WO2020004571A1 - 幹細胞の培養用添加物および培養用培地、ならびに培養方法 - Google Patents

幹細胞の培養用添加物および培養用培地、ならびに培養方法 Download PDF

Info

Publication number
WO2020004571A1
WO2020004571A1 PCT/JP2019/025666 JP2019025666W WO2020004571A1 WO 2020004571 A1 WO2020004571 A1 WO 2020004571A1 JP 2019025666 W JP2019025666 W JP 2019025666W WO 2020004571 A1 WO2020004571 A1 WO 2020004571A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
kda
stem cells
culture
dextran sulfate
Prior art date
Application number
PCT/JP2019/025666
Other languages
English (en)
French (fr)
Inventor
伊藤 健一郎
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201980042954.XA priority Critical patent/CN112313329A/zh
Priority to EP19825687.7A priority patent/EP3816279A4/en
Priority to JP2020527650A priority patent/JP7456381B2/ja
Priority to KR1020217002486A priority patent/KR20210025077A/ko
Priority to CA3104838A priority patent/CA3104838A1/en
Publication of WO2020004571A1 publication Critical patent/WO2020004571A1/ja
Priority to US17/130,890 priority patent/US20210214680A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/99Serum-free medium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides

Definitions

  • the present invention relates to an additive for culturing stem cells, which is added to a medium or the like for culturing stem cells, a medium for culturing stem cells, and a method for culturing stem cells.
  • Human stem cells including embryonic stem cells and induced pluripotent stem cells, have been proliferated and maintained by adhesion culture using matrigel, a matrix of a human-type recombinant such as vitronectin, laminin or the like as a scaffold material.
  • a culture method for efficiently growing stem cells is required.
  • a method of floating culture in a cell mass state instead of the above-described adhesion culture is widely used.
  • a suspension culture device with an improved stirrer or the culture vessel itself should be used so that cell death is not caused by shear stress caused by the culture solution flow while suppressing excessive cell aggregation.
  • a culture apparatus that drives and flows a culture solution has been developed.
  • Non-Patent Document 3 describes the above-mentioned effects of dextran sulfate having a high molecular weight of 4,000 kDa to 40,000 kDa, but has no effect on the effects of dextran sulfate having a low molecular weight or polysaccharides other than dextran sulfate. No specific mention is made.
  • an object of the present invention is to improve the cell mass formation rate of stem cells in suspension culture of stem cells, and to control the shape thereof, and to further improve the proliferation rate of stem cells and the undifferentiation maintenance rate.
  • Another object of the present invention is to provide an additive, a medium for culturing stem cells, and a method for culturing stem cells.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, added an additive containing a polysaccharide other than dextran sulfate having a high molecular weight, such as a sulfated polysaccharide such as dextran sulfate having a low molecular weight, to a culture medium for stem cells. Then, the suspension culture of the stem cells is performed, or the suspension culture of the stem cells is performed in a culture medium for stem cells containing a polysaccharide other than dextran sulfate having a high molecular weight, such as a sulfated polysaccharide such as dextran sulfate having a low molecular weight.
  • a polysaccharide other than dextran sulfate having a high molecular weight such as a sulfated polysaccharide such as dextran sulfate having a low molecular weight.
  • the present invention relates to the following.
  • An additive for culturing stem cells comprising a polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa.
  • the stem cells are one or more selected from the group consisting of adult stem cells, embryonic stem cells, and induced pluripotent stem cells.
  • the polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa is a polysaccharide other than the dextran sulfate, and an anionic polysaccharide having a functional group having a negative charge or a salt thereof.
  • the additive according to [1] or [2], wherein [4] The additive according to any one of [1] to [3], wherein the polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa is a sulfated polysaccharide other than the dextran sulfate or a salt thereof. object.
  • Polysaccharides other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa are selected from the group consisting of heparin and salts thereof and dextran sulfate having a weight average molecular weight of 5,000 to 50,000 and salts thereof.
  • the polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa is a polysaccharide other than the dextran sulfate, and an anionic polysaccharide having a negatively charged functional group or a salt thereof.
  • Polysaccharides other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa are selected from the group consisting of heparin and salts thereof, and dextran sulfate having a weight average molecular weight of 5,000 to 50,000 and salts thereof.
  • the medium according to any one of [8] to [12], wherein the content of a polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa is 1 ⁇ g / mL to 1 mg / mL.
  • a method for culturing stem cells comprising suspending and culturing stem cells in a culture medium for stem cells containing a polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa.
  • the stem cells are one or more selected from the group consisting of adult stem cells, embryonic stem cells, and induced pluripotent stem cells.
  • the polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa is a polysaccharide other than the dextran sulfate, and is an anionic polysaccharide having a negatively charged functional group or a salt thereof.
  • Polysaccharides other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa are selected from the group consisting of heparin and salts thereof, and dextran sulfate having a weight average molecular weight of 5,000 to 50,000 and salts thereof.
  • the culture additive and culture medium suitable for suspension culture of a stem cell, and the culture method of a stem cell can be provided. Therefore, according to the present invention, in suspension culture of stem cells, the growth rate and survival rate of stem cells can be improved, the formation rate of a cell mass with a controlled size and shape is improved, and the undifferentiation maintenance rate is further improved. Can be done.
  • “Dextran sulfate” indicates dextran sulfate sodium.
  • FIG. 2 is a view showing the effect of sodium heparin when subculturing is repeated in the subculture by stirring of human iPS cells of Example 2.
  • FIG. 4 is a diagram showing the effects of various heparins on the stirring culture of human iPS cells of Example 4.
  • FIG. 5 is a diagram showing the effect of dextran sodium sulfate having different molecular weights on stirring culture of human iPS cells of Example 5.
  • “Dextran sulfate” indicates dextran sulfate sodium.
  • FIG. 6 is a diagram showing the effect of sodium heparin on stirring culture of human iPS cells in various stem cell culture media of Example 6.
  • “Dextran sulfate” indicates dextran sulfate sodium.
  • FIG. 8 is a diagram showing the concentration dependence of heparin sodium on the effect of improving the cell cluster formation rate in the stirring culture of human iPS cells of Example 8.
  • “Dextran sulfate” indicates dextran sulfate sodium.
  • FIG. 10 is a diagram showing the effects of sodium heparin on the formation of a cell mass and the state of cells in the shaking culture of human iPS cells of Example 10.
  • the present invention provides an additive for stem cell culture (hereinafter, also referred to as “additive of the present invention” in the present specification), which can be added to a culture medium for stem cell culture.
  • stem cell refers to a cell that has the ability to self-renew and the ability to differentiate into another type of cell and can proliferate without limit.
  • adult stem cells such as hematopoietic stem cells, satellite cells, neural stem cells, mesenchymal stem cells, mammary gland stem cells, olfactory mucosal stem cells, neural crest stem cells, liver stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, hair follicle stem cells, and the like
  • Pluripotent stem cells such as embryonic stem cells (ES cells), embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells); cancer stem cells and the like.
  • the additive of the present invention is preferably used for culturing adult stem cells, embryonic stem cells and induced pluripotent stem cells, and more preferably used for culturing embryonic stem cells and induced pluripotent stem cells.
  • the additive of the present invention contains a polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa.
  • a polysaccharide other than dextran sulfate having a molecular weight of 4,000 kDa to 40,000 kDa refers to a substance in which a plurality (two or more) of monosaccharide molecules are linked by glycosidic bonds, and It refers to those other than high-molecular-weight dextran sulfate having a molecular weight of 40,000 kDa, and may be referred to as "polysaccharide in the present invention" in the present specification.
  • Examples of the monosaccharide constituting the polysaccharide in the present invention include ketotetroses such as erythrulose; aldotetroses such as erythrose and threose; ketopentoses such as ribulose and xylulose; aldopentoses such as ribose, arabinose, xylose and lyxose; , Fructose, sorbose, tagatose and other ketohexoses; allose, altrose, glucose, mannose, gulose, idose, galactose, talose and other aldohexoses; Deoxy sugars such as fucrose and rhamnose; arabinonic acid, fructuronic acid, tagaturonic acid, glucuronic acid, galacturonic acid, mannuronic acid, iduronic acid, guluronic acid, etc.
  • ketotetroses such as erythrulose
  • aldotetroses such as
  • Uronic acid amino sugars such as glucosamine, N-acetylglucosamine, galactosamine, N-acetylgalactosamine, mannosamine, N-acetylmannosamine, N-acetylmuramic acid, neuraminic acid, and N-acetylneuraminic acid; Acetylated compounds are exemplified.
  • polysaccharides in the present invention homopolysaccharides, heteropolysaccharides, mucopolysaccharides composed of one or more selected from the above-mentioned monosaccharides, and their deacetylated products, chemically modified products such as sulfates, etc. Is used.
  • the polysaccharide may have various molecular weights from low molecular weight to high molecular weight.
  • “molecular weight” is a molecular weight measured by size exclusion chromatography.
  • the said weight average molecular weight may be described simply as "average molecular weight.”
  • size exclusion chromatography of polysaccharides should be performed under commonly used columns using a hydrophilic polymer as a carrier, elution conditions using a neutral salt eluent such as aqueous sodium nitrate, etc. Can be.
  • the polysaccharide when it is an anionic polysaccharide described below, it can be used in the form of a salt.
  • a salt include, for example, alkali metal salts such as lithium salts, sodium salts and potassium salts; alkaline earth metal salts such as magnesium salts and calcium salts; ammonium salts; organic amine salts such as triethanolamine salts and pyridinium salts. Is exemplified.
  • anionic polysaccharides having a functional group having a negative charge are preferably used, for example, uronic acid having a carboxylic acid in the molecule, such as hyaluronic acid, polygalacturonic acid, pectin, and alginic acid.
  • sulfated polysaccharides are more preferably used, and heparin having a high degree of sulfation, dextran sulfate (excluding those having a molecular weight of 4,000 kDa to 40,000 kDa), and chondroitin sulfate are more preferably used.
  • sulfated polysaccharide those having a degree of sulfation of all hydroxyl groups of about 10% to 90% are preferably used, and those having a degree of sulfation of about 20% to 80% are more preferably used.
  • Dextran sulfate is composed of only glucose, and is obtained by sulfated polysaccharide containing a lot of ⁇ -1,6-linkage.
  • dextran sulfate other than those having a high molecular weight of 4,000 kDa to 40,000 kDa is used, and preferably, the weight average molecular weight measured by size exclusion chromatography is 1,000 to 50,000. And those having a weight average molecular weight of about 4,000 to 50,000 are more preferably used.
  • one kind of the polysaccharide in the present invention may be selected and used, or two or more kinds may be selected and used in combination.
  • the content of the polysaccharide in the present invention in the culture additive of the present invention is such that the content of the polysaccharide in the present invention in the medium composition when added to the medium is within the range of the content described below. Is set.
  • the polysaccharide in the present invention is selected from the group consisting of heparin and salts thereof, and dextran sulfate having an average molecular weight of about 5,000 to 50,000 and salts thereof.
  • the polysaccharide in the present invention is selected from the group consisting of heparin and salts thereof, and dextran sulfate having an average molecular weight of about 5,000 to 50,000 and salts thereof.
  • One or more kinds are used.
  • the above-mentioned polysaccharide in the present invention may be used as a culture additive as it is, or may be dissolved or dispersed in a solvent such as water, and may be used as a liquid culture additive such as an aqueous solution or a dispersion.
  • a solid culture additive such as a powder, a granule, and a tablet may be mixed with an ingredient generally used for formulation such as an excipient and a binder.
  • the above-mentioned polysaccharide in the present invention may be mixed with a part of the medium components described below such as carbohydrates and inorganic salts to prepare a culture additive.
  • the additive of the present invention is preferably provided in the form of a liquid, powder, granule, tablet or the like. You.
  • the additive of the present invention is preferably prepared by sterilizing.
  • the method of the sterilization treatment is not particularly limited, and includes, for example, autoclave sterilization at 121 ° C. for 20 minutes, radiation sterilization, ethylene oxide gas sterilization, filter filtration sterilization, and the like, and is appropriately selected depending on the form of the additive of the present invention. be able to.
  • the additive of the present invention is added to the components of the culture medium for stem cells described below and used for preparing a culture medium for stem cells, or used by being added to the culture medium for stem cells described later.
  • the additives of the present invention are added to a culture medium and stem cells are subjected to suspension culture, the growth rate and viability of the stem cells are improved, and a cell mass with a controlled size and shape can be efficiently formed.
  • the undifferentiated maintenance rate of stem cells is further improved.
  • the “cell mass” refers to a spherical cell aggregate in which cells are aggregated or aggregated, and is also referred to as “spheroid”. “Efficiently forming a cell mass with a controlled size and shape” means that a small spherical uniform cell mass is formed at a high density.
  • the present invention also provides a culture medium for stem cell culture (hereinafter, also referred to as “the medium of the present invention” in the present specification).
  • the medium of the present invention contains the polysaccharide of the present invention together with the medium components usually used for culturing stem cells.
  • the medium of the present invention can contain one kind of polysaccharide of the present invention alone or in combination of two or more kinds.
  • the polysaccharide of the present invention contained in the medium of the present invention may be contained together with the above-mentioned medium components in a state prepared as an additive of the present invention described above, or may be directly added to the medium components.
  • the content of the above-mentioned polysaccharide in the medium of the present invention in the medium of the present invention is usually 1 ⁇ g / mL to 1 mg / mL, preferably 10 ⁇ g / mL to 1 mg / mL, more preferably, as the final concentration during culture. 20 ⁇ g / mL to 250 ⁇ g / mL.
  • Examples of the medium components that can be contained in the medium of the present invention include those commonly used for culturing stem cells, and include, for example, sugars such as glucose, fructose, sucrose, and maltose; asparagine, aspartic acid, glutamine, and glutamic acid.
  • the medium of the present invention preferably does not contain serum as a medium component.
  • the medium of the present invention is prepared as a culture medium for human stem cells, it is preferable that the medium does not contain any animal-derived component other than human.
  • an existing medium for stem cell culture can be used as a medium component, and a commercially available medium can also be used.
  • a commercially available medium examples include STEMPRO (registered trademark) hESC SFM medium (Life Technologies), mTeSR1 medium (STEMCELL Technologies), TeSR2 medium (STEMCELL Technologies), TeSR-E8 Medium (STEMCELL Technologies), Essencial 8 Medium (Life Technologies), HEScGRO (TM) Serum-Free Medium for hES cells (Millipore), PluriSTEM (TM) Human ES iPS Medium (EMD Millipore), NutriStem® hESC XF medium (Biological Industries Biological Industries Israel Beit-Haemek Ltd., NutriStem TM XF / FF Culture Medium (Stemgent), AF NutriStem TM hESC XF medium (Biological Industries Israel Bait) Hemec Limited (Biological Industries Israel Beit-Haemek Ltd.), S-medium (DS Pharma Biomedical Co., Ltd.), Stem
  • a feeder-free culture medium for stem cells more preferably to use a serum-free medium, and to use a culture medium for human stem cells, it is preferable to use a non-human animal culture medium.
  • Those containing no component (Xeno-free medium) are preferred.
  • the medium of the present invention is preferably in a liquid form such as a solution or a dispersion.
  • the medium of the present invention can be prepared by adding components appropriately selected from the above-mentioned medium components together with the polysaccharide of the present invention to a solvent such as water according to a known composition, and dissolving or dispersing the same.
  • the medium of the present invention can be prepared by adding the polysaccharide of the present invention to the above-described culture medium for stem cell culture provided by each company or institution, and dissolving or dispersing the same.
  • the medium of the present invention is prepared in a state of concentration higher than the concentration at the time of use, in a lyophilized powder form, diluted with a solvent such as water at the time of use, or dissolved or dispersed in a solvent such as water. Can be used.
  • the medium of the present invention is preferably prepared by performing the sterilization treatment as described above.
  • three-dimensional culturing of stem cells can be performed at a high growth rate and a high survival rate, and a cell mass with a controlled size and shape can be efficiently formed. it can.
  • the undifferentiated maintenance rate of stem cells can be improved.
  • the present invention provides a method for culturing a stem cell (hereinafter, also referred to as “the culture method of the present invention” in the present specification).
  • the culture method of the present invention includes suspension culture of stem cells in a culture medium for stem cells containing the polysaccharide of the present invention.
  • the "culture medium for stem cells containing the polysaccharide of the present invention” is as described above.
  • the polysaccharide of the present invention contained in the culture medium for stem cells is the additive of the present invention described above.
  • the polysaccharide itself in the present invention may be directly added.
  • the polysaccharide of the present invention is added to a medium such that the final concentration during culturing is usually 1 ⁇ g / mL to 1 mg / mL, and the concentration is 10 ⁇ g / mL to 1 mg / mL. It is preferably added to the medium such that the concentration is 20 ⁇ g / mL to 250 ⁇ g / mL.
  • the culture of the stem cells can be performed according to a usual suspension culture method. That is, using a culture instrument or culture apparatus such as a cell culture plate, a cell culture flask, a bioreactor or the like as appropriate according to the culture scale, the stem cells are added to the above-described culture medium of the present invention or a culture medium for stem cells to which the additive of the present invention is added. Is seeded, usually at 25 ° C. to 39 ° C., preferably 33 ° C. to 39 ° C., usually in the presence of 4% to 10% by volume, preferably 4% to 6% by volume of carbon dioxide, and usually 1% by volume.
  • the cultivation is carried out in the presence of oxygen of up to 25% by volume, preferably 4% to 20% by volume, usually for 1 to 30 days, preferably for 3 to 14 days.
  • the medium is replaced every two to three days.
  • the medium may be replaced by adding a new medium to the stem cells after separating the stem cells from the medium by centrifugation or filtration.
  • the stem cells may be appropriately concentrated by centrifugation or filtration, and a new medium may be added to the concentrated solution.
  • the gravitational acceleration (G) at the time of the centrifugation is usually 50 G to 1,000 G, preferably 100 G to 500 G, and the size of the pores of the filter used for filtration is usually 10 ⁇ m to 200 ⁇ m.
  • the culture of the stem cells is preferably performed with stirring or shaking.
  • the stirring is usually performed at a stirring speed of 10 rpm to 2,000 rpm, preferably 40 rpm to 1,000 rpm.
  • Shaking is usually performed at a shaking speed of 10 rpm to 500 rpm, preferably 50 rpm to 250 rpm.
  • the cultured stem cells can be collected by centrifugation or filtration using a filter.
  • the centrifugation is performed at 50 G to 1,000 G, preferably 100 G to 500 G for about 1 minute to 10 minutes.
  • the filtration can be performed using a filter having pores of about 10 ⁇ m to 200 ⁇ m.
  • the cultured stem cells are preferably stored in liquid nitrogen using a freezing medium containing a cryoprotectant such as STEM-CELLBANKER (Nippon Zenyaku Kogyo Co., Ltd.).
  • a cryoprotectant such as STEM-CELLBANKER (Nippon Zenyaku Kogyo Co., Ltd.).
  • the culture method of the present invention enables three-dimensional culture of stem cells at a high growth rate and a high survival rate, and can efficiently obtain a cell mass having a controlled size and shape.
  • a cultured stem cell having an improved undifferentiated maintenance rate can be obtained.
  • the following culture medium for stem cell culture the following polysaccharides as the polysaccharide in the present invention, and undifferentiated human iPS cells (hiPSCs) as stem cells were used, followed by suspension culture with stirring as follows. And suspension culture by shaking was performed.
  • hiPSCs undifferentiated human iPS cells
  • StemFit registered trademark
  • AK03N medium Alkaline medium
  • Essential ⁇ 8 medium ⁇ Thermo Fisher Scientific, A1517001
  • mTeSR1 medium SteMCELL Technologies
  • 85850 DEF-CS 500 Xeno-Free 3D Spheroid Culture Medium
  • StemFlex medium Thermo Fisher Scientific, A334940 using ThermoFisher Scientific.
  • Examples of the polysaccharides in the present invention include heparin sodium (Heparin ⁇ ⁇ sodium) (Nacalai Tesque, Inc., 17513-54), heparin lithium (Heparin lithium) (Nacalai Tesque, Inc., 02869-74), and heparin ammonium (Heparin ammonium). ) (Sigma-Aldrich, H6279), Clexane (enoxaparin sodium) (Sanofi KK) (low molecular weight heparin sodium with an average molecular weight of 4,500), heparan sulfate (International Publication No.
  • hiPS cells of 1210B2 strain and 1231A3 strain were used.
  • Suspension cell culture by agitation is performed using a single-use bioreactor (30 mL capacity (ABLE Corporation, BWV-S03A) and a 5-mL capacity (ABLE Corporation, S-1467) as culture equipment. It was carried out using.
  • a single-use bioreactor (30 mL capacity (ABLE Corporation, BWV-S03A) and a 5-mL capacity (ABLE Corporation, S-1467) as culture equipment. It was carried out using.
  • 30 mL of a medium containing 10 ⁇ M of a Rho-binding kinase inhibitor (Y-27632) (Fujifilm Wako Pure Chemical Industries, Inc., 034-24024) was added to a 30 mL bioreactor, and 5 mL of the medium was added.
  • a medium containing 10 ⁇ M Rho-binding kinase inhibitor (Y-27632) was placed in a 6-well cell culture plate (Greiner Bio-One International, 657160). Then, 1 ⁇ 10 6 cells of the added and single-celled hiPSCs were added, and horizontal shaking was performed at 95 ° C. under the conditions of 37 ° C. and 5% by volume carbon dioxide.
  • the measurement of the number of cell clusters and the major axis in the cultured stem cells was performed as follows.
  • the pellet was crushed by double tapping and the cells were resuspended by pipetting with the addition of 1 mL of medium containing Rho-linked kinase inhibitor (Y-27632). Pass through a cell strainer (BD Falcon (Corning), 2-1919-02) and add 4 mL Rho-bound The cell strainer was co-washed with a medium containing an enzyme inhibitor (Y-27632), and the recovered cell suspension was analyzed using a viable cell autoanalyzer Vi-CELL XR (Beckman Coulter, Inc.) to determine the cell count. And the survival rate were measured.
  • Rho-linked kinase inhibitor Y-27632
  • BD Perm / Wash buffer (trademark), divided into a sample for double staining, a sample for single staining, a sample for isotype control, and a sample for non-staining, and dispensed into centrifuge tubes. Centrifugation was performed at 2,000 rpm for 2 minutes, and the supernatant was removed. Double and single stains are Alexa Fluor® 488 mouse anti-oct3 / 4 (Becton Dickinson, 560253) and 1:10 (10 ⁇ ) dilutions at 1: 5 (5 ⁇ ) dilution.
  • Alexa Fluor® 647 mouse anti-SSEA-4 (Becton Dickinson, Inc., 560796) of BD Perm / Wash buffer (trademark) was added at room temperature. Incubation was performed for 20 minutes under light shielding. Alexa Fluor® 488 Mouse IgG1 ⁇ Isotype Control (Becton Dickinson, 557721) or 1:20 (20-fold) Alex in 1:20 (20-fold) dilution of Alexa Fluor® 488 Mouse IgG1 Kisotype Control for Isotype Control samples.
  • BD Perm / Wash buffer 100 ⁇ L of BD Perm / Wash buffer (trademark) to which Fluor (registered trademark) 647 Mouse IgG3 and ⁇ Isotype Control (Becton Dickinson, Inc., 560803) were added, followed by incubation for 20 minutes at room temperature under light shielding. After each of the above reactions, 500 ⁇ L of BD Perm / Wash buffer (trademark) was added, centrifuged at 5,000 rpm for 2 minutes, and the supernatant was removed.
  • Fluor registered trademark
  • 647 Mouse IgG3
  • ⁇ Isotype Control Becton Dickinson, Inc., 560803
  • Thermo Fisher Scientific 1 mL of Focusing fluid (Thermo Fisher Scientific, 4886621) was added to each sample, and the mixture was centrifuged again at 5,000 rpm for 2 minutes, and then 200 ⁇ L of Focusing fluid (Thermo Fisher Scientific) was added. Fisher Scientific), 4848621). The prepared sample was analyzed using an Attune NxT Flow Cytometer (Thermo Fisher Scientific). Alexa Fluor (registered trademark) 488 dye was detected by BL1, and Alexa Fluor (registered trademark) 647 dye was detected by RL1.
  • the undifferentiated maintenance rate of the cells can be represented by the Oct3 / 4 / SSEA4 positive rate in the cultured cells.
  • Example 2 Stirring subculture of hiPSC using a medium containing sodium heparin 0.1 mg / mL sodium heparin was added to StemFit (registered trademark) AK03N medium, and the hiPSC was stirred and cultured for 4 passages. The effect of heparin sodium upon repeated passage was evaluated. 6 ⁇ 10 6 cells of the 1210B2 strain of hiPSC were seeded in a 30 mL bioreactor, and cultured with stirring at a stirring speed of 120 rpm. On day 2 to day 5, day 9 to day 11, day 15 to day 17, and day 21, a medium exchange of 21 mL was performed, and on days 6, 12, 18, and 22. The medium was exchanged for the entire 30 mL of eyes.
  • StemFit registered trademark
  • FIG. 2 shows the number of cell masses, the cell proliferation rate, the cell viability, and the undifferentiated maintenance rate at each passage.
  • FIG. 3 shows the cell mass number, cell growth rate, cell viability, and undifferentiation maintenance rate at the time of passage.
  • a heparin sodium Na
  • Li heparin lithium
  • NH 4 heparin ammonium
  • Example 5 Agitation culture of hiPSC using sodium dextran sulfate having different molecular weights
  • StemFit (registered trademark) AK03N medium sodium dextran sulfate having an average molecular weight of 5,000 and dextran sulfate having a molecular weight of 36,000 to 50,000 were used.
  • Sodium was added in an amount of 0.1 mg / mL, and hiPSCs were stirred and cultured to evaluate the effects of dextran sulfate sodium having different molecular weights.
  • Example 6 Stirring culture of hiPSC using various media containing sodium heparin StemFlex medium, DEF-CS500 Xeno-Free 3D Spheroid Culture Medium, Essential 8 medium, and mTeSR1 medium were each 0.25 mg / mL in heparin. Sodium was added, and the hiPSCs were stirred and cultured, and the effect of heparin sodium in the stirred culture using each of the above media was evaluated. 6 ⁇ 10 6 cells of the 1210B2 strain hiPSC were seeded in a 30 mL bioreactor, and stirred and cultured at a stirring speed of 55 rpm. After 2 days of culture, the medium was replaced by 21 mL every day.
  • Example 8 Stirring culture of hiPSC using medium containing various concentrations of sodium heparin 0.25 ⁇ g / mL to 250 ⁇ g / mL sodium heparin was added to mTeSR1 medium, and the hiPSC was stirred and cultured to obtain a cell mass. The dependency of the concentration of heparin sodium on the formation rate improving effect was evaluated. 1 ⁇ 10 6 cells of the 1210B2 strain of hiPSC were seeded in a 5 mL bioreactor, and cultured with stirring at a stirring speed of 80 rpm. On the second to third days of the culture, 3.5 mL of the medium was replaced, and on the fourth day, the number of cell masses formed was measured.
  • Heparin sodium at each concentration of 0.1 mg / mL and 1 mg / mL was added to StemFit (registered trademark) AK03N medium, and the hiPSCs were cultured with stirring.
  • 6 ⁇ 10 6 cells of the human hiPSC of the 1210B2 strain were seeded in a 30 mL bioreactor, and stirred and cultured at a stirring speed of 120 rpm.
  • the medium On the 2nd to 4th days of culture, the medium was replaced with 21 mL on the 5th day and 30 mL on the 5th day.
  • the number of cell masses formed was counted. In each of the above, the result of measuring the number of cell clusters is shown in FIG.
  • 1 ⁇ 10 6 cells of the 1210B2 strain of hiPSC were seeded in a 5 mL bioreactor, and cultured with stirring at a stirring speed of 80 rpm. The medium was replaced with 3.5 mL on the second and third days of the culture, and the number of cell masses formed was measured on the fourth day. The results are shown in FIG.
  • Example 10 Shaking culture of hiPSC using a medium containing sodium heparin 0.1 mg / mL sodium heparin was added to StemFit (registered trademark) AK03N medium, followed by shaking culture of hiPSC. The effects of hiPSCs on cell mass formation and cell status were evaluated. 1 ⁇ 10 6 cells of the 1210B2 strain of hiPSC were seeded on a 6-well cell culture plate to which 5 mL of the above medium containing 10 ⁇ M of the Rho-binding kinase inhibitor (Y-27632) was added, followed by shaking at a shaking speed of 95 rpm. went.
  • FIG. 10 shows the results of observation of the cultured cells on the first day of culture using a BZ-X microscope.
  • the group (Mock) cultured without the addition of sodium heparin showed a large aggregated cell mass, whereas the group cultured with the addition of sodium heparin showed a favorable cell mass.
  • the formation of a dispersed and uniform cell mass was observed. From these results, it has been clarified that it is possible to form a uniform cell mass by shaking culture of hiPSC by adding sodium heparin to the medium.
  • Each of the hiPSCs of the 1231A3 strain and the 1210B2 strain was seeded in a 5 mL bioreactor at 1 ⁇ 10 6 cells each, and stirred and cultured at a stirring speed of 80 rpm. On the second day, the number of cell clusters formed was measured, and the results are shown in FIG.
  • the present invention can provide a culture additive and a medium useful for stem cell suspension culture.
  • the culture additive and the culture medium of the present invention can improve the growth rate and viability of stem cells in suspension culture of stem cells, improve the formation rate of a cell mass having a controlled size and shape, and further improve the growth rate.
  • the differentiation maintenance rate can be improved.
  • a method for culturing a stem cell can be provided. According to the culture method of the present invention, a three-dimensional culture of stem cells can be performed at a high growth rate and a high survival rate, and a cell mass with a controlled size and shape can be efficiently obtained. In addition, a cultured stem cell having an improved undifferentiated maintenance rate can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Transplantation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する幹細胞の培養用添加物、または分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する幹細胞の培養用培地とし、分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する幹細胞の培養用培地にて、幹細胞の浮遊培養を行うことを特徴とする。 本発明によれば、幹細胞の浮遊培養において、幹細胞の細胞塊形成率を向上させ、かつその形状を制御し、さらに幹細胞の増殖率および未分化維持率を向上させることができる。

Description

幹細胞の培養用添加物および培養用培地、ならびに培養方法
 本発明は、幹細胞を培養するために培地等に添加される幹細胞の培養用添加物、および幹細胞を培養するための培地、ならびに幹細胞の培養方法に関する。
 胚性幹細胞、人工多能性幹細胞をはじめ、ヒトの幹細胞は、マトリジェルや、ビトロネクチン、ラミニン等のヒト型リコンビナントのマトリックス等を足場材料として使用した接着培養により、増殖維持されてきた。
 しかし、幹細胞を研究、生産、医療などに応用するために、効率よく増殖させる培養方法が求められている。幹細胞を大量に培養する方法としては、上記した接着培養ではなく、細胞塊の状態で浮遊培養する手法が広く用いられている。
 幹細胞を浮遊培養する際に、過剰な細胞の凝集を抑制しつつ、培養液流による剪断応力によって細胞死が引き起こされないように、改良された撹拌子を有する浮遊培養装置や、培養容器自体を駆動させて培養液を流動させる培養装置が開発されている。
 細胞塊の培養においては、細胞品質の担保や最適なプロセス構築を行うために、細胞塊の形成率や形状を制御することが望ましく、幹細胞の場合には、培養によって分化することなく、未分化能が維持されることが要求される。
 かかる制御方法としては培地や培地成分、培養器材を用いた制御が考えられ、大量培養へのスケールアップを前提とした培養基質や培養液の開発が行われている。たとえば、ラミニン断片(LM-E8)、ビトロネクチン断片(VTN-N)等、異種動物由来の成分を含まない(ゼノフリー)培養基質や、ゼノフリー、さらにはアルブミンフリーの無血清培地が開発されている(非特許文献1、2)。
 しかしながら、特に大量浮遊培養に適用可能であり、細胞の品質を低下させない制御方法が望ましい。
 また、最近、デキストラン硫酸が多能性幹細胞(ヒト胚性幹細胞)の凝集を制御する効果を有し、均一で小さな細胞凝集塊の生成を促進したことが報告されている(非特許文献3)。
 しかし、非特許文献3には、4,000kDa~40,000kDaの高分子量のデキストラン硫酸の上記効果が記載されているが、低分子量のデキストラン硫酸や、デキストラン硫酸以外の多糖類の効果に関して、何ら具体的な言及はなされていない。
生物工学 92 (9) 469-472 (2014) 生物工学 92 (9) 487-490 (2014) Biotechnology and Bioengineering 2018, 1-6
 本発明は、上記状況のもとになされた。
 すなわち、本発明の目的は、幹細胞の浮遊培養において、幹細胞の細胞塊形成率を向上させ、かつその形状を制御し、さらに幹細胞の増殖率および未分化維持率を向上させるために好適な培養用添加物を提供し、さらには幹細胞を培養するための培地、ならびに幹細胞の培養方法を提供することである。
 本発明者は、上記課題を解決すべく鋭意検討した結果、低分子量のデキストラン硫酸等の硫酸化多糖等、高分子量のデキストラン硫酸以外の多糖類を含有する添加物を幹細胞の培養用培地に添加して、幹細胞の浮遊培養を行うことにより、または、低分子量のデキストラン硫酸等の硫酸化多糖等、高分子量のデキストラン硫酸以外の多糖類を含有する幹細胞の培養用培地にて幹細胞の浮遊培養を行うことにより、幹細胞の増殖率および生存率を向上させ、さらに細胞塊形成率を向上させることができて、細胞塊の形状も良好に制御でき、未分化維持率を向上させ得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下に関する。
[1]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する、幹細胞培養用添加物。
[2]幹細胞が、成体幹細胞、胚性幹細胞および人工多能性幹細胞からなる群より選択される1種または2種以上である、[1]に記載の添加物。
[3]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の多糖類であって、負電荷を有する官能基を有する陰イオン性の多糖類またはその塩である、[1]または[2]に記載の添加物。
[4]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の硫酸化多糖またはその塩である、[1]~[3]のいずれかに記載の添加物。
[5]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、ヘパリンおよびその塩ならびに重量平均分子量が5,000~50,000であるデキストラン硫酸およびその塩からなる群より選択される1種または2種以上である、[1]~[4]のいずれかに記載の添加物。
[6]幹細胞培養用培地に添加される、[1]~[5]のいずれかに記載の添加物。
[7]培地の全量に対し、分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類の濃度が1μg/mL~1mg/mLとなるように添加される、[6]に記載の添加物。
[8]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する、幹細胞培養用培地。
[9]成体幹細胞、胚性幹細胞および人工多能性幹細胞からなる群より選択される1種または2種以上の培養用である、[8]に記載の培地。
[10]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の多糖類であって、負電荷を有する官能基を有する陰イオン性の多糖類またはその塩である、[8]または[9]に記載の培地。
[11]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の硫酸化多糖またはその塩である、[8]~[10]のいずれかに記載の培地。
[12]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、ヘパリンおよびその塩ならびに重量平均分子量が5,000~50,000であるデキストラン硫酸およびその塩からなる群より選択される1種または2種以上である、[8]~[11]のいずれかに記載の培地。
[13]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類の含有量が1μg/mL~1mg/mLである、[8]~[12]のいずれかに記載の培地。
[14]フィーダーフリー培地である、[8]~[13]のいずれかに記載の培地。
[15]無血清培地である、[14]に記載の培地。
[16]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する幹細胞の培養用培地にて、幹細胞を浮遊培養することを含む、幹細胞の培養方法。
[17]幹細胞が、成体幹細胞、胚性幹細胞および人工多能性幹細胞からなる群より選択される1種または2種以上である、[16]に記載の培養方法。
[18]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の多糖類であって、負電荷を有する官能基を有する陰イオン性の多糖類またはその塩である、[16]または[17]に記載の培養方法。
[19]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の硫酸化多糖またはその塩である、[16]~[18]のいずれかに記載の培養方法。
[20]分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、ヘパリンおよびその塩ならびに重量平均分子量が5,000~50,000であるデキストラン硫酸およびその塩からなる群より選択される1種または2種以上である、[16]~[19]のいずれかに記載の培養方法。
[21]幹細胞の培養用培地における分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類の含有量が1μg/mL~1mg/mLである、[16]~[20]のいずれかに記載の培養方法。
[22]幹細胞の培養用培地がフィーダーフリー培地である、[16]~[21]のいずれかに記載の培養方法。
[23]幹細胞の培養用培地が無血清培地である、[22]に記載の培養方法。
 本発明により、幹細胞の浮遊培養に好適な培養用添加物および培地、ならびに幹細胞の培養方法を提供することができる。
 従って、本発明により、幹細胞の浮遊培養において、幹細胞の増殖率および生存率を向上させることができ、大きさおよび形状の制御された細胞塊の形成率を向上させ、さらに未分化維持率を向上させることができる。
図1は、実施例1のヒトiPS細胞の撹拌培養において、ヘパリンナトリウムおよびデキストラン硫酸ナトリウム(平均分子量=5,000)が細胞塊の形成および細胞の状態に与える効果を示す図である。なお、図中「Dextran sulfate」はデキストラン硫酸ナトリウムを示す。 図2は、実施例2のヒトiPS細胞の撹拌継代培養において、継代を重ねた際のヘパリンナトリウムの効果を示す図である。 図3は、実施例3のヒトiPS細胞の撹拌継代培養において、継代を重ねた際のデキストラン硫酸ナトリウム(平均分子量=5,000)の効果を示す図である。なお、図中「Dextran sulfate」はデキストラン硫酸ナトリウムを示す。 図4は、実施例4のヒトiPS細胞の撹拌培養において、各種ヘパリン類の効果を示す図である。 図5は、実施例5のヒトiPS細胞の撹拌培養において、分子量の異なるデキストラン硫酸ナトリウムの効果を示す図である。なお、図中「Dextran sulfate」はデキストラン硫酸ナトリウムを示す。 図6は、実施例6の種々の幹細胞培養培地でのヒトiPS細胞の撹拌培養において、ヘパリンナトリウムの効果を示す図である。 図7は、実施例7の種々の幹細胞培養培地でのヒトiPS細胞の撹拌培養において、デキストラン硫酸ナトリウム(平均分子量=5,000)の効果を示す図である。なお、図中「Dextran sulfate」はデキストラン硫酸ナトリウムを示す。 図8は、実施例8のヒトiPS細胞の撹拌培養において、細胞塊形成率向上効果におけるヘパリンナトリウムの濃度依存性を示す図である。 図9は、実施例9のヒトiPS細胞の撹拌培養において、細胞塊形成率向上効果におけるデキストラン硫酸ナトリウム(平均分子量=5,000)の濃度依存性を示す図である。なお、図中「Dextran sulfate」はデキストラン硫酸ナトリウムを示す。 図10は、実施例10のヒトiPS細胞の振とう培養において、ヘパリンナトリウムが細胞塊の形成および細胞の状態に与える効果を示す図である。 図11は、実施例11のヒトiPS細胞の撹拌培養において、細胞塊形成率向上効果におけるデキストラン硫酸ナトリウム(平均分子量=5,000)の濃度依存性を示す図である。
 本発明は、幹細胞の培養用培地に添加し得る、幹細胞培養用添加物(以下、本明細書において「本発明の添加物」ともいう)を提供する。
 ここで、「幹細胞」とは、自己複製能と、別の種類の細胞に分化する能力を持ち、際限なく増殖できる細胞をいう。
 たとえば、造血幹細胞、衛星細胞、神経幹細胞、間葉系幹細胞、乳腺幹細胞、嗅粘膜幹細胞、神経冠幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸管幹細胞、毛包幹細胞等の成体幹細胞;胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)等の多能性幹細胞;癌幹細胞等が挙げられる。
 本発明の添加物は、成体幹細胞、胚性幹細胞および人工多能性幹細胞の培養に好ましく用いられ、胚性幹細胞および人工多能性幹細胞の培養により好ましく用いられる。
 本発明の添加物は、分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する。
 本発明において、「分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類」とは、グリコシド結合によって単糖分子が複数(2個以上)結合した物質であって、4,000kDa~40,000kDaの分子量を有する高分子量のデキストラン硫酸以外のものをいい、以下、本明細書において、「本発明における多糖類」のように表記することもある。
 本発明における多糖類を構成する単糖としては、エリトルロース等のケトテトロース;エリトロース、トレオース等のアルドテトロース;リブロース、キシルロース等のケトペントース;リボース、アラビノース、キシロース、リキソース等のアルドペントース;プシコース(アルロース)、フルクトース、ソルボース、タガトース等のケトヘキソース;アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース等のアルドヘキソース;セドヘプツロース等のケトヘプトースといった4炭糖~7炭糖、デオキシリボース、フコース、フクロース、ラムノース等のデオキシ糖;アラビノン酸、フルクツロン酸、タガツロン酸、グルクロン酸、ガラクツロン酸、マンヌロン酸、イズロン酸、グルロン酸等のウロン酸;グルコサミン、N-アセチルグルコサミン、ガラクトサミン、N-アセチルガラクトサミン、マンノサミン、N-アセチルマンノサミン、N-アセチルムラミン酸、ノイラミン酸、N-アセチルノイラミン酸等のアミノ糖およびそのN-アセチル化物等が例示される。
 本発明における多糖類として、上記した単糖より選択される1種または2種以上により構成されるホモ多糖、ヘテロ多糖、ムコ多糖および、それらの脱アセチル化物、硫酸化物等の化学的修飾体等が用いられる。
 本発明の目的には、上記多糖類は、低分子量から高分子量まで種々の分子量のものを用いることができる。
 本明細書において、「分子量」とは、サイズ排除クロマトグラフィーにより測定される分子量である。
 本発明の目的には、上記多糖類として、サイズ排除クロマトグラフィーにより測定される重量平均分子量が300~500,000程度のものを用いることが好ましく、1,000~50,000程度のものを用いることがより好ましく、4,000~50,000程度のものを用いることがさらに好ましい。
 なお、本明細書において、上記重量平均分子量を単に「平均分子量」と表記することがある。
 多糖類のサイズ排除クロマトグラフィーは、多糖類の種類等に応じて、一般的に用いられる親水性ポリマーを担体とするカラム、硝酸ナトリウム水溶液といった中性塩溶離液を用いた溶離条件等により行うことができる。
 また、本発明においては、上記多糖類が後述する陰イオン性の多糖類である場合、塩の形態で用いることもできる。かかる塩としては、たとえば、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;アンモニウム塩;トリエタノールアミン塩、ピリジニウム塩等の有機アミン塩等が例示される。
 本発明の目的には、負電荷を有する官能基を有する陰イオン性の多糖類が好ましく用いられ、たとえば、ヒアルロン酸、ポリガラクツロン酸、ペクチン、アルギン酸等、分子内にカルボン酸を有するウロン酸を構成単位として含有する多糖類;カラギーナン、フコイダン、ヘパリン、ヘパラン硫酸、デキストラン硫酸(分子量が4,000kDa~40,000kDaであるものを除く)、デルマタン硫酸、ケラタン硫酸、コンドロイチン硫酸(コンドロイチン4-硫酸、コンドロイチン6-硫酸等)等の硫酸化多糖が好ましい多糖として例示される。
 なかでも、硫酸化多糖がより好ましく用いられ、硫酸化度の高いヘパリン、デキストラン硫酸(分子量が4,000kDa~40,000kDaであるものを除く)、コンドロイチン硫酸等がさらに好ましく用いられる。硫酸化多糖としては、全水酸基の硫酸化度が10%~90%程度のものが好ましく用いられ、20%~80%程度のものがより好ましく用いられる。
 なお、デキストラン硫酸は、グルコースのみから構成され、α-1,6-結合を多く含む多糖類が硫酸化されたものである。
 本発明においては、4,000kDa~40,000kDaの分子量を有する高分子量のもの以外のデキストラン硫酸が用いられ、好ましくは、サイズ排除クロマトグラフィーにより測定される重量平均分子量が1,000~50,000程度のものが用いられ、より好ましくは前記重量平均分子量が4,000~50,000程度のものが用いられる。
 本発明の添加物には、上記本発明における多糖類は1種を選択して用いてもよく、2種以上を選択して、組み合わせて用いることもできる。
 本発明の培養用添加物における本発明における多糖類の含有量は、培地に添加した際の培地組成物中における本発明における多糖類の含有量が、後述する含有量の範囲内となるように設定される。
 なお、幹細胞の培養における細胞塊形成促進効果等の観点からは、上記本発明における多糖類の特に好ましい例として、ヘパリンおよびその塩、ならびに、平均分子量(サイズ排除クロマトグラフィーにより測定される重量平均分子量)が5,000~50,000程度のデキストラン硫酸およびその塩が挙げられる。
 従って、本発明の特に好ましい態様においては、上記本発明における多糖類として、ヘパリンおよびその塩、ならびに、平均分子量が5,000~50,000程度のデキストラン硫酸およびその塩からなる群より選択される1種または2種以上が用いられる。
 本発明においては、上記した本発明における多糖類をそのまま培養用添加物としてもよく、また、水等の溶媒に溶解もしくは分散し、水溶液、分散液等の液状の培養用添加物としてもよく、あるいは賦形剤、結合剤等の一般的に製剤化に用いられる成分と混合して、粉末状、顆粒状、錠剤状等の固形状の培養用添加物としてもよい。
 また、上記した本発明における多糖類を、炭水化物、無機塩等の以下に述べる培地成分の一部と混合して、培養用添加物として調製してもよい。
 幹細胞の培養用培地への添加が簡便で、培地との混和も容易であるとの観点から、本発明の添加物は、好ましくは液状、粉末状、顆粒状、錠剤状等の形態で提供される。
 本発明の添加物は、滅菌処理して調製することが好ましい。滅菌処理の方法は特に制限されず、たとえば、121℃で20分間のオートクレーブ滅菌、放射線滅菌、エチレンオキサイドガス滅菌、フィルターろ過滅菌等が挙げられ、本発明の添加物の形態等により、適宜選択することができる。
 本発明の添加物は、後述する幹細胞の培養用培地の成分に添加されて、幹細胞の培養用培地の調製に用いられ、または後述する幹細胞の培養用培地に添加されて用いられる。
 本発明の添加物を培養用培地に添加して幹細胞を浮遊培養した場合、幹細胞の増殖率および生存率が向上し、大きさおよび形状の制御された細胞塊を効率的に形成させることができ、さらに幹細胞の未分化維持率が向上する。
 ここで、「細胞塊」とは、細胞同士が集合しまたは凝集化した球状の細胞集合体をいい、「スフェロイド」ともいう。「大きさおよび形状の制御された細胞塊を効率的に形成させる」とは、小さな球状の均一な細胞塊が高密度で形成されることをいう。
 本発明はまた、幹細胞の培養用培地(以下、本明細書において「本発明の培地」ともいう)を提供する。
 本発明の培地は、幹細胞の培養に通常用いられる培地成分とともに、本発明における多糖類を含有する。
 本発明の培地には、本発明における多糖類は1種を単独で、または2種以上を組み合わせて含有させることができる。
 本発明の培地に含有される本発明における多糖類は、上記した本発明の添加物として調製された状態で、前記培地成分とともに含有されてもよく、または培地成分に直接添加されてもよい。
 本発明の培地における上記した本発明における多糖類の含有量は、培養時における終濃度として、通常1μg/mL~1mg/mLであり、好ましくは10μg/mL~1mg/mLであり、より好ましくは20μg/mL~250μg/mLである。
 本発明の培地に含有させ得る培地成分としては、幹細胞の培養に通常用いられる培地成分を挙げることができ、たとえば、グルコース、フルクトース、スクロース、マルトース等の糖;アスパラギン、アスパラギン酸、グルタミン、グルタミン酸等のアミノ酸;アルブミン、トランスフェリン等のタンパク質およびペプチド;血清;ビタミンA、ビタミンB群(チアミン、リボフラビン、ピリドキシン、シアノコバラミン、ビオチン、葉酸、パントテン酸、ニコチンアミド等)、ビタミンC、ビタミンE等のビタミン;オレイン酸、アラキドン酸、リノール酸等の脂肪酸、コレステロール等の脂質;塩化ナトリウム、塩化カリウム、塩化カルシウム、硫酸マグネシウム、リン酸二水素ナトリウム等の無機塩;亜鉛、銅、セレン等の微量元素;N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid(BES))、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid(HEPES))、N-[トリス(ヒドロキシメチル)メチル]グリシン(N-[tris(hydroxymethyl)methyl]glycine(Tricine))等の緩衝剤;アンホテリシンB、カナマイシン、ゲンタマイシン、ストレプトマイシン、ペニシリン等の抗生物質;Type I コラーゲン、Type II コラーゲン、フィブロネクチン、ラミニン、ポリ-L-リジン、ポリ-D-リジン等の細胞接着因子および細胞外マトリックス成分;インターロイキン、線維芽細胞増殖因子(FGF)、肝細胞増殖因子(HGF)、トランスフォーミング増殖因子(TGF)-α、トランスフォーミング増殖因子(TGF)-β、血管内皮増殖因子(VEGF)、アクチビンA等のサイトカインおよび増殖因子;デキサメサゾン、ヒドロコルチゾン、エストラジオール、プロゲステロン、グルカゴン、インスリン等のホルモン等が挙げられ、培養する幹細胞の種類に応じて適切な成分を選択して用いることができる。
 なお、血清には未知の因子やプリオン、ウイルス等が含まれる可能性があるため、本発明の培地は、培地成分として血清を含有しないことが好ましい。また、本発明の培地が、ヒトの幹細胞の培養用培地として調製される場合には、ヒト以外の動物由来成分を含有しないことが好ましい。
 また、本発明においては、培地成分として、既存の幹細胞培養用培地を用いることができ、市販の培地を用いることもできる。
 かかる培地としては、STEMPRO(登録商標) hESC SFM培地(ライフテクノロジーズ(Life Technologies)社)、mTeSR1培地(ステムセルテクノロジーズ(STEMCELL Technologies)社)、TeSR2培地(ステムセルテクノロジーズ(STEMCELL Technologies)社)、TeSR-E8培地(ステムセルテクノロジーズ(STEMCELL Technologies)社)、Essencial 8培地(ライフテクノロジーズ(Life Technologies)社)、HEScGRO(商標) Serum-Free Medium for hES cells(ミリポア(Millipore)社)、PluriSTEM(商標) Human ES/iPS Medium(イーエムディー ミリポア(EMD Millipore)社)、NutriStem(登録商標) hESC XF培地(バイオロジカル インダストリーズ イスラエル ベイト-ヘメク リミテッド(Biological Industries Israel Beit-Haemek Ltd.)、NutriStem(商標) XF/FF Culture Medium(ステムジェント(Stemgent)社)、AF NutriStem(登録商標) hESC XF培地(バイオロジカル インダストリーズ イスラエル ベイト-ヘメク リミテッド(Biological Industries Israel Beit-Haemek Ltd.)、S-medium(DSファーマバイオメディカル株式会社)、StemFit(登録商標) AK03培地(味の素株式会社)、hESF9培地、hESF-FX培地、CDM培地、DEF-CS 500 Xeno-Free 3D Spheroid Culture Medium(セラルティス(Cellartis)社)、StemFlex培地(サーモフィッシャー サイエンティフィック(Thermo Fisher Scientific)社)等が挙げられる。
 本発明の目的には、フィーダーフリーの幹細胞培養用培地を用いることが好ましく、さらに無血清培地を用いることがより好ましく、また、ヒトの幹細胞の培養用培地に用いるには、ヒト以外の動物由来成分を含有しないもの(ゼノフリー培地)が好ましい。
 幹細胞の浮遊培養に用いるという観点からは、本発明の培地は、溶液、分散液等の液状の形態とすることが好ましい。
 本発明の培地は、公知の組成に従って、上記した培地成分から適宜選択される成分を、本発明における多糖類とともに水等の溶媒に添加し、溶解または分散して調製することができる。
 また、本発明の培地は、各社・各機関から提供されている上記した幹細胞培養用培地に、本発明における多糖類を添加して溶解または分散して調製することができる。
 さらに、本発明の培地は、使用時の濃度よりも濃縮した状態、凍結乾燥された粉末状の状態で調製し、使用時に水等の溶媒で希釈し、または水等の溶媒に溶解または分散して用いる態様とすることもできる。
 本発明の培地は、上記したような滅菌処理を施して調製されることが好ましい。
 本発明の培地を用いて幹細胞を浮遊培養することにより、高増殖率および生存率にて幹細胞の3次元培養が可能となり、大きさおよび形状の制御された細胞塊を効率的に形成させることができる。また、幹細胞の未分化維持率を向上させることができる。
 さらに、本発明は、幹細胞の培養方法(以下、本明細書にて「本発明の培養方法」とも称する)を提供する。
 本発明の培養方法は、本発明における多糖類を含有する幹細胞の培養用培地にて、幹細胞を浮遊培養することを含む。
 「本発明における多糖類を含有する幹細胞の培養用培地」については上記した通りであり、本発明において、幹細胞の培養用培地に含有される本発明における多糖類は、上記した本発明の添加物として調製されて添加されたものでもよく、本発明における多糖類自体が直接添加されたものでもよい。
 また、本発明においては、本発明における多糖類は、培養時における終濃度として、通常1μg/mL~1mg/mLの濃度となるように培地に添加され、10μg/mL~1mg/mLの濃度となるように培地に添加されることが好ましく、20μg/mL~250μg/mLの濃度となるように培地に添加されることがより好ましい。
 本発明の培養方法において、幹細胞の培養は、通常の浮遊培養の方法に従って行うことができる。すなわち、培養スケールに応じて適宜細胞培養用プレート、細胞培養フラスコ、バイオリアクター等の培養器具または培養装置を用い、上記した本発明の培地または本発明の添加物を添加した幹細胞培養用培地に幹細胞を播種して、通常25℃~39℃、好ましくは33℃~39℃で、通常4体積%~10体積%、好ましくは4体積%~6体積%の二酸化炭素存在下、また通常1体積%~25体積%、好ましくは4体積%~20体積%の酸素存在下にて、通常1日間~30日間、好ましくは3日間~14日間培養を行う。なお、2~3日間ごとに培地交換を行う。
 培地交換は、遠心分離やろ過により幹細胞と培地とを分離した後、新しい培地を幹細胞に添加すればよい。あるいは、遠心分離やろ過を行うことにより幹細胞を適宜濃縮した後、新しい培地をこの濃縮液に添加すればよい。
 上記遠心分離の際の重力加速度(G)は、通常50G~1,000G、好ましくは、100G~500Gであり、ろ過に用いるフィルターの細孔の大きさは、通常10μm~200μmである。
 大きさの制御された細胞塊を効率よく得るためには、幹細胞の培養は、撹拌または振とうを行って実施することが好ましい。
 撹拌は、通常10rpm~2,000rpm、好ましくは40rpm~1,000rpmの撹拌速度で行う。
 また、振とうは、通常10rpm~500rpm、好ましくは50rpm~250rpmの振とう速度で行う。
 培養された幹細胞は、遠心分離またはフィルターを用いたろ過により回収することができる。
 遠心分離は、50G~1,000G、好ましくは100G~500Gで1分間~10分間程度行う。
 また、ろ過は、10μm~200μm程度の細孔を有するフィルターを用いて行うことができる。
 培養された幹細胞は、STEM-CELLBANKER(日本全薬工業株式会社)等の凍結保護剤を含有する凍結用培地を用いて、液体窒素中で保存することが好ましい。
 本発明の培養方法により、高増殖率および生存率にて幹細胞の3次元培養を行うことができ、大きさおよび形状の制御された細胞塊を効率的に得ることができる。また、未分化維持率の向上した幹細胞の培養細胞を得ることができる。
 以下、本発明について、実施例によりさらに詳細に説明する。
 以下の実施例において、次に示す幹細胞培養用培地と、本発明における多糖類として下記の多糖類を用い、幹細胞として未分化のヒトiPS細胞(hiPSC)を用いて、次の通り撹拌による浮遊培養および振とうによる浮遊培養を行った。
 (1)幹細胞培養用培地としては、StemFit(登録商標)AK03N培地(味の素株式会社)、Essential 8培地 (サーモフィッシャー サイエンティフィック(Thermo Fisher Scientific)社、A1517001)、mTeSR1培地(ステムセル テクノロジーズ(STEMCELL Technologies)社、85850)、DEF-CS 500 Xeno-Free 3D Spheroid Culture Medium(セラルティス(Cellartis)社、Y30047)、およびStemFlex培地(サーモフィッシャー サイエンティフィック(Thermo Fisher Scientific)社、A3349401)を用いた。
 (2)本発明における多糖類としては、ヘパリンナトリウム(Heparin sodium)(ナカライテスク株式会社、17513-54)、ヘパリンリチウム(Heparin lithium)(ナカライテスク株式会社、02869-74)、ヘパリンアンモニウム(Heparin ammonium)(シグマ-アルドリッチ(Sigma-Aldrich社)、H6279)、クレキサン(エノキサパリンナトリウム)(サノフィ株式会社)(平均分子量=4,500の低分子量ヘパリンナトリウム)、ヘパラン硫酸(heparan sulfate)(国際公開第2017/115675号に記載の方法に従って製造した)、およびデキストラン硫酸ナトリウム(Sodium dextran sulfate)(和光純薬工業株式会社、191-08365)(平均分子量=5,000)、デキストラン硫酸ナトリウム(MP バイオメディカルズ(MP BIOMEDICALS)、0216011090)(分子量36,000~50,000)を用いた。
 (3)未分化hiPSCとしては、1210B2株および1231A3株(Nakagawa, M. et al., Sci. Rep. 4, 3594, 2014参照)のhiPS細胞を用いた。
 (4)撹拌による浮遊細胞培養は、培養器材として、シングルユースバイオリアクター30mL容量(エイブル株式会社(ABLE Corporation)、BWV-S03A)と5mL容量(エイブル株式会社(ABLE Corporation)、S-1467)を用いて行った。
 30mLスケールの浮遊培養には、30mL容量のバイオリアクターに、10μMのRho結合キナーゼ阻害剤(Y-27632)(富士フィルム和光純薬株式会社、034-24024)を含有する培地30mLを添加し、5mLスケールの浮遊培養には、5mL容量のバイオリアクターに10μMのRho結合キナーゼ阻害剤(Y-27632)を含有する培地5mLを添加し、シングルセル化したhiPSCを添加して、37℃、5体積%二酸化炭素の条件下で、各実施例に記載の回転数にて撹拌培養を行った。
 2日目以降には培地交換を行った。培地交換は、各実施例に記載の量の培地上清を抜き取り、500G、5min遠心分離し、上清を除去後、同量の新しい培地を添加し、ペレットを懸濁後バイオリアクターに添加して行った。
 振とうによる浮遊培養は、6 wellの細胞培養用プレート(グレイナー バイオ-ワン インターナショナル(Greiner Bio-One International)社、657160)に10μMのRho結合キナーゼ阻害剤(Y-27632)を含有する培地5mLを添加し、シングルセル化したhiPSCを1x10細胞添加し、37℃、5体積%二酸化炭素の条件下で95rpmで水平振とうを行って実施した。
 また、下記の各実施例において、培養された幹細胞における細胞塊数と長径の測定、細胞数および生存率の測定、ならびに細胞の未分化維持率の測定は、以下の通り行った。
 (1)細胞塊数と長径の測定
 細胞塊を含む培地上清を24 wellプレートに500μL分取した。細胞塊を振とうして分散させたのち、BZ-X蛍光顕微鏡(株式会社キーエンス(Keyence))でウェル全体を撮影した。撮影した画像に対してマクロセルカウントを行うことで、細胞塊の個数と長径の平均を求めた。
 (2)細胞数および生存率の測定
 細胞塊を含む培地上清を全量回収し、500G、5min遠心分離した。上清を除去後、10回タッピングを行い、1mLの細胞分離/分散溶液(Accumax(ミリポア(Millipore)社、SCR006)を添加し、細胞塊ペレットを懸濁した。室温で5minインキュベーションした後、ピペッティングにより細胞塊を再懸濁した。再度室温で5minインキュベーションした後、ピペッティングにより細胞塊をシングルセル化した。4mLの培地を添加し、500G、5min遠心分離した。上清を除去後、10回タッピングを行うことでペレットを破砕し、1mLのRho結合キナーゼ阻害剤(Y-27632)を含有する培地を添加してピペッティングすることにより細胞を再懸濁した。細胞懸濁液を40μmのセルストレーナー(BD Falcon(コーニング社)、2-1919-02)に通し、さらに4mLのRho結合キナーゼ阻害剤(Y-27632)を含有する培地でセルストレーナーを共洗いした。回収した細胞懸濁液を生死細胞オートアナライザー Vi-CELL XR(ベックマン・コールター株式会社)で分析することで、細胞数と生存率の測定を行った。
 (3)細胞の未分化維持率の測定
 培養後シングルセル化した細胞を、細胞固定化/細胞透過化溶液(BD Cytofix/Cytoperm(商標) Kit(ビー ディー バイオサイエンス(BD Biosciences)社、554714))により固定化した。具体的には、200μLのCytofix/Cytopermを添加し、氷上で20分静置することでhiPSCの固定を行った。
 次いで、1mLのBD Perm/Wash buffer(商標)(ビー ディー バイオサイエンス(BD Biosciences)社、554723)を添加し、5,000rpm、2min遠心分離を行い、上清を除いた。次に、適当量のBD Perm/Wash buffer(商標)に懸濁し、二重染色用サンプル、単染色用サンプル、isotype control用サンプル、非染色用サンプルに分けてそれぞれ遠沈管に分注し、5,000rpm、2min遠心分離を行い、上清を除去した。
 二重染色および単染色は1:5(5倍)希釈のAlexa Fluor(登録商標) 488 mouse anti-oct3/4(ベクトン・ディッキンソン(Becton Dickinson)社、560253)および1:10(10倍)希釈のAlexa Fluor(登録商標) 647 mouse anti―SSEA-4(ベクトン・ディッキンソン(Becton Dickinson)社、560796)の両方、もしくは一方をBD Perm/Wash buffer(商標)に添加した溶液を100μL添加し、室温、遮光下で20minインキュベーションすることで行った。
 Isotype control用サンプルには1:20(20倍)希釈のAlexa Fluor(登録商標) 488 Mouse IgG1 κ Isotype Control(ベクトン・ディッキンソン(Becton Dickinson)社、557721)または1:20(20倍)希釈のAlexa Fluor(登録商標) 647 Mouse IgG3、κ Isotype Control(ベクトン・ディッキンソン(Becton Dickinson)社、560803)を添加したBD Perm/Wash buffer(商標)を100μL加え、同様に室温、遮光下で20minインキュベーションした。
 上記の各反応後、500μLのBD Perm/Wash buffer(商標)を添加し5,000rpm、2min遠心分離し、上清を除去した。各サンプルにFocusing fluid(サーモフィッシャー サイエンティフィック(Thermo Fisher Scientific)社、4488621)を1mL添加し、再度5,000rpm、2min遠心分離を行った上で200μLのFocusing fluid(サーモフィッシャー サイエンティフィック(Thermo Fisher Scientific)社、4488621)に懸濁した。調製したサンプルはAttune NxT Flow Cytometer(サーモフィッシャー サイエンティフィック(Thermo Fisher Scientific)社)で解析を実施した。Alexa Fluor(登録商標) 488色素はBL1、Alexa Fluor(登録商標) 647色素はRL1で検出を行った。
 細胞の未分化維持率は、培養された細胞におけるOct3/4/SSEA4陽性率により表すことができる。
 [実施例1]ヘパリンナトリウムおよびデキストラン硫酸ナトリウム(平均分子量=5,000)をそれぞれ含有する培地を用いたhiPSCの撹拌培養
 StemFit(登録商標)AK03N培地に0.25mg/mLのヘパリンナトリウムおよび0.1mg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)をそれぞれ添加し、hiPSCを撹拌浮遊培養して、ヘパリンナトリウムおよび平均分子量が5,000であるデキストラン硫酸ナトリウムがhiPSCの細胞塊の形成および細胞の状態に与える効果を評価した。
 1210B2株のhiPSCを30mLのバイオリアクターに2x10細胞播種し、55rpmの撹拌速度で撹拌培養を行った。2日目および3日目に21mLの培地交換を行った。
 4日目に細胞塊の形成数、細胞塊の平均長径、増殖率、細胞生存率、未分化維持率を上記した方法で測定し、結果を図1に示した。
 図1に示されるように、ヘパリンナトリウムまたはデキストラン硫酸ナトリウム(平均分子量=5,000)を添加した培地で培養を行うと、いずれも添加しない場合(Mock)に比べて細胞塊の形成数が約2倍に向上し、細胞塊の長径は減少することが認められた。また、細胞の増殖率、生存率、未分化維持率は全て向上した。
 これらの結果より、ヘパリンナトリウムまたは平均分子量が5,000であるデキストラン硫酸ナトリウムを培地に添加してhiPSCの撹拌培養を行うことで、小さい細胞塊を多量に形成させることが可能であり、生存率および未分化維持率の高いiPS細胞を効率よく増殖させることが可能であることが明らかになった。
 [実施例2]ヘパリンナトリウムを含有する培地を用いたhiPSCの撹拌継代培養
 StemFit(登録商標)AK03N培地に0.1mg/mLのヘパリンナトリウムを添加し、hiPSCを4継代の間撹拌培養して、継代を重ねた際のヘパリンナトリウムの効果を評価した。
 1210B2株のhiPSCを30mLのバイオリアクターに6x10細胞播種し、120rpmの撹拌速度で撹拌培養を行った。2日目~5日目、9日目~11日目、15日目~17日目、21日目には21mLの培地交換を行い、6日目、12日目、18日目、22日目に30mL全量の培地交換を行った。7日目、13日目、19日目、23日目に細胞塊を破砕し、細胞塊の形成数、細胞塊の平均長径、細胞増殖率(累積増殖率)、細胞生存率、未分化維持率を測定した。また、7日目、13日目には、回収してシングルセル化した細胞を6x10細胞、19日目には3x10細胞を新たなバイオリアクターに継代播種した。
 各継代時における細胞塊数、細胞増殖率、細胞生存率、未分化維持率を図2に示した。
 図2より明らかなように、ヘパリンナトリウムを添加した培地で培養を行うと、ヘパリンナトリウムを添加しない培地(Mock)に比べて、どの継代数においても細胞塊の形成数、細胞の増殖率、生存率、未分化維持率が全て向上した。
 これらの結果より、ヘパリンナトリウムを培地に添加してhiPSCの撹拌培養を行うことで、継続的に小さい細胞塊を多量に形成させ、また生存率および未分化維持率の高いiPS細胞を効率よく増殖させることが可能であることが明らかになった。
 [実施例3]デキストラン硫酸ナトリウム(平均分子量=5,000)を含有する培地を用いたhiPSCの撹拌継代培養
 StemFit(登録商標)AK03N培地に0.1mg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加し、hiPSCを3継代の間撹拌培養して、継代を重ねた際のデキストラン硫酸ナトリウム(平均分子量=5,000)の効果を評価した。
 1210B2株のhiPSCを30mLのバイオリアクターに6x10細胞播種し、8日間は55rpmで、その後6日間は120rpmの撹拌速度で撹拌培養を行った。2日目~3日目、6日目~7日目、10日目~12日目には21mLの培地交換を行い、13日目、22日目に30mL全量の培地交換を行った。4日目、8日目、14日目に細胞塊を破砕し、細胞塊の形成数、細胞塊の平均長径、細胞増殖率、細胞生存率、未分化維持率を測定した。また、4日目、8日目には、回収してシングルセル化した細胞6x10細胞を新たなバイオリアクターに継代播種した。
 継代時における細胞塊数、細胞増殖率、細胞生存率、未分化維持率を図3に示した。
 図3に示されるように、デキストラン硫酸ナトリウム(平均分子量=5,000)を添加した培地で培養を行うと、デキストラン硫酸ナトリウム(平均分子量=5,000)を添加しないMockに比べて、細胞増殖率には差が見られなかったが、どの継代数においても細胞塊の形成数、細胞の生存率、未分化維持率が全て向上した。
 これらの結果より、平均分子量が5,000であるデキストラン硫酸ナトリウムを培地に添加してhiPSCの撹拌培養を行うことで、継続的に小さい細胞塊を多量に形成させ、また生存率および未分化維持率の高いiPS細胞を効率よく増殖させることが可能であることが明らかになった。
 [実施例4]各種ヘパリン類を含有する培地を用いたhiPSCの撹拌培養
 StemFit(登録商標)AK03N培地に0.25mg/mLのヘパリンナトリウム(Na)、ヘパリンリチウム(Li)、ヘパリンアンモニウム(NH)、ヘパラン硫酸および50U/mLのクレキサン(エノキサパリンナトリウム)(低分子量ヘパリン;平均分子量=4,500)をそれぞれ添加し、hiPSCを撹拌培養して、各種ヘパリン類の効果を評価した。
 1210B2株のhiPSCを5mLのバイオリアクターに1x10細胞播種し、120rpmの撹拌速度で撹拌培養を行った。培養2日目以降毎日3.5mLの培地交換を行い、ヘパリンNaおよびヘパリンLiをそれぞれ添加した培地を用いた培養では3日目に、それ以外のヘパリン類を添加した培地を用いた培養では4日目に細胞塊の形成数を測定し、結果を図4に示した。
 図4に示されるように、各ヘパリン塩、低分子量ヘパリンおよびヘパラン硫酸のそれぞれを添加した培地を用いて撹拌培養を行った場合、前記のいずれも添加しないMockに比べて、細胞塊の形成数が向上した。
 これらの結果より、カウンターカチオンの種類、分子量または硫酸化度の異なるヘパリン類が、いずれも細胞塊を多量に形成させる効果を有することが明らかになった。
 [実施例5]分子量の異なるデキストラン硫酸ナトリウムを用いたhiPSCの撹拌培養
 StemFit(登録商標)AK03N培地に、平均分子量が5,000のデキストラン硫酸ナトリウムおよび分子量が36,000~50,000のデキストラン硫酸ナトリウムをそれぞれ0.1mg/mL添加し、hiPSCを撹拌培養して、分子量の異なるデキストラン硫酸ナトリウムの効果を評価した。
 1210B2株のhiPSCを5mLのバイオリアクターに1x10細胞播種し、120rpmの撹拌速度で撹拌培養を行い、4日目に細胞塊の形成数を測定し、結果を図5に示した。
 図5に示されるように、いずれの分子量のデキストラン硫酸ナトリウムを添加した場合も、デキストラン硫酸ナトリウムを添加しないMockに比べて、細胞塊の形成数が向上したが、平均分子量が5,000のデキストラン硫酸ナトリウムを添加した場合の方が、高い細胞塊の形成促進効果を示した。
 [実施例6]ヘパリンナトリウムを含有する各種培地を用いたhiPSCの撹拌培養
 StemFlex培地、DEF-CS 500 Xeno-Free 3D Spheroid Culture Medium、Essential 8培地、 mTeSR1培地のそれぞれに0.25mg/mLのヘパリンナトリウムを添加し、hiPSCを撹拌培養して、前記各培地を用いた撹拌培養におけるヘパリンナトリウムの効果を評価した。
 1210B2株のhiPSCを30mLのバイオリアクターに6x10細胞播種し、55rpmの撹拌速度で撹拌培養を行った。培養2日目以降毎日21mLの培地交換を行い、DEF-CS 500 Xeno-Free 3D Spheroid Culture Medium培地を用いた実験では6日目に、それ以外の実験では5日目に細胞塊の形成数、細胞塊の長径および細胞増殖率を測定し、結果を図6に示した。
 図6に示されるように、いずれの培地を用いた場合にも、ヘパリンナトリウムを添加した場合において、ヘパリンナトリウムを添加しない場合に比べて細胞塊の形成数の向上、および細胞塊の長径の減少が観察された。また、mTeSR1培地とEssential 8培地を用いた培養において、ヘパリンナトリウムの添加により、細胞増殖率の顕著な向上が観察された。
 これらの結果より、培養に用いる培地の種類によらず、ヘパリン塩が細胞塊の形成率を向上させ、かつ細胞の大きさを制御し、増殖を促進させる効果を有することが明らかになった。
 [実施例7]デキストラン硫酸ナトリウム(平均分子量=5,000)を含有する各種培地を用いたhiPSCの撹拌培養
 Essential 8培地およびmTeSR1培地のそれぞれに0.1mg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加し、hiPSCを撹拌培養して、前記各培地を用いた培養におけるデキストラン硫酸ナトリウム(平均分子量=5,000)の効果を評価した。
 1210B2株のhiPSCを5mLのバイオリアクターに1x10細胞播種し、80rpmの撹拌速度で撹拌培養を行った。培養2日目以降毎日3.5mLの培地交換を行い、4日目に細胞塊の形成数および細胞増殖率を測定し、結果を図7に示した。
 図7に示されるように、いずれの培地においても、デキストラン硫酸ナトリウム(平均分子量=5,000)を添加して培養した場合に細胞塊の形成数が向上し、細胞増殖率が大きく向上することが認められた。
 これらの結果より、用いる培地の種類によらず、平均分子量が5,000であるデキストラン硫酸ナトリウムが細胞塊の形成および増殖を促進させることが明らかになった。
 [実施例8]種々の濃度のヘパリンナトリウムを含有する培地を用いたhiPSCの撹拌培養
 mTeSR1培地に0.25μg/mL~250μg/mLのヘパリンナトリウムを添加し、hiPSCを撹拌培養して、細胞塊形成率向上効果におけるヘパリンナトリウムの濃度依存性を評価した。
 1210B2株のhiPSCを5mLのバイオリアクターに1x10細胞播種し、80rpmの撹拌速度で撹拌培養を行った。培養2日目~3日目に3.5mLの培地交換を行い、4日目に細胞塊の形成数を測定した。
 また、StemFit(登録商標)AK03N培地に0.1mg/mLおよび1mg/mLの各濃度のヘパリンナトリウムを添加し、hiPSCを撹拌培養した。
 1210B2株のヒトhiPSCを30mLのバイオリアクターに6x10細胞播種し、120rpmの撹拌速度で撹拌培養を行った。培養2日目~4日目には21mL、5日目には30mLの培地交換を行い、6日目に細胞塊の形成数を測定した。
 上記それぞれにおいて、細胞塊数を測定した結果を図8に示した。
 図8に示されるように、mTeSR1培地に2.5μg/mL~250μg/mLのヘパリンナトリウムを添加した培地を用いて培養した場合に、細胞塊の形成数が向上することが認められた。また、StemFit(登録商標)AK03N培地に0.1mg/mLおよび1mg/mLの各濃度のヘパリンナトリウムを添加して撹拌培養した場合にも、細胞塊の形成率は大幅に向上することが認められた。
 上記の結果より、約1μg/mLから1mg/mL程度のヘパリンナトリウムを添加することで、細胞塊の形成率の向上効果が得られることが明らかになった。
 [実施例9]種々の濃度のデキストラン硫酸ナトリウム(平均分子量=5,000)を含有する培地を用いたhiPSCの撹拌培養
 mTeSR1培地に0.1μg/mL~1000μg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加し、hiPSCを撹拌培養して、細胞塊形成率向上効果におけるデキストラン硫酸ナトリウム(平均分子量=5,000)の濃度依存性を評価した。
 1210B2株のhiPSCを5mLのバイオリアクターに1x10細胞播種し、80rpmの撹拌速度で撹拌培養を行った。培養2日目と3日目に3.5mLの培地交換を行い、4日目に細胞塊の形成数を測定し、結果を図9に示した。
 図9に示されるように、10μg/mL~1000μg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加した培地を用いて撹拌培養した場合に、顕著な細胞塊の形成数の向上が観察された。
 この結果より、平均分子量が5,000であるデキストラン硫酸ナトリウムを約10μg/mLから1mg/mL程度の濃度で添加することで、細胞塊の形成率向上効果が得られることが明らかになった。
 [実施例10]ヘパリンナトリウムを含有する培地を用いたhiPSCの振とう培養
 StemFit(登録商標)AK03N培地に0.1mg/mLのヘパリンナトリウムを添加し、hiPSCを振とう培養して、ヘパリンナトリウムがhiPSCの細胞塊の形成および細胞の状態に与える効果を評価した。
 10μMのRho結合キナーゼ阻害剤(Y-27632)を含有する上記培地5mLを添加した6-well細胞培養用プレートに1210B2株のhiPSCを1x10細胞播種し、95rpmの振とう速度で振とう培養を行った。培養1日目の培養細胞のBZ-X顕微鏡による観察結果を図10に示した。
 図10に示されるように、ヘパリンナトリウムを添加せずに培養した群(Mock)では凝集した巨大な細胞塊が認められるのに対し、ヘパリンナトリウムを添加して培養した群では細胞塊が良好に分散され、均一な細胞塊の形成が認められた。
 この結果から、ヘパリンナトリウムを培地に添加してhiPSCの振とう培養を行うことで、均一な細胞塊を形成させることが可能であることが明らかになった。
 [実施例11]種々の濃度のデキストラン硫酸ナトリウム(平均分子量=5,000)を含有する培地を用いたhiPSCの撹拌培養
 StemFit(登録商標)AK03N培地に10μg/mL~1000μg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加し、hiPSCを撹拌培養して、細胞塊形成率向上効果におけるデキストラン硫酸ナトリウム(平均分子量=5,000)の濃度依存性を評価した。
 1231A3株および1210B2株の各hiPSCを、それぞれ5mLのバイオリアクターに1x10細胞ずつ播種し、80rpmの撹拌速度で撹拌培養を行った。2日目に細胞塊の形成数を測定し、結果を図11に示した。
 図11に示されるように、1231A3株を用いた場合には、10μg/mL~330μg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加した培地を用いて撹拌培養した場合に、細胞塊の形成数の向上が認められ、10μg/mL~1000μg/mLの濃度で、細胞塊長径の減少が観察された。
 一方、1210B2株を用いた場合には、10μg/mL~1000μg/mLのデキストラン硫酸ナトリウム(平均分子量=5,000)を添加した場合に、細胞塊の形成数の向上および細胞塊長径の減少が観察された。
 上記の結果より、平均分子量が5,000であるデキストラン硫酸ナトリウムを約10μg/mL~1mg/mL程度の濃度で添加することで、hiPSC株の種類によらず細胞塊の形成率向上、および細胞塊の大きさの制御効果が得られる可能性が示唆された。
 以上、詳述したように、本発明により、幹細胞の浮遊培養に有用な培養用添加物および培地を提供することができる。
 本発明の培養用添加物および培地により、幹細胞の浮遊培養において、幹細胞の増殖率および生存率を向上させることができ、大きさおよび形状の制御された細胞塊の形成率を向上させ、さらに未分化維持率を向上させることができる。
 さらに、本発明により、幹細胞の培養方法を提供することができる。
 本発明の培養方法により、高増殖率および生存率にて幹細胞の3次元培養を行うことができ、大きさおよび形状の制御された細胞塊を効率的に得ることができる。また、未分化維持率の向上した幹細胞の培養細胞を得ることができる。
 本願は、日本国で出願された特願2018-122532を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (23)

  1.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する、幹細胞培養用添加物。
  2.  幹細胞が、成体幹細胞、胚性幹細胞および人工多能性幹細胞からなる群より選択される1種または2種以上である、請求項1に記載の添加物。
  3.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の多糖類であって、負電荷を有する官能基を有する陰イオン性の多糖類またはその塩である、請求項1または2に記載の添加物。
  4.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の硫酸化多糖またはその塩である、請求項1~3のいずれか1項に記載の添加物。
  5.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、ヘパリンおよびその塩ならびに重量平均分子量が5,000~50,000であるデキストラン硫酸およびその塩からなる群より選択される1種または2種以上である、請求項1~4のいずれか1項に記載の添加物。
  6.  幹細胞培養用培地に添加される、請求項1~5のいずれか1項に記載の添加物。
  7.  培地の全量に対し、分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類の濃度が1μg/mL~1mg/mLとなるように添加される、請求項6に記載の添加物。
  8.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する、幹細胞培養用培地。
  9.  成体幹細胞、胚性幹細胞および人工多能性幹細胞からなる群より選択される1種または2種以上の培養用である、請求項8に記載の培地。
  10.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の多糖類であって、負電荷を有する官能基を有する陰イオン性の多糖類またはその塩である、請求項8または9に記載の培地。
  11.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の硫酸化多糖またはその塩である、請求項8~10のいずれか1項に記載の培地。
  12.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、ヘパリンおよびその塩ならびに重量平均分子量が5,000~50,000であるデキストラン硫酸およびその塩からなる群より選択される1種または2種以上である、請求項8~11のいずれか1項に記載の培地。
  13.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類の含有量が1μg/mL~1mg/mLである、請求項8~12のいずれか1項に記載の培地。
  14.  フィーダーフリー培地である、請求項8~13のいずれか1項に記載の培地。
  15.  無血清培地である、請求項14に記載の培地。
  16.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類を含有する幹細胞の培養用培地にて、幹細胞を浮遊培養することを含む、幹細胞の培養方法。
  17.  幹細胞が、成体幹細胞、胚性幹細胞および人工多能性幹細胞からなる群より選択される1種または2種以上である、請求項16に記載の培養方法。
  18.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の多糖類であって、負電荷を有する官能基を有する陰イオン性の多糖類またはその塩である、請求項16または17に記載の培養方法。
  19.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、前記デキストラン硫酸以外の硫酸化多糖またはその塩である、請求項16~18のいずれか1項に記載の培養方法。
  20.  分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類が、ヘパリンおよびその塩ならびに重量平均分子量が5,000~50,000であるデキストラン硫酸およびその塩からなる群より選択される1種または2種以上である、請求項16~19のいずれか1項に記載の培養方法。
  21.  幹細胞の培養用培地における分子量が4,000kDa~40,000kDaであるデキストラン硫酸以外の多糖類の含有量が1μg/mL~1mg/mLである、請求項16~20のいずれか1項に記載の培養方法。
  22.  幹細胞の培養用培地がフィーダーフリー培地である、請求項16~21のいずれか1項に記載の培養方法。
  23.  幹細胞の培養用培地が無血清培地である、請求項22に記載の培養方法。
PCT/JP2019/025666 2018-06-27 2019-06-27 幹細胞の培養用添加物および培養用培地、ならびに培養方法 WO2020004571A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980042954.XA CN112313329A (zh) 2018-06-27 2019-06-27 干细胞培养用添加物和培养用培养基、以及培养方法
EP19825687.7A EP3816279A4 (en) 2018-06-27 2019-06-27 ADDITIVE FOR CULTIVATION OF STEM CELLS, CULTURE MEDIUM AND CULTIVATION PROCEDURE
JP2020527650A JP7456381B2 (ja) 2018-06-27 2019-06-27 幹細胞の培養用添加物および培養用培地、ならびに培養方法
KR1020217002486A KR20210025077A (ko) 2018-06-27 2019-06-27 줄기세포의 배양용 첨가물 및 배양용 배지, 및 배양 방법
CA3104838A CA3104838A1 (en) 2018-06-27 2019-06-27 Additive for culturing stem cells, culturing medium, and culturing method
US17/130,890 US20210214680A1 (en) 2018-06-27 2020-12-22 Additive for culturing stem cells, culturing medium, and culturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122532 2018-06-27
JP2018122532 2018-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/130,890 Continuation US20210214680A1 (en) 2018-06-27 2020-12-22 Additive for culturing stem cells, culturing medium, and culturing method

Publications (1)

Publication Number Publication Date
WO2020004571A1 true WO2020004571A1 (ja) 2020-01-02

Family

ID=68984917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025666 WO2020004571A1 (ja) 2018-06-27 2019-06-27 幹細胞の培養用添加物および培養用培地、ならびに培養方法

Country Status (7)

Country Link
US (1) US20210214680A1 (ja)
EP (1) EP3816279A4 (ja)
JP (1) JP7456381B2 (ja)
KR (1) KR20210025077A (ja)
CN (1) CN112313329A (ja)
CA (1) CA3104838A1 (ja)
WO (1) WO2020004571A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172959A1 (ja) * 2021-02-09 2022-08-18 株式会社彩 細胞処理剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801837A (zh) * 2021-09-13 2021-12-17 河南茵特赛尔生物技术有限公司 一种干细胞培养基及其制备方法
WO2024089212A1 (en) * 2022-10-26 2024-05-02 Societe Des Produits Nestle S.A. Processes for cell expansion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007082A2 (en) * 2006-07-12 2008-01-17 University Of Sheffield Cell growth medium
WO2009116951A2 (en) * 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
WO2013147264A1 (ja) * 2012-03-30 2013-10-03 味の素株式会社 硫酸化化合物を含む幹細胞増殖用培地
WO2014119219A1 (ja) * 2013-01-31 2014-08-07 味の素株式会社 多能性幹細胞の安定した未分化維持増殖を行うための培養方法
JP2015165783A (ja) * 2014-03-04 2015-09-24 旭化成株式会社 多能性幹細胞からなる細胞塊製造方法
WO2017115675A1 (ja) 2015-12-28 2017-07-06 味の素株式会社 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸
JP2018122532A (ja) 2017-02-01 2018-08-09 京セラドキュメントソリューションズ株式会社 画像形成装置及び画像形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035968A1 (en) * 1999-11-19 2001-05-25 Children's Medical Center Corporation Methods for inducing chondrogenesis and producing de novo cartilage in vitro
WO2015042356A1 (en) * 2013-09-19 2015-03-26 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Chemically defined culture medium for stem cell maintenance and differentiation
JP6792777B2 (ja) * 2016-02-22 2020-12-02 凸版印刷株式会社 スフェロイド形成促進方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007082A2 (en) * 2006-07-12 2008-01-17 University Of Sheffield Cell growth medium
WO2009116951A2 (en) * 2008-03-17 2009-09-24 Agency For Science, Technology And Research Microcarriers for stem cell culture
WO2013147264A1 (ja) * 2012-03-30 2013-10-03 味の素株式会社 硫酸化化合物を含む幹細胞増殖用培地
WO2014119219A1 (ja) * 2013-01-31 2014-08-07 味の素株式会社 多能性幹細胞の安定した未分化維持増殖を行うための培養方法
JP2015165783A (ja) * 2014-03-04 2015-09-24 旭化成株式会社 多能性幹細胞からなる細胞塊製造方法
WO2017115675A1 (ja) 2015-12-28 2017-07-06 味の素株式会社 グルコサミン残基の3-o-硫酸化率が高いヘパラン硫酸
JP2018122532A (ja) 2017-02-01 2018-08-09 京セラドキュメントソリューションズ株式会社 画像形成装置及び画像形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOTECHNOLOGY AND BIOENGINEERING, 2018, pages 1 - 6
NAKAGAWA, M. ET AL., SCI. REP., vol. 4, 2014, pages 3594
See also references of EP3816279A4
SEIBUTSU-KOGAKU KAISHI, vol. 92, no. 9, 2014, pages 487 - 490

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172959A1 (ja) * 2021-02-09 2022-08-18 株式会社彩 細胞処理剤

Also Published As

Publication number Publication date
CN112313329A (zh) 2021-02-02
EP3816279A1 (en) 2021-05-05
EP3816279A4 (en) 2022-04-20
US20210214680A1 (en) 2021-07-15
JPWO2020004571A1 (ja) 2021-07-08
KR20210025077A (ko) 2021-03-08
JP7456381B2 (ja) 2024-03-27
CA3104838A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
US20210214680A1 (en) Additive for culturing stem cells, culturing medium, and culturing method
JP7248166B2 (ja) 培地組成物
Chen et al. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction
Ferrari et al. Limiting cell aggregation during mesenchymal stem cell expansion on microcarriers
KR102282265B1 (ko) 배양 배지 조성물의 제조 방법
WO2017126647A1 (ja) 細胞の培養方法
JP6678997B2 (ja) 血管平滑筋細胞の培養方法
JP7264198B2 (ja) 細胞回収が容易な浮遊培養用培地組成物、及び細胞回収方法
JP2017018147A (ja) 硫酸化化合物を含む幹細胞増殖用培地
US20210147794A1 (en) Suspension culturing additive, suspension culturing medium and suspension culturing method for animal cells
JP2024001159A (ja) 細胞保存材料
JP6642439B2 (ja) 細胞回収に関する方法
Noronha et al. Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor
US20230146066A1 (en) Stem cell medium and stem cell culturing method
JP7010233B2 (ja) 高品質な3次元培養用培地組成物の製造方法、及び3次元培養用培地組成物の保存安定性の評価方法
Ueki et al. Large-scale cultivation of human iPS cells in bioreactor with reciprocal mixing
JP7131555B2 (ja) 造腫瘍性の評価方法
Jundan et al. Mesenchymal Stem Cell in 3D Culture: Diminishing Cell Senescence in Cryopreservation and Long-term Expansion
Wang et al. Author Spotlight: Advancements in iPSCs and Genetic Disease Research
CN115315506A (zh) 含有hepes的培养基

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3104838

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217002486

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019825687

Country of ref document: EP

Effective date: 20210127