-硫酸化およびC5-エピメリ化の順に実施されてもよい。また、工程C2において、C5-エピメリ化および2-O-硫酸化は、一部または全部の期間において同時に実施されてもよい。
 工程C3は、例えば、GlcN残基の3-O-硫酸化および6-O-硫酸化の順に実施されてもよく、6-O-硫酸化およびGlcN残基の3-O-硫酸化の順に実施されてもよい。
 以下、特記しない限り、ヘパラン硫酸生成工程が、N-硫酸化、C5-エピメリ化、2-O-硫酸化、GlcN残基の3-O-硫酸化、および6-O-硫酸化の順に実施されることを前提として、各工程について説明する。ヘパラン硫酸生成工程に含まれる工程の種類および各工程の実施順序がそれとは異なる場合は、選択した工程の種類および設定した実施順序に応じて適宜説明を読み替えることができる。
 N-硫酸化は、低分子化N-脱アセチル化ヘパロサンのアミノ基を硫酸化する工程である。N-硫酸化は、例えば、硫酸化試薬を利用して化学的に実施することができる。硫酸化試薬としては、三酸化硫黄ピリジン錯体(PySO)や三酸化硫黄トリメチルアミン錯体(TMASO)等の三酸化硫黄錯体が挙げられる。N-硫酸化の反応条件は、当業者が適宜設定することができる。N-硫酸化の反応条件としては、例えば、既報(Kuberan B.et al.,(2003)“Chemoenzymatic Synthesis of Classical and Non-classical Anticoagulant Heparan Sulfate Polysaccharides.”J Biol Chem.,278(52):52613-52621.;US8227449B2(Jul.24、2012))の条件を参照することができる。また、N-硫酸化の反応条件として、具体的には、例えば、実施例に記載の条件が挙げられる。N-硫酸化の程度は、本発明の多糖が得られる限り、特に制限されない。すなわち、N-硫酸化は、例えば、上記例示したN-硫酸化率が得られるように実施することができる。また、N-硫酸化は、例えば、N-脱アセチル化されたグルコサミン残基の90%以上、95%以上、99%以上、または全てがN-硫酸化されるように実施することができる。N-硫酸化の程度(すなわちN-硫酸化率)は、例えば、二糖分析により確認することができる。
 C5エピメリ化は、N-硫酸化による生成物中のグルクロン酸(GlcA)残基をイズロン酸(IdoA)残基へ異性化する工程である。C5エピメリ化は、例えば、C5-エピメラーゼを利用して酵素的に実施することができる。C5-エピメラーゼは、グルクロン酸(GlcA)残基のイズロン酸(IdoA)残基への異性化を触媒できるものであれば特に制限されない。また、C5エピメリ化と他の工程の順序によっては、適切な基質特異性を有するC5-エピメラーゼを選択して用いてもよい。C5-エピメラーゼは、動物、植物、微生物等、いずれの由来であってもよい。C5-エピメラーゼとしては、例えば、ヒトのC5-エピメラーゼを利用することができる。また、C5-エピメラーゼとしては、公知のC5-エピメラーゼのホモログや人為的改変体等のバリアントを利用してもよい。C5-エピメラーゼの製造法および利用態様については、ヘパリナーゼIIIの製造法および利用態様についての記載を準用できる。C5エピメリ化の反応条件は、当業者が適宜設定することができる。C5エピメリ化の反応条件としては、例えば、既報(Chen J,et al.,“Enzymatic redesigning of biologically active heparan sulfate.”J Biol Chem.2005 Dec 30;280(52):42817-25.)の条件を参照することができる。また、C5エピメリ化の反応条件として、具体的には、例えば、実施例に記載の条件が挙げられる。C5エピメリ化の程度は、本発明の多糖が得られる限り、特に制限されない。すなわち、C5エピメリ化は、上記例示したエピメリ化率が得られるように実施することができる。
 2-O-硫酸化は、C5エピメリ化による生成物中のIdoA残基の2-O位を硫酸化する工程である。2-O-硫酸化は、例えば、2-O-硫酸化酵素(2-OST)を利用して酵素的に実施することができる。2-OSTは、IdoA残基の2-O位の硫酸化を触媒できるものであれば特に制限されない。2-OSTは、さらに、GlcA残基の2-O位の硫酸化を触媒できてもよい。2-OSTは、さらに、C4-C5間の結合が二重結合であるHexA残基の2-O位の硫酸化を触媒できてもよい。また、2-O-硫酸化と他の工程の順序によっては、適切な基質特異性を有する2-OSTを選択して用いてもよい。2-OSTは、動物、植物、微生物等、いずれの由来であってもよい。2-OSTとしては、例えば、ハムスターの2-OSTを利用することができる。また、2-OSTとしては、公知の2-OSTのホモログや人為的改変体等のバリアントを利用してもよい。2-OSTの製造法および利用態様については、ヘパリナーゼIIIの製造法および利用態様についての記載を準用できる。2-O-硫酸化の反応条件は、当業者が適宜設定することができる。2-O-硫酸化の反応条件としては、例えば、既報(Chen J,et al.,“Enzymatic redesigning of biologically active heparan sulfate.”J Biol Chem.2005 Dec 30;280(52):42817-25.)の条件を参照することができる。また、2-O-硫酸化の反応条件として、具体的には、例えば、実施例に記載の条件が挙げられる。2-O-硫酸化の程度は、本発明の多糖が得られる限り、特に制限されない。すなわち、2-O-硫酸化は、上記例示した2-O-硫酸化率が得られるように実施することができる。
 C5-エピメラーゼによるGlcA残基のIdoA残基への異性化は、可逆平衡反応である。すなわち、C5-エピメラーゼを利用してC5エピメリ化を実施する場合、C5エピメリ化により生成したIdoA残基の一部はGlcA残基へ再度変換され得る。一方、2-O-硫酸化されたヘキスロン酸(HexA)残基は、一般的に、C5-エピメラーゼの基質とならない。よって、例えば、C5エピメリ化と2-O-硫酸化をカップリングして実施することにより、C5エピメリ化により生成したIdoA残基を逐次2-O-硫酸化することができ、以て、IdoA残基がGlcA残基へ再度変換されるのを阻止することができる。したがって、C5エピメリ化と2-O-硫酸化をカップリングして実施することにより、例えば、C5エピメリ化率を高めることができる。このように、C5エピメリ化と2-O-硫酸化を、一部または全部の期間において同時に実施してもよい。例えば、N-硫酸化による生成物と、C5-エピメラーゼおよび2-OSTとを反応系に共存させることにより、C5エピメリ化と2-O-硫酸化をまとめて実施することができる。C5エピメリ化と2-O-硫酸化のカップリング反応の条件として、具体的には、例えば、実施例に記載の条件が挙げられる。
 6-O-硫酸化は、2-O-硫酸化による生成物中のN-硫酸化グルコサミン(GlcNS)残基の6-O位を硫酸化する工程である。
 6-O-硫酸化は、例えば、6-O-硫酸化酵素(6-OST)を利用して酵素的に実施することができる。6-OSTは、N-硫酸化グルコサミン(GlcNS)残基のO-6位の硫酸化を触媒できるものであれば特に制限されない。また、6-O-硫酸化と他の工程の順序によっては、適切な基質特異性を有する6-OSTを選択して用いてもよい。6-OSTは、動物、植物、微生物等、いずれの由来であってもよい。6-OSTとしては、6-OST-1、6-OST-2、6-OST-3が挙げられる。6-OSTとしては、例えば、ハムスターの6-OST-1やマウスの6-OST-3を利用することができる。また、6-OSTとしては、公知の6-OSTのホモログや人為的改変体等のバリアントを利用してもよい。6-OSTの製造法および利用態様については、ヘパリナーゼIIIの製造法および利用態様についての記載を準用できる。6-O-硫酸化の反応条件は、当業者が適宜設定することができる。6-OSTを利用した6-O-硫酸化の反応条件としては、例えば、既報(Chen J,et al.,“Enzymatic redesigning of biologically active heparan sulfate.”J Biol Chem.2005 Dec 30;280(52):42817-25.)の条件を参照することができる。
 6-O-硫酸化は、例えば、硫酸化試薬を利用して化学的に実施することもできる。硫酸化試薬としては、三酸化硫黄ピリジン錯体(PySO)や三酸化硫黄トリメチルアミン錯体(TMASO)等の三酸化硫黄錯体が挙げられる。6-O-硫酸化の反応条件は、当業者が適宜設定することができる。硫酸化試薬を利用した6-O-硫酸化の反応条件としては、例えば、既報(US8227449B2(Jul.24、2012))の条件を参照することができる。また、硫酸化試薬を利用した6-O-硫酸化の反応条件として、具体的には、例えば、実施例に記載の条件が挙げられる。硫酸化試薬を利用した6-O-硫酸化は、例えば、N,N-ジメチルホルムアミド(DMF)等の有機溶媒中で実施することができる。6-O-硫酸化の反応温度は、例えば、-20℃~5℃、好ましくは-20℃~0℃であってよい。6-O-硫酸化に使用する硫酸化試薬の量は、6-O-硫酸化の対象となる水酸基の量に対し、例えば、1.5~10モル当量、好ましくは2~5モル当量であってよい。
 6-O-硫酸化の程度は、本発明の多糖が得られる限り、特に制限されない。すなわち、6-O-硫酸化は、上記例示した6-O-硫酸化率が得られるように実施することができる。
 GlcN残基の3-O-硫酸化は、6-O-硫酸化による生成物中のN-硫酸化・6-O-硫酸化グルコサミン残基の3-O位を硫酸化する工程である。GlcN残基の3-O-硫酸化は、例えば、3-O-硫酸化酵素(3-OST)を利用して酵素的に実施することができる。3-OSTは、N-硫酸化・6-O-硫酸化グルコサミン残基のO-3位の硫酸化を触媒できるものであれば特に制限されない。また、GlcN残基の3-O-硫酸化と他の工程の順序によっては、適切な基質特異性を有する3-OSTを選択して用いてもよい。3-OSTは、動物、植物、微生物等、いずれの由来であってもよい。3-OSTとしては、3-OST-1、3-OST-2、3-OST-3、3-OST-4、3-OST-5が挙げられる。3-OSTとしては、例えば、マウスの3-OST-1を利用することができる。また、3-OSTとしては、公知の3-OSTのホモログや人為的改変体等のバリアントを利用してもよい。3-OSTの製造法および利用態様については、ヘパリナーゼIIIの製造法および利用態様についての記載を準用できる。GlcN残基の3-O-硫酸化の反応条件は、当業者が適宜設定することができる。GlcN残基の3-O-硫酸化の反応条件としては、例えば、既報(Chen J,et al.,“Enzymatic redesigning of biologically active heparan sulfate.”J Biol Chem.2005 Dec 30;280(52):42817-25.)の条件を参照することができる。また、GlcN残基の3-O-硫酸化の反応条件として、具体的には、例えば、実施例に記載の条件が挙げられる。GlcN残基の3-O-硫酸化の程度は、本発明の多糖が得られる限り、特に制限されない。すなわち、GlcN残基の3-O-硫酸化は、上記例示したGlcN残基の3-O-硫酸化率が得られるように実施することができる。
 各工程による生成物は、各工程の反応液に含まれたまま次の工程に供してもよく、反応液から回収して次の工程に供してもよい。反応液から各生成物を回収する手段は、特に制限されない。各生成物を回収する手段としては、膜処理法や沈殿法等の、化合物の分離精製に用いられる公知の手法が挙げられる。各工程による生成物は、適宜、精製、希釈、濃縮、乾燥、溶解、酵素の失活等の処理に供してから、次の工程に供してもよい。精製は所望の程度に実施してよい。これらの処理は、単独で、あるいは適宜組み合わせて実施してよい。
 このようにしてヘパラン硫酸生成工程を実施することにより、本発明の多糖が生成する。本発明の多糖は適宜反応液から回収することができる。本発明の多糖の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、および晶析法が挙げられる。これらの手法は適宜組み合わせて用いることができる。回収される本発明の多糖は、本発明の多糖以外に、本発明の多糖を製造する際に用いられた成分や水分等の成分を含んでいてもよい。すなわち、本発明の多糖は、例えば、本発明の多糖を含有する混合物として提供されてもよい。本発明の多糖は、所望の程度に精製されていてよい。本発明の多糖は、本発明の多糖の利用態様等の諸条件に応じて適宜設定できる。例えば、本発明の多糖は、医薬組成物の有効成分として配合して利用するために薬理学的に許容される程度に精製して提供されてよい。本発明の多糖の純度は、具体的には、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。
<3>本発明の多糖の利用
 本発明の多糖は、有効成分として組成物に配合して利用できる。すなわち、本発明は、本発明の多糖を含有する組成物を提供する。同組成物を、「本発明の組成物」ともいう。組成物としては、医薬組成物が挙げられる。本発明の組成物は、例えば、血液凝固に起因する症状の予防、改善、および/または治療用のものであってよい。すなわち、本発明の組成物は、例えば、血液凝固に起因する症状の予防、改善、および/または治療剤であってよい。血液凝固に起因する症状としては、播種性血管内凝固症候群(DIC)、血栓塞栓症(静脈血栓症、心筋梗塞症、肺塞栓症、脳塞栓症、四肢動脈血栓塞栓症、手術中・術後の血栓塞栓症等)、人工透析における血液凝固、体外循環における血液凝固が挙げられる。
 本発明の組成物は、本発明の多糖を含有する。本発明の組成物は、本発明の多糖のみからなるものであってもよく、その他の成分を含有するものであってもよい。「その他の成分」としては、薬理学的に許容されるものであれば特に制限されない。「その他の成分」としては、例えば、医薬品に配合して利用される成分が挙げられる。
 例えば、本発明の組成物は、任意の剤形で製剤化されていてよい。剤形としては、例えば、液剤、懸濁剤、散剤、錠剤、丸剤、カプセル剤、注射剤が挙げられる。製剤化にあたっては、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、安定化剤、矯味剤、矯臭剤、香料、希釈剤、界面活性剤等の薬理学的に許容される添加剤を使用することができる。
 本発明の組成物における本発明の多糖の濃度は、本発明の組成物の用途に応じた有効量であれば特に制限されない。すなわち、本発明の組成物における本発明の多糖の濃度は、例えば、血液凝固に起因する症状の予防、改善、および/または治療に有効な濃度であってよい。本発明の組成物における本発明の多糖の濃度は、本発明の多糖の抗凝固活性、本発明の組成物の剤型、本発明の組成物の使用態様等の諸条件に応じて適宜設定することができる。本発明の組成物における本発明の多糖の濃度は、特に制限されないが、例えば、0.01%以上、0.1%以上、または1%以上であってもよく、100%以下、10%以下、または1%以下であってもよく、それらの組み合わせであってもよい。
 本発明の組成物を対象に投与することにより、同対象における血液凝固に起因する症状を予防、改善、および/または治療することができる。すなわち、本発明は、本発明の組成物を対象に投与することを含む、血液凝固に起因する症状を予防、改善、および/または治療する方法を提供する。また、例えば、人工透析または体外循環における血液凝固の防止等を目的とする場合には、本発明の組成物を体外で血液に添加すればよい。「本発明の組成物を対象に投与すること」には、ヒト等の生物に投与する場合に限られず、血液等の非生物に添加する場合も含まれる。すなわち、ここでいう「対象」とは、例えば、ヒト等の生物であってもよく、血液等の非生物であってもよい。
 本発明の組成物は、そのまま、あるいは水、生理食塩水、または緩衝液等の薬理学的に許容される溶媒を用いて希釈、溶解、または分散等し、対象に投与することができる。なお、このように希釈、溶解、または分散等した場合にも、本発明の組成物の範囲に含まれることは言うまでもない。投与方法としては、特に制限されないが、例えば、経口投与、注射等の侵襲的投与、経皮投与が挙げられる。投与方法は、例えば、本発明の組成物の用途等の諸条件に応じて適宜設定することができる。本発明の組成物の投与量は、本発明の多糖の抗凝固活性、本発明の多糖の濃度、投与方法、年齢、性別、症状の程度等の諸条件に応じて適宜設定することができる。
 以下、実施例をもとに、本発明をより具体的に説明する。
実施例1:ヘパロサンの調製
(1)ヘパロサン発酵
 WO2015/050184の実施例1に記載のヘパロサン生産菌(エシェリヒア・コリBL21(DE3)/pVK9-kfiABCD株)および培養条件にてヘパロサンを含有する培養液を得た。
(2)ヘパロサンの精製
 培養液から遠心分離により培養上清を回収した。培地成分を除去するために1mLの培養上清をUF膜を用いてmilliQ水で洗浄し、250μLまで濃縮した。UF膜濃縮液250μLに500μLの100%エタノールを加え、遠心分離によってヘパロサンを沈降させた。得られた沈殿を風乾させ、ヘパロサンを得た。残りの培養上清から同様の手順でヘパロサンを精製し、ヘパロサン計10gを得た。
実施例2:ヘパロサンのN-脱アセチル化
1) ヘパロサン1.22gにHydrazine・HO61mLと1N硫酸4.7mLを添加し、気相を窒素置換後、100℃に加温し、4.75時間反応させた。
2) 氷冷により反応を停止させた後、16%NaCl水溶液61mLおよびMeOH610mLを添加して遠心し、上清を除去した。得られた沈殿をHO50mLに溶解させた後、AmiconUF膜(3kDa)を用いて脱塩濃縮した。
3) 得られた濃縮液に2倍量のHOおよび等量の1M NaHCOを添加後、0.2M I/0.4M KI溶液を黄色に呈色するまで滴下した。その後Hydrazine・HOを滴下し、余剰のヨウ素をヨウ素イオンに還元後、再度AmiconUF膜(3kDa)を用いて脱塩濃縮し、濃縮液を減圧乾固してN-脱アセチル化ヘパロサンを得た。得られたN-脱アセチル化ヘパロサンにおけるアセチル基の残存率は14.9%であった(後述)。
実施例3:N-脱アセチル化ヘパロサンの低分子化
(1)ヘパリナーゼIIIの調製
<Flavobacterium heparinum由来hepC遺伝子の発現プラスミドの構築>
 Flavobacterium heparinum(ATCC 13125)よりヘパリナーゼIIIをコードするhepC遺伝子をpMIV-Pnlp0ベクター(米国特許出願公開20050196846号)にクローニングし、hepC遺伝子の発現プラスミドpMIV-Pnlp0-hepCを構築した。pMIV-Pnlp0-terには強力なnlp0プロモーター(Pnlp0)とrrnBターミネーターが組み込まれており、プロモーターとターミネーターの間に目的の遺伝子を挿入することで発現ユニットとして機能させることができる。「Pnlp0」はエシェリヒア・コリK-12株由来の野生型nlpD遺伝子のプロモーターを示す。
 発現プラスミドの構築の詳細を以下に示す。エシェリヒア・コリMG1655の染色体DNAをテンプレートとして、プライマーP1(配列番号6)及びプライマーP2(配列番号7)を用いたPCRによって、nlpD遺伝子のプロモーター領域(Pnlp0)約300bpを含むDNA断片を取得した。これらプライマーの5’末端には制限酵素SalI及びPaeIのサイトがそれぞれデザインされている。PCRサイクルは次の通りであった。95℃3分の後、95℃60秒、50℃30秒、72℃40秒を2サイクル、94℃20秒、55℃20秒、72℃15秒を25サイクル、最後に72℃5分。得られた断片をSalI及びPaeIで処理し、pMIV-5JS(特開2008-99668)のSalI-PaeIサイトに挿入し、プラスミドpMIV-Pnlp0を取得した。このpMIV-Pnlp0プラスミドに挿入されたPnlp0プロモーターのPaeI-SalI断片の塩基配列は配列番号8に示したとおりである。
 次に、MG1655の染色体DNAをテンプレートとして、プライマーP3(配列番号9)及びプライマーP4(配列番号10)を用いたPCRによって、rrnB遺伝子のターミネーター領域約300bpを含むDNA断片(配列番号11)を取得した。これらプライマーの5’末端には制限酵素XbaI及びBamHIのサイトがそれぞれデザインされている。PCRサイクルは次の通りであった。95℃3分の後、95℃60秒、50℃30秒、72℃40秒を2サイクル、94℃20秒、59℃20秒、72℃15秒を25サイクル、最後に72℃5分。得られた断片をXbaI及びBamHIで処理し、pMIV-Pnlp0のXbaI-BamHIサイトに挿入し、プラスミドpMIV-Pnlp0-terを取得した。
 次に、Flavobacterium heparinum(ATCC 13125)のhepC遺伝子のORF(Su H.et.al.,Appl.Environ.Microbiol.,1996,62:2723-2734)を含むDNA鎖を人工合成した。そのDNA鎖をテンプレートとして、プライマーP5(配列番号12)及びプライマーP6(配列番号13)をプライマーとして用いたPCRによって、hepC遺伝子のDNA断片を増幅した。PCRにはPrimeStarポリメラーゼ(TaKaRa社)を用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りであった。94℃5分の後、98℃5秒、55℃10秒、72℃8分を30サイクル、最後に4℃保温。また、pMIV-Pnlp0をテンプレートDNAとし、プライマーP7(配列番号14)及びプライマーP8(配列番号15)のオリゴヌクレオチドをプライマーとして用いたPCRによって、pMIV-Pnlp0のDNA断片を得た。PCRにはPrimeStarポリメラーゼを用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りであった。94℃5分の後、98℃5秒、55℃10秒、72℃6分を30サイクル、最後に4℃保温。得られた両DNA断片をIn-Fusion(登録商標)HDクローニングキット(クロンテック社製)を用いて連結し、hepC遺伝子の発現プラスミドpMIV-Pnlp0-hepCを構築した。クローニングされたhepC遺伝子の塩基配列を配列番号16に、それがコードするヘパリナーゼIII(HepC)のアミノ酸配列を配列番号17に示す。
<エシェリヒア・コリBL21(DE3)株のhepC遺伝子発現株の構築及びヘパリナーゼIII酵素液の調製>
 hepC遺伝子の発現プラスミドpMIV-Pnlp0-hepCをエシェリヒア・コリBL21(DE3)株(ライフテクノロジーズ社)へエレクトロポレーション(Cell;80μL,200Ω,25μF,1.8kV、キュベット;0.1mL)により導入し、ヘパリナーゼIII生産株としてエシェリヒア・コリBL21(DE3)/pMIV-Pnlp0-hepC株を得た。この株を25μg/mLクロラムフェニコール添加LB培地にて37℃で一晩前培養を行った。その後、培養液を、坂口フラスコに300mL張りこんだLB培地中に終濃度2%v/vとなるよう植菌した。37℃にて4時間振とう培養を行い、培養を終了した。遠心分離後、菌体を0.85%NaClにて2回洗浄し、30mLの50mM HEPESバッファー(pH7.0)にて懸濁した。懸濁液を超音波破砕に供して菌体を破砕した。細胞破砕液を遠心分離し、上清(無細胞抽出液)としてヘパリナーゼIII酵素液を調製した。
(2)ヘパリナーゼIII反応による低分子化
 実施例2で得られたN-アセチル基残存率14.9%のN-脱アセチル化ヘパロサン1gおよび31.3mIU/μLのヘパリナーゼIII溶液2mLを100mM NaClおよび1.5mM CaClを含むTris緩衝溶液(pH8.0)100mLに溶解し、37℃にて5.3時間反応させた。反応液に16%NaCl水溶液100mLおよびEtOH900mLを添加して混合し、遠心分離して上清を除去し、低分子化N-脱アセチル化ヘパロサンを得た。
実施例4:低分子化N-脱アセチル化ヘパロサンのN-硫酸化
1) 実施例3で得られた低分子化N-脱アセチル化ヘパロサン1gをmilliQ水50mLに溶解させ、20mg/mL NaHCO/20mg/mL Trimethylamine・SO水溶液を50mL添加して55℃で一晩反応させた。
2) EtOH1Lを添加して混合し、遠心分離して上清を除去し、N-硫酸化低分子化ヘパロサンを得た。
3) 得られたN-硫酸化低分子化ヘパロサンをmilliQ水に溶解して500μLとし、二糖分析を行ってN-脱アセチル化ヘパロサンに対する収率を求めた。また、GPC分析に供し、分子量分布を求めた。手順を以下に示す。
<二糖分析>
 N-硫酸化低分子化ヘパロサンの二糖分析は、既報(T.Imanari,et.al.,“High-performance liquid chromatographic analysis of glycosaminoglycan-derived oligosaccharides.”J.O.Chromato.A,720,275-293(1996))の条件に従い実施した。すなわち、N-硫酸化低分子化ヘパロサンをヘパリナーゼIIおよびIIIを用いて不飽和二糖に分解し、分解物をHPLCで分析することにより、各構成二糖の量を定量した。
 同様に、N-脱アセチル化ヘパロサンの二糖分析を実施した。なお、N-脱アセチル化ヘパロサンの二糖分析は、N-脱アセチル化ヘパロサンをN-硫酸化してから実施した。すなわち、N-脱アセチル化ヘパロサンをN-硫酸化した後、ヘパリナーゼIIおよびIIIを用いて不飽和二糖に分解し、分解物をHPLCで分析することにより、各構成二糖の量を定量した。N-脱アセチル化ヘパロサンのN-硫酸化は、低分子化N-脱アセチル化ヘパロサンのN-硫酸化と同様に実施した。
 二糖分析は、具体的には、以下の手順で実施した。
1) ヘパリナーゼII0.2U(Sigma)、ヘパリナーゼIII0.02~0.03mIU、多糖サンプル5μg、および酵素消化用buffer(100mM CHCOONa,10mM(CHCOO)Ca,pH7.0)10μLを混合し、milliQ水で100μLにメスアップし、反応溶液とした。
2) 反応溶液を37℃で16時間以上反応させた後、100℃にて2分間煮沸し、反応を停止させた。
3) 0.45μmのフィルターで不溶物を除去した溶液を二糖分析用サンプルとした。
4) 分析は、カラムにはInertsil ODS-3 150mm×2.1mm、粒子径5μmを用い、温度は50℃、流速は0.25mL/min、検出波長は230nm、溶離液はA液として4%Acetonitrile、1.2mM Tributylamineを用い、B液として4%Acetonitrile、0.1M CsClを用い、B液1-90%のグラジエント条件で行った。
 各多糖サンプルから生成した構成二糖の量の合計から、収率を算出した。すなわち、収率は、N-脱アセチル化ヘパロサンから生成した二糖の全量に対する、N-硫酸化低分子化ヘパロサンから生成した二糖の全量の比率(モル比)として算出した。また、この時、得られたN-硫酸化低分子化ヘパロサンにおいて、N-脱アセチル化により生じたアミノ基の99%以上がN-硫酸化されていることを確認した。
 また、N-脱アセチル化ヘパロサンから生成した各構成二糖の量に基づき、N-脱アセチル化ヘパロサンにおけるN-アセチル基の残存率を算出した。すなわち、アセチル基の残存率は、二糖の総量に対する、N-アセチル基を有する二糖の量の比率(モル比)として算出した。アセチル基の残存率は、14.9%であった。
<GPC分析>
 N-硫酸化低分子化ヘパロサン及びヘパラン硫酸(milliQ水に1mg/mLとなるように溶解したもの)をHPLCによるゲルろ過(GPC分析)に供した。カラムにはGS520(Shodex、Asahipak GS-520HQ、7.5mm×300mm,粒子径7μm)を、溶離液には100mMリン酸二水素カリウム水溶液を用い、流速0.6mL/分、カラム温度40℃、検出波長200nmで分析した。平均分子量(MnおよびMw)は、プルランの分子量マーカー(Shodex、STANDARD P-82、分子量範囲5900~708000)を標準として算出した。
実施例5:C5エピメリ化および2-O-硫酸化のカップリング反応
(1)C5-エピメラーゼの発現と精製
 C5-エピメラーゼとしては、ヒト由来のC5-エピメラーゼの触媒部位(Gln29-Asn617)と、マルトース結合タンパク質(MBP)との融合タンパク質(MBP-C5-エピメラーゼ)を利用した。そのため、同触媒部位をコードする塩基配列をpMAL-c2xベクター(New England Biolabs社)にクローニングし、MBP-C5-エピメラーゼの発現プラスミドpMAL-c2x-MBP-C5epiを構築した。pMAL-c2xベクターによれば、クローニングした遺伝子がMBPとの融合タンパク質として発現する。
 発現プラスミドの構築の詳細を以下に示す。Jin-ping Liらの報告(Li J.et.al.,Jour.Biol.Chem.1997,272:28158-28163)を参照して、ヒト由来のC5-エピメラーゼのcDNAを人工遺伝子合成(サーモフィッシャーサイエンティフィック株式会社)により調製した。そのcDNAをテンプレートとして、C5-epi fw(配列番号18)及びC5-epi rv(配列番号19)をプライマーとして用いたPCRによって、C5-エピメラーゼの触媒部位(Gln29-Asn617)をコードする塩基配列を含むDNA断片を取得した。PCRにはPrimeStarポリメラーゼ(TaKaRa社)を用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りであった。94℃5分の後、98℃5秒、55℃10秒、72℃2分を30サイクル、最後に4℃保温。また、pMAL-c2x(配列番号20、New England BioLabs社)をテンプレートDNAとし、配列番号21及び配列番号22のオリゴヌクレオチドをプライマーとして用いたPCRによって、pMAL-c2xのDNA断片を得た。PCRにはPrimeStarポリメラーゼを用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りであった。94℃5分の後、98℃5秒、55℃10秒、72℃6分を30サイクル、最後に4℃保温。得られた両DNA断片をIn-Fusion(登録商標)HDクローニングキット(クロンテック社)を用いて連結し、C5-エピメラーゼの触媒部位をコードする塩基配列とpMAL-c2xにもともと含まれるMBP遺伝子の融合した、MBP-C5-エピメラーゼの発現プラスミドpMAL-c2x-MBP-C5epiを構築した。C5-エピメラーゼ挿入断片の塩基配列(C5-エピメラーゼの触媒部位をコードする塩基配列)及びそれがコードするアミノ酸配列を、配列番号23および24に示す。
 MBP-C5-エピメラーゼ発現プラスミドpMAL-c2x-MBP-C5epiおよびシャペロニン発現プラスミドpGro7(TaKaRa社)をエシェリヒア・コリOrigami B(DE3)株(ノバジェン社)へエレクトロポレーション(Cell;80μL,200Ω,25μF,1.8kV、キュベット;0.1mL)により導入し、Origami B(DE3)/pMAL-c2x-MBP-C5epi/pGro7株を得た。この株をLB培地(1.0%(w/v)ペプトン、0.5%(w/v)酵母エキス、1.0%(w/v)NaCl)に100μg/mLアンピシリン、25μg/mLクロラムフェニコールを添加した培地に植菌し、37℃で一晩前培養を行った。その後、培養液を坂口フラスコに100mL張りこんだLB培地中に終濃度1%となるよう植菌した。37℃にて3時間振とう培養後、イソプロピル-β-D-チオガラクトピラノシド(IPTG)(ナカライテスク社)を終濃度0.5mM、アラビノース(和光純薬工業社)を終濃度0.2%となるよう添加し、さらに一晩22℃にて培養を行った。
 培養液を遠心分離後、菌体を回収し、洗浄液(20mM Tris-HCl(pH7.5)、200mM NaCl)により1回洗浄し、同洗浄液にて懸濁した。得られた懸濁液にFastBreak(プロメガ社)を添加し、30℃で10分間から1時間保温後、9,100gにて10分間遠心分離を行い、得られた上清を菌体抽出液とした。
(2)2-O-硫酸化酵素(2-OST)の発現と精製
 2-O-硫酸化酵素(2-OST)としては、チャイニーズハムスター由来の2-OSTの94番目のチロシン残基をイソロイシンに変換した変異体の触媒部位(Arg51-Asn356)と、マルトース結合タンパク質(MBP)との融合タンパク質(MBP-2-OST)を利用した。そのため、同触媒部位をコードする塩基配列をpMAL-c2xベクター(New England Biolabs社)にクローニングし、MBP-2-OSTの発現プラスミドpMAL-c2x-MBP-2OSTを構築した。
 発現プラスミドの構築の詳細を以下に示す。小林らの報告(Kobayashi M.et.al.,Jour.Biol.Chem.1997,272:13980-13985)を参照して、チャイニーズハムスター由来の2-OSTの94番目のチロシン残基をイソロイシンに変換した変異体のcDNAを人工遺伝子合成(サーモフィッシャーサイエンティフィック株式会社)により作製した。そのcDNAをテンプレートとして、2-OST fw(配列番号25)及び2-OST rv(配列番号26)をプライマーとして用いたPCRによって、2-OST変異体の触媒部位(Arg51-Asn356)をコードする塩基配列を含むDNA断片を取得した。PCRにはPrimeStarポリメラーゼ(TaKaRa社)を用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りであった。94℃5分の後、98℃5秒、55℃10秒、72℃2分を30サイクル、最後に4℃保温。また、pMAL-c2xをテンプレートDNAとし、配列番号21及び配列番号22のオリゴヌクレオチドをプライマーとして用いたPCRによって、pMAL-c2xのDNA断片を得た。PCRにはPrimeStarポリメラーゼを用い、プロトコールに記載の反応組成で行った。PCRサイクルは次の通りであった。94℃5分の後、98℃5秒、55℃10秒、72℃6分を30サイクル、最後に4℃保温。得られた両DNA断片をIn-Fusion(登録商標)HDクローニングキット(クロンテック社製)を用いて連結し、2-OST変異体の触媒部位をコードする塩基配列とpMAL-c2xにもともと含まれるMBP遺伝子の融合した、MBP-2-OSTの発現プラスミドpMAL-c2x-MBP-2OSTを構築した。2-OST挿入断片の塩基配列(2-OST変異体の触媒部位をコードする塩基配列)及びそれがコードするアミノ酸配列を、配列番号27および28に示す。
 MBP-2OST発現プラスミドpMAL-c2x-MBP-2OSTおよびシャペロニン発現プラスミドpGro7(TaKaRa社)をエシェリヒア・コリOrigami B(DE3)株(ノバジェン社)へ実施例5(1)と同様の手法により導入し、Origami B(DE3)/pMAL-c2x-MBP-2OST/pGro7株を得た。この株をLB培地に100μg/mLアンピシリン、25μg/mLクロラムフェニコールを添加した培地に植菌し、37℃で一晩前培養を行った。その後、培養液を坂口フラスコに100mL張りこんだLB培地中に終濃度1%となるよう植菌した。37℃にて3時間振とう培養後、イソプロピル-β-D-チオガラクトピラノシド(IPTG)(ナカライテスク社)を終濃度0.5mM、アラビノース(和光純薬工業社)を終濃度0.2%となるよう添加し、さらに一晩22℃にて培養を行った。
 培養液から以下の手順で精製MBP-2-OSTを調製した。まず、培養液を遠心分離し、菌体を回収した。次いで、菌体を超音波破砕し菌体抽出液を得た。次いで、20mM Tris(pH7.5)、200mM NaClにより平衡化したAmylose resin(New England Biolabs社)に菌体抽出液を混和しMBP-2-OSTをレジンに吸着させた。その後、レジンの4倍量の平衡化バッファーにて洗浄し、10mMのマルトースを添加した平衡化バッファー(溶出バッファー)を添加し、MBP-2-OSTが含まれるフラクションを分取し、精製MBP-2-OSTとした。
(3)酵素反応(C5エピメリ化および2-O-硫酸化のカップリング反応)
 調製されたMBP-C5-エピメラーゼ菌体抽出液及び精製MBP-2-OSTを用い、C5エピメリ化および2-O-硫酸化を行った。166mgの実施例4で得られたN-硫酸化低分子化ヘパロサン、50mM MES(pH7.0)、100mM NaCl、および1mM PAPSの混合液703mLに、終濃度0.9mg/mLとなるようC5-エピメラーゼ発現菌体の菌体抽出液108mLと、終濃度0.5mg/mLとなるよう精製MBP-2-OST16.9mLを加えて総量828mLの反応液を調製し、37℃で24時間反応させた。
(4)変換率の定量
 変換率(C5エピメリ化率および2-O-硫酸化率)の定量は、亜硝酸分解による二糖組成分析により実施した。
<試薬>
NaNO(CAS No.:7632-00-0,MW:69.01)
クエン酸(CAS No.:77-92-9,MW:192.1)
2,4-ジニトロフェニルヒドラジン(CAS No.:119-26-6,MW:198.1)50%含水品(略:DNPH)
Heparin(Aldrich製)
<試験液>
Heparin標準溶液:1mg/mL
NaNO水溶液:試薬49.5mgをHO1mLに溶解
クエン酸水溶液:試薬384.2mgをHO1mLに溶解
DNPH溶液:試薬20.4mg(50%含水)をアセトニトリル1mLに溶解
<LC-MS分析条件>
<LC条件>
カラム:住化分析センター製ODS Z-CLUE3μm 2.0mm×250mm
カラム槽温度:50℃
溶離液流量:0.3mL/min
検出:UV365nm
注入量:5μL
溶離液組成:A液 50mM-HCOONH(pH4.5)
      B液 MeCN
Figure JPOXMLDOC01-appb-T000009
<MS条件>
イオン化法   ;エレクトロスプレーイオン化(ESI(+/-))
DL温度    :250℃
ヒートブロック :250℃
ネブライザーガス流速:1.5L/min
ドライガス流速 :15L/min
Figure JPOXMLDOC01-appb-T000010
<分析手順および結果>
 1.5mLマイクロチューブ(Eppendorf)にHeparin標準液、クエン酸buffer水溶液20μL、NaNO水溶液10μLを順に添加し、混合溶液を65℃で2hr撹拌(1000rpm)し、亜硝酸分解液を得た。得られた亜硝酸分解液40μLにDNPH溶液20μLを添加し、45℃で2hr撹拌(1000rpm)し、誘導化液を得た。得られた誘導化液の組成をLC-MSで分析した。Heparin標準液を分析して得られるIdoA(2S)-GlcN(NS6S)のピークから換算係数(1mg×IdoA(2S)-GlcN(NS6S)のarea純度/IdoA(2S)-GlcN(NS6S)のarea値)を算出し、被験液中の各二糖誘導体のarea値からその濃度を求めた。算出された二糖構造とその割合を表3に示す。表中、N-アセチル基を有する二糖誘導体等を含むと考えられる未同定ピークのデータは割愛し、GlcA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS)、GlcA-GlcN(NS)、およびIdoA-GlcN(NS)の総量を100%とした。C5-エピメリ化率(IdoA(2S)-GlcN(NS)とIdoA-GlcN(NS)の割合の和)は58%、2-O-硫酸化率(GlcA(2S)-GlcN(NS)とIdoA(2S)-GlcN(NS)の割合の和)は65%であることが確認された。
Figure JPOXMLDOC01-appb-T000011
実施例6:6-O-硫酸化反応
<反応前の精製>
 実施例5で得られた酵素反応液(C5エピメリ化および2-O-硫酸化のカップリング反応後の反応液)30mLを遠心分離し(7000G、30分)、その上清を0.45μmのフィルターで濾過した。濾過液27.3gをファルマシア製カラム(型番:XK26)に充填した弱アニオン交換樹脂15g(DIAION、WA-30三菱化学製 事前に25.6mM NaHPOでpH5.5に調整)に投入して多糖成分を吸着し、洗浄液(0.5M NaCl+25.6mM NaHPO(pH5.5))480mLを通液した(流速:6.4mL/min)。次に、溶離液(2M NaCl+25.6mM NaHPO(pH5.5))230mLを通液し(流速6.4mL/min)、多糖成分を含む溶離液を得た。得られた溶離液をAmicon-3K(メルクミリポア製)にチャージして遠心分離(4000G)を行った。得られた濃縮液に更に水100mLを添加して再度遠心分離を行った。この洗浄操作を3回実施して洗浄濃縮液11gを取得した。
<イオン交換>
 強カチオン交換樹脂(DIAION、UBK550三菱化学製 予め1M塩酸でH型に変換)3mLに洗浄濃縮液11gを通液した後(pH2.25)、トリブチルアミン2.36mg/エタノール10μLの混合液1.8mLを添加して中和した(pH8.36)。得られた中和液を凍結乾燥した。
<6-O-硫酸化反応>
 アルゴン気流下で凍結乾燥物全量にDMF1.92mL及び三酸化硫黄ピリジン付加物76.4mg(0.48mmol)を添加し、-10℃で48時間撹拌した。反応液に5M酢酸Na水溶液2.8mL及び水31mLを添加して室温で1時間撹拌することで反応を停止した。反応停止液を0.2μmのフィルターで濾過し、その濾過液をAmicon-3K(メルクミリポア製)にチャージして遠心分離(4000G)を行った。得られた濃縮液に更に水20mLを添加して再度遠心分離を行った。この洗浄操作を2回実施して洗浄濃縮液3.92gを取得した。得られた洗浄濃縮液をサンプリングし、実施例5と同様の手順で亜硝酸分解により二糖組成分析を行った。その結果、洗浄濃縮液3.92g中に二糖単位の量に換算して76.5mgの反応生成物(多糖)が含まれていることを確認した。
実施例7:GlcN残基の3-O-硫酸化反応
(1)3-O-硫酸化酵素(3-OST)発現株の作製
 マウス由来3-OST-1のアミノ酸配列(NCBI-Protein ID:NP_034604;配列番号29)をKEGG(Kyoto Encyclopedia of Genes and Genomes)データベースより取得した。既報(Edavettal S.C.et al.,J Biol Chem.2004;279(24)25789-97)を参考に、エシェリヒア・コリのcodon usageに合わせて最適化した、同3-OST-1の触媒部位(Gly48-His311)をコードする塩基配列(配列番号30)を含むDNA断片を合成した。得られたDNA断片をpETDuet-1ベクター(Novagen)のEcoRI-SalIサイトに挿入して、3-OST-1発現プラスミドpETDuet-3-OST-1を構築した。この発現プラスミドによれば、N末端側にHis-Tagが付加された3-OST-1が発現するため、Hisタグによる3-OST-1の精製が可能となる。この発現プラスミドをエシェリヒア・コリBL21(DE3)株へ実施例5(1)と同様の手法で導入し、3-OST-1発現株pETDuet-3-OST-1/BL21(DE3)株を得た。
(2)3-OST-1の発現と精製
 エシェリヒア・コリpETDuet-3-OST-1/BL21(DE3)株を100μg/mLのアンピシリンを含むLB寒天培地(1.0%(w/v)ペプトン、0.5%(w/v)酵母エキス、1.0%(w/v)NaCl、1.5%(w/v)寒天)に接種し、37 ℃で一晩静置培養した。寒天培地上に生育した菌体20μLをLB培地1mLに懸濁し、そのうち50μLをOvernight Express TB培地(メルク社、100μg/mLアンピシリン含有)50mLを張り込んだ坂口フラスコに添加した。植菌した坂口フラスコ16本を22℃、120往復/分で24~26時間振とう培養した後に、遠心分離(4℃、8,000rpm、5分)によって集菌した。沈殿として得られた菌体を160mLの平衡化バッファー(50mM リン酸ナトリウム、300mM NaCl、pH7.0)に懸濁し、再度遠心分離(4℃、8,000rpm、5分)することによって菌体を洗浄した。洗浄操作を2回繰り返した後、沈殿として得られた菌体を160mLの平衡化バッファーに再度懸濁し、氷水で冷やしながら超音波破砕(190W、20分間)を行った。破砕液を遠心分離(4℃、8,000rpm、10分)し、得られた上清を無細胞抽出液とした。
 得られた無細胞抽出液を、予め平衡化バッファーで平衡化したHisTALON Superflow Cartridgeカラム5mL(クロンテック社製)を3本連結したカラムにアプライして3-OST-1を吸着し、洗浄バッファー(50mMリン酸ナトリウム、300mM NaCl、10mMイミダゾール、pH7.0)にて洗浄後、溶出バッファー(50mMリン酸ナトリウム、300mM NaCl、150mMイミダゾール、pH7.0)により3-OST-1を溶出し、3-OST-1の活性画分を得た。得られた活性画分を、PD-10カラム(GEヘルスケア社製)を用いマニュアルに従ってバッファー交換(50mMリン酸ナトリウム、300mM NaCl、pH7.0)した。バッファー交換後の酵素溶液を精製3-OST-1として以降の実験に用いた。
(3)酵素反応(GlcN残基の3-O-硫酸化反応)
 実施例6で得られた反応生成物全量、50mM HEPES(pH7.5)、221μM PAPSの混合液326.5mLを調製した。水浴中で予め37℃に保温した同混合液に終濃度234mg/Lとなるよう精製3-OST-1 56mLを添加して全量382.5mLの反応液を調製し、反応を開始した。37℃で緩やかに撹拌しながら反応を進行させ、24時間経過後に90℃20分加熱し酵素を失活させた。
(4)GlcN残基の3-O-硫酸化率の定量
 実施例5と同様の手順で亜硝酸分解により反応生成物の二糖組成分析を行った。算出された二糖構造とその割合を表4に示す。
Figure JPOXMLDOC01-appb-T000012
実施例8:反応生成物の精製
 実施例7で得られた酵素反応液(GlcN残基の3-O-硫酸化反応後の反応液)371gを遠心分離し(8000G、30分)、その上清を0.45μmのフィルターで濾過した。その濾過液をAmicon-3K(メルクミリポア製)にチャージして遠心分離(4000G)を行った。得られた濃縮液に更に水200mLを添加して再度遠心分離を行った。この洗浄操作を3回実施して洗浄濃縮液11.6gを取得した。その洗浄濃縮液をファルマシア製カラム(型番:XK16)に充填した弱アニオン交換樹脂7.5g(DIAION、WA-30三菱化学製 事前に25.6mM NaHPOでpH5.5に調整)に投入して多糖成分を吸着し、洗浄液(0.5M NaCl+25.6mM NaHPO(pH5.5))500mLを通液した(流速:3.0mL/min)。次に、溶離液(2M NaCl+25.6mM NaHPO(pH5.5))500mLを通液し(流速3.0mL/min)、多糖成分を含む溶離液を得た。得られた溶離液171gをAmicon-50K(メルクミリポア製)にチャージして遠心分離(4000G)を行った。得られた透過液を更にAmicon-3K(メルクミリポア製)にチャージして遠心分離(4000 G)を行った。得られた濃縮液に水100mLを添加して再度遠心分離を行った。この洗浄操作を3回実施して洗浄濃縮液8.58gを取得した。得られた洗浄濃縮液を凍結乾燥して精製多糖41mgを取得した。
実施例9:精製多糖の品質分析
 実施例8で得られた精製多糖について、表5に示す項目の測定を実施した。測定法は後述する。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000013
実施例10:構造の異なる硫酸化多糖の作製
 エピメリ化率、2-O-硫酸化率、GlcN残基の3-O-硫酸化率等のパラメータの異なる複数種の硫酸化多糖の作製し、抗凝固活性の評価を実施した。
(1)C5エピメリ化および2-O-硫酸化のカップリング反応
 実施例5(3)と同様の反応液組成で総量100mLの反応液を調製し、0時間、4時間、8時間37℃で反応させた。実施例5と同様の手順で亜硝酸分解により反応生成物に含まれる二糖組成分析を行った。算出された二糖構造とその割合を表6に示す。表中、N-アセチル基を有する二糖誘導体等を含むと考えられる未同定ピークのデータは割愛し、GlcA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS)、GlcA-GlcN(NS)、およびIdoA-GlcN(NS)の総量を100%とした。
Figure JPOXMLDOC01-appb-T000014
(2)6-O-硫酸化反応
 得られた酵素反応液(C5エピメリ化および2-O-硫酸化のカップリング反応後の反応液)各100mLについて、実施例6と同様の手順で精製および6-O-硫酸化反応を行い、洗浄濃縮液を取得した。得られた洗浄濃縮液をサンプリングし、実施例5と同様の手順で亜硝酸分解により二糖組成分析を行った。その結果、各サンプルについて、洗浄濃縮液中に二糖単位の量に換算して約80μgの反応生成物(多糖)が含まれていることを確認した。
(3)GlcN残基の3-O-硫酸化反応
 得られた6-O-硫酸化反応の反応生成物について、実施例7と同様の反応液組成で総量300μLの反応液を調製し、24時間37℃で反応させた。実施例5と同様の手順で亜硝酸分解により反応生成物の二糖組成分析を行った。算出された二糖構造とその割合を表7に示す。表中、4時間および8時間のサンプルについては、未同定ピークのデータは割愛し、表に示す二糖単位の総量を100%とした。
Figure JPOXMLDOC01-appb-T000015
(4)精製多糖の抗凝固活性
 実施例8と同様の手順でGlcN残基の3-O-硫酸化反応の反応生成物を精製し、抗凝固活性の測定を実施した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000016
<測定法>
 実施例9および10において、各項目は以下に示す手順で測定した。
<Anti-Factor Xa>
・使用キット:テストチーム ヘパリンS(清水メディカル製)
・低分子ヘパリン標準品:日本薬局法標準品(医薬品医療機器レギュラトリーサイエンス財団製 Anti-Factor Xa:1750IU)
・使用器具:
  ミキサー&恒温機:Thermomixer compact(Eppendorf製)
  UV吸光度計:PD-303S((株)アペル製)
  UV-セル:アクリル製角セル(光路長10mm)
試薬の調製
・基質液:基質剤1バイアルをミリQ水20mLで溶解した。
・アンチトロンビンIII液:アンチトロンビンIII剤1バイアルをミリQ水10mLに溶解した。
・ファクターXa液:ファクターXa剤1バイアルをミリQ水10mLに溶解した。
・緩衝液:付属のバイアルをそのまま使用した。
・正常血漿:正常血漿剤1バイアルをミリQ水1.0mLで溶解した。
・反応停止液:氷酢酸(特級)20mLにミリQ水を加え全量を40mLにした。
・ヘパリン標準液:
  一次希釈ヘパリン溶液(35IU/mL):ヘパリン1750IUをミリQ水50mLに溶解した。
  二次希釈ヘパリン液(0.175IU/mL):一次希釈ヘパリン溶液100μLに緩衝液900μLを正確に加えて混合した。更に、混合液50μLに緩衝液950μLを正確に加えて混合した。
  ヘパリン標準液:二次希釈ヘパリン溶液を表9に示す通りに希釈して混和した。
Figure JPOXMLDOC01-appb-T000017
検体(測定サンプル)の調製
 基質濃度が2μg/mLになるように精製多糖をミリQで希釈又は溶解し、希釈液Aを得た。希釈液Aに表10に示す割合で試薬を添加し、検体を調製した。
Figure JPOXMLDOC01-appb-T000018
測定手順
 測定用及び検体ブランク用マイクロチューブのそれぞれに検体200μLを正確に採取して、37℃で4分加温撹拌した。測定用マイクロチューブにファクターXa液100μLを加えてよく混和し30秒静置した後、37℃で正確に30秒間加温した。測定用マイクロチューブに予め37℃に加温した基質液200μLを加えてよく混和し30秒静置した後、37℃で正確に180秒間加温した。各マイクロチューブに反応停止液300μLを加え、直ちに混和した。UVセルに反応液800μLを分注し、波長405nmで吸光度を測定した。同様に、各希釈系列のヘパリン標準液について測定を行い、ヘパリン標準液から算出される検量線を基に、検体のAnti-Factor Xa活性を求めた。1mLの血液凝固を1時間抑制する濃度を1 IU/mLと定義した。
<Anti-Factor IIa>
・使用試薬および使用キット:
  活性化部分トロンボプラスチン時間(aPTT)測定用塩化カルシウム溶液(0.025mol/L GMY-300A)シスメックス(株)製
  活性化部分トロンボプラスチン時間キット アクチンFSL GAC-200A シスメックス(株)製
  正常コントロール血漿 デイドサイトロール レベル1 GCA-110A シスメックス(株)製
  低分子ヘパリン標準品:日本薬局法標準品(医薬品医療機器レギュラトリーサイエンス財団製 Anti-Factor IIa:670 IU)
・使用器具:
  半自動血液凝固測定装置(CA-104 シスメックス(株)製)
測定手順
 キュベットに標準液(低分子ヘパリン標準品の希釈系列)又は被験液(精製多糖の溶液)10μL、アクチン50μL、コントロール血漿50μLを加え、直ちに検出部に挿入し遮光蓋を閉じた。3分撹拌した後、導入部から塩化カルシウム溶液50μLを添加した。凝固時間が自動的に表示された。標準液から算出される検量線を基に、被験液のAnti-Factor IIa活性を求めた。1mLの血液凝固を1時間抑制する濃度を1 IU/mLと定義した。
<LPS分析法>
・使用機器:Toxinometer ET-6000(和光純薬製)
・使用試薬:ライセート試薬(limulus ES-II Single Test Wako)
      標準LPS(JPSE10000)
・LPS標準溶液(EU/mL):0.01,0.1,1
測定手順
 ES-IIシングルテストワコーにLPS標準溶液又は被験液(精製多糖の溶液)200μL分注し、ミキサーで5秒撹拌した。チューブ内に大きな気泡がないことを確認してから、Toxinometerのポジション1に挿入した(自動的に測定開始)。透過率94.9%になる時間を求め、LPS標準溶液から算出される検量線を基に、被験液中のLPS濃度を求めた。
<タンパク質分析>
・使用機器:プレートリーダー(SPECTRA MAX190,Molecular Devices製)
・使用試薬:
  NaOH/NaCO溶液:NaOH2g及びNaCO10gを水に溶解し全量を500mLに調整した。
  硫酸銅/酒石酸Na溶液:硫酸銅5水和物2.5g及び酒石酸Na2水和物5.96gを水に溶解し全量を500mLに調整した。
  硫酸銅アルカリ溶液:NaOH/NaCO溶液5mL及び硫酸銅/酒石酸Na溶液1mLを混合した(用時調製)。
  フォーリン水溶液:Aldrich製フォーリン試薬(F9252-100mL)を水で2倍希釈した。
  アルブミン標準液:Thermo Scientific製の標準液(2mg/mL)を用いて0.125,0.25,0.5,1mg/mLに希釈した。
測定手順
 1.5mLマイクロチューブにアルブミン標準液又は被験液(精製多糖の溶液)20μLと硫酸銅アルカリ溶液300μLを分注し、ミキサーで撹拌後10分間静置した。更にフォーリン水溶液30μLを添加して撹拌後30分静置した。得られた発色液300μLを96穴プレートに注ぎ750nmの吸光度を求めた。アルブミン標準液から算出される検量線を基に、被験液中のタンパク質濃度を求めた。
<二糖分析>
 実施例5と同様の手順で亜硝酸分解により二糖組成分析を行い、GlcA-GlcN(NS3S6S)の含有率を算出した。
<平均分子量測定>
 実施例4と同様の手順でプルランの分子量マーカーを標準としてGPC分析を行い、平均分子量(MnおよびMw)を算出した。
実施例11:高アセチル基残存率を有するN-硫酸化ヘパロサンの分子量の低減化
(1)ヘパロサンのN-脱アセチル化
1) ヘパロサン120mgに2M NaOH6mLを添加し、48℃に加温し、4.1時間反応させた。
2) 6N HCl2mLを添加して反応を停止させた後、MeOH45mLを添加して遠心し、上清を除去した。得られた沈殿を0.25M NaHCO 8mLに溶解させた後、AmiconUF膜(3kDa)を用いて脱塩濃縮し、6mLのN-脱アセチル化ヘパロサン溶液を得た。得られたN-脱アセチル化ヘパロサンにおけるアセチル基の残存率は27.6%であった(後述)。
(2)ヘパリナーゼIII反応による低分子化
 (1)で得られたN-アセチル基残存率27.6%のN-脱アセチル化ヘパロサン溶液6mLおよび10mIU/μLのヘパリナーゼIII溶液221μLを1M NaClおよび15mM CaClを含むTris緩衝溶液(pH8.0)0.6mLと混合した後にmilliQ水を添加して12mLとし、37℃にて8時間反応させた。反応液にEtOH 86mLを添加して混合し、遠心分離して上清を除去し、低分子化N-脱アセチル化ヘパロサンを得た。
(3)低分子化N-脱アセチル化ヘパロサンのN-硫酸化
1) (2)で得られた低分子化N-脱アセチル化ヘパロサン全量をmilliQ水6mLに溶解させ、20mg/mL NaHCO/20mg/mL Trimethylamine・SO水溶液を6mL添加して55℃で一晩反応させた。
2) EtOH86mLを添加して混合し、遠心分離して上清を除去し、N-硫酸化低分子化ヘパロサンを得た。
3) 得られたN-硫酸化低分子化ヘパロサンについて、実施例4と同一の手法で平均分子量を求めた。
実施例12:N-アセチル基残存率に依存した低分子化N-硫酸化ヘパロサンの分子量の制御
(1)ヘパロサンのN-脱アセチル化
 実施例11と同様にしてヘパロサンをN-脱アセチル化反応に供し、反応時間を制御することによりN-アセチル基残存率が2.6%~29.6%のN-脱アセチル化ヘパロサンを取得した。
(2)ヘパリナーゼIII反応による低分子化
 (1)で得られたN-脱アセチル化ヘパロサンの低分子化を実施例11と同様の条件でヘパリナーゼIIIと反応させ、低分子化N-脱アセチル化ヘパロサンを取得した。
(3)低分子化N-脱アセチル化ヘパロサンのN-硫酸化
 (2)で得られた低分子化N-脱アセチル化ヘパロサンを実施例11と同様の条件でN-硫酸化反応に供し、N-硫酸化低分子化ヘパロサンを得た。
(4)平均分子量の集計
 得られたN-硫酸化低分子化ヘパロサンについて、実施例4と同一の手法で平均分子量を求めた。得られた収率および平均分子量(プルラン換算)の結果を表11に示す。
 表11の結果により、N-アセチル基残存率を高くすることにより分子量を低減させるように制御できることが示された。
Figure JPOXMLDOC01-appb-T000019
実施例13:分子量による活性の違いを見るための低分子化N-硫酸化ヘパロサンの調製
 N-アセチル基の残存量がヘパラン硫酸の活性に影響するため、分子量の違いの活性への影響を調べる目的でN-アセチル基の残存量の等しい異なる分子量の低分子化N-硫酸化ヘパロサンを調製した。分子量は、低分子化反応の反応時間で制御した。
(1)ヘパロサンのN-脱アセチル化
 実施例11と同様にしてヘパロサンをN-脱アセチル化反応に供し、N-アセチル基残存率が29.4%のN-脱アセチル化ヘパロサンを取得した。
(2)ヘパリナーゼIII反応による低分子化
 (1)で得られたN-脱アセチル化ヘパロサンの低分子化を実施例11と同様の条件でヘパリナーゼIIIと反応させ、酵素添加量と反応時間で分子量を制御し、4種類の低分子化N-脱アセチル化ヘパロサンを取得した。
(3)低分子化N-脱アセチル化ヘパロサンのN-硫酸化
 (2)で得られた低分子化N-脱アセチル化ヘパロサン4種類を実施例11と同様の条件でN-硫酸化反応に供し、N-硫酸化低分子化ヘパロサンを得た。
(4)得られたN-硫酸化低分子化ヘパロサンについて、実施例4と同一の手法で収率および分子量分布を求めた。
Figure JPOXMLDOC01-appb-T000020
実施例14:分子量の異なる硫酸化多糖の作製
(1)C5-エピメラーゼの発現と精製
 C5-エピメラーゼとしては、ヒト由来のC5-エピメラーゼの触媒部位(Gly101-Asn617)と、C末端3アミノ酸を置換したマルトース結合タンパク質(MBP*,既報(Rob J.Center,et.al.,“Cristallization of a trimeric human T cell leukemia virus type 1 gp21 ectodomain fragment as a chimera with maltose-binding protein.”Protein Science, 7, 1612-1619 (1998)))との融合タンパク質(MBP*-C5-エピメラーゼ(G101))を利用した。
 発現プラスミドの構築の詳細を以下に示す。まず、pMAL-c2x(配列番号20、New England BioLabs社)をテンプレートDNAとし、配列番号31及び配列番号32のオリゴヌクレオチドをプライマーとして用いたPCR反応によって、MBP*のC末端領域DNA断片を得た。上記PCR反応においては、5’末端に制限酵素BglII、3’末端に制限酵素HindIII、BamHI、SacI、XhoI、およびNotIの認識サイトを付加した。pMAL-c2xプラスミドDNAおよびMBP*のC末端領域DNA断片をBglIIおよびHindIIIにより切断し、ライゲーション反応を行うことによりpMAL-MBP*プラスミドを得た。pMAL-MBP*プラスミドの塩基配列を配列番号33に示す。
 実施例5で作製したpMAL-c2x-MBP-C5epiプラスミドをテンプレートDNAとし、配列番号34及び配列番号35のオリゴヌクレオチドをプライマーとして用いたPCR反応によって、C5-エピメラーゼ(G101)のDNA断片を得た。このPCR反応において、5’末端に制限酵素NotI、3’末端に制限酵素XhoIの認識サイトを付加した。pMAL-c2x-MBP-C5epiプラスミドDNAおよびC5-エピメラーゼ(G101)のDNA断片をNotIおよびXhoIにより切断し、ライゲーション反応を行うことによりpMAL-MBP*-C5epi(G101)プラスミドを得た。挿入断片の塩基配列(C5-エピメラーゼの触媒部位(Gly101-Asn617)をコードする塩基配列)及びそれがコードするアミノ酸配列を、配列番号36および37に示す。実施例5と同様の方法によりMBP*-C5-エピメラーゼ(G101)発現プラスミドpMAL-MBP*-C5epi(G101)およびシャペロニン発現プラスミドpGro7(TaKaRa社)をエシェリヒア・コリOrigami B(DE3)株(ノバジェン社)へ導入し、Origami B(DE3)/pMAL-MBP*-C5epi(G101)/pGro7株を得た。この株を用いて、実施例5と同様の方法により、菌体抽出液を調製した。
(2)2-O-硫酸化酵素(2-OST)の発現と精製
 2-O-硫酸化酵素(2-OST)としては、チャイニーズハムスター由来の2-OSTの94番目のチロシン残基をイソロイシンに変換した変異体の触媒部位(Asp68-Asn356)と、MBP*との融合タンパク質(MBP*-2-OST(D68))を利用した。
 発現プラスミドの構築の詳細を以下に示す。実施例5で作製したpMAL-c2x-MBP-2OSTプラスミドをテンプレートDNAとし、配列番号38及び配列番号39のオリゴヌクレオチドをプライマーとして用いたPCR反応によって、2-OST(D68)のDNA断片を得た。このPCR反応において、5’末端に制限酵素NotI、3’末端に制限酵素XhoIの認識サイトを付加した。pMAL-c2x-MBP-2OSTプラスミドDNAおよび2-OST(D68)のDNA断片をNotIおよびXhoIにより切断し、ライゲーション反応を行うことによりpMAL-MBP*-2OST(D68)プラスミドを得た。挿入断片の塩基配列(2-OSTの触媒部位(Asp68-Asn356)をコードする塩基配列)及びそれがコードするアミノ酸配列を、配列番号40および41に示す。実施例5と同様の方法によりMBP*-2-OST(D68)発現プラスミドpMAL-MBP*-2OST(D68)およびシャペロニン発現プラスミドpGro7(TaKaRa社)をエシェリヒア・コリOrigami B(DE3)株(ノバジェン社)へ導入し、Origami B(DE3)/pMAL-MBP*-2OST(D68)/pGro7株を得た。この株を用いて、実施例5と同様の方法により、2-OST精製蛋白質を調製した。
(3)C5エピメリ化および2-O-硫酸化のカップリング反応
 実施例13で調製した14mg N-硫酸化ヘパロサンNo.1、No.2、またはNo.3、50mM MES(pH7.0)、100mM NaCl、および0.5mM PAPSを反応液組成とした混合液68.9mlに、終濃度0.09mg/mLのC5-エピメラーゼ発現菌体の菌体抽出液0.7mlおよび終濃度0.07mg/mLの2-OST精製蛋白質0.4 mlを加えて総量70mLの反応液をそれぞれ調製し、37℃で10時間反応させた。
 実施例5と同様の手順で亜硝酸分解により反応生成物に含まれる二糖組成分析を行った。算出された二糖構造とその割合を表13に示す。表中、N-アセチル基を有する二糖誘導体等を含むと考えられる未同定ピークのデータは割愛し、GlcA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS)、GlcA-GlcN(NS)、およびIdoA-GlcN(NS)の総量を100%とした。
Figure JPOXMLDOC01-appb-T000021
(4)C5エピメリ化反応
 実施例13で調製した14mg N-硫酸化ヘパロサンNo.1、No.2、またはNo.3、50mM MES(pH7.0)、100mM NaClを反応液組成とした混合液5.4mlに、終濃度1.0mg/mLのC5-エピメラーゼ発現菌体の菌体抽出液0.6mlを加えて総量5mLの反応液をそれぞれ調製し、37℃で24時間反応させた。使用したC5-エピメラーゼは実施例14(1)と同一のもの使用した。実施例5と同様の手順で亜硝酸分解により反応生成物に含まれる二糖組成分析を行った。算出された二糖構造とその割合を表14に示す。
Figure JPOXMLDOC01-appb-T000022
(5)6-O-硫酸化反応
 得られたNo.4-No.9の酵素反応液(C5エピメリ化および2-O-硫酸化のカップリング反応後、または、C5エピメリ化単独反応の反応液)について、実施例6と同様の手順で精製および6-O-硫酸化反応を行い、洗浄濃縮液を取得した。
(6)3-O-硫酸化反応
 得られた6-O-硫酸化反応の反応生成物各80μgについて、実施例7と同様の反応液組成で総量300μLの反応液を調製し、24時間37℃で反応させた。実施例5と同様の手順で亜硝酸分解により反応生成物の二糖組成分析を行った。算出された二糖構造とその割合を表15に示す。未同定ピークのデータは割愛し、表に示す二糖単位の総量を100%とした。
Figure JPOXMLDOC01-appb-T000023
(7)精製多糖の抗凝固活性
 実施例8と同様の手順で3-O-硫酸化反応の反応生成物を精製し、抗凝固活性の測定を実施した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000024
<配列表の説明>
配列番号1:エシェリヒア・コリK5株のkfiABCDオペロンの塩基配列
配列番号2:エシェリヒア・コリK5株のKfiAタンパク質のアミノ酸配列
配列番号3:エシェリヒア・コリK5株のKfiBタンパク質のアミノ酸配列
配列番号4:エシェリヒア・コリK5株のKfiCタンパク質のアミノ酸配列
配列番号5:エシェリヒア・コリK5株のKfiDタンパク質のアミノ酸配列
配列番号6、7:プライマー
配列番号8:野生型nlpDプロモーター(Pnlp0)を含むPaeI-SalI断片の塩基配列
配列番号9、10:プライマー
配列番号11:rrnBターミネーターの塩基配列
配列番号12~15:プライマー
配列番号16:Flavobacterium heparinum ATCC 13125のhepC遺伝子の塩基配列
配列番号17:Flavobacterium heparinum ATCC 13125のHepCタンパク質のアミノ酸配列
配列番号18、19:プライマー
配列番号20:pMAL-c2x
配列番号21、22:プライマー
配列番号23:C5-エピメラーゼ挿入断片の塩基配列(ヒト由来C5-エピメラーゼの触媒部位をコードする塩基配列)
配列番号24:ヒト由来C5-エピメラーゼの触媒部位のアミノ酸配列
配列番号25、26:プライマー
配列番号27:2-OST挿入断片の塩基配列(チャイニーズハムスター由来2-OST変異体の触媒部位をコードする塩基配列)
配列番号28:チャイニーズハムスター由来2-OST変異体の触媒部位のアミノ酸配列
配列番号29:マウス由来3-OST-1のアミノ酸配列
配列番号30:エシェリヒア・コリのcodon usageに合わせて最適化した、マウス由来3-OST-1の触媒部位(Gly48-His311)をコードする塩基配列
配列番号31、32:プライマー
配列番号33:pMAL-MBP*
配列番号34、35:プライマー
配列番号36:C5-エピメラーゼ(G101)挿入断片の塩基配列(ヒト由来C5-エピメラーゼの触媒部位(Gly101-Asn617)をコードする塩基配列)
配列番号37:ヒト由来C5-エピメラーゼの触媒部位(Gly101-Asn617)のアミノ酸配列
配列番号38、39:プライマー
配列番号40:2-OST(D68)挿入断片の塩基配列(チャイニーズハムスター由来2-OST変異体の触媒部位(Asp68-Asn356)をコードする塩基配列)
配列番号41:チャイニーズハムスター由来2-OST変異体の触媒部位(Asp68-Asn356)のアミノ酸配列

Claims (27)

  1.  下記一般式(I)に示す二糖単位の繰り返し構造を含む、抗凝固活性を有する多糖:
    Figure JPOXMLDOC01-appb-C000001
     式中、R~Rは、以下の条件を満たす:
     R、R、R、およびRは、それぞれ独立に、水素または硫酸基を示す;
     Rは、水素、硫酸基、またはアセチル基を示す;
     Rの少なくとも一部が硫酸基である;
     Rにおける硫酸基の比率が、13%以上である;
     Rにおける硫酸基の比率が、50%以上である。
  2.  前記二糖単位の含有率が、90%以上である、請求項1に記載の多糖。
  3.  前記多糖を構成する糖鎖の総数の50%以上の数の糖鎖が、下記一般式(II)に示す構造からなる、請求項1または2に記載の多糖:
    Figure JPOXMLDOC01-appb-C000002
     式中、R~Rは、前記一般式(I)におけるR~Rと同一である;
     式中、nは、平均値として3~30である。
  4.  前記多糖を構成する糖鎖の総数の50%以上の数の糖鎖が、下記一般式(II)に示す構造からなる、請求項1~3のいずれか1項に記載の多糖:
    Figure JPOXMLDOC01-appb-C000003
     式中、R~Rは、前記一般式(I)におけるR~Rと同一である;
     式中、nは、平均値として3~15である。
  5.  平均糖連結数が6~60残基である、請求項1~4のいずれか1項に記載の多糖。
  6.  平均糖連結数が6~30残基である、請求項1~5のいずれか1項に記載の多糖。
  7.  プルランを標準としてゲル浸透クロマトグラフィーにより測定される数平均分子量が8000~60000である、請求項1~6のいずれか1項に記載の多糖。
  8.  プルランを標準としてゲル浸透クロマトグラフィーにより測定される数平均分子量が12000~40000である、請求項1~7のいずれか1項に記載の多糖。
  9.  プルランを標準としてゲル浸透クロマトグラフィーにより測定される重量平均分子量が10000~100000である、請求項1~8のいずれか1項に記載の多糖。
  10.  プルランを標準としてゲル浸透クロマトグラフィーにより測定される重量平均分子量が15000~50000である、請求項1~9のいずれか1項に記載の多糖。
  11.  前記二糖単位のヘキスロン酸残基におけるイズロン酸残基の比率が0%~70%である、請求項1~10のいずれか1項に記載の多糖。
  12.  Rにおける硫酸基の比率が、0%~80%である、請求項1~11のいずれか1項に記載の多糖。
  13.  イズロン酸残基のRにおける硫酸基の比率が、0%~100%である、請求項1~12のいずれか1項に記載の多糖。
  14.  グルクロン酸残基のRにおける硫酸基の比率が、0%~50%である、請求項1~13のいずれか1項に記載の多糖。
  15.  Rにおける硫酸基の比率が、1%未満である、請求項1~14のいずれか1項に記載の多糖。
  16.  Rにおける硫酸基の比率が、70%~100%である、請求項1~15のいずれか1項に記載の多糖。
  17.  Rにおけるアセチル基の比率が、0%~33%である、請求項1~16のいずれか1項に記載の多糖。
  18.  Rにおける硫酸基の比率が、45%以下である、請求項1~17のいずれか1項に記載の多糖。
  19.  Rにおける硫酸基の比率が、70%~100%である、請求項1~18のいずれか1項に記載の多糖。
  20.  GlcA-GlcN(NS3S6S)、GlcA(2S)-GlcN(NS6S)、IdoA(2S)-GlcN(NS6S)、GlcA-GlcN(NS6S)、IdoA(2S)-GlcN(NS)、IdoA(2S)-GlcN(NS3S)、IdoA-GlcN(NS6S)、およびGlcA-GlcN(NS)から選択される1またはそれ以上の二糖単位を、50%以上の総含有率で含む、請求項1~19のいずれか1項に記載の多糖。
  21.  Anti-Factor Xa活性/Anti-Factor IIa活性比が、1.5以上である、請求項1~20のいずれか1項に記載の多糖。
  22.  プルランを標準としてゲル浸透クロマトグラフィーにより測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5以下である、請求項1~21のいずれか1項に記載の多糖。
  23.  フリー体、もしくはその薬理学的に許容される塩、またはそれらの混合物である、請求項1~22のいずれか1項に記載の多糖。
  24.  前記塩が、アンモニウム塩、ナトリウム塩、リチウム塩、およびカルシウム塩から選択される、請求項1~23のいずれか1項に記載の多糖。
  25.  請求項1~24のいずれか1項に記載の多糖を含む医薬組成物。
  26.  血液凝固に起因する症状の予防、改善、および/または治療用である、請求項25に記載の組成物。
  27.  前記症状が、播種性血管内凝固症候群、血栓塞栓症、人工透析における血液凝固、または体外循環における血液凝固である、請求項26に記載の組成物。
     
PCT/JP2016/087689 2015-12-28 2016-12-16 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸 WO2017115675A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680082662.5A CN108699580B (zh) 2015-12-28 2016-12-16 在氨基葡萄糖残基中具有高3-o-硫酸化比率的硫酸乙酰肝素
ES16881651T ES2947291T3 (es) 2015-12-28 2016-12-16 Heparán sulfato que presenta una elevada tasa de 3-O-sulfatación en los residuos de glucosamina
EP16881651.0A EP3399045B9 (en) 2015-12-28 2016-12-16 Heparan sulfate having high 3-o-sulfation rate of glucosamine residues
JP2017558935A JP7006275B2 (ja) 2015-12-28 2016-12-16 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸
HRP20230820TT HRP20230820T1 (hr) 2015-12-28 2016-12-16 Heparan-sulfat, s visokom stopom 3-o-sulfatiranja u glukozaminskim ostacima
US16/018,487 US10889656B2 (en) 2015-12-28 2018-06-26 Heparan sulfate having high 3-O-sulfation rate in glucosamine residues

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-257022 2015-12-28
JP2015257022 2015-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/018,487 Continuation US10889656B2 (en) 2015-12-28 2018-06-26 Heparan sulfate having high 3-O-sulfation rate in glucosamine residues

Publications (1)

Publication Number Publication Date
WO2017115675A1 true WO2017115675A1 (ja) 2017-07-06

Family

ID=59225733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087689 WO2017115675A1 (ja) 2015-12-28 2016-12-16 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸

Country Status (8)

Country Link
US (1) US10889656B2 (ja)
EP (1) EP3399045B9 (ja)
JP (2) JP7006275B2 (ja)
CN (1) CN108699580B (ja)
ES (1) ES2947291T3 (ja)
HR (1) HRP20230820T1 (ja)
HU (1) HUE062293T2 (ja)
WO (1) WO2017115675A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050051A1 (en) 2017-09-05 2019-03-14 Ajinomoto Co., Inc. MUTANT OF 2-O-SULFATION ENZYME AND MUTANT OF 3-O-SULFATION ENZYME, AND METHOD OF USE
WO2020004571A1 (ja) 2018-06-27 2020-01-02 味の素株式会社 幹細胞の培養用添加物および培養用培地、ならびに培養方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109321508B (zh) * 2018-10-12 2022-12-27 北京化工大学 产heparosan的基因工程菌及其应用
CN116103275B (zh) * 2022-12-01 2024-03-08 上海兴糖生物技术有限公司 一种葡萄糖醛酸c5-差向异构酶、其核苷酸序列、表达载体、细胞株及其构建方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050184A1 (ja) * 2013-10-02 2015-04-09 味の素株式会社 ヘパロサン生産細菌及びヘパロサンの製造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4396762A (en) * 1981-08-24 1983-08-02 Massachusetts Institute Of Technology Heparinase derived anticoagulants
US8227449B2 (en) * 2000-03-30 2012-07-24 Glycores 2000 S.R.L. Glycosaminoglycans derived from K5 polysaccharide having high anticoagulant and antithrombotic activities and process for their preparation
US20050027117A1 (en) * 2000-12-18 2005-02-03 Pasqua Oreste Anticoagulant and antithrombotic LMW-glycosaminoglycans derived from K5 polysaccharide and process for their preparation
ITMI20032498A1 (it) 2003-12-17 2005-06-18 Pasqua Anna Oreste Polisaccaridi antitrombotici a basso peso molecolare e
AU2003293122A1 (en) 2002-11-27 2004-06-23 Massachusetts Institute Of Technology Methods for synthesizing polysaccharides
WO2006124801A2 (en) 2005-05-12 2006-11-23 The University Of North Carolina At Chapel Hill Enzymatic synthesis of sulfated polysaccharides
CN101531723A (zh) 2009-02-27 2009-09-16 江南大学 一种用生物酶对肝素进行选择性结构修饰制备肝素衍生物的方法
US8420790B2 (en) 2009-10-30 2013-04-16 Reliable Biopharmaceutical Corporation Efficient and scalable process for the manufacture of Fondaparinux sodium
ES2910476T3 (es) 2010-12-23 2022-05-12 Univ North Carolina Chapel Hill Síntesis quimioenzimática de heparinas de peso molecular ultra bajo estructuralmente homogéneas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050184A1 (ja) * 2013-10-02 2015-04-09 味の素株式会社 ヘパロサン生産細菌及びヘパロサンの製造法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATHA DONALD H. ET AL.: "Contribution of 3-0- and 6-O-Sulfated glucosamine residues in the heparin-induced conformational change in antithrombin III", BIOCHEMISTRY, vol. 26, 1987, pages 6454 - 6461, XP055397683 *
CHAI WENGANG ET AL.: "Relative susceotibilities of the glucosamine - glucuronic acid and N- Acetylglucosamine-glucuronic acid linkages to heparin lyase III", BIOCHEMISTRY, vol. 43, 2004, pages 8590 - 8599, XP055396250 *
LINDAHL ULF ET AL.: "Regulated diversity of heparan sulfate", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, 1998, pages 24979 - 24982, XP055397684 *
LINDAHL ULF. ET AL.: "Evidence for a 3-0-sulfated D-glucosamine residue in the antithrombin- binding sequence of heparin", PROC.NATL.ACAD.SCI. USA, vol. 77, 1980, pages 6551 - 6555, XP003031703 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050051A1 (en) 2017-09-05 2019-03-14 Ajinomoto Co., Inc. MUTANT OF 2-O-SULFATION ENZYME AND MUTANT OF 3-O-SULFATION ENZYME, AND METHOD OF USE
CN111065740A (zh) * 2017-09-05 2020-04-24 味之素株式会社 2-o-硫酸化酶突变体和3-o-硫酸化酶突变体及其使用方法
EP4050036A1 (en) 2017-09-05 2022-08-31 Ajinomoto Co., Inc. 3-o-sulfation enzyme mutant, and method for using same
US11851688B2 (en) 2017-09-05 2023-12-26 Ajinomoto Co., Inc. 2-O-sulfation enzyme mutant and 3-O-sulfation enzyme mutant, and method for using same
WO2020004571A1 (ja) 2018-06-27 2020-01-02 味の素株式会社 幹細胞の培養用添加物および培養用培地、ならびに培養方法

Also Published As

Publication number Publication date
EP3399045B1 (en) 2023-06-07
CN108699580B (zh) 2022-09-23
US20180298117A1 (en) 2018-10-18
HUE062293T2 (hu) 2023-10-28
ES2947291T3 (es) 2023-08-04
JPWO2017115675A1 (ja) 2018-10-18
US10889656B2 (en) 2021-01-12
EP3399045A1 (en) 2018-11-07
CN108699580A (zh) 2018-10-23
EP3399045B9 (en) 2023-10-04
HRP20230820T1 (hr) 2023-11-10
JP7006275B2 (ja) 2022-02-10
EP3399045A4 (en) 2019-08-28
JP2022003136A (ja) 2022-01-11
EP3399045C0 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP6879216B2 (ja) 抗凝固活性を有するヘパラン硫酸の製造法
JP2022003136A (ja) グルコサミン残基の3−o−硫酸化率が高いヘパラン硫酸
TWI769176B (zh) 生合成肝素
JP2016523535A (ja) 可逆的ヘパリン分子、その製法及びその使用方法
JP4262979B2 (ja) Fgfアフィニティークロマトグラフィー
HUT64087A (en) Process for producing n,o-sulfated heparosanes of high molecular weigh and pharmaceutical compositions comprising such compounds
TW201309305A (zh) 用於製造生物工程肝素之單一步驟肝素前體之n-去乙醯化作用及解聚合作用
JP2022169789A (ja) 2-o-硫酸化酵素変異体、および3-o-硫酸化酵素変異体、ならびにそれらを用いる方法
SG178349A1 (en) K5 heparosan fermentation and purification
WO2002050125A2 (en) Glycosaminoglycans derived from k5 polysaccharide having high antithrombin activity and process for their preparation
Boyce et al. Production, characteristics and applications of microbial heparinases
US20230340552A1 (en) Methods for synthesizing anticoagulant polysaccharides
Su et al. Production of a low molecular weight heparin production using recombinant glycuronidase
US20230151339A1 (en) Engineered aryl sulfate-dependent enzymes
WO2022015794A1 (en) Methods for synthesizing non-anticoagulant heparan sulfate
TW202338098A (zh) 自低分子量肝素前體化學酶合成低分子量肝素之方法
AU2002222358B2 (en) Glycosaminoglycans derived from K5 polysaccharide having high antithrombin activity and process for their preparation
Pojasek Enzymatic and analytical tools for the characterization of chondroitin sulfate and dermatan sulfate glycosaminoglycans

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558935

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881651

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881651

Country of ref document: EP

Effective date: 20180730