WO2017114000A1 - Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件 - Google Patents

Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件 Download PDF

Info

Publication number
WO2017114000A1
WO2017114000A1 PCT/CN2016/105458 CN2016105458W WO2017114000A1 WO 2017114000 A1 WO2017114000 A1 WO 2017114000A1 CN 2016105458 W CN2016105458 W CN 2016105458W WO 2017114000 A1 WO2017114000 A1 WO 2017114000A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated substrate
conductive layer
film
substrate
display device
Prior art date
Application number
PCT/CN2016/105458
Other languages
English (en)
French (fr)
Inventor
王熙元
彭裕清
訾玉宝
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/537,809 priority Critical patent/US20180090721A1/en
Priority to EP16874087.6A priority patent/EP3399551B1/en
Publication of WO2017114000A1 publication Critical patent/WO2017114000A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of OLED display production, and in particular to a coated substrate for an OLED, a method for preparing the same for an OLED display device, and an OLED display device.
  • a method of forming various functional elements (such as layered functional elements or functional layers) on a substrate is employed.
  • a common substrate is glass or the like.
  • an organic electroluminescent thin film and a cathode metal thin film are evaporated on a glass substrate to form an OLED display device.
  • the substrate size is large, for example, when preparing an OLED television display (for example, G6: 1.5 m ⁇ 1.85 m; G 8.5: 2.2 m ⁇ 2.5 m), in order to overcome the bending of the substrate itself by gravity, it is required on the production line.
  • Adopt a transport system for example, G6: 1.5 m ⁇ 1.85 m; G 8.5: 2.2 m ⁇ 2.5 m
  • a non-electrostatic adsorption pad + base is generally selected as the transfer system.
  • the glass substrate may be adhered to the surface of the base by an adhesive pad to transport and transport the glass substrate.
  • a pin separation operation is generally required to separate the substrate from the base by separating the substrate from the base by a thimble at some point. Since the movement of the base during the evaporation process generates charge accumulation on the back surface of the substrate, when the thimble is separated, the region where the substrate is in contact with the thimble generates a tip discharge, and at the same time, the region is also subjected to the squeezing stress of the ejector pin, and the combination of the two causes Damage of the thin film transistor on the substrate element side. Eventually, when the resulting display panel is lit, uneven brightness unevenness is referred to as thimble position brightness unevenness.
  • the thimble position can be set outside of the active display area of the display panel.
  • the unevenness of the brightness is removed by moving the ejector pin out of the effective display area of the panel, the production line cannot be matched to the full-size product due to the fixed position of the thimble (only a few sizes are available).
  • the electrostatic damage in the area where the contact point is located cannot be eliminated. If the area is right If the area is to be fanned out, it may cause defects; if it is outside the panel, the substrate area is wasted.
  • the present invention provides the following contents:
  • a coated substrate of an OLED display device wherein the coated substrate comprises a substrate and a conductive layer on a bottom surface thereof.
  • the conductive layer is a metal oxide conductive film, an organic conductive film, carbon nanotubes, graphene, a metal grid, a metal nanowire, and One or more of ultra-thin metal films.
  • [9] A method of producing an OLED display device, wherein the coated substrate according to any one of [1] to [8] is used as a substrate of the OLED display device, so that during preparation of the OLED display device One side of the coated substrate having the conductive layer is in contact with the device mechanism, and the functional element of the OLED display device is formed on the side without the conductive layer.
  • the coated substrate is lifted on the side of the conductive layer by a thimble method to separate the coated substrate from the base.
  • a display device comprising the coated substrate according to any one of [1] to [8].
  • the coated substrate is formed by preparing a conductive layer on the face of the substrate that will contact the thimble (ie, the bottom surface) prior to the thimble separation process.
  • the conductive layer can conduct the static electricity in time, and can also reduce the local pressing stress as the stress buffer layer, can effectively eliminate the uneven brightness caused by the thimble, and improve the display quality and the yield of the product.
  • the production line can correspond to a full-size product.
  • the term "bottom surface” refers to the side of the substrate that does not form a functional component.
  • a substrate of an OLED its function is to carry various functional elements (such as light-emitting elements), and thus each functional element is formed on the same side of the substrate.
  • the side on which the substrate does not carry the functional element is referred to herein as the bottom surface, so as to facilitate the formation of the conductive substrate on the surface of the functional element with the coated substrate of the present invention.
  • the unrelated substrates are distinguished.
  • the conductive layer is transparent. Especially when the substrate is the substrate of the bottom emitting device, light is transmitted from the substrate, so the conductive layer must be transparent. Of course, if the substrate is a substrate for a top emitting device, it may be transparent or opaque.
  • the substrate may be glass.
  • Glass substrates are the most widely used substrates in the art and are particularly suitable for use in a pedestal-pin transfer system.
  • the conductive layer is a metal oxide conductive film, an organic conductive film, carbon nanotubes, graphene, a metal grid, a metal nanowire, an ultrathin metal film, or the like.
  • the conductive layer is electrically conductive, it can eliminate the tip discharge.
  • the above-mentioned several conductive layers can meet the requirements of conduction and light reduction at the same time, and are structures studied and used in the field, and the preparation process is more mature, and the production line can be improved without excessively increasing the cost. In the case of a technical effect.
  • the metal oxide conductive film may be an ITO, IZO, IGZO or ZnO film. These films are transparent conductive oxide (TCO), which combines electrical conductivity and transparency, and mechanical properties are also suitable as mechanical buffer layers. Among the organic conductive films, PEDOT is preferred.
  • the conductive layer has a thickness of 0.1 nm to 10 ⁇ m.
  • the conductive ability of the conductive layer is insufficient.
  • the material is consumed too much, the preparation time is long, and it is disadvantageous in terms of cost.
  • the conductive layer is a transparent layer, if the thickness is higher than 10 ⁇ m, the transparency of the conductive layer is insufficient.
  • a more preferred range is from 10 nanometers to 1 micrometer. When it is below the range of 10 nm, the ability to relieve extrusion is poor.
  • a particularly preferred coated substrate of the present invention is glass as a substrate, ITO (indium tin oxide), IZO (indium zinc oxide), IGZO (indium gallium zinc oxide), ZnO (zinc oxide), PEDOT (polyethylene dioxythiophene). ), metal grids, carbon nanotubes (CNTs), graphene, metal nanowires or ultra-thin metal films are conductive layers, and the conductive layer has a thickness of 10 nm to 1 ⁇ m.
  • a second aspect of the invention provides a method of making an OLED display device, the method comprising using a coated substrate of the invention.
  • one side of the conductive layer is brought into contact with the equipment mechanism (or the transport system) during preparation to eliminate the effects of static electricity and squeezing.
  • a functional element or the like is formed on one side without the conductive layer.
  • the conductive layer of the coated substrate may be located on the light exit side of the OLED device or on the side opposite to the light exit side. When located on the light exit side, the conductive layer must be transparent, and when located When the light-emitting side is opposite to the side, the conductive layer may be transparent or opaque.
  • the coated substrate of the present invention can be used for a thimble separating mechanism. It can also be used for contact with other equipment such as suction cups, rollers, etc., and can also release static electricity and buffer local compressive stress.
  • the preparation method of the present invention is particularly advantageous for the preparation process including the thimble process.
  • the conductive layer of the coated substrate is downwardly facing the base transport system of the transport substrate, and is disposed on the adhesive pad of the base.
  • the thimble is used to jack up the conductive layer side.
  • the coated substrate separates the coated substrate from the base.
  • the OLED display device is prepared by forming a portion of the functional elements of the OLED display device on one side of the substrate; providing a conductive layer on a side of the substrate on which the functional element is not formed, to form a coated substrate of the present invention; a conductive layer side of the coated substrate is disposed on a base transfer system; and a remaining portion of the functional elements of the OLED display device is formed on a functional element side of the coated substrate (including An electroluminescent film and a cathode metal film; the film substrate is lifted on the side of the conductive layer by a thimble method, and the film substrate is separated from the base.
  • a third aspect of the invention provides a display device comprising the coated substrate of the invention, which may comprise a coated substrate on one or both sides thereof.
  • the coated substrate is suitable for the production of a large-sized display, but is not limited thereto.
  • the coated substrate of the present invention can also be used.
  • the coated substrate relates to a simple structural process, and the above technical problem is solved by adding only one conductive layer without an additional process.
  • the conductive layer is not limited to being formed by sputtering, and may be produced by thermal evaporation, electron beam evaporation, inkjet, roll-to-roll transfer, spin coating, or the like.
  • the method of the present invention can be used in a backplane process, including an alpha-Si backplane, an oxide semiconductor backplane, an LTPS (low temperature polysilicon) backplane, and the like.
  • a backplane process including an alpha-Si backplane, an oxide semiconductor backplane, an LTPS (low temperature polysilicon) backplane, and the like.
  • Figure 1 is a cross-sectional view showing an embodiment of a coated substrate of the present invention.
  • Figure 2 is a cross-sectional view showing an embodiment of a display device of the present invention.
  • Figure 3 is a schematic illustration of the thimble process.
  • Figure 4 shows a schematic representation of the mutual position of the base, thimble and display device.
  • FIG. 5 shows that a display panel made using a coated substrate using an IZO conductive layer has no unevenness in brightness after lighting, according to an embodiment of the present invention.
  • Fig. 6 is a view showing luminance unevenness of a display panel prepared by using a thimble process in the prior art after lighting.
  • the inventors prepared a display panel using the coated substrate of the present invention, and confirmed that the unevenness in brightness generated by the thimble can be effectively eliminated. This result has been confirmed by experiments.
  • Figure 1 is a cross-sectional view showing an embodiment of a coated substrate of the present invention. It consists of a conductive layer 1 and a substrate 2. In the case shown in Figure 1, the functional elements will all be formed above the coated substrate. Further, although the conductive layer 1 is generally in the form of a film, it may also be in the form of, for example, a metal grid.
  • the display panel shown in FIG. 2 was prepared in the following manner.
  • a CVD deposition package film such as SiNx or SiNx/SiCNx/SiNx;
  • the glass cover plate is coated with filler glue (the edge of the panel is coated with Dam package glue), the glass cover plate and the glass are subjected to VAS (vacuum box), and heat curing;
  • the thimble separation process is shown in Figure 3.
  • the thimble is lifted up to separate the glass substrate from the base. Note that the conductive film is not shown in FIG.
  • Figure 4 shows a schematic representation of the mutual position of the base, thimble and display device. As can be seen in Figure 4, the thimble is located in the active display area of the display device.
  • the other steps of preparing the display device are substantially the same as in the prior art preparation method, except that in the step (10), the glass substrate is inverted, the conductive film is sputter deposited, and then the glass substrate is flipped back. Thereafter, the high vacuum evaporation of the organic electroluminescent film of step (11), the high vacuum evaporation of the cathode metal, and subsequent thimble separation are performed.
  • the coated substrate of the present invention does not exist as a whole at the outset.
  • the coated substrate of the present invention can also be provided from the beginning, this may cause the following problems.
  • the transfer system of the base + thimble is not needed in the early stage of the preparation of the display device, but the transfer device such as electrostatic adsorption or robot is used, the uneven brightness of the thimble position is not generated, so there is no It is necessary to form a conductive layer.
  • the conductive layer is formed too early, it may be subjected to chemical or mechanical damage such as scratching when subjected to, for example, pickling or other transport steps.
  • Damage to the conductive layer may on the one hand cause deterioration or disappearance of the conductive function, and on the other hand, when it is used as an outer panel of the display device, scratches and the like are unacceptable. Therefore, if the coated substrate as a whole is provided from the beginning of the production process, it is inevitable that the conductive layer material has excellent chemical stability and mechanical properties (such as hardness, etc.). This limits the choice of conductive layer materials and has the potential to increase cost.
  • the coated substrate of the present invention is preferably formed before the substrate is placed in the base handling system.
  • a transfer separation system of a base + a thimble In the process steps of high vacuum vapor deposition of an organic electroluminescent film and high vacuum vapor deposition of a cathode metal, it is necessary to use a transfer separation system of a base + a thimble.
  • the above production process is an example.
  • the substrate on which the multilayer functional element has been formed becomes the coated substrate of the present invention in the step (10).
  • the film-coated substrate of the present invention is formed in the step (10)
  • it is placed in a base transfer system, followed by a step of vacuum-depositing the organic electroluminescent film and vacuum-depositing the cathode metal. Thereafter, the film substrate is separated from the base by a thimble separation operation.
  • the conductive layer may be a metal oxide conductive film, an organic conductive film, a carbon nanotube, a graphene, a metal grid, a metal nanowire, an ultrathin metal film, etc. More mature conductive layer structures, and their mechanical properties can also meet the requirements of reducing extrusion. Therefore, by using the above-mentioned conductive layer, it is possible to achieve a technical effect without excessive improvement of the production line and without increasing the cost. This is very advantageous in actual industrial production.
  • the transparent metal oxide conductive film is suitable for producing a transparent coated substrate, and its mechanical properties are also suitable as a mechanical buffer layer.
  • Preferred conductive films are ITO, IZO, IGZO or ZnO.
  • An organic conductive film is also suitable for the case of the present invention, wherein PEDOT is preferred.
  • the thickness of the conductive layer needs to be more than 0.1 nm to ensure sufficient conductivity.
  • the thickness of the conductive layer is more preferably 10 nm or more. The greater the thickness, the better the ability to relieve extrusion.
  • the thickness of the conductive layer need not be greater than 10 microns. Especially for transparent conductive layers, thicknesses greater than 10 microns may have an adverse effect on their transparency. A thickness below 1 micron is more advantageous.
  • the white screen lighting pattern of the formed display panel is relatively uniform.
  • 6 shows a white screen lighting pattern of the same type of display panel produced by the prior art in the same flow but without forming the film substrate of the present invention, and the RGBW screen is illuminated with a round black spot (ie, a thimble).
  • the position brightness is uneven, and the low gray level is relatively high gray scale, which seriously affects the quality of the product. It can be seen that the present invention solves the problems existing in the prior art and improves the display quality of the product.
  • a particularly preferred coated substrate is glass as a substrate, and ITO, IZO, IGZO, ZnO,
  • the PEDOT, the metal grid, the carbon nanotubes, the graphene, the metal nanowire or the ultra-thin metal film are conductive layers, and the conductive layer has a thickness of 10 nm to 1 ⁇ m.
  • Fig. 5 is a white screen lighting of the coated substrate of the present invention. Compared with Fig. 6 of the prior art, it solves the problem of uneven brightness of the thimble position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示器件的覆膜基板,其中覆膜基板包括基板(2)和在其底面上的导电层(1)。其可以消除在OLED显示器件的生产期间顶针过程的放电和挤压造成的亮度不均。还公开了利用该覆膜基板制造OLED显示器件的方法以及显示器件。

Description

OLED用覆膜基板、用其制备OLED显示器件的方法和OLED显示器件 技术领域
本发明涉及OLED显示器生产领域,具体地,涉及OLED用覆膜基板、用其制备OLED显示器件的方法、以及OLED显示器件。
背景技术
在OLED显示器件如显示面板的生产中,一般地,采用在基板上形成各功能元件(如层状功能元件或称为功能层)的方法。常见的基板是玻璃等。例如,在玻璃基板上,蒸镀有机电致发光薄膜和阴极金属薄膜,从而形成OLED显示器件。当基板尺寸较大时,例如在制备OLED电视显示器时(例如,G6:1.5m×1.85m;G8.5:2.2m×2.5m),为了克服基板自身受重力作用产生弯曲,在生产线上需要采用搬送系统。
静电吸附式搬送系统由于产生的静电电场强度较大对薄膜晶体管有损伤,因此一般选取非静电吸附的粘附衬垫(pad)+底座(base)作为搬送系统。具体地,例如,可以利用粘附衬垫将玻璃基板粘附在底座表面,以搬送、运输玻璃基板。
然而,在蒸镀制程结束之后,一般需要顶针(pin)分离动作将基板与底座分离开来,即通过在某些点用顶针将基板从底座上顶起分离。由于蒸镀过程中底座移动会在基板背面产生电荷积累,因此顶针分离时,基板与顶针接触的区域会产生尖端放电,同时,该区域还受到顶针向上的挤压应力,两者共同作用会造成基板元件侧的薄膜晶体管的损伤。最终,在点亮制得的显示面板时,会产生显示器亮度不均。在本文中,将这种亮度不均称为顶针位置亮度不均。
为了解决顶针分离方式造成显示器亮度不均的问题,已经发展了一些方法。例如,可以将顶针位置设置在显示面板的有效显示区域(active area)之外。然而,如果采用将顶针移出面板有效显示区域的方式消除亮度不均,会因顶针点位固定而使生产线无法对应全尺寸产品(只能对应少数几种尺寸的产品)。而且接触点位所处区域的静电击伤无法消除。如果该区域对 应扇出区,则可能造成不良;若处于面板之外,又浪费了基板面积。
因此,在OLED显示器件的生产中,仍需要克服大尺寸基板制备过程中的尖端放电和应力集中导致的成品亮度不均问题的手段。
发明内容
为了解决上述问题,本发明提供如下内容:
[1]一种OLED显示器件的覆膜基板,其中所述覆膜基板包括基板和在其底面上的导电层。
[2]根据[1]所述的覆膜基板,其中,所述导电层是透明的。
[3]根据[1]或[2]所述的覆膜基板,其中,所述导电层为金属氧化物导电薄膜、有机导电薄膜、碳纳米管、石墨烯、金属栅网、金属纳米线和超薄金属薄膜中的一种或多种。
[4]根据[1]至[3]中任一项所述的覆膜基板,其中,所述导电层为ITO、IZO、IGZO、ZnO或PEDOT。
[5]根据[1]至[4]中任一项所述的覆膜基板,其中,所述导电层的厚度为0.1纳米至10微米。
[6]根据[1]至[5]中任一项所述的覆膜基板,其中,所述导电层的厚度为10纳米至1微米。
[7]根据[1]至[6]中任一项所述的覆膜基板,其中,所述覆膜基板与所述底面相反的一侧为功能元件侧。
[8]根据[1]至[7]中任一项所述的覆膜基板,其中,所述基板是玻璃。
[9]一种制备OLED显示器件的方法,其中使用[1]至[8]中任一项所述的覆膜基板作为所述OLED显示器件的基板,使得在所述OLED显示器件制备过程中所述覆膜基板的有导电层的一面与设备机构接触,在无导电层的一面上形成所述OLED显示器件的功能元件。
[10]根据[9]所述的方法,其中所述覆膜基板的导电层位于所述OLED器件的出光侧或与出光侧相反的一侧。
[11]根据[9]或[10]所述的方法,其中所述设备机构是顶针、吸盘或滚轮。
[12]根据[9]至[11]中任一项所述的方法,其中使用底座搬送系统搬送 所述覆膜基板,所述覆膜基板导电层向下,安置于所述底座搬送系统上的粘附衬垫上;搬送并形成所述各功能元件后,用顶针方式在导电层侧顶起所述覆膜基板,使所述覆膜基板与所述底座分离。
[13]根据[9]至[12]中任一项所述的方法,包括以下步骤:
在基板的一侧上形成所述OLED显示器件的所述功能元件中的一部分;
在所述基板的未形成功能元件的一侧上设置导电层,以形成[1]所述的覆膜基板;
将所述覆膜基板安置在所述底座搬送系统的粘附衬垫上,其中所述导电层与所述粘附衬垫接触;
在所述覆膜基板的功能元件侧形成所述OLED显示器件的所述功能元件中的其余部分;
用顶针方式在导电层侧顶起所述覆膜基板,使所述覆膜基板与所述底座分离。
[14]根据[13]所述的方法,其中,所述功能元件中的其余部分包括有机电致发光薄膜和阴极金属薄膜。
[15]一种包含根据[1]至[8]中任一项所述的覆膜基板的显示器件。
[16]根据[15]所述的显示器件,其中,所述覆膜基板位于显示器件的一面或两面。
在本发明的一个方面中,通过在顶针分离过程前提前在基板的将与顶针接触的面(即底面)上制备一层导电层而形成覆膜基板。这样,在顶针分离时,该导电层既可以及时将静电传导走,又可以作为应力缓冲层减小局部挤压应力,可以有效消除顶针造成的亮度不均,提高产品的显示品质和良品率。并且,由于顶针位置无需专门设置,因此生产线可以对应全尺寸产品。
在本文中,术语“底面”指的是基板的不形成功能元件的那一面。作为OLED的基板,其作用是承载各功能元件(如发光元件),因此各功能元件都形成在基板的同一侧。本文将基板不承载功能元件的那一面称为底面,以便于将本发明的覆膜基板与在功能元件面上形成有导电层的与本发 明无关的基板区分开来。
优选地,所述导电层是透明的。尤其当基板为底发射器件的基板时,光要从基板透出,因此导电层必须是透明的。当然,如果基板为顶发射器件的基板,其可以是透明的,也可以是不透明的。
优选地,所述基板可以为玻璃。玻璃基板是本领域利用最为广泛的基板,并且其特别适用于底座-顶针搬送系统。
优选地,所述导电层为金属氧化物导电薄膜、有机导电薄膜、碳纳米管、石墨烯、金属栅网、金属纳米线、超薄金属薄膜等。一般讲来,只要该导电层导电即可起到消除尖端放电作用。上述几种导电层可以同时满足导电和减轻挤压的要求,并且是本领域中研究和使用得较多的结构,制备工艺更加成熟,可以在不对生产线进行过多改进、不更多增加成本的情况下达成技术效果。
更优选地,所述金属氧化物导电薄膜可以为ITO、IZO、IGZO或ZnO薄膜。这些薄膜是透明导电氧化物(TCO),兼具导电性和透明性,并且机械性能也适于作为机械缓冲层。在有机导电薄膜中,PEDOT是优选的。
优选地,所述导电层的厚度为0.1纳米至10微米。当低于0.1纳米时,导电层的导电能力不足。当高于10微米时,消耗材料过多,制备时间长,在成本方面不利。并且当导电层为透明层时,若厚度高于10微米时,导电层的透明度不足。更优选范围为10纳米至1微米。当低于范围10纳米时,缓解挤压的能力较差。
本发明特别优选的覆膜基板是以玻璃为基板,以ITO(氧化铟锡)、IZO(氧化铟锌)、IGZO(氧化铟镓锌)、ZnO(氧化锌)、PEDOT(聚乙烯二氧噻吩)、金属栅网(metal grids)、碳纳米管(CNT)、石墨烯、金属纳米线或超薄金属薄膜为导电层,导电层的厚度为10纳米至1微米。
本发明的第二方面提供了制备OLED显示器件的方法,所述方法包括使用本发明的覆膜基板。
具体地,在制备中使有导电层的一面与设备机构(或搬送系统)接触,以消除静电和挤压的影响。在无导电层的一面形成功能元件等。
覆膜基板的导电层可以位于所述OLED器件的出光侧,也可以位于与出光侧相反的一侧。当位于出光侧时,导电层必须是透明的,而当位于与 出光侧相反的一侧时,导电层可以是透明的,也可以是不透明的。
本发明的覆膜基板可用于顶针分离机构。其同样可用于吸盘、滚轮等其他设备机构接触,也可以起到释放静电和缓冲局部挤压应力的作用。本发明的制备方法特别有利于包括顶针过程的制备流程。
优选地,覆膜基板的导电层向下,面向搬送基板的底座搬送系统,安置于底座的粘附衬垫上,在搬送并形成各功能元件后,用顶针方式在导电层侧顶起所述覆膜基板,使覆膜基板与底座分离。
优选地,通过以下步骤制备OLED显示器件:在基板的一侧上形成所述OLED显示器件的功能元件中的一部分;在所述基板的未形成功能元件的一侧上设置导电层,以形成根据本发明的覆膜基板;将所述覆膜基板的导电层侧安置在底座搬送系统上;在所述覆膜基板的功能元件侧形成所述OLED显示器件的功能元件中的其余部分(包括有机电致发光薄膜和阴极金属薄膜);用顶针方式在导电层侧顶起所述覆膜基板,使所述覆膜基板与所述底座分离。
本发明的第三方面提供了包含本发明的覆膜基板的显示器件,所述显示器件可以在其一面或两面上包含覆膜基板。
该覆膜基板适用于大尺寸显示器的生产,但不限于此。在中小尺寸OLED显示器件如手机屏、笔记本电脑屏、监视器屏、平板电脑屏的制程中,也可以使用本发明的覆膜基板。
该覆膜基板涉及的结构制程简单,仅增加一层导电层而不需要额外工艺,便解决了前述技术问题。该导电层层不限于用溅射方式制作,也可以用热蒸发、电子束蒸发、喷墨、滚筒至滚筒转印、旋涂等方式制作。
本发明的方法可以用于背板制程中,包括α-Si背板、氧化物半导体背板、LTPS(低温多晶硅)背板等。
附图简述
图1是本发明的覆膜基板的一个实施方案的剖面图。
图2是显示本发明的一个显示器件的实施方案的剖面图。
图3是顶针过程的示意图。
图4显示了底座、顶针和显示器件的相互位置示意图。
图5示出了根据本发明的一个实施方案,使用IZO导电层的覆膜基板制得的显示面板在点亮后没有亮度不均现象。
图6示出了现有技术中使用顶针过程制备的显示面板在点亮后的亮度不均。
具体实施方案
发明人利用本发明的覆膜基板制备了显示面板,证实了可以有效消除顶针产生的亮度不均。该结果已经通过实验证实。
图1示出了本发明的覆膜基板的一个实施方案的剖面图。其由导电层1和基板2构成。在图1所示的情况下,功能元件都将形成在覆膜基板的上方。此外,虽然导电层1一般是薄膜形式的,但它也可以是例如金属栅网形式的。
具体地,通过以下方式制备如图2所示的显示面板。
(1)对裸玻璃进行初始清洁,溅射沉积栅极金属(Mo/Al/Mo或者Cu等金属),曝光,显影,刻蚀,剥离;
(2)CVD(化学气相沉积)沉积SiO2或SiNx膜作为栅极绝缘层;
(3)溅射沉积IGZO膜作为有源层(对于α-Si背板,用CVD沉积α-Si膜;对于LTPS背板,用CVD沉积α-Si膜后进行ELA工艺),曝光,显影,刻蚀,剥离;
(4)CVD沉积SiO2或SiNx膜作为绝缘层,曝光,显影,刻蚀,剥离,形成S/D CNT Hole(连接孔);
(5)溅射沉积S/D金属(Mo/Al),曝光,显影,刻蚀,剥离;
(6)CVD沉积SiO2或SiNx膜作为PVX(钝化层),曝光,显影,刻蚀,剥离,形成VIA Hole(过孔);
(7)涂布CF胶,烘焙,曝光,显影,形成RGB彩膜;
(8)涂布树脂胶,烘焙,曝光,显影,形成白色彩膜;
(9)溅射沉积ITO膜,曝光,显影,刻蚀,剥离,形成透明导电阳极;
(10)涂布PDL(像素定义层)胶,烘焙,曝光,玻璃翻转,玻璃背面用溅射沉积一定厚度的透明导电氧化物(TCO)膜(可选ITO、IZO、IGZO、 ZnO等),玻璃翻转,显影,加热固化,形成覆膜基板;将具有导电层的覆膜基板的导电层一侧通过粘附衬垫固定在底座搬送系统上;
(11)在底座搬送系统上进行高真空蒸镀有机电致发光膜,高真空蒸镀阴极金属(Al或Ag),随后顶针分离底座与玻璃;
(12)CVD沉积封装薄膜,如SiNx或SiNx/SiCNx/SiNx等;
(13)玻璃盖板涂布填料胶(面板边缘涂布Dam封装胶),玻璃盖板与玻璃进行VAS(真空对盒),加热固化;
(14)切割形成面板。
图2中的符号含义如下:(1)导电膜,(2)玻璃,(3)栅极金属膜,(4)栅极绝缘体(GI)膜,(5)有源层膜,(6)绝缘体膜,(7)S/D金属膜,(8)PVX膜,(9)CF胶,(10)树脂,(11)ITO膜,(12)PDL,(13)有机电致发光膜,(14)阴极金属膜,(15)TFE(薄膜封装),(16)填料。
顶针分离过程如图3所示。顶针向上顶起,将玻璃基板与底座分离。注意,图3中没有示出导电膜。
图4显示了底座、顶针和显示器件的相互位置示意图。由图4中可见,顶针位于显示器件的有效显示区中。
上述流程中,制备显示器件的其他步骤基本与现有制备方法中相同,不同之处在于在步骤(10)中,将玻璃基板翻转,溅射沉积导电膜,随后再将玻璃基板翻转回来。之后再进行步骤(11)的高真空蒸镀有机电致发光膜、高真空蒸镀阴极金属和随后的顶针分离。
应当注意,在以上示例的显示器件的制备过程中,本发明的覆膜基板并不是一开始便作为整体存在的。虽然也可以一开始便提供本发明的覆膜基板,但是这可能导致如下问题。首先,由于在显示器件制备的前期过程中尚无需用到底座+顶针的搬送系统,而是多使用静电吸附或机械手等搬送设备,也就不会产生顶针位置亮度不均的问题,因此尚无必要形成导电层。其次,如过早形成导电层,当其经历例如酸洗或其他搬送步骤时,可能遭到化学或机械的损坏,如划伤等。导电层的损坏一方面可能导致导电功能的劣化或消失,另一方面,当其作为显示器件的外侧面板时,划伤等缺陷是不能接受的。因此,如果从生产过程一开始便提供作为整体的覆膜基板,势必要求导电层材料具有极佳的化学稳定性和机械性能(如硬度等), 这限制导电层材料的选择,并有可能提高成本。
因此,本发明的覆膜基板优选是在将基板安置到底座搬运系统之前才形成的。通常,在高真空蒸镀有机电致发光膜、高真空蒸镀阴极金属的工艺步骤中,必须使用底座+顶针的搬送分离系统。上述生产流程便是实例。其上已经形成了多层功能元件的基板在步骤(10)中才成为本发明所述的覆膜基板。在步骤(10)中形成本发明的覆膜基板之后,将其安置到底座搬送系统中,随后进行高真空蒸镀有机电致发光膜和高真空蒸镀阴极金属的步骤。之后,用顶针分离动作将覆膜基板与底座分离。
在上述实例中,所述导电层可为金属氧化物导电薄膜、有机导电薄膜、碳纳米管、石墨烯、金属栅网、金属纳米线、超薄金属薄膜等研究和使用得较多、制备工艺更加成熟的导电层结构,且它们的机械性能也均可满足减轻挤压的要求。因此,使用上述导电层,可以在不对生产线进行过多改进、不更多增加成本的情况下达成技术效果。这在实际工业生产中十分有利。
其中,透明金属氧化物导电薄膜适用于生产透明的覆膜基板,并且其机械性能也适于作为机械缓冲层。优选的导电膜是ITO、IZO、IGZO或ZnO。有机导电薄膜也适用于本发明的情况,其中PEDOT是优选的。
根据反复实验,为了达到本发明的导电效果,导电层的厚度只需为O.1纳米以上即可保证有充分的导电能力。为了同时获得更佳的缓解挤压的效果,导电层的厚度更优选为10纳米以上。厚度越大,缓解挤压的能力更佳。不过,出于节约材料消耗和节省制备时间从而降低成本和提高生产效率的考虑,导电层厚度无需大于10微米。特别是对于透明导电层,大于10微米的厚度可能对其透明度有不利影响。1微米以下的厚度是更有利的。当导电层厚度处于上述范围内时,如图5所示,所形成的显示面板的白画面点灯图形,画面比较均匀。图6示出了现有技术以相同流程但在不形成本发明所述的覆膜基板的情况下生产的同类型显示面板的白画面点灯图形,RGBW画面点灯时呈现圆形黑斑(即顶针位置亮度不均),且低灰阶相对高灰阶明显,严重影响产品的品质。由此可见,本发明解决了现有技术存在的问题,提高了产品的显示品质。
特别优选的覆膜基板是以玻璃为基板,以ITO、IZO、IGZO、ZnO、 PEDOT、金属栅网、碳纳米管、石墨烯、金属纳米线或超薄金属薄膜为导电层,导电层的厚度为10纳米至1微米。图5是本发明的覆膜基板的白画面点灯。与现有技术的图6相比,其解决了顶针位置亮度不均的问题。
上述实例方法仅是为了说明,而不是限制本发明。例如,根据各层材料的性质,在步骤(10)中形成的覆膜基板在提前的步骤中形成也是可以的。这样的技术方案当然也落在本发明的权利要求书的范围之内。
本申请要求2015年12月31日提交的中国专利申请No.201511030805.1的优先权,该中国专利申请的全部内容通过引用结合在本文中。

Claims (16)

  1. 一种OLED显示器件的覆膜基板,其中所述覆膜基板包括基板和在其底面上的导电层。
  2. 根据权利要求1所述的覆膜基板,其中,所述导电层是透明的。
  3. 根据权利要求1所述的覆膜基板,其中,所述导电层为金属氧化物导电薄膜、有机导电薄膜、碳纳米管、石墨烯、金属栅网、金属纳米线和超薄金属薄膜中的一种或多种。
  4. 根据权利要求3所述的覆膜基板,其中,所述导电层为ITO、IZO、IGZO、ZnO或PEDOT。
  5. 根据权利要求1所述的覆膜基板,其中,所述导电层的厚度为0.1纳米至10微米。
  6. 根据权利要求5所述的覆膜基板,其中,所述导电层的厚度为10纳米至1微米。
  7. 根据权利要求1所述的覆膜基板,其中,所述覆膜基板与所述底面相反的一侧为功能元件侧。
  8. 根据权利要求1所述的覆膜基板,其中,所述基板是玻璃。
  9. 一种制备OLED显示器件的方法,其中使用根据权利要求1至8中任一项所述的覆膜基板作为所述OLED显示器件的基板,使得在所述OLED显示器件制备过程中所述覆膜基板的有导电层的一面与设备机构接触,在无导电层的一面上形成所述OLED显示器件的功能元件。
  10. 根据权利要求9所述的方法,其中所述覆膜基板的导电层位于所述OLED器件的出光侧或者与出光侧相反的一侧。
  11. 根据权利要求9所述的方法,其中所述设备机构是顶针、吸盘或滚轮。
  12. 根据权利要求9所述的方法,其中使用底座搬送系统搬送所述覆膜基板,所述覆膜基板导电层向下,安置于所述底座搬送系统上的粘附衬垫上;搬送并形成所述各功能元件后,用顶针方式在导电层侧顶起所述覆膜基板,使所述覆膜基板与所述底座分离。
  13. 根据权利要求9所述的方法,包括以下步骤:
    在基板的一侧上形成所述OLED显示器件的所述功能元件中的一部分;
    在所述基板的未形成功能元件的一侧上设置导电层,以形成根据权利要求1所述的覆膜基板;
    将所述覆膜基板安置在所述底座搬送系统的粘附衬垫上,其中所述导电层与所述粘附衬垫接触;
    在所述覆膜基板的功能元件侧形成所述OLED显示器件的所述功能元件中的其余部分;
    用顶针方式在导电层侧顶起所述覆膜基板,使所述覆膜基板与所述底座分离。
  14. 根据权利要求13所述的方法,其中,所述功能元件中的其余部分包括有机电致发光薄膜和阴极金属薄膜。
  15. 一种包含根据权利要求1至8中任一项所述的覆膜基板的显示器件。
  16. 根据权利要求15所述的显示器件,其中,所述覆膜基板位于显示器件的一面或两面。
PCT/CN2016/105458 2015-12-31 2016-11-11 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件 WO2017114000A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/537,809 US20180090721A1 (en) 2015-12-31 2016-11-11 Laminated substrate for oled, method for producing oled display device using the same, and oled display device
EP16874087.6A EP3399551B1 (en) 2015-12-31 2016-11-11 Method for preparing oled display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511030805.1 2015-12-31
CN201511030805.1A CN105428373B (zh) 2015-12-31 2015-12-31 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件

Publications (1)

Publication Number Publication Date
WO2017114000A1 true WO2017114000A1 (zh) 2017-07-06

Family

ID=55506454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105458 WO2017114000A1 (zh) 2015-12-31 2016-11-11 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件

Country Status (4)

Country Link
US (1) US20180090721A1 (zh)
EP (1) EP3399551B1 (zh)
CN (1) CN105428373B (zh)
WO (1) WO2017114000A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428373B (zh) * 2015-12-31 2018-12-28 京东方科技集团股份有限公司 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件
US10797113B2 (en) * 2016-01-25 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with layered electrode structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1372319A (zh) * 2002-03-29 2002-10-02 威盛电子股份有限公司 半导体元件的封装模组及其制程方法
CN1925138A (zh) * 2005-08-31 2007-03-07 三洋电机株式会社 有机el元件的制造方法、有机el元件和有机el面板
CN101047207A (zh) * 2006-03-31 2007-10-03 株式会社半导体能源研究所 半导体器件及其制造方法
CN105428373A (zh) * 2015-12-31 2016-03-23 京东方科技集团股份有限公司 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310512B2 (ja) * 2009-12-02 2013-10-09 東京エレクトロン株式会社 基板処理装置
KR101326016B1 (ko) * 2010-10-06 2013-11-07 엘아이지에이디피 주식회사 기판분리모듈 및 기판분리장치
CN103531608A (zh) * 2013-09-27 2014-01-22 京东方科技集团股份有限公司 触控式有机发光二极管显示装置及其制作方法
JP6431278B2 (ja) * 2014-04-18 2018-11-28 株式会社ジャパンディスプレイ 表示装置用基板
JP2015216072A (ja) * 2014-05-13 2015-12-03 株式会社ジャパンディスプレイ 有機el装置及びその製造方法
KR102354975B1 (ko) * 2015-06-18 2022-01-25 삼성디스플레이 주식회사 기상 증착 장치 및 이를 이용한 표시 장치의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1372319A (zh) * 2002-03-29 2002-10-02 威盛电子股份有限公司 半导体元件的封装模组及其制程方法
CN1925138A (zh) * 2005-08-31 2007-03-07 三洋电机株式会社 有机el元件的制造方法、有机el元件和有机el面板
CN101047207A (zh) * 2006-03-31 2007-10-03 株式会社半导体能源研究所 半导体器件及其制造方法
CN105428373A (zh) * 2015-12-31 2016-03-23 京东方科技集团股份有限公司 Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399551A4 *

Also Published As

Publication number Publication date
CN105428373B (zh) 2018-12-28
EP3399551A1 (en) 2018-11-07
EP3399551B1 (en) 2022-04-13
US20180090721A1 (en) 2018-03-29
EP3399551A4 (en) 2019-09-04
CN105428373A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
Seo et al. Fully transparent quantum dot light-emitting diode integrated with graphene anode and cathode
US10096664B2 (en) Flexible organic light emitting display manufacturing method
US10791593B2 (en) Organic EL display unit, method of manufacturing the same, and electronic apparatus
WO2018152907A1 (zh) 微发光二极管阵列基板及显示面板
WO2016176886A1 (zh) 柔性oled及其制作方法
US9508933B2 (en) Organic light-emitting diode (OLED) device, manufacturing method thereof and display device
US20180219055A1 (en) Flexible vertical channel organic thin film transistor and manufacture method thereof
WO2018086358A1 (zh) 有机发光二极管阵列基板及制备方法、显示装置
WO2018006441A1 (zh) 薄膜晶体管、阵列基板及其制备方法
WO2016206150A1 (zh) Amoled显示器件的制作方法及其结构
WO2016000342A1 (zh) 阵列基板及其制作方法、显示装置
US9680134B2 (en) Packaging method, packaging structure and display device
US9905797B2 (en) OLED display device and fabrication method thereof
US11227999B2 (en) Array substrate having a layer of magnetic material, display panel having the same and manufacturing method the same thereof
US20170162819A1 (en) Organic electroluminescent device structure and manufacturing for the same
CN113097259B (zh) 一种显示面板、显示面板制程方法及显示装置
TWI524998B (zh) 基板之黏結及分離的方法
WO2018166157A1 (zh) 阵列基板、阵列基板的制造方法以及显示装置
WO2020151057A1 (zh) 一种显示面板及其制作方法、显示装置
JP2008108482A (ja) 有機el表示装置
CN107799017A (zh) 双面显示器及其制作方法
WO2017114000A1 (zh) Oled用覆膜基板、用其制备oled显示器件的方法和oled显示器件
Hopkin et al. 36‐4: Solution‐Processed Transparent Top Electrode for QD‐LED
WO2015180349A1 (zh) 柔性显示基板及其制备方法、柔性显示装置
WO2018205569A1 (zh) 显示基板及其制备方法、显示面板和显示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016874087

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15537809

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE