WO2017114107A1 - 双排折弯式换热器及其制造方法 - Google Patents

双排折弯式换热器及其制造方法 Download PDF

Info

Publication number
WO2017114107A1
WO2017114107A1 PCT/CN2016/108738 CN2016108738W WO2017114107A1 WO 2017114107 A1 WO2017114107 A1 WO 2017114107A1 CN 2016108738 W CN2016108738 W CN 2016108738W WO 2017114107 A1 WO2017114107 A1 WO 2017114107A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
straight section
heat exchanger
straight
bend
Prior art date
Application number
PCT/CN2016/108738
Other languages
English (en)
French (fr)
Inventor
何延
周晶
高强
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Priority to CN201690001501.4U priority Critical patent/CN213120197U/zh
Priority to EP16880897.0A priority patent/EP3399269B1/en
Priority to US16/067,227 priority patent/US11085701B2/en
Publication of WO2017114107A1 publication Critical patent/WO2017114107A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces

Definitions

  • the invention relates to the field of heat exchange technology, in particular to a double row bending heat exchanger and a manufacturing method thereof.
  • parallel flow heat exchangers such as microchannel heat exchangers need to be bent around the transverse bending axis of the heat exchanger (parallel to the length of the flat tube) (ie, the manifold of the heat exchanger is bent) .
  • the heat exchangers in the related art are usually bent in a single row. As shown in Fig. 1, as the heat exchange capacity increases, the width of the flat tube of the single row heat exchanger and the outer diameter of the collector tube also need to increase. Large, and the increase of the flat tube and the collecting tube directly leads to an increase in the bending radius. The increase in the bending radius will greatly waste space, such as the aperture in the air conditioner, and the actual heat exchanger in a certain space. The heat exchange area will also be relatively reduced, resulting in poor heat exchange performance of the heat exchanger.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • one aspect of the present invention provides a double-row bending heat exchanger in which the diameter of the header of the heat exchanger is reduced under the same heat exchange capacity, thereby reducing the bending of the heat exchanger.
  • the radius makes efficient use of space, which can improve performance.
  • Another aspect of the invention provides a method of making a heat exchanger.
  • an embodiment according to a first aspect of the present invention provides a heat exchanger comprising: a first header and a second header, the length of the second header a length smaller than the length of the first header; the flat tube is divided along the length thereof into a first straight section connected to the first header, and connected to the second header a second straight section and a torsion section connected between the first straight section and the second straight section; fins, the fins being disposed between adjacent first straight sections and adjacent Between the second straight sections, wherein the flat tube is bent at the torsion section about a first bending axis to form a first bend, the first bend axis being parallel to the first current An axial direction of the tube and the second header, wherein the first header and the second header are bent around at least one second bending axis to form at least one second bend, the a header is located outside the bend of the second bend and the second header is located inside the bend of the second bend, the second bend axis Orthogonal to the axial flow tube and
  • the diameter of the header is reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space, thereby improving the efficiency.
  • thermoelectric heat exchanger according to an embodiment of the present invention has the following additional technical features:
  • the first header is aligned with each other at the center of its axial direction and the center of the second header in its axial direction.
  • the second bend is one.
  • the first straight section located at the outermost side of the heat exchanger and the outermost side of the heat exchanger before being bent about the first bending axis and the second bending axis
  • the second straight section is staggered in a direction orthogonal to the axial direction of the first header and the second header and parallel to the longitudinal direction of the first straight section and the second straight section.
  • a first straight portion located at a first outermost side of the heat exchanger and a portion located at the heat exchanger before being bent about the first bending axis and the second bending axis a first outermost second straight section is orthogonal to an axial direction of the first header and the second header and parallel to a length direction of the first straight section and the second straight section Aligned in direction, and a first straight segment located at a second outermost side of the heat exchanger and a second straight segment located at a second outermost side of the heat exchanger are orthogonal to the first current collector
  • the tube and the second header are staggered in the axial direction and in a direction parallel to the longitudinal direction of the first straight section and the second straight section.
  • the spacing between adjacent flat tubes is equal or unequal to each other.
  • a method of manufacturing a heat exchanger comprising: providing a first header and a second header, the length of the second header being smaller than Describe the length of the first header; twisting the flat tube about a torsion axis parallel to its length to divide the flat tube into a first straight section, a second straight section, and connected to the first straight a torsion section between the segment and the second straight section; bending the flat tube about the torsion section about a first bending axis parallel to a thickness direction of the first straight section and the second straight section Forming a first bent portion; connecting the first straight segment to the first header, connecting the second straight segment to the second header; and setting the fin to the phase Between adjacent first straight segments and adjacent second straight segments; bending the first header and the second header about at least one second bending axis to form at least a second bent portion, the first header is located outside the bend of the second bent portion, and the second header is located at the second bent portion Ben
  • the diameter of the collecting pipe can be reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space, thereby improving the efficiency.
  • the method of manufacturing the heat exchanger further includes: the first straight section of the at least one flat tube and the said before bending about the first bending axis and the second bending axis
  • the second straight section is staggered in the length direction of the flat tube.
  • a heat exchanger comprising: a first header and at least two second headers, the at least two second headers along The axial directions are spaced apart from each other; a flat tube along which the flat tube The length direction is divided into a first straight section, a second straight section, and a torsion section connected between the first straight section and the second straight section, the first straight section of the flat tube and the a first header connected to each other, a second straight section of at least a portion of the flat tubes being connected to the at least two second headers; fins, the fins being disposed adjacent to the first straight Between the segments and between the adjacent second straight segments, wherein the flat tubes are bent about the first bending axis at the torsion section to form a first bend, the first bend axis being parallel In an axial direction of the first header and the second header, wherein the first header and the second header are bent around at least one second bending axis to form at least one second a
  • the diameter of the header is reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space, thereby improving the efficiency.
  • a second straight section of a portion of the flat tube is connected to the at least two second headers, and between the flat tubes and adjacent second headers The rest of the interval corresponds to a blind tube.
  • the fins are not disposed between the first straight section of the blind tube and the second straight section of the blind tube is not disposed.
  • the first headers are plural and the plurality of first headers are spaced apart from each other along their axial direction.
  • the heat exchanger is a multi-flow heat exchanger or a single-flow heat exchanger.
  • a method of manufacturing a heat exchanger comprising: providing a first header and at least two second headers, the at least two second sets The flow tubes are spaced apart from one another in their axial direction; the flat tube is twisted about a torsion axis parallel to its length to divide the flat tube into a first straight section, a second straight section, and connected to the first a torsion section between the straight section and the second straight section; the first bending axis parallel to the thickness direction of the first straight section and the second straight section in the torsion section Bending to form a first bend; connecting a first straight section of the flat tube to the first header, and a second straight section of at least a portion of the flat tube to the at least Two second headers are connected; the fins are disposed between adjacent first straight segments and between adjacent second straight segments; the first header and the second set are The flow tube is bent around at least one second bending axis to form at least one second bend, the first
  • the diameter of the collecting pipe can be reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space, thereby improving the efficiency.
  • a second straight segment of a portion of the flat tube and the at least two second set The flow tubes are connected, and the remaining portion of the flat tubes corresponding to the interval between adjacent second headers is a blind tube.
  • the fins are not arranged between the first straight sections of the blind tube and/or the fins are not arranged between the second straight sections of the blind tubes.
  • a plurality of first headers are provided, the plurality of first headers being spaced apart from each other along their axial direction.
  • a heat exchanger comprising: at least two first headers, the at least two first headers being spaced apart from each other along an axial direction thereof a second header; the flat tube is divided along its length into a first straight section, a second straight section, and connected between the first straight section and the second straight section a twisting section, the second straight section of the flat tube is connected to the second header, and the first straight section of at least a part of the flat tube is connected to the at least two first headers; a fin, the fin being disposed between adjacent first straight segments and an adjacent second straight segment, wherein the flat tube is bent at the torsion section about a first bending axis To form a first bend, the first bend axis being parallel to the axial direction of the first header and the second header, wherein the first header and the second header Bending around at least one second bending axis to form at least one second bend, the first header being located outside the bend of the second bend and the second a flow
  • the diameter of the header is reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space, thereby improving the efficiency.
  • a first straight section of a portion of the flat tube is connected to the at least two first headers, and between the flat tubes and adjacent first headers The rest of the interval corresponds to a blind tube.
  • the fins are not disposed between the first straight section of the blind tube and the second straight section of the blind tube is not disposed.
  • a method of manufacturing a heat exchanger comprising: providing at least two first headers, the at least two first headers along an axial direction thereof The directions are spaced apart from each other; a second header is provided; the flat tube is twisted about a torsion axis parallel to its length to divide the flat tube into a first straight section, a second straight section, and connected to the a torsion section between a straight section and a second straight section; the first bending axis of the flat tube wound in a thickness direction parallel to the first straight section and the second straight section at the twist Segment bending to form a first bend; connecting a second straight section of the flat tube to the second header, and a first straight section of at least a portion of the flat tube ???said first header and second The header is bent about the at least one second bending axis to form at least one second bend, the first header being located at the second fold An outer side of the bend and the second header is located inside
  • the diameter of the collecting pipe can be reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space, thereby improving the efficiency.
  • a first straight section of a portion of the flat tube is connected to the at least two first headers, and between the flat tubes and adjacent first headers The rest of the interval corresponds to a blind tube.
  • the fins are not arranged between the first straight sections of the blind tube and/or the fins are not arranged between the second straight sections of the blind tubes.
  • FIG. 1 is a schematic perspective view of a single row bending heat exchanger in the related art.
  • FIG. 2 is a perspective view of a heat exchanger in accordance with an embodiment of the present invention.
  • FIG 3 is a schematic view showing the processing of a flat tube of a heat exchanger according to an embodiment of the present invention.
  • FIG. 4 is a schematic illustration of a heat exchanger prior to bending, in accordance with one example of the present invention.
  • FIG. 5 is a schematic illustration of a heat exchanger prior to bending in accordance with another example of the present invention.
  • FIG. 6 is a schematic illustration of a heat exchanger prior to bending, in accordance with yet another embodiment of the present invention.
  • FIG. 7 is a schematic view of a heat exchanger after being bent in the axial direction around the header and before being bent around the length of the flat tube, in accordance with an embodiment of the present invention.
  • Figure 8 is a perspective view of a heat exchanger in accordance with another embodiment of the present invention.
  • Figure 9 is an enlarged schematic view of the second bent portion of Figure 8.
  • FIG. 10 is a schematic illustration of a heat exchanger prior to bending, in accordance with one example of the present invention.
  • Figure 11 is a schematic illustration of a heat exchanger prior to bending in accordance with another example of the present invention.
  • Figure 12 is a schematic illustration of a heat exchanger prior to bending, in accordance with yet another embodiment of the present invention.
  • FIG. 13 is a schematic illustration of a heat exchanger prior to bending, in accordance with yet another embodiment of the present invention.
  • Figure 14 is a schematic illustration of a heat exchanger prior to bending in accordance with yet another embodiment of the present invention.
  • the first bending axis L and the second bending axis K are identical to each other.
  • a double row bending heat exchanger 1 according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • a heat exchanger 1 includes a first header 10, a second header 20, a flat tube 30, and fins 40.
  • the length of the second header 20 is smaller than that of the first header 10.
  • the flat tube 30 is divided into a first straight section 31, a second straight section 32 and a torsional section 33 along the length direction of the flat tube 30.
  • the first straight section 31 is connected to the first header 10
  • the second straight section 32 is connected to the second header 20, and the torsion section 33 is connected between the first straight section 31 and the second straight section 32.
  • the fins 40 are disposed between adjacent first straight segments 31 and between adjacent second straight segments 32.
  • the flat tube 30 is bent around the first bending axis L at the torsion section 33 to form a first bending portion 50, which is parallel to the first header 10 and the second header 20
  • the first header 10 and the second header 20 are bent around at least one second bending axis K to form at least one second bend 60
  • the first header 10 is located at the second bend
  • the outside of the bend of 60 and the second header 20 are located inside the bend of the second bend 60, the second bend axis K being orthogonal to the axial direction of the first header 10 and the second header 20 and Parallel to the longitudinal direction of the first straight section 31 and the second straight section 32.
  • FIGS. 4-7 show an example in which the second bent portion 60 is one, and FIGS. 4 to 6 show a state before the heat exchanger 1 is bent, and the direction X is the first current collecting.
  • the first bending axis L extends in the X direction and may be located at the center of the flat tube 30 in the Z direction.
  • the second bending axis K extends in the Z direction and may be located at the center of the first header 10 and the second header 20 in the X direction.
  • the first header 10 and the second header 20 are spaced apart in the Z direction, and after the heat exchanger 1 is bent around the first bending axis L, the first A header 10 and a second header 20 are arranged in the Y direction.
  • the spacing between the adjacent flat tubes 30 is equal or unequal to each other, and the heat exchanger 1 is bent around the second bending axis K, and the adjacent flat tubes are bent.
  • the spacing between the 30s varies with the bending of the first header 10 and the second header 20, and the spacing between adjacent flat tubes 30 is equal or unequal to each other.
  • the flat tubes 30 are bent into a double row about the first bending axis L, and the first headers 10 and the second headers 20 are wound around at least one second bending axis K Bending, thereby forming a double-row bending structure, thereby reducing the diameters of the first header 10 and the second header 20 under the same heat exchange capacity, thereby greatly reducing the heat exchanger 1 winding
  • the bending radius of the second bending axis K further increases the space utilization ratio of the heat exchanger 1, and the bending area of the heat exchanger 1 is increased, and the energy efficiency is higher.
  • the length of the second header 20 is smaller than the length of the first header 10, the flat tube 30 is bent around the first bending axis L, and the first header 10 and the second header 20 are wound around the second After the bending axis K is bent, the first header 10 is placed outside the second header 20, so that both ends of the first header 10 and the ends of the second header 20 can be aligned.
  • the heat exchanger 1 is prevented from being damaged by deformation distortion, thereby preventing the heat exchanger 1 from leaking and ensuring pressure and life.
  • the heat exchanger 1 according to the embodiment of the present invention is more advantageous for the connection of the pipeline when the size of the air conditioning unit is small in some application environments. And at the same core height, double the length of the flat tube can be obtained, and the increase of the refrigerant flow can make the heat exchange of the refrigerant sufficiently.
  • the heat exchanger 1 increases the heat exchange area and improves the refrigerant in the flat tube 30. The flow rate increases the heat transfer coefficient on the refrigerant side, thereby improving the heat exchange performance.
  • the diameter of the header is reduced under the condition of the same heat exchange capacity, thereby reducing the bending radius of the heat exchanger and effectively utilizing the space, thereby improving the efficiency.
  • a heat exchanger 1 according to an embodiment of the present invention will now be described with reference to the accompanying drawings.
  • a heat exchanger 1 includes a first header 10, a second header 20, a flat tube 30, and fins 40.
  • the first header 10 is aligned with each other in the Z direction at the center of its axial direction and the center of the second header 20 in the axial direction thereof.
  • the first straight section 31 located at the outermost side of the heat exchanger 1 and the second straight section 32 located at the outermost side of the heat exchanger 1 are positive.
  • the directions intersecting the axial direction of the first header 10 and the second header 20 and parallel to the longitudinal direction of the first straight section 31 and the second straight section 32 are shifted.
  • a part of the flat tubes 30 located in the left side of FIG. 4 and the figure are located in the plurality of flat tubes 30.
  • a part of the flat tubes 30 on the right side of the fourth tube, the first straight section 31 and the second straight section 32 of the flat tubes 30 are staggered in the Z direction, in other words, the torsion sections 33 of the flat tubes 30 are opposite before twisting. It extends obliquely in the Z direction.
  • the torsion section 33 of the flat tube 30 in the middle portion in Fig. 4 extends in the Z direction in the torsion front.
  • the first straight segment 31 and the second straight segment 32 of each of the plurality of flat tubes 30 are in the Z direction. Staggered settings.
  • first header 10 and the second header 20 can have the same number of flat tube slots, corresponding to the same number of flat tubes 30.
  • the flat tube 30 is formed before assembly, and the first straight section 31 and the second straight section 32 are staggered in the Z direction by the flat tube positioner 70 and the flat tube forming clip 80, so that A portion between the straight section 31 and the second straight section 32 is inclined with respect to the Z direction, and then the inclined portion is twisted, thereby forming the twisted section 33.
  • the fins 40 have different heights, which can reduce the type of pre-bending of the flat tube 30, thereby reducing the types of parts.
  • the first straight portion of the first outermost side of the heat exchanger 1 is located.
  • the straight sections 32 are aligned in the direction of the longitudinal direction, and the first straight section 31 located at the second outermost side of the heat exchanger 1 and the second straight section 32 located at the second outermost side of the heat exchanger 1 are positive
  • the directions intersecting the axial direction of the first header 10 and the second header 20 and parallel to the longitudinal direction of the first straight section 31 and the second straight section 32 are shifted.
  • the heat exchanger 1 is the first outermost side on the leftmost side in FIG. 6, the heat exchanger 1 is the second outermost side on the far right side in FIG.
  • the first straight section 31 and the second straight section 32 of the flat tube 30 located in the left portion of FIG. 6 are aligned in the Z direction, that is, the torsion sections 33 of the flat tubes 30 extend in the Z direction before twisting.
  • the first straight section 31 and the second straight section 32 of the flat tube 30 located in the right portion of Fig. 6 are staggered in the Z direction, i.e., the torsional sections 33 of the flat tubes 30 are inclined obliquely with respect to the Z direction before twisting.
  • the manufacturing method includes:
  • the first header and the second header are bent around at least one second bending axis to form at least one second bend, the first header being located at the second bend Outside the bend of the portion, the second header is located inside the bend of the second bend, and the second bend axis is orthogonal to the first header and the second header Axial and parallel to the lengthwise direction of the first straight section and the second straight section.
  • the flat tube is first bent into a double row around the first bending axis, and then the first header and the second header are wound around at least one second bending axis. Bending, thereby forming a double-row bending structure, thereby reducing the diameters of the first header and the second header under the same heat exchange capacity, thereby greatly reducing the heat exchanger to the second fold.
  • the bending radius of the bending axis thereby increasing the space utilization of the heat exchanger, and the bending area of the heat exchanger is increased, and the energy efficiency is higher.
  • the length of the second header is smaller than the length of the first header, and after the bending, the first header is placed outside the second header, so that the first header and the second set can be made
  • the ends of the flow tube are aligned, thereby preventing the heat exchanger from being damaged due to deformation and distortion, thereby preventing heat exchanger leakage and ensuring pressure and life.
  • the diameter of the header can be reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space. Can improve performance.
  • the first straight section and the second straight section of at least a portion of the flat tube are in the said state before being bent about the first bending axis and the second bending axis
  • the flat tubes are staggered in the length direction.
  • the first header and the second header can have the same number of flat tube slots, corresponding to the same number of flat tubes.
  • a double row bending heat exchanger 1 according to further embodiments of the present invention will now be described with reference to the accompanying drawings.
  • a heat exchanger 1 includes a first header 10, at least two second headers 20, a flat tube 30, and fins 40.
  • the at least two second headers 20 are spaced apart from each other along the axial direction of the second header 20.
  • the flat tube 30 is divided along its length into a first straight section 31, a second straight section 32, and a torsion section 33 connected between the first straight section 31 and the second straight section 32, and the flat tube 30 A straight section 31 is connected to the first header 10, and at least a portion of the second straight section 32 of the flat tube 30 is connected to the second header 20.
  • the fins 40 are disposed between adjacent first straight segments 31 and between adjacent second straight segments 32.
  • the flat tube 30 is bent around the first bending axis L at the torsion section 33 to form a first bending portion 50 which is parallel to the axes of the first header 10 and the second header 20.
  • the first header 10 and the second header 20 are wound around at least one second bending axis K to form at least one second bent portion 60, and the first header 10 is located at the second bent portion 60.
  • the outer side of the bend and the second header 20 are located inside the bend of the second bent portion 60, and the second bending axis K is orthogonal to the axial direction of the first header 10 and the second header 20 and is parallel to the first The length direction of a straight section 31 and a second straight section 32.
  • FIGS. 8-12 show an example in which the second header 20 is two and the second bend 60 is one, and FIGS. 10-12 show the heat exchanger 1 before bending.
  • the direction X is the axial direction before the first header 10 and the second header 20 are bent
  • the direction Z is the longitudinal direction of the flat tube 30.
  • the first bending axis L extends in the X direction and may be located at the center of the flat tube 30 in the Z direction.
  • the second bending axis K extends in the Z direction and may be located at the center of the first header 10 in the X direction, and the second bending axis K passes through the spacing of the two second headers 20.
  • the first header 10 and the second header 20 are spaced apart in the Z direction, and after the heat exchanger 1 is bent around the first bending axis L, the first A header 10 and a second header 20 are arranged along the width direction of the flat tube 30.
  • the spacing between the adjacent flat tubes 30 is equal or unequal to each other, and the heat exchanger 1 is bent around the second bending axis K, and the adjacent flat tubes are bent.
  • the spacing between the 30s varies with the bending of the first header 10 and the second header 20, and the spacing between adjacent flat tubes 30 is equal or unequal to each other.
  • the flat tubes 30 are bent into a double row about the first bending axis L, and the first headers 10 and the second headers 20 are wound around at least one second bending axis K Bending, thereby forming a double-row bending structure, thereby reducing the diameters of the first header 10 and the second header 20 under the same heat exchange capacity, thereby greatly reducing the heat exchanger 1 winding
  • the bending radius of the second bending axis K thereby increasing the space utilization of the heat exchanger 1 and the bending of the heat exchanger 1 The area is increased and the energy efficiency is higher.
  • the second header 20 is plural and disposed along the axial direction of the second header 20, and after being bent around the second bending axis K, the interval between the second headers 20 is deformed during bending.
  • the two ends of the first header 10 can be aligned with the ends of the two outer headers 20 at the outermost sides, thereby preventing the heat exchanger 1 from being damaged due to deformation and distortion, thereby Prevent heat exchanger 1 from leaking, ensuring pressure and life.
  • the adjacent second headers 20 are close to each other in the state of bending and pressing, thereby effectively preventing air leakage and affecting heat exchange performance.
  • the second header 20 is an internal loss in which a plurality of adjacent chambers of the same header can be prevented from generating heat exchange capability due to a temperature difference of the refrigerant.
  • the diameter of the header is reduced, thereby reducing the bending radius of the heat exchanger, effectively utilizing the space, and reducing the change.
  • the internal loss of thermal capacity can improve performance.
  • a double row bending heat exchanger 1 according to an embodiment of the present invention will now be described with reference to the accompanying drawings.
  • a heat exchanger 1 includes a first header 10, at least two second headers 20, a flat tube 30, and fins 40.
  • a second straight portion 32 of a portion of the flat tube 30 is connected to at least two second headers 20, and the second tube is adjacent to the second tube.
  • the remainder corresponding to the interval between 20 is a blind tube.
  • the torsion section of the blind tube is removed before the blind tube is bent, and the fins 40 and/or the second straight section 32 of the blind tube are not disposed between the first straight sections 31 of the blind tubes No fins 40 are provided between them.
  • the first straight segments 31 of the plurality of flat tubes 30 are respectively connected to the first header 10, and more
  • the second straight sections 32 of the flat tubes 30 may be connected to the second headers 20, and the spacing of the two second headers 20 corresponds to the interval of a group of two adjacent flat tubes 30, and a plurality of flats
  • the second straight section 32 of the tube 30 may also be partially connected to the second header 20, in which case the flat tube 30 corresponding to the spacing of the two second headers 20 is a blind tube.
  • the flat tubes 30 corresponding to the intervals of the two second headers 20, the fins 40 between the second straight sections 32 may be double fins capable of stretching (as shown in FIG. 10 and FIG. 12), or not set.
  • the fins (as shown in FIG. 11), the fins 40 between the first straight segments 31 may be double fins capable of stretching (as shown in FIGS. 11 and 12), or no fins are provided (FIG. 10). Shown).
  • the heat exchanger 1 can be constructed as a multi-flow heat exchanger or a single-flow heat exchanger by setting the distribution of the inlet and outlet ports in the first header 10 and the plurality of second headers 20.
  • the single-flow heat exchanger means that the heat exchange medium enters the first header 10 from the first header 10 and the second header 20 through the flat tube 30 and The other of the second headers 20 flows out of the heat exchanger 1 from the other of the first headers 10 and the second headers 20.
  • the multi-flow heat exchanger means that the heat exchange medium passes through the flat tube 30 in the first header 10 and the second header 20 The reciprocating flow flows out of the heat exchanger 1.
  • the heat exchanger 1 is a multi-flow heat exchanger, so that the heat transfer performance can be more effectively adjusted to achieve optimal heat exchange performance.
  • the first headers 10 are plural, and the plurality of first headers 10 are spaced apart from each other along the axial direction thereof.
  • the interval between the first headers 10 and the interval between the second headers 20 are in the first headers 10 and the second set
  • the flow tube 20 is staggered in the axial direction (i.e., the X direction).
  • the method of manufacturing the heat exchanger includes:
  • first straight section of the flat tube Connecting a first straight section of the flat tube to the first header, connecting a second straight section of at least a portion of the flat tube to the at least two second headers;
  • the fins are disposed between the adjacent first straight segments and between the adjacent second straight segments;
  • the first header and the second header are bent around at least one second bending axis to form at least one second bend, the first header being located at the second bend An outer side of the bend and the second header is located inside the bend of the second bend, the second bend axis being orthogonal to the first header and the second header
  • the axial direction is parallel to the longitudinal direction of the first straight section and the second straight section.
  • the flat tube is first bent into a double row around the first bending axis, and the first header and the second header are bent around at least one second bending axis, whereby forming a double-row bending structure, thereby reducing the diameters of the first header and the second header under the same heat exchange capacity, thereby substantially reducing the heat exchanger around the second bending axis
  • the bending radius thereby increasing the space utilization rate of the heat exchanger, and the bending area of the heat exchanger is increased, and the energy efficiency is higher.
  • the second headers are at least two and spaced apart along the axial direction thereof, and after being bent around the second bending axis K, the interval between the second headers is adaptively deformed during bending, and the first The two ends of the header are respectively aligned with the ends of the two second headers located at the outermost side, thereby preventing the heat exchanger from being damaged due to deformation and distortion, thereby preventing heat exchanger leakage, ensuring pressure and life. .
  • the adjacent second headers are close to each other in the state of bending and pressing, thereby effectively preventing air leakage and affecting heat exchange performance.
  • the second header is a plurality of tubes that can avoid the same header
  • the adjacent chambers have an internal loss of heat exchange capacity due to the temperature difference of the refrigerant.
  • the diameter of the header can be reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space and reducing The internal loss of the heat exchange capacity is small, thereby improving the efficiency.
  • a second straight section of a portion of the flat tube is connected to the at least two second headers, and the second tube is adjacent to the adjacent second header
  • the remaining portion corresponding to the interval is a blind tube
  • the fin is not disposed between the first straight segments of the blind tube and/or the second straight portion of the blind tube is not disposed Fin.
  • a plurality of first headers are provided, the plurality of first headers being spaced apart from one another along their axial direction.
  • the interval between the first headers and the interval between the second headers are in the axial direction of the first collecting tube and the second collecting tube
  • the axial direction is staggered.
  • a double row bending heat exchanger 1 according to further embodiments of the present invention will now be described with reference to the accompanying drawings.
  • a heat exchanger 1 includes at least two first headers, a second header 20, a flat tube 30, and fins 40.
  • the at least two first headers 10 are spaced apart from each other along the axial direction of the first header 10.
  • the flat tube 30 is divided along its length into a first straight section 31, a second straight section 32, and a torsion section 33 connected between the first straight section 31 and the second straight section 32, and the flat tube 30
  • the two straight sections 32 are connected to the second header 20, and the first straight section 31 of at least a portion of the flat tubes 30 is connected to the at least two first headers 10.
  • the fins 40 are disposed between adjacent first straight segments 31 and between adjacent second straight segments 32.
  • the flat tube 30 is bent around the first bending axis L at the torsion section 33 to form a first bending portion 50 which is parallel to the axes of the first header 10 and the second header 20. to.
  • the first header 10 and the second header 20 are bent around at least one second bending axis K to form at least one second bending portion 60, and the first header 10 is located at the second bending portion 60.
  • the outer side of the bend is located and the second header 20 is located inside the bend of the second bent portion 60, and the second bending axis K is orthogonal to the axial direction of the first header 10 and the second header 20 and is parallel to The longitudinal direction of the first straight section 31 and the second straight section 32.
  • FIG. 14 shows an example in which the first header 10 is two and the second bent portion 60 is one, and the direction X is before the first header 10 and the second header 20 are bent.
  • the direction Z is the longitudinal direction of the flat tube 30.
  • the first bending axis L extends in the X direction and may be located at the center of the flat tube 30 in the Z direction.
  • the second bending axis K extends in the Z direction and may be located at the center of the second header 20 in the X direction, and the second bending axis K passes through the spacing of the two first headers 10.
  • the first header 10 and The second headers 20 are spaced in the Z direction, and after the heat exchanger 1 is bent around the first bending axis L, the first headers 10 and the second headers 20 are arranged along the width direction of the flat tubes 30.
  • the spacing between the adjacent flat tubes 30 is equal or unequal to each other, and the heat exchanger 1 is bent around the second bending axis K, and the adjacent flat tubes are bent.
  • the spacing between the 30s varies with the bending of the first header 10 and the second header 20, and the spacing between adjacent flat tubes 30 is equal or unequal to each other.
  • the flat tubes 30 are bent into a double row about the first bending axis L, and the first headers 10 and the second headers 20 are wound around at least one second bending axis K Bending, thereby forming a double-row bending structure, thereby reducing the diameters of the first header 10 and the second header 20 under the same heat exchange capacity, thereby greatly reducing the heat exchanger 1 winding
  • the bending radius of the second bending axis K further increases the space utilization ratio of the heat exchanger 1, and the bending area of the heat exchanger 1 is increased, and the energy efficiency is higher.
  • first headers 10 are plural and disposed along the axial direction of the first headers 10, and after being bent around the second bending axis K, the interval between the first headers 10 is deformed during bending.
  • the two ends of the second header 20 are respectively aligned with the ends of the two first headers 10 located at the outermost side, thereby preventing the heat exchanger 1 from being damaged due to deformation and distortion, thereby Prevent heat exchanger 1 from leaking, ensuring pressure and life.
  • the first header 10 is an internal loss in which a plurality of adjacent chambers of the same header can be prevented from generating heat exchange capability due to a temperature difference of the refrigerant.
  • the diameter of the header is reduced, thereby reducing the bending radius of the heat exchanger, effectively utilizing the space, and reducing the change.
  • the internal loss of thermal capacity can improve performance.
  • a double row bending heat exchanger 1 according to an embodiment of the present invention will now be described with reference to the accompanying drawings.
  • a heat exchanger 1 includes at least two first headers 10, a second header 20, a flat tube 30, and fins 40.
  • a first straight section 31 of a portion of the flat tube 30 is connected to at least two first headers 10, and between the flat tubes 30 and the adjacent first headers 10
  • the rest of the interval corresponds to a blind tube.
  • the torsion section of the blind tube is removed before the blind tube is bent, and the fins 40 and/or the second straight section 32 of the blind tube are not disposed between the first straight sections 31 of the blind tubes No fins 40 are provided between them.
  • the second straight sections 32 of the plurality of flat tubes 30 are respectively connected to the second header 20, and more
  • the first straight sections 31 of the flat tubes 30 may be connected to the first headers 10, and the spacing of the two first headers 10 corresponds to the interval of a group of two adjacent flat tubes 30, and a plurality of flats.
  • the first straight section 31 of the tube 30 may also be partially connected to the first header 10, and the flat tube 30 corresponding to the interval between the two first headers 10 is a blind tube.
  • the flat tubes 30 corresponding to the intervals of the two first headers 10, the fins 40 between the second straight sections 32 may be double fins capable of stretching, or no fins, and the first straight section 31 thereof
  • the fins 40 may be double fins that can be telescopically stretched. Or do not set the fins.
  • the heat exchanger 1 can be constructed as a multi-flow heat exchanger or a single-flow heat exchanger by setting the distribution of the inlet and outlet ports in the plurality of first headers 10 and second headers 20.
  • the heat exchanger 1 is a multi-flow heat exchanger, so that the heat transfer performance can be more effectively adjusted to achieve optimal heat exchange performance.
  • the double row bending manufacturing method comprises:
  • At least two first headers Providing at least two first headers, the at least two first headers being spaced apart from one another in their axial direction;
  • the first header and the second header are bent around at least one second bending axis to form at least one second bend, the first header being located at the second bend An outer side of the bend and the second header is located inside the bend of the second bend, the second bend axis being orthogonal to the first header and the second header
  • the axial direction is parallel to the longitudinal direction of the first straight section and the second straight section.
  • the flat tube is first bent into a double row around the first bending axis, and the first header and the second header are bent around at least one second bending axis, whereby forming a double-row bending structure, thereby reducing the diameters of the first header and the second header under the same heat exchange capacity, thereby substantially reducing the heat exchanger around the second bending axis
  • the bending radius thereby increasing the space utilization rate of the heat exchanger, and the bending area of the heat exchanger is increased, and the energy efficiency is higher.
  • the first headers are at least two and spaced apart along the axial direction thereof, and after being bent around the second bending axis K, the interval between the first headers is adaptively deformed during bending, and the second can be made
  • the two ends of the header are respectively aligned with the ends of the two outer headers located at the outermost side, thereby preventing the heat exchanger from being damaged due to deformation and distortion, thereby preventing heat exchanger leakage, ensuring pressure and life.
  • the first header is a plurality of internal losses that can avoid the heat exchange capability of the adjacent chambers of the same header due to the temperature difference of the refrigerant.
  • the diameter of the header can be reduced, thereby reducing the bending radius of the heat exchanger, and effectively utilizing the space and reducing The internal loss of the heat exchange capacity is small, thereby improving the efficiency.
  • a first straight section of a portion of the flat tube is connected to the at least two first headers, and the first tube is adjacent to the first header
  • the remaining portion corresponding to the interval is a blind tube
  • the fin is not disposed between the first straight segments of the blind tube and/or the second straight portion of the blind tube is not disposed Fin.
  • the heat exchanger 1 is a double-row bent structure, whereby the diameters of the first header 10 and the second header 20 can be reduced under the same heat exchange capacity, thereby greatly reducing
  • the bending radius of the heat exchanger 1 around the second bending axis K further increases the space utilization rate of the heat exchanger 1, and the bending area of the heat exchanger 1 increases, and the energy efficiency is higher.
  • the outer ends of the first header 10 and the second header 20 are aligned, thereby preventing the heat exchanger 1 from being damaged due to deformation and distortion, thereby preventing the heat exchanger 1 from leaking and ensuring pressure and life. .
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种双排折弯式换热器(1)及其制造方法,换热器(1)包括:第一集流管(10)和第二集流管(20),第二集流管(20)的长度小于第一集流管(10)的长度;扁管(30),扁管(30)分为与第一集流管(10)相连的第一平直段(31)、与第二集流管(20)相连的第二平直段(32)以及连接在第一平直段(31)和第二平直段(32)之间的扭转段(33);翅片(40),翅片(40)设在相邻的第一平直段(31)之间以及相邻的第二平直段(32)之间。制造方法包括:将扁管(30)绕第一折弯轴线(L)在扭转段(33)处折弯以便形成第一折弯部(50),将第一集流管(10)和第二集流管(20)绕至少一个第二折弯轴线折弯(K)以便形成至少一个第二折弯部(60)。

Description

双排折弯式换热器及其制造方法 技术领域
本发明涉及换热技术领域,具体地,涉及一种双排折弯式换热器及其制造方法。
背景技术
在一些应用场合,诸如微通道换热器的平行流换热器需要绕换热器的横向折弯轴线(平行于扁管的长度方向)折弯(即换热器的集流管折弯)。相关技术中的换热器通常是单排折弯,如图1所示,随着换热能力增大的要求,单排换热器的扁管宽度和集流管外径也随之需要增大,而扁管与集流管的增大直接会导致折弯半径增大,折弯半径增大则会大大浪费空间,例如空调整机内的孔径,在一定的空间内换热器的实际换热面积也会相对减小,从而导致换热器换热性能差。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个方面提出一种双排折弯式换热器,在同等换热能力条件下,该换热器的集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
本发明的另一个方面提出一种换热器的制造方法。
为实现上述目的,根据本发明的第一方面的实施例提出一种换热器,所述换热器包括:第一集流管和第二集流管,所述第二集流管的长度小于所述第一集流管的长度;扁管,所述扁管沿其长度方向分为与所述第一集流管相连的第一平直段、与所述第二集流管相连的第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;翅片,所述翅片设在相邻的第一平直段之间以及相邻的第二平直段之间,其中所述扁管绕第一折弯轴线在所述扭转段处折弯以便形成第一折弯部,所述第一折弯轴线平行于所述第一集流管和第二集流管的轴向,其中所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器,在同等换热能力条件下,集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
另外,根据本发明实施例的换热器还具有如下附加的技术特征:
根据本发明的一个实施例,所述第一集流管在其轴向的中心与所述第二集流管在其轴向上的中心彼此对齐。
根据本发明的一个实施例,所述第二折弯部为一个。
根据本发明的一个实施例,在绕第一折弯轴线和第二折弯轴线折弯之前,位于所述换热器的最外侧的第一平直段与位于所述换热器的最外侧的第二平直段在正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向的方向上错开。
根据本发明的一个实施例,在绕第一折弯轴线和第二折弯轴线折弯之前,位于所述换热器的第一最外侧的第一平直段与位于所述换热器的第一最外侧的第二平直段在正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向的方向上对齐,且位于所述换热器的第二最外侧的第一平直段与位于所述换热器的第二最外侧的第二平直段在正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向的方向上错开。
根据本发明的一个实施例,相邻扁管之间的间距彼此相等或不相等。
根据本发明的第二方面的实施例提出一种换热器的制造方法,所述制造方法包括:提供第一集流管和第二集流管,所述第二集流管的长度小于所述第一集流管的长度;将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;将所述第一平直段与所述第一集流管相连,将所述第二平直段与所述第二集流管相连;将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧,所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器的制造方法,在同等换热能力条件下,能够减小集流管的直径,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
根据本发明的一个实施例,所述换热器的制造方法还包括在绕第一折弯轴线和第二折弯轴线折弯之前使至少一部分扁管的所述第一平直段和所述第二平直段在所述扁管的长度方向上错开。
根据本发明的第三方面的实施例提出一种换热器,所述换热器包括:第一集流管和至少两个第二集流管,所述至少两个第二集流管沿其轴向彼此间隔开;扁管,所述扁管沿其 长度方向分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段,所述扁管的第一平直段与所述第一集流管相连,所述扁管中的至少一部分的第二平直段与所述至少两个第二集流管相连;翅片,所述翅片设在相邻的第一平直段之间以及相邻的第二平直段之间,其中所述扁管绕第一折弯轴线在所述扭转段处折弯以便形成第一折弯部,所述第一折弯轴线平行于所述第一集流管和第二集流管的轴向,其中所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器,在同等换热能力条件下,集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
根据本发明的一个实施例,所述扁管中的一部分的第二平直段与所述至少两个第二集流管相连,所述扁管中与相邻第二集流管之间的间隔对应的其余部分为盲管。
根据本发明的一个实施例,所述盲管的第一平直段之间未设置所述翅片和/或所述盲管的第二平直段之间未设置所述翅片。
根据本发明的一个实施例,所述第一集流管为多个,且所述多个第一集流管沿其轴向彼此间隔开。
根据本发明的一个实施例,所述换热器为多流程换热器或单流程换热器。
根据本发明的第四方面的实施例提出一种换热器的制造方法,所述制造方法包括:提供第一集流管和至少两个第二集流管,所述至少两个第二集流管沿其轴向方向彼此间隔开;将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;将所述扁管的第一平直段与所述第一集流管相连,将所述扁管中的至少一部分的第二平直段与所述至少两个第二集流管相连;将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向、平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器的制造方法,在同等换热能力条件下,能够减小集流管的直径,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
根据本发明的一个实施例,所述扁管中的一部分的第二平直段与所述至少两个第二集 流管相连,所述扁管中与相邻第二集流管之间的间隔对应的其余部分为盲管。
根据本发明的一个实施例,在所述盲管的第一平直段之间不设置所述翅片和/或在所述盲管的第二平直段之间不设置所述翅片。
根据本发明的一个实施例,提供多个第一集流管,所述多个第一集流管沿其轴向彼此间隔开。
根据本发明的第五方面的实施例提出一种换热器,所述换热器包括:至少两个第一集流管,所述至少两个第一集流管沿其轴向彼此间隔开;第二集流管;扁管,所述扁管沿其长度方向分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段,所述扁管的第二平直段与所述第二集流管相连,所述扁管中的至少一部分的第一平直段与所述至少两个第一集流管相连;翅片,所述翅片设在相邻的第一平直段之间以及相邻的第二平直段之间,其中所述扁管绕第一折弯轴线在所述扭转段处折弯以便形成第一折弯部,所述第一折弯轴线平行于所述第一集流管和第二集流管的轴向,其中所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器,在同等换热能力条件下,集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
根据本发明的一个实施例,所述扁管中的一部分的第一平直段与所述至少两个第一集流管相连,所述扁管中与相邻第一集流管之间的间隔对应的其余部分为盲管。
根据本发明的一个实施例,所述盲管的第一平直段之间未设置所述翅片和/或所述盲管的第二平直段之间未设置所述翅片。
根据本发明的第六方面的实施例提出一种换热器的制造方法,所述制造方法包括:提供至少两个第一集流管,所述至少两个第一集流管沿其轴向方向彼此间隔开;提供第二集流管;将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;将所述扁管的第二平直段与所述第二集流管相连,将所述扁管中的至少一部分的第一平直段与所述至少两个第一集流管相连;将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的 轴向、平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器的制造方法,在同等换热能力条件下,能够减小集流管的直径,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
根据本发明的一个实施例,所述扁管中的一部分的第一平直段与所述至少两个第一集流管相连,所述扁管中与相邻第一集流管之间的间隔对应的其余部分为盲管。
根据本发明的一个实施例,在所述盲管的第一平直段之间不设置所述翅片和/或在所述盲管的第二平直段之间不设置所述翅片。
附图说明
图1是相关技术中的单排折弯式换热器的立体示意图。
图2是根据本发明实施例的换热器的立体示意图。
图3是根据本发明实施例的换热器的扁管的加工示意图。
图4是根据本发明一个示例的换热器在折弯之前的示意图。
图5是根据本发明另一示例的换热器在折弯之前的示意。
图6是根据本发明又一实施例的换热器在折弯之前的示意图。
图7是根据本发明实施例的换热器在绕集流管的轴向折弯后且绕所述扁管的长度方向未折弯之前的示意图。
图8是根据本发明另一实施例的换热器的立体示意图。
图9是图8中的第二折弯部处的放大示意图。
图10是根据本发明一个示例的换热器在折弯之前的示意图。
图11是根据本发明另一示例的换热器在折弯之前的示意。
图12是根据本发明又一实施例的换热器在折弯之前的示意图。
图13是根据本发明再一实施例的换热器在折弯之前的示意图。
图14是根据本发明再又一实施例的换热器在折弯之前的示意图。
附图标记:
换热器1、
第一集流管10、第二集流管20、扁管30、第一平直段31、第二平直段32、扭转段33、翅片40、第一折弯部50、第二折弯部60、扁管定位器70、扁管成型夹棍80、
第一折弯轴线L、第二折弯轴线K。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图 描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例的双排折弯式换热器1。
如图2-图7所示,根据本发明实施例的换热器1包括第一集流管10、第二集流管20、扁管30和翅片40。
第二集流管20的长度小于第一集流管10。扁管30沿扁管30的长度方向分为第一平直段31、第二平直段32和扭转段33。第一平直段31与第一集流管10相连,第二平直段32与第二集流管20相连,扭转段33连接在第一平直段31和第二平直段32之间。翅片40设在相邻的第一平直段31之间以及相邻的第二平直段32之间。
其中,扁管30绕第一折弯轴线L在扭转段33处折弯以便形成第一折弯部50,第一折弯轴线L平行于第一集流管10和第二集流管20的轴向,第一集流管10和第二集流管20绕至少一个第二折弯轴线K折弯以便形成至少一个第二折弯部60,第一集流管10位于第二折弯部60的折弯外侧且第二集流管20位于第二折弯部60的折弯内侧,第二折弯轴线K正交于第一集流管10和第二集流管20的轴向且平行于第一平直段31和第二平直段32的长度方向。
举例而言,图4-图7示出了第二折弯部60为一个的示例,图4-图6示出的为换热器1在折弯前的状态,方向X为第一集流管10和第二集流管20折弯前的轴向,方向Y为扁管30的宽度方向,方向Z为扁管30的长度方向。
其中,第一折弯轴线L沿X方向延伸,且在Z方向上可以位于扁管30的中心处。第二折弯轴线K沿Z方向延伸,且在X方向上可以位于第一集流管10和第二集流管20的中心处。换热器1绕第一折弯轴线L折弯前,第一集流管10和第二集流管20沿Z方向间隔,而换热器1绕第一折弯轴线L折弯后,第一集流管10和第二集流管20沿Y方向排列。换热器1绕第二折弯轴线K折弯前,相邻扁管30之间的间距彼此相等或不相等,而换热器1绕第二折弯轴线K折弯后,相邻扁管30之间的间距会随着第一集流管10和第二集流管20的折弯而发生变化,且相邻扁管30之间的间距彼此相等或不相等。
根据本发明实施例的换热器1,扁管30绕第一折弯轴线L折弯成双排,且第一集流管10和第二集流管20绕至少一个第二折弯轴线K折弯,由此形成双排折弯式结构,由此能够在同等换热能力下,减小第一集流管10和第二集流管20的直径,从而大幅减小换热器1绕第二折弯轴线K的折弯半径,进而提高了换热器1的空间利用率,且换热器1的折弯面积增大,能效更高。
并且,第二集流管20的长度小于第一集流管10的长度,扁管30绕第一折弯轴线L折弯且第一集流管10和第二集流管20绕第二折弯轴线K折弯后,将第一集流管10置于第二集流管20的外侧,这样能够使第一集流管10的两端和第二集流管20的两端对齐,由此可 以避免换热器1因变形扭曲而遭到破坏,从而防止换热器1泄漏,保证压力和寿命。
以根据本发明实施例的换热器1应用于空调机组为例,当在一些应用环境中,空调机组的尺寸较小时,根据本发明实施例的换热器1更有利于管路的连接,且在相同的芯体高度下,可获得双倍的扁管长度,冷媒流程的增加可使冷媒换热充分,此外,换热器1增大了换热面积,提高了扁管30内的冷媒流速,使冷媒侧的换热系数增大,进而提高了换热性能。
综上,根据本发明实施例的换热器1,在同等换热能力条件下,集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
下面参考附图描述根据本发明具体实施例的换热器1。
如图2-图7所示,根据本发明实施例的换热器1包括第一集流管10、第二集流管20、扁管30和翅片40。
具体而言,如图4和图5所示,第一集流管10在其轴向的中心与第二集流管20在其轴向上的中心在Z方向上彼此对齐。在绕第一折弯轴线L和第二折弯轴线K之前,位于换热器1的最外侧的第一平直段31与位于换热器1的最外侧的第二平直段32在正交于第一集流管10和第二集流管20的轴向且平行于第一平直段31和第二平直段32的长度方向的方向上错开。
举例而言,如图4所示,在绕第一折弯轴线L和第二折弯轴线K折弯之前,多个扁管30中,位于图4中左侧的一部分扁管30以及位于图4中右侧的一部分扁管30,这些扁管30的第一平直段31和第二平直段32沿Z方向错开设置,换言之,这些扁管30的扭转段33在扭转前,是相对于Z方向倾斜延伸的。而图4中位于中间部分的扁管30的扭转段33在扭转前沿Z方向延伸。
如图5所示,在绕第一折弯轴线L和第二折弯轴线K之前,多个扁管30中的每一个的第一平直段31和第二平直段32均沿Z方向错开设置。
由此,第一集流管10和第二集流管20能够具有同样数量的扁管槽,从而对应同样数量的扁管30。
具体地,如图2所示,扁管30在装配前成型,通过扁管定位器70和扁管成型夹棍80将第一平直段31和第二平直段32沿Z方向错开,使第一平直段31和第二平直段32之间的部分相对于Z方向倾斜,然后扭转该倾斜的部分,从而形成扭转段33。其中,翅片40采用不同的高度,可以减少扁管30预折弯的种类,从而减少零件的种类。
在本发明的一些具体实施例中,如图6所示,在第一折弯轴线L和第二折弯轴线K折弯之前,位于换热器1的第一最外侧的第一平直段31与位于换热器1的第一最外侧的第二平直段32在正交于第一集流管10和第二集流管20的轴向且平行于第一平直段31和第二 平直段32的长度方向的方向上对齐,且位于换热器1的第二最外侧的第一平直段31与位于换热器1的第二最外侧的第二平直段32在正交于第一集流管10和第二集流管20的轴向且平行于第一平直段31和第二平直段32的长度方向的方向上错开。
举例而言,如图6所示,在绕第一折弯轴线L和第二折弯轴线K折弯之前,换热器1在图6中的最左侧为第一最外侧,换热器1在图6中的最右侧为第二最外侧。其中,位于图6中左侧部分扁管30的第一平直段31和第二平直段32在Z方向上对齐,即这些扁管30的扭转段33在扭转前是沿Z方向延伸的。位于图6中右侧部分扁管30的第一平直段31和第二平直段32沿Z方向错开,即这些扁管30的扭转段33在扭转前是相对于Z方向倾斜延伸的。
下面描述根据本发明实施例的双排折弯式换热器的制造方法。
所述制造方法包括:
提供第一集流管和第二集流管,所述第二集流管的长度小于所述第一集流管的长度;
将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;
将所述第一平直段与所述第一集流管相连,将所述第二平直段与所述第二集流管相连;
将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;
将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧,所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器的制造方法,先将扁管绕第一折弯轴线折弯成双排,再将第一集流管和第二集流管绕至少一个第二折弯轴线折弯,由此形成双排折弯式结构,由此能够在同等换热能力下,减小第一集流管和第二集流管的直径,从而大幅减小换热器绕第二折弯轴线的折弯半径,进而提高了换热器的空间利用率,且换热器的折弯面积增大,能效更高。
并且,第二集流管的长度小于第一集流管的长度,且折弯后将第一集流管置于第二集流管的外侧,这样能够使第一集流管和第二集流管的两端对齐,由此可以避免换热器因变形扭曲而遭到破坏,从而防止换热器泄漏,保证压力和寿命。
综上,根据本发明实施例的换热器的制造方法,在同等换热能力条件下,能够减小集流管的直径,从而减小换热器的折弯半径,有效利用了空间,从而能够提升效能。
在本发明的一些具体实施例中,在绕第一折弯轴线和第二折弯轴线折弯之前使至少一部分扁管的所述第一平直段和所述第二平直段在所述扁管的长度方向上错开。由此,第一集流管和第二集流管能够具有同样数量的扁管槽,从而对应同样数量的扁管。
下面参考附图描述根据本发明另一些实施例的双排折弯式换热器1。
如图8-图13所示,根据本发明实施例的换热器1包括第一集流管10、至少两个第二集流管20、扁管30和翅片40。
至少两个第二集流管20沿第二集流管20的轴向彼此间隔开。扁管30沿其长度方向分为第一平直段31、第二平直段32以及连接在第一平直段31和第二平直段32之间的扭转段33,扁管30的第一平直段31与第一集流管10相连,扁管30中的至少一部分的第二平直段32与第二集流管20相连。翅片40设在相邻的第一平直段31之间以及相邻的第二平直段32之间。
其中扁管30绕第一折弯轴线L在扭转段33处折弯以便形成第一折弯部50,第一折弯轴线L平行于第一集流管10和第二集流管20的轴向,第一集流管10和第二集流管20绕至少一个第二折弯轴线K以便形成至少一个第二折弯部60,第一集流管10位于第二折弯部60的折弯外侧且第二集流管20位于第二折弯部60的折弯内侧,第二折弯轴线K正交于第一集流管10和第二集流管20的轴向且平行于第一平直段31和第二平直段32的长度方向。
举例而言,图8-图12示出了第二集流管20为两个且第二折弯部60为一个的示例,图10-图12示出的为换热器1在折弯前的状态,方向X为第一集流管10和第二集流管20折弯前的轴向,方向Z为扁管30的长度方向。
其中,第一折弯轴线L沿X方向延伸,且在Z方向上可以位于扁管30的中心处。第二折弯轴线K沿Z方向延伸,且在X方向上可以位于第一集流管10的中心处,第二折弯轴线K穿过两个第二集流管20的间隔。换热器1绕第一折弯轴线L折弯前,第一集流管10和第二集流管20沿Z方向间隔,而换热器1绕第一折弯轴线L折弯后,第一集流管10和第二集流管20沿扁管30的宽度方向排列。换热器1绕第二折弯轴线K折弯前,相邻扁管30之间的间距彼此相等或不相等,而换热器1绕第二折弯轴线K折弯后,相邻扁管30之间的间距会随着第一集流管10和第二集流管20的折弯而发生变化,且相邻扁管30之间的间距彼此相等或不相等。
根据本发明实施例的换热器1,扁管30绕第一折弯轴线L折弯成双排,且第一集流管10和第二集流管20绕至少一个第二折弯轴线K折弯,由此形成双排折弯式结构,由此能够在同等换热能力下,减小第一集流管10和第二集流管20的直径,从而大幅减小换热器1绕第二折弯轴线K的折弯半径,进而提高了换热器1的空间利用率,且换热器1的折弯 面积增大,能效更高。
并且,第二集流管20为多个且沿第二集流管20的轴向间隔设置,绕第二折弯轴线K折弯后,第二集流管20间的间隔在折弯时变形自适应,能够使第一集流管10的两端分别和位于最外侧的两个第二集流管20的端部对齐,由此可以避免换热器1因变形扭曲而遭到破坏,从而防止换热器1泄漏,保证压力和寿命。而且,绕第二折弯轴线K折弯时相邻的第二集流管20在折弯挤压状态下相互靠近,从而有效防止漏风而影响换热性能。此外,第二集流管20为多个可避免同一集流管的相邻腔室由于制冷剂的温差而产生换热能力的内损。
综上,根据本发明实施例的换热器1,在同等换热能力条件下,集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,减小了换热能力的内损,从而能够提升效能。
下面参考附图描述根据本发明具体实施例的双排折弯式换热器1。
如图8-图13所示,根据本发明实施例的换热器1包括第一集流管10、至少两个第二集流管20、扁管30和翅片40。
可选地,如图10-图12所示,扁管30中的一部分的第二平直段32与至少两个第二集流管20相连,扁管30中与相邻第二集流管20之间的间隔对应的其余部分为盲管。所述盲管的扭转段在所述盲管折弯之前被去除,所述盲管的第一平直段31之间未设置翅片40和/或所述盲管的第二平直段32之间未设置翅片40。
举例而言,以第二集流管20为两个且第二折弯部60为一个为例,多个扁管30的第一平直段31分别与第一集流管10相连,而多个扁管30的第二平直段32可以均与第二集流管20相连,此时两个第二集流管20的间隔对应一组相邻两个扁管30的间隔,多个扁管30的第二平直段32也可以一部分与第二集流管20相连,此时与两个第二集流管20的间隔对应的扁管30为盲管。
两个第二集流管20的间隔对应的扁管30,其第二平直段32间的翅片40可以为能够伸缩的双翅片(如图10和图12所示),或不设置翅片(如图11所示),其第一平直段31间的翅片40可以为能够伸缩的双翅片(如图11和图12所示),或不设置翅片(如图10所示)。
可选地,通过设置进出口在第一集流管10和多个第二集流管20的分布,可以将换热器1构造成多流程换热器或单流程换热器。本领域的技术人员可以理解地是,单流程换热器是指,换热介质从第一集流管10和第二集流管20中的一个通过扁管30进入第一集流管10和第二集流管20中的另一个,并从第一集流管10和第二集流管20中的所述另一个流出换热器1。多流程换热器是指,换热介质通过扁管30在第一集流管10和第二集流管20 间往复流动后流出换热器1。
优选地,换热器1为多流程换热器,从而能够更有效地进行换热性能的调节,以达到最优的换热性能。
在本发明的一些具体实施例中,如图13所示,第一集流管10为多个,且多个第一集流管10沿其轴向彼此间隔开。其中,绕第一折弯轴线L和第二折弯轴线K折弯前,第一集流管10间的间隔与第二集流管20间的间隔在第一集流管10和第二集流管20的轴向(即X方向)上错开。由此可以进一步提高换热器1在绕第二折弯轴线K折弯时的变形自适应能力,从而进一步保证换热器1的压力和寿命。
下面参考附图描述根据本发明实施例的双排折弯式换热器的制造方法。
所述换热器的制造方法包括:
提供第一集流管和至少两个第二集流管,所述至少两个第二集流管沿其轴向方向彼此间隔开;
将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;
将所述扁管的第一平直段与所述第一集流管相连,将所述扁管中的至少一部分的第二平直段与所述至少两个第二集流管相连;将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;
将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向、平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器,先将扁管绕第一折弯轴线折弯成双排,在将第一集流管和第二集流管绕至少一个第二折弯轴线折弯,由此形成双排折弯式结构,由此能够在同等换热能力下,减小第一集流管和第二集流管的直径,从而大幅减小换热器绕第二折弯轴线的折弯半径,进而提高了换热器的空间利用率,且换热器的折弯面积增大,能效更高。
并且,第二集流管为至少两个且沿其轴向间隔开,绕第二折弯轴线K折弯后,第二集流管间的间隔在折弯时变形自适应,能够使第一集流管的两端分别和位于最外侧的两个第二集流管的端部对齐,由此可以避免换热器因变形扭曲而遭到破坏,从而防止换热器泄漏,保证压力和寿命。而且,绕第二折弯轴线折弯时相邻的第二集流管在折弯挤压状态下相互靠近,从而有效防止漏风而影响换热性能。此外,第二集流管为多个可避免同一集流管的 相邻腔室由于制冷剂的温差而产生换热能力的内损。
综上,根据本发明实施例的换热器的制造方法,在同等换热能力条件下,能够减小集流管的直径,从而减小换热器的折弯半径,有效利用了空间,减小了换热能力的内损,从而能够提升效能。
在本发明的一些具体实施例中,所述扁管中的一部分的第二平直段与所述至少两个第二集流管相连,所述扁管中与相邻第二集流管之间的间隔对应的其余部分为盲管,在所述盲管的第一平直段之间不设置所述翅片和/或在所述盲管的第二平直段之间不设置所述翅片。由此能够将换热器构造成多流程换热器,从而能够更有效地进行换热性能的调节,以达到最优的换热性能。
进一步地,提供多个第一集流管,所述多个第一集流管沿其轴向彼此间隔开。其中,绕第一折弯轴线和第二折弯轴线折弯前,第一集流管间的间隔与第二集流管间的间隔在第一集流管的轴向和第二集流管的轴向上错开。由此可以进一步提高换热器在绕第二折弯轴线折弯时的变形自适应能力,从而进一步保证换热器的压力和寿命。
下面参考附图描述根据本发明另一些实施例的双排折弯式换热器1。
如图14所示,根据本发明实施例的换热器1包括至少两个第一集流管、第二集流管20、扁管30和翅片40。
至少两个第一集流管10沿第一集流管10的轴向彼此间隔开。扁管30沿其长度方向分为第一平直段31、第二平直段32以及连接在第一平直段31和第二平直段32之间的扭转段33,扁管30的第二平直段32与第二集流管20相连,扁管30中的至少一部分的第一平直段31与至少两个第一集流管10相连。翅片40设在相邻的第一平直段31之间以及相邻的第二平直段32之间。
其中扁管30绕第一折弯轴线L在扭转段33处折弯以便形成第一折弯部50,第一折弯轴线L平行于第一集流管10和第二集流管20的轴向。其中第一集流管10和第二集流管20绕至少一个第二折弯轴线K折弯以便形成至少一个第二折弯部60,第一集流管10位于第二折弯部60的折弯外侧且第二集流管20位于第二折弯部60的折弯内侧,第二折弯轴线K正交于第一集流管10和第二集流管20的轴向且平行于第一平直段31和第二平直段32的长度方向。
举例而言,图14示出了第一集流管10为两个且第二折弯部60为一个的示例,方向X为第一集流管10和第二集流管20折弯前的轴向,方向Z为扁管30的长度方向。
其中,第一折弯轴线L沿X方向延伸,且在Z方向上可以位于扁管30的中心处。第二折弯轴线K沿Z方向延伸,且在X方向上可以位于第二集流管20的中心处,第二折弯轴线K穿过两个第一集流管10的间隔。换热器1绕第一折弯轴线L折弯前,第一集流管10和 第二集流管20沿Z方向间隔,而换热器1绕第一折弯轴线L折弯后,第一集流管10和第二集流管20沿扁管30的宽度方向排列。换热器1绕第二折弯轴线K折弯前,相邻扁管30之间的间距彼此相等或不相等,而换热器1绕第二折弯轴线K折弯后,相邻扁管30之间的间距会随着第一集流管10和第二集流管20的折弯而发生变化,且相邻扁管30之间的间距彼此相等或不相等。
根据本发明实施例的换热器1,扁管30绕第一折弯轴线L折弯成双排,且第一集流管10和第二集流管20绕至少一个第二折弯轴线K折弯,由此形成双排折弯式结构,由此能够在同等换热能力下,减小第一集流管10和第二集流管20的直径,从而大幅减小换热器1绕第二折弯轴线K的折弯半径,进而提高了换热器1的空间利用率,且换热器1的折弯面积增大,能效更高。
并且,第一集流管10为多个且沿第一集流管10的轴向间隔设置,绕第二折弯轴线K折弯后,第一集流管10间的间隔在折弯时变形自适应,能够使第二集流管20的两端分别和位于最外侧的两个第一集流管10的端部对齐,由此可以避免换热器1因变形扭曲而遭到破坏,从而防止换热器1泄漏,保证压力和寿命。此外,第一集流管10为多个可避免同一集流管的相邻腔室由于制冷剂的温差而产生换热能力的内损。
综上,根据本发明实施例的换热器1,在同等换热能力条件下,集流管的直径减小,从而减小换热器的折弯半径,有效利用了空间,减小了换热能力的内损,从而能够提升效能。
下面参考附图描述根据本发明具体实施例的双排折弯式换热器1。
如图14所示,根据本发明实施例的换热器1包括至少两个第一集流管10、第二集流管20、扁管30和翅片40。
可选地,如图14所示,扁管30中的一部分的第一平直段31与至少两个第一集流管10相连,扁管30中与相邻第一集流管10之间的间隔对应的其余部分为盲管。所述盲管的扭转段在所述盲管折弯之前被去除,所述盲管的第一平直段31之间未设置翅片40和/或所述盲管的第二平直段32之间未设置翅片40。
举例而言,以第一集流管10为两个且第二折弯部60为一个为例,多个扁管30的第二平直段32分别与第二集流管20相连,而多个扁管30的第一平直段31可以均与第一集流管10相连,此时两个第一集流管10的间隔对应一组相邻两个扁管30的间隔,多个扁管30的第一平直段31也可以一部分与第一集流管10相连,此时与两个第一集流管10的间隔对应的扁管30为盲管。
两个第一集流管10的间隔对应的扁管30,其第二平直段32间的翅片40可以为能够伸缩的双翅片,或不设置翅片,其第一平直段31间的翅片40可以为能够伸缩的双翅片, 或不设置翅片。
可选地,通过设置进出口在多个第一集流管10和第二集流管20的分布,可以将换热器1构造成多流程换热器或单流程换热器。
优选地,换热器1为多流程换热器,从而能够更有效地进行换热性能的调节,以达到最优的换热性能。
下面描述根据本发明实施例的双排折弯式换热器的制造方法。
所述双排折弯式制造方法包括:
提供至少两个第一集流管,所述至少两个第一集流管沿其轴向方向彼此间隔开;
提供第二集流管;
将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;
将所述扁管的第二平直段与所述第二集流管相连,将所述扁管中的至少一部分的第一平直段与所述至少两个第一集流管相连;
将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;
将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向、平行于所述第一平直段和第二平直段的长度方向。
根据本发明实施例的换热器,先将扁管绕第一折弯轴线折弯成双排,在将第一集流管和第二集流管绕至少一个第二折弯轴线折弯,由此形成双排折弯式结构,由此能够在同等换热能力下,减小第一集流管和第二集流管的直径,从而大幅减小换热器绕第二折弯轴线的折弯半径,进而提高了换热器的空间利用率,且换热器的折弯面积增大,能效更高。
并且,第一集流管为至少两个且沿其轴向间隔开,绕第二折弯轴线K折弯后,第一集流管间的间隔在折弯时变形自适应,能够使第二集流管的两端分别和位于最外侧的两个第一集流管的端部对齐,由此可以避免换热器因变形扭曲而遭到破坏,从而防止换热器泄漏,保证压力和寿命。此外,第一集流管为多个可避免同一集流管的相邻腔室由于制冷剂的温差而产生换热能力的内损。
综上,根据本发明实施例的换热器的制造方法,在同等换热能力条件下,能够减小集流管的直径,从而减小换热器的折弯半径,有效利用了空间,减小了换热能力的内损,从而能够提升效能。
在本发明的一些具体实施例中,所述扁管中的一部分的第一平直段与所述至少两个第一集流管相连,所述扁管中与相邻第一集流管之间的间隔对应的其余部分为盲管,在所述盲管的第一平直段之间不设置所述翅片和/或在所述盲管的第二平直段之间不设置所述翅片。由此能够将换热器构造成多流程换热器,从而能够更有效地进行换热性能的调节,以达到最优的换热性能。
根据本发明实施例的换热器1为双排折弯式结构,由此能够在同等换热能力下,减小第一集流管10和第二集流管20的直径,从而大幅减小换热器1绕第二折弯轴线K的折弯半径,进而提高了换热器1的空间利用率,且换热器1的折弯面积增大,能效更高。且第一集流管10和第二集流管20折弯后的外端对齐,由此可以避免换热器1因变形扭曲而遭到破坏,从而防止换热器1泄漏,保证压力和寿命。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示 例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (23)

  1. 一种换热器,其特征在于,包括:
    第一集流管和第二集流管,所述第二集流管的长度小于所述第一集流管的长度;
    扁管,所述扁管沿其长度方向分为与所述第一集流管相连的第一平直段、与所述第二集流管相连的第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
    翅片,所述翅片设在相邻的第一平直段之间以及相邻的第二平直段之间,
    其中所述扁管绕第一折弯轴线在所述扭转段处折弯以便形成第一折弯部,所述第一折弯轴线平行于所述第一集流管和第二集流管的轴向,
    其中所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
  2. 根据权利要求1所述的换热器,其特征在于,所述第一集流管在其轴向的中心与所述第二集流管在其轴向上的中心彼此对齐。
  3. 根据权利要求1所述的换热器,其特征在于,所述第二折弯部为一个。
  4. 根据权利要求1所述的换热器,其特征在于,在绕第一折弯轴线和第二折弯轴线折弯之前,位于所述换热器的最外侧的第一平直段与位于所述换热器的最外侧的第二平直段在正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向的方向上错开。
  5. 根据权利要求1所述的换热器,其特征在于,在绕第一折弯轴线和第二折弯轴线折弯之前,位于所述换热器的第一最外侧的第一平直段与位于所述换热器的第一最外侧的第二平直段在正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向的方向上对齐,且位于所述换热器的第二最外侧的第一平直段与位于所述换热器的第二最外侧的第二平直段在正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向的方向上错开。
  6. 根据权利要求1所述的换热器,其特征在于,相邻扁管之间的间距彼此相等或不相等。
  7. 一种换热器的制造方法,其特征在于,包括:
    提供第一集流管和第二集流管,所述第二集流管的长度小于所述第一集流管的长度;
    将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
    将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;
    将所述第一平直段与所述第一集流管相连,将所述第二平直段与所述第二集流管相连;
    将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;
    将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧,所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
  8. 根据权利要求7所述的换热器的制造方法,其特征在于,还包括在绕第一折弯轴线和第二折弯轴线折弯之前使至少一部分扁管的所述第一平直段和所述第二平直段在所述扁管的长度方向上错开。
  9. 一种换热器,其特征在于,包括:
    第一集流管和至少两个第二集流管,所述至少两个第二集流管沿其轴向彼此间隔开;
    扁管,所述扁管沿其长度方向分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段,所述扁管的第一平直段与所述第一集流管相连,所述扁管中的至少一部分的第二平直段与所述至少两个第二集流管相连;
    翅片,所述翅片设在相邻的第一平直段之间以及相邻的第二平直段之间,
    其中所述扁管绕第一折弯轴线在所述扭转段处折弯以便形成第一折弯部,所述第一折弯轴线平行于所述第一集流管和第二集流管的轴向,
    其中所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
  10. 根据权利要求9所述的换热器,其特征在于,所述扁管中的一部分的第二平直段与所述至少两个第二集流管相连,所述扁管中与相邻第二集流管之间的间隔对应的其余部分为盲管。
  11. 根据权利要求9所述的换热器,其特征在于,所述盲管的第一平直段之间未设置所述翅片和/或所述盲管的第二平直段之间未设置所述翅片。
  12. 根据权利要求9所述的换热器,其特征在于,所述第一集流管为多个,且所述多个第一集流管沿其轴向彼此间隔开。
  13. 根据权利要求12所述的换热器,其特征在于,所述换热器为多流程换热器或单流程换热器。
  14. 一种换热器的制造方法,其特征在于,包括:
    提供第一集流管和至少两个第二集流管,所述至少两个第二集流管沿其轴向方向彼此间隔开;
    将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
    将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;
    将所述扁管的第一平直段与所述第一集流管相连,将所述扁管中的至少一部分的第二平直段与所述至少两个第二集流管相连;
    将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;
    将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向、平行于所述第一平直段和第二平直段的长度方向。
  15. 根据权利要求14所述的换热器的制造方法,其特征在于,所述扁管中的一部分的第二平直段与所述至少两个第二集流管相连,所述扁管中与相邻第二集流管之间的间隔对应的其余部分为盲管。
  16. 根据权利要求14所述的换热器的制造方法,其特征在于,在所述盲管的第一平直段之间不设置所述翅片和/或在所述盲管的第二平直段之间不设置所述翅片。
  17. 根据权利要求14所述的换热器的制造方法,其特征在于,提供多个第一集流管,所述多个第一集流管沿其轴向彼此间隔开。
  18. 一种换热器,其特征在于,包括:
    至少两个第一集流管,所述至少两个第一集流管沿其轴向彼此间隔开;
    第二集流管;
    扁管,所述扁管沿其长度方向分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段,所述扁管的第二平直段与所述第二集流管相连,所述扁管中的至少一部分的第一平直段与所述至少两个第一集流管相连;
    翅片,所述翅片设在相邻的第一平直段之间以及相邻的第二平直段之间,
    其中所述扁管绕第一折弯轴线在所述扭转段处折弯以便形成第一折弯部,所述第一折弯轴线平行于所述第一集流管和第二集流管的轴向,
    其中所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所 述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向且平行于所述第一平直段和第二平直段的长度方向。
  19. 根据权利要求18所述的换热器,其特征在于,所述扁管中的一部分的第一平直段与所述至少两个第一集流管相连,所述扁管中与相邻第一集流管之间的间隔对应的其余部分为盲管。
  20. 根据权利要求18所述的换热器,其特征在于,所述盲管的第一平直段之间未设置所述翅片和/或所述盲管的第二平直段之间未设置所述翅片。
  21. 一种换热器的制造方法,其特征在于,包括:
    提供至少两个第一集流管,所述至少两个第一集流管沿其轴向方向彼此间隔开;
    提供第二集流管;
    将扁管绕平行于其长度方向的扭转轴线扭转以将所述扁管分为第一平直段、第二平直段以及连接在所述第一平直段和第二平直段之间的扭转段;
    将所述扁管绕平行于所述第一平直段和第二平直段的厚度方向的第一折弯轴线在所述扭转段折弯以形成第一折弯部;
    将所述扁管的第二平直段与所述第二集流管相连,将所述扁管中的至少一部分的第一平直段与所述至少两个第一集流管相连;
    将翅片设在相邻的第一平直段之间以及相邻的第二平直段之间;
    将所述第一集流管和所述第二集流管绕至少一个第二折弯轴线折弯以便形成至少一个第二折弯部,所述第一集流管位于所述第二折弯部的折弯外侧且所述第二集流管位于所述第二折弯部的折弯内侧,所述第二折弯轴线正交于所述第一集流管和第二集流管的轴向、平行于所述第一平直段和第二平直段的长度方向。
  22. 根据权利要求21所述的换热器的制造方法,其特征在于,所述扁管中的一部分的第一平直段与所述至少两个第一集流管相连,所述扁管中与相邻第一集流管之间的间隔对应的其余部分为盲管。
  23. 根据权利要求21所述的换热器的制造方法,其特征在于,在所述盲管的第一平直段之间不设置所述翅片和/或在所述盲管的第二平直段之间不设置所述翅片。
PCT/CN2016/108738 2015-12-30 2016-12-06 双排折弯式换热器及其制造方法 WO2017114107A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690001501.4U CN213120197U (zh) 2015-12-30 2016-12-06 双排折弯式换热器
EP16880897.0A EP3399269B1 (en) 2015-12-30 2016-12-06 Double-row bent type heat exchanger and manufacturing method therefor
US16/067,227 US11085701B2 (en) 2015-12-30 2016-12-06 Double-row bent heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511027379.6A CN105651081B (zh) 2015-12-30 2015-12-30 双排折弯式换热器及其制造方法
CN201511027379.6 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017114107A1 true WO2017114107A1 (zh) 2017-07-06

Family

ID=56490153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108738 WO2017114107A1 (zh) 2015-12-30 2016-12-06 双排折弯式换热器及其制造方法

Country Status (4)

Country Link
US (1) US11085701B2 (zh)
EP (1) EP3399269B1 (zh)
CN (2) CN105651081B (zh)
WO (1) WO2017114107A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491602B1 (ko) * 2015-10-23 2023-01-25 삼성전자주식회사 공기조화기
CN105651081B (zh) * 2015-12-30 2018-07-13 杭州三花微通道换热器有限公司 双排折弯式换热器及其制造方法
CN109269341B (zh) * 2017-07-17 2021-09-28 浙江盾安热工科技有限公司 换热器
CN207113298U (zh) * 2017-07-27 2018-03-16 杭州三花微通道换热器有限公司 换热器和换热装置
CN109813164B (zh) * 2017-11-22 2021-09-14 浙江盾安机械有限公司 一种双排折弯换热器
WO2021014522A1 (ja) * 2019-07-22 2021-01-28 三菱電機株式会社 熱交換器、その製造方法および空気調和装置
CN110530177A (zh) * 2019-09-18 2019-12-03 清华大学 一种三介质换热器
CN113915801B (zh) * 2020-07-10 2023-01-24 杭州三花微通道换热器有限公司 换热组件和具有该换热组件的换热系统
MX2023004490A (es) * 2020-11-03 2023-05-10 Danfoss As Intercambiador de calor y sistema de aire acondicionado con el mismo.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121728A (ja) * 2007-11-13 2009-06-04 Denso Corp 多面体構造の熱交換器及びその製造方法
CN203083203U (zh) * 2013-02-05 2013-07-24 珠海格力电器股份有限公司 空调器及其微通道换热器
CN203132214U (zh) * 2013-03-20 2013-08-14 杭州三花微通道换热器有限公司 折弯式换热器
CN204085299U (zh) * 2013-09-11 2015-01-07 大金工业株式会社 热交换器及空调机
WO2015025365A1 (ja) * 2013-08-20 2015-02-26 三菱電機株式会社 熱交換器、空調機及び冷凍サイクル装置
WO2015148657A1 (en) * 2014-03-28 2015-10-01 Modine Manufacturing Company Heat exchanger and method of making the same
CN105651081A (zh) * 2015-12-30 2016-06-08 杭州三花微通道换热器有限公司 双排折弯式换热器及其制造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514416B2 (ja) * 1989-01-13 1996-07-10 東洋ラジエーター株式会社 熱交換器コアの製造方法
JP3305460B2 (ja) * 1993-11-24 2002-07-22 昭和電工株式会社 熱交換器
US5826649A (en) * 1997-01-24 1998-10-27 Modine Manufacturing Co. Evaporator, condenser for a heat pump
JPH10225251A (ja) 1997-02-13 1998-08-25 Keisuke Shimizu 伸縮釣竿
JP2000154992A (ja) * 1998-11-18 2000-06-06 Daikin Ind Ltd 空気熱交換器
JP2002243381A (ja) * 2001-02-16 2002-08-28 Daikin Ind Ltd 空気熱交換器およびその製造方法
WO2004025207A1 (ja) * 2002-09-10 2004-03-25 Gac Corporation 熱交換器およびその製造方法
US20070169922A1 (en) * 2006-01-24 2007-07-26 Pautler Donald R Microchannel, flat tube heat exchanger with bent tube configuration
US7699095B2 (en) * 2006-03-29 2010-04-20 Delphi Technologies, Inc. Bendable core unit
CN200965374Y (zh) * 2006-10-20 2007-10-24 广东科龙电器股份有限公司 一种多排冷凝器
US7900689B2 (en) * 2007-02-23 2011-03-08 Delphi Technologies, Inc. Bend relief spacer
US20110094257A1 (en) * 2008-03-20 2011-04-28 Carrier Corporation Micro-channel heat exchanger suitable for bending
JP5393388B2 (ja) * 2008-10-24 2014-01-22 日軽熱交株式会社 熱交換器及びその製造方法
CN101782337A (zh) * 2009-01-20 2010-07-21 三花丹佛斯(杭州)微通道换热器有限公司 微通道换热器
JP2010169289A (ja) * 2009-01-21 2010-08-05 Nikkei Nekko Kk 屈曲状熱交換器及びその製造方法
CN201680652U (zh) * 2009-12-18 2010-12-22 海信科龙电器股份有限公司 一种双排管路空调换热器
CN201731685U (zh) * 2010-07-22 2011-02-02 三花丹佛斯(杭州)微通道换热器有限公司 一种换热器
CN103196259B (zh) * 2013-03-20 2016-04-06 杭州三花微通道换热器有限公司 折弯式换热器
WO2014146505A1 (zh) * 2013-03-21 2014-09-25 杭州三花微通道换热器有限公司 折弯式换热器及其制造方法
CN104110977B (zh) * 2013-04-16 2018-02-27 浙江盾安热工科技有限公司 一种换热器
CN104344745A (zh) * 2013-08-02 2015-02-11 杭州三花微通道换热器有限公司 换热器及其加工方法
CN104976820B (zh) * 2014-04-08 2018-08-31 杭州三花研究院有限公司 换热器组件及其应用
CN103925745B (zh) 2014-05-06 2016-04-06 杭州三花微通道换热器有限公司 折弯式换热器
CN204141899U (zh) * 2014-06-17 2015-02-04 杭州三花微通道换热器有限公司 用于热泵热水器的换热器和热泵热水器
CN204188033U (zh) * 2014-09-29 2015-03-04 杭州三花微通道换热器有限公司 一种换热器
US20180299205A1 (en) * 2015-10-12 2018-10-18 Charbel Rahhal Heat exchanger for residential hvac applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121728A (ja) * 2007-11-13 2009-06-04 Denso Corp 多面体構造の熱交換器及びその製造方法
CN203083203U (zh) * 2013-02-05 2013-07-24 珠海格力电器股份有限公司 空调器及其微通道换热器
CN203132214U (zh) * 2013-03-20 2013-08-14 杭州三花微通道换热器有限公司 折弯式换热器
WO2015025365A1 (ja) * 2013-08-20 2015-02-26 三菱電機株式会社 熱交換器、空調機及び冷凍サイクル装置
CN204085299U (zh) * 2013-09-11 2015-01-07 大金工业株式会社 热交换器及空调机
WO2015148657A1 (en) * 2014-03-28 2015-10-01 Modine Manufacturing Company Heat exchanger and method of making the same
CN105651081A (zh) * 2015-12-30 2016-06-08 杭州三花微通道换热器有限公司 双排折弯式换热器及其制造方法

Also Published As

Publication number Publication date
CN105651081B (zh) 2018-07-13
US20190011192A1 (en) 2019-01-10
CN213120197U (zh) 2021-05-04
EP3399269A1 (en) 2018-11-07
EP3399269B1 (en) 2021-04-07
US11085701B2 (en) 2021-08-10
EP3399269A4 (en) 2019-09-04
CN105651081A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2017114107A1 (zh) 双排折弯式换热器及其制造方法
CN101846465B (zh) 换热器
WO2012117440A1 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
US20130299132A1 (en) Heat exchanger assembly and method of manufacturing therefor
WO2013084508A1 (ja) フィンチューブ型熱交換器
JP2020094791A5 (zh)
JP2020094792A5 (zh)
WO2020259671A1 (zh) 换热器和多制冷系统空调机组
JP2007283406A (ja) 熱交換器用のフラットチューブの曲げ加工法及び曲げフラットチューブ
WO2014146505A1 (zh) 折弯式换热器及其制造方法
KR20150030201A (ko) 핀·앤드·튜브형 열 교환기용 전열관 및 그것을 사용한 핀·앤드·튜브형 열 교환기
JP2013113525A (ja) 二重管
WO2023208129A1 (zh) 微通道换热器组及具有其的空调系统
JP2009145010A (ja) 空気調和機用フィンレス熱交換器
WO2019019710A1 (zh) 换热器和换热装置
JP5548957B2 (ja) 熱交換器およびそれを用いたヒートポンプ給湯機
CN105115345A (zh) 集流管、具有该管的微通道结构、热水换热器及热水器
CN209960732U (zh) 换热器和空调系统
WO2021057916A1 (zh) 一种换热管、换热器及使用该换热器的空调系统
CN210051023U (zh) 换热器和空调器
JP2015535591A (ja) 熱交換手段のチューブ要素
JP2015014397A (ja) 熱交換器
CN210688819U (zh) 换热器和具有其的空调器
CN201697494U (zh) 换热器
CN108007018B (zh) 蛇形管微通道换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880897

Country of ref document: EP

Effective date: 20180730