WO2017113751A1 - Imaging module and electronic apparatus - Google Patents

Imaging module and electronic apparatus Download PDF

Info

Publication number
WO2017113751A1
WO2017113751A1 PCT/CN2016/090062 CN2016090062W WO2017113751A1 WO 2017113751 A1 WO2017113751 A1 WO 2017113751A1 CN 2016090062 W CN2016090062 W CN 2016090062W WO 2017113751 A1 WO2017113751 A1 WO 2017113751A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
imaging module
camera modules
circuit board
camera
Prior art date
Application number
PCT/CN2016/090062
Other languages
French (fr)
Chinese (zh)
Inventor
申成哲
王昕�
Original Assignee
深圳欧菲光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620162720.2U external-priority patent/CN205545550U/en
Priority claimed from CN201620162944.3U external-priority patent/CN205545560U/en
Priority claimed from CN201610120584.5A external-priority patent/CN107155023A/en
Priority claimed from CN201610120867.XA external-priority patent/CN107155040A/en
Priority claimed from CN201620162718.5U external-priority patent/CN205545549U/en
Priority claimed from CN201620162943.9U external-priority patent/CN205545559U/en
Priority claimed from CN201610120745.0A external-priority patent/CN107155025A/en
Priority claimed from CN201610120468.3A external-priority patent/CN107155021A/en
Priority claimed from CN201610120711.1A external-priority patent/CN107155024A/en
Priority claimed from CN201620162897.2U external-priority patent/CN205566466U/en
Priority claimed from CN201620162763.0U external-priority patent/CN205545552U/en
Priority claimed from CN201620163024.3U external-priority patent/CN205545563U/en
Priority claimed from CN201610120876.9A external-priority patent/CN107155041A/en
Priority claimed from CN201610120773.2A external-priority patent/CN107155028A/en
Priority claimed from CN201610120911.7A external-priority patent/CN107155046A/en
Priority claimed from CN201620162899.1U external-priority patent/CN205545557U/en
Priority claimed from CN201620163142.4U external-priority patent/CN205545573U/en
Priority claimed from CN201610120898.5A external-priority patent/CN107155043A/en
Priority claimed from CN201610120880.5A external-priority patent/CN107155042A/en
Priority claimed from CN201610120777.0A external-priority patent/CN107155029A/en
Priority claimed from CN201620162728.9U external-priority patent/CN205545551U/en
Priority claimed from CN201620162868.6U external-priority patent/CN205545555U/en
Priority claimed from CN201620163009.9U external-priority patent/CN205545562U/en
Application filed by 深圳欧菲光科技股份有限公司 filed Critical 深圳欧菲光科技股份有限公司
Publication of WO2017113751A1 publication Critical patent/WO2017113751A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the priority and interest of the patent applications of 201620163009.9, 201610120867.X, 201620162868.6, 201610120876.9, 201620162728.9, 201610120745.0, 201620162720.2, 201610120468.3, 201620162718.5, 201610120773.2 and 201620162944.3 are hereby incorporated by reference in its entirety.
  • the present invention relates to the field of camera technologies, and in particular, to an imaging module and an electronic device.
  • the present invention is directed to solving one of the technical problems existing in the prior art. To this end, the present invention provides an imaging module and an electronic device.
  • the imaging module of the embodiment of the invention comprises a flexible circuit board and at least two camera modules.
  • the flexible circuit board includes at least two module mounting portions and a connector mounting portion that connects at least two module mounting portions. At least two module mounting portions are connected to each other. At least two camera modules are respectively disposed on the two module mounting portions, and the two camera modules are spaced apart.
  • At least two camera modules are spaced apart such that there is sufficient space between the at least two camera modules, and the optical axes of the at least two camera modules can be conveniently adjusted to parallel positions. To ensure the quality of the imaging module.
  • the number of the module mounting portions and the number of the camera modules are two.
  • the flexible circuit board includes two connecting portions that are connected or spaced apart from each other, each of the connecting portions connecting each of the module mounting portion and the connector mounting portion.
  • each of the camera modules includes a printed circuit board and an image sensor disposed on the printed circuit board and electrically connected to the printed circuit board, the printed circuit board being disposed in the The module mounting portion is electrically connected to the module mounting portion.
  • the module mounting portion includes a first electrical connection pad
  • the printed circuit board includes a second electrical connection pad corresponding to the first electrical connection pad, the printed circuit board The module mounting portion is electrically connected to the first electrical connection pad through the second electrical connection pad.
  • the camera module includes a lens module disposed on the printed circuit board and positioned above the image sensor.
  • the lens module includes a lens and a voice coil motor
  • the lens is disposed in the voice coil motor
  • the voice coil motor includes a housing
  • two of the two camera modules The housings are spaced apart.
  • the imaging module includes a connector assembly including a substrate and a connector disposed on the substrate, the substrate being disposed on the connector mounting portion and The connector mounting portion is electrically connected.
  • the imaging module includes a gel that bonds the two camera modules.
  • the camera module includes a connection side opposite to another camera module, and the two camera modules are fixedly connected by soldering the connection side.
  • the imaging module includes a cover, and the two camera modules are disposed in the cover and are fixedly coupled to the cover.
  • the cover includes a frame surrounding the two camera modules and a top cover connected to the top of the frame, the frame and the top cover and the two cameras The module is fixedly connected.
  • An electronic device includes the above-described imaging module.
  • At least two camera modules are arranged at intervals such that there is sufficient space between the at least two camera modules, and the optical axes of the at least two camera modules can be conveniently adjusted to parallel positions to ensure the imaging module. The quality of the shot.
  • FIG. 1 is a schematic structural view of an imaging module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of an imaging module according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the imaging module of FIG. 2 taken along the line III-III.
  • FIG. 4 is an enlarged schematic view of an IV portion of the imaging module of FIG. 3.
  • FIG. 5 is an exploded perspective view of an imaging module according to an embodiment of the present invention.
  • FIG. 6 is another exploded schematic view of an imaging module according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a cover body of an imaging module according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a flexible circuit board of an imaging module according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • Connected, or integrally connected may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • FIG. 1 is a schematic structural view of an imaging module according to an embodiment of the present invention. Figure 1 does not show the cover of the imaging module.
  • an imaging module 100 includes a flexible circuit board 10 and two camera modules 20 .
  • the flexible circuit board 10 includes two module mounting portions 11 and a connector mounting portion 12.
  • the two module mounting portions 11 are connected to each other.
  • the connector mounting portion 12 connects the two module mounting portions 11.
  • the two camera modules 20 are respectively disposed on the two module mounting portions 11, and the two camera modules 20 are spaced apart.
  • the two camera modules 20 are spaced apart such that there is sufficient space between the two camera modules 20, and the optical axes of the two camera modules 20 can be conveniently adjusted to be parallel. The position ensures the shooting quality of the imaging module 100.
  • the two camera modules 20 are respectively fixed to the module mounting portion 11, and then one of the camera modules 20 can be clamped by a robot, and then passed through a robot.
  • the position of the other camera module 20 is adjusted such that the optical axes of the two camera modules 20 are parallel, and then the two camera modules 20 are fixed by gel bonding or welding.
  • the module mounting portion 11 can be slightly deformed to enable the position of the camera module 20 to be adjusted.
  • the number of the module mounting portion and the camera module may be three or more, and three or more camera modules are spaced apart. More than three module mounting sections are spaced apart. Three or more camera modules are respectively disposed on three or more module mounting portions.
  • the flexible circuit board 10 includes two connecting portions 13 disposed at intervals, and each connecting portion 13 is connected to each of the module mounting portions 11 and the connector mounting portion 12 .
  • the two connecting portions 13 are spaced apart to further facilitate the deformation of the flexible circuit board 10, thereby facilitating adjustment of the positions of the two camera modules 20 such that the optical axes of the two camera modules 20 are parallel.
  • the two connections may be connected to each other. Due to the low rigidity of the connecting portion, the interconnecting connecting portions can also be deformed to adjust the positions of the two camera modules.
  • each camera module 20 includes a printed circuit board 21 (PCB) and an image sensor 22 .
  • the sensing faces of the two image sensors 22 are parallel or coplanar and face the same side.
  • the printed circuit board 21 is disposed on the module mounting portion 11 and is electrically connected to the module mounting portion 11.
  • Image sensing The device 22 is disposed on the printed circuit board 21 and electrically connected to the printed circuit board 21.
  • the image sensor 22 can acquire an image of the object and transmit the image to the external device through the printed circuit board 21 and the flexible circuit board 10.
  • the image sensor 22 may be a complementary metal oxide semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD charge-coupled device
  • the module mounting portion 11 includes a first electrical connection pad 111
  • the printed circuit board 21 includes a second electrical connection pad 211 correspondingly connected to the first electrical connection pad 111, and the printed circuit board 21 passes through the second The electrical connection pad 211 and the first electrical connection pad 111 are electrically connected to the module mounting portion 11 .
  • the first electrical connection pad 111 and the second electrical connection pad 211 electrically connect and communicate between the flexible circuit board 10 and the camera module 20 .
  • the first electrical connection pad 111 and the second electrical connection pad 211 are each made of a conductive paste.
  • the shape and size of the printed circuit board 21 are slightly smaller than the shape and size of the corresponding module mounting portion 11.
  • the volume of the electronic device can be further reduced.
  • each printed circuit board 21 and the corresponding module mounting portion 11 have a flat shape.
  • the shape of each printed circuit board and the corresponding module mounting portion may be specifically set according to actual needs.
  • the camera module 20 includes a lens module 23 disposed on the printed circuit board 21 and located above the image sensor 22 .
  • the lens module 23 can obtain an image of better quality by the image sensor 22, thereby improving the shooting quality of the imaging module 100.
  • the lens module 23 includes a lens 231 and a voice coil motor 232.
  • the lens 231 is disposed in the voice coil motor 232.
  • the voice coil motor 232 includes a housing 2321.
  • the two housings 2321 of the two camera modules 20 are spaced apart. Settings.
  • the voice coil motor 232 can drive the lens 231 to move along the optical axis of the lens 231 to adjust the distance between the lens 231 and the image sensor 22, thereby achieving autofocus of the imaging module 100, so that the imaging module 100 can obtain a better quality image. .
  • a filter 24 is disposed between the lens 231 and the image sensor 22.
  • the filter 24 can filter the light of a predetermined frequency such that the image sensor 22 forms a better image based on the filtered light.
  • the filter 24 is an infrared cut filter.
  • the infrared cut filter 24 can filter infrared rays to avoid image distortion of the image sensor 22.
  • the lens module 23 further includes a base 233, and the base 233 is provided with a recess 2331, and the bottom of the recess 2331 A through hole 2332 is formed in the surface.
  • the filter 24 is disposed in the recess 2331 and supported on the bottom surface of the recess 2331, and the light filtered by the filter 24 can pass through the through hole 2332 to reach the image sensor 22.
  • the base 233 is provided with a connecting groove 2333, and the connecting groove 2333 communicates with the groove 2331.
  • the imaging module 100 includes a connector assembly 30 including a substrate 31 and a connector 32 disposed on the substrate 31.
  • the substrate 31 is disposed on the connector mounting portion 12 and electrically connected to the connector mounting portion 12.
  • the connector 32 can quickly mount the imaging module 100 to the electronic device.
  • the substrate 31 corresponds to the shape and size of the connector mounting portion 12. This makes the structure of the connector 32 and the flexible circuit board 10 more compact.
  • the imaging module 100 includes a colloid 40, and the colloid 40 bonds the two camera modules 20.
  • the colloid 40 is inserted between the two camera modules.
  • the colloid 40 ensures that the two camera modules 20 are relatively fixed.
  • the colloid 40 can increase the connection strength of the two camera modules 20, and can reduce the probability of the optical axis offset of the two camera modules 20.
  • the colloid 40 is located at a lower portion of the gap between the two camera modules 20 .
  • the colloid can fill the gap between the two camera modules.
  • the colloid 40 may be, for example, a colloidal colloid such as UV glue (Ultraviolet Glue).
  • the camera module includes a connection side opposite to another camera module, and the two camera modules are fixedly connected by a solder connection side.
  • the two camera modules can be firmly fixed together by welding.
  • the connection side of each camera module can be fixedly connected to another camera module by laser spot welding or solder paste or tin wire bonding.
  • the imaging module 100 includes a cover 50 , and the two camera modules 20 are disposed in the cover 50 and fixedly coupled to the cover 50 .
  • cover 50 and the two camera modules 20 can be fixedly connected by welding or colloid.
  • the cover 50 can further fix the positions of the two camera modules 20, reduce the impact force of the camera module 20 during the falling or oscillating process, increase the stability of the structure of the imaging module 100, and improve the imaging.
  • the quality of the module 100 is the reason for the cover 50.
  • the cover 50 includes a frame 51 surrounding the two camera modules 20 and a top cover 52 connected to the top of the frame 51 , the frame 51 and the cover 52 and two camera modules 20 fixed connections.
  • the frame body 51 and the top cover 52 of the cover 50 are connected to the two camera modules 20, so that the connection area between the cover 50 and the two camera modules 20 can be increased, so that the cover 50 and the two camera modules are Group 20 connections are more secure.
  • the top cover 52 defines two light-passing holes 251, and the two camera modules 20 are respectively exposed through the two light-passing holes 251.
  • the light passes through the light-passing aperture 251, the lens 231 and the filter 24 in sequence, and then reaches the image sensor 22, so that the image sensor 22 can collect an external image.
  • both of the light-passing holes 251 have a cylindrical shape.
  • the shapes of the two light-passing holes may be specifically determined. Therefore, the shape of the light-passing hole of the present embodiment is not to be construed as limiting the invention.
  • the light passing hole 251 is disposed coaxially with the optical axis of the lens 231.
  • the imaging module 100 further includes a reinforcing plate 60, and the two module mounting portions 11 are fixed on the reinforcing plate 60.
  • the reinforcing plate 60 can further fix the positions of the two camera modules 20, improve the anti-collision capability of the imaging module 100, and thereby improve the shooting quality.
  • the imaging module 100 further includes an electromagnetic wave interference preventing member 70, and the reinforcing plate 60 is disposed on the electromagnetic wave preventing component 70.
  • the anti-electromagnetic interference component 70 can prevent the imaging module 100 from being interfered by electromagnetic waves, and ensure that the imaging module 100 obtains a better quality image.
  • the electromagnetic wave preventing member 70 can be made of, for example, a metal material.
  • the electronic device of the embodiment of the present invention includes the imaging module 100 described above.
  • the electronic device can conveniently adjust the optical axes of the at least two camera modules 20 to parallel positions, thereby ensuring the shooting quality of the electronic device.

Abstract

An imaging module and an electronic apparatus. The imaging module comprises a flexible circuit board and at least two camera modules. The flexible circuit board comprises at least two module mounting parts and connector mounting parts connected to the at least two module mounting parts. The at least two module mounting parts are interconnected. The at least two camera modules are respectively arranged on the at least two module mounting parts, and the at least two camera modules are spaced apart from each other.

Description

成像模组及电子装置Imaging module and electronic device
优先权信息Priority information
本申请请求2015年12月30日向中国国家知识产权局提交的、专利申请号为201511025532.1、201521132821.7、201511024922.7及201521131513.2及2016年03月03日向中国国家知识产权局提交的、专利申请号为201610120714.5、201620163180.X、201610120781.7、201620162943.9、201610120780.2、201620163035.1、201610120778.5、201620163163.6、201610120775.1、201620163152.8、201610120713.0、201620162941.X、201610120772.8、201620163154.7、201610120584.5、201620162897.2、201610120711.1、201620163024.3、201610120911.7、201620162763.0、201610120898.5、201620162899.1、201610120880.5、201620163142.4、201610120777.0、201620163009.9、201610120867.X、201620162868.6、201610120876.9、201620162728.9、201610120745.0、201620162720.2、201610120468.3、201620162718.5、201610120773.2及201620162944.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。This application is filed with the National Intellectual Property Office of China on December 30, 2015, and the patent application numbers are 201511025532.1, 201521132821.7, 201511024922.7, and 201521131513.2, and submitted to the State Intellectual Property Office of China on March 03, 2016. The patent application numbers are 201610120714.5 and 201620163180. .X, 201610120781.7, 201620162943.9, 201610120780.2, 201620163035.1, 201610120778.5, 201620163163.6, 201610120775.1, 201620163152.8, 201610120713.0, 201620162941.X, 201610120772.8, 201620163154.7, 201610120584.5, 201620162897.2, 201610120711.1, 201620163024.3, 201610120911.7, 201620162763.0, 201610120898.5, 201620162899.1, 201610120880.5, 201620163142.4, 201610120777.0 The priority and interest of the patent applications of 201620163009.9, 201610120867.X, 201620162868.6, 201610120876.9, 201620162728.9, 201610120745.0, 201620162720.2, 201610120468.3, 201620162718.5, 201610120773.2 and 201620162944.3 are hereby incorporated by reference in its entirety.
技术领域Technical field
本发明涉及摄像技术领域,尤其涉及一种成像模组及一种电子装置。The present invention relates to the field of camera technologies, and in particular, to an imaging module and an electronic device.
背景技术Background technique
随着人们对拍摄图像的质量要求提高,双摄像头拍照技术应运而生。为了保证拍照质量,双摄像头模组的两个摄像模组的光轴平行设置且两个摄像模组朝同一侧拍摄。因此,在双摄像头模组的生产过程中,如何方便调整两个摄像头的光轴至平行的位置成为亟待解决的问题。As people's quality requirements for captured images increase, dual camera photography technology came into being. In order to ensure the quality of the photograph, the optical axes of the two camera modules of the dual camera module are arranged in parallel and the two camera modules are photographed toward the same side. Therefore, in the production process of the dual camera module, how to conveniently adjust the optical axis of the two cameras to the parallel position becomes an urgent problem to be solved.
发明内容Summary of the invention
本发明旨在解决现有技术中存在的技术问题之一。为此,本发明提供一种成像模组及一种电子装置。The present invention is directed to solving one of the technical problems existing in the prior art. To this end, the present invention provides an imaging module and an electronic device.
本发明实施方式的成像模组包括柔性电路板及至少两个摄像模组。柔性电路板包括至少两个模组安装部及连接至少两个模组安装部的连接器安装部。至少两个模组安装部相互连接。至少两个摄像模组分别设置在两个模组安装部上,两个摄像模组间隔设置。The imaging module of the embodiment of the invention comprises a flexible circuit board and at least two camera modules. The flexible circuit board includes at least two module mounting portions and a connector mounting portion that connects at least two module mounting portions. At least two module mounting portions are connected to each other. At least two camera modules are respectively disposed on the two module mounting portions, and the two camera modules are spaced apart.
本发明实施方式的成像模组中,至少两个摄像模组间隔设置使得至少两个摄像模组之间有足够的空间,可方便地将至少两个摄像模组的光轴调整至平行的位置,保证成像模组的拍摄质量。 In the imaging module of the embodiment of the present invention, at least two camera modules are spaced apart such that there is sufficient space between the at least two camera modules, and the optical axes of the at least two camera modules can be conveniently adjusted to parallel positions. To ensure the quality of the imaging module.
在某些实施中,所述模组安装部的数量及所述摄像模组的数量均为两个。In some implementations, the number of the module mounting portions and the number of the camera modules are two.
在某些实施方式中,所述柔性电路板包括相互连接或间隔设置的两个连接部,每个所述连接部连接每个所述模组安装部及所述连接器安装部。In some embodiments, the flexible circuit board includes two connecting portions that are connected or spaced apart from each other, each of the connecting portions connecting each of the module mounting portion and the connector mounting portion.
在某些实施方式中,每个所述摄像模组包括印刷电路板及设置在所述印刷电路板上且与所述印刷电路板电性连接的图像传感器,所述印刷电路板设置在所述模组安装部上且与所述模组安装部电性连接。In some embodiments, each of the camera modules includes a printed circuit board and an image sensor disposed on the printed circuit board and electrically connected to the printed circuit board, the printed circuit board being disposed in the The module mounting portion is electrically connected to the module mounting portion.
在某些实施方式中,所述模组安装部包括第一电性连接垫,所述印刷电路板包括与所述第一电性连接垫对应的第二电性连接垫,所述印刷电路板通过所述第二电性连接垫与所述第一电性连接垫电性连接所述模组安装部。In some embodiments, the module mounting portion includes a first electrical connection pad, and the printed circuit board includes a second electrical connection pad corresponding to the first electrical connection pad, the printed circuit board The module mounting portion is electrically connected to the first electrical connection pad through the second electrical connection pad.
在某些实施方式中,所述摄像模组包括设置在所述印刷电路板上并位于所述图像传感器上方的镜头模组。In some embodiments, the camera module includes a lens module disposed on the printed circuit board and positioned above the image sensor.
在某些实施方式中,所述镜头模组包括镜头及音圈马达,所述镜头设置在所述音圈马达内,所述音圈马达包括壳体,两个所述摄像模组的两个所述壳体间隔设置。In some embodiments, the lens module includes a lens and a voice coil motor, the lens is disposed in the voice coil motor, the voice coil motor includes a housing, and two of the two camera modules The housings are spaced apart.
在某些实施方式中,所述成像模组包括连接器组件,所述连接器组件包括基板及设置在所述基板上的连接器,所述基板设置在所述连接器安装部上并与所述连接器安装部电性连接。In some embodiments, the imaging module includes a connector assembly including a substrate and a connector disposed on the substrate, the substrate being disposed on the connector mounting portion and The connector mounting portion is electrically connected.
在某些实施方式中,所述成像模组包括胶体,所述胶体粘接两个所述摄像模组。In some embodiments, the imaging module includes a gel that bonds the two camera modules.
在某些实施方式中,所述摄像模组包括与另一个所述摄像模组相对的连接侧,两个所述摄像模组通过焊接所述连接侧固定连接。In some embodiments, the camera module includes a connection side opposite to another camera module, and the two camera modules are fixedly connected by soldering the connection side.
在某些实施方式中,所述成像模组包括罩体,两个所述摄像模组设置在所述罩体中且与所述罩体固定连接。In some embodiments, the imaging module includes a cover, and the two camera modules are disposed in the cover and are fixedly coupled to the cover.
在某些实施方式中,所述罩体包括围绕两个所述摄像模组的框体及与所述框体顶部连接的顶盖,所述框体及所述顶盖与两个所述摄像模组固定连接。In some embodiments, the cover includes a frame surrounding the two camera modules and a top cover connected to the top of the frame, the frame and the top cover and the two cameras The module is fixedly connected.
本发明实施方式的电子装置包括上述的成像模组。An electronic device according to an embodiment of the present invention includes the above-described imaging module.
上述电子装置中,至少两个摄像模组间隔设置使得至少两个摄像模组之间有足够的空间,可方便地将至少两个摄像模组的光轴调整至平行的位置,保证成像模组的拍摄质量。In the above electronic device, at least two camera modules are arranged at intervals such that there is sufficient space between the at least two camera modules, and the optical axes of the at least two camera modules can be conveniently adjusted to parallel positions to ensure the imaging module. The quality of the shot.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。The additional aspects and advantages of the invention will be set forth in part in the description which follows.
附图说明DRAWINGS
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中: The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from
图1是本发明实施方式的成像模组的结构示意图。1 is a schematic structural view of an imaging module according to an embodiment of the present invention.
图2是本发明实施方式的成像模组的立体示意图。2 is a perspective view of an imaging module according to an embodiment of the present invention.
图3是图2中的成像模组沿III-III向的剖面示意图。3 is a cross-sectional view of the imaging module of FIG. 2 taken along the line III-III.
图4是图3中的成像模组的IV部分的放大示意图。4 is an enlarged schematic view of an IV portion of the imaging module of FIG. 3.
图5是本发明实施方式的成像模组的分解示意图。FIG. 5 is an exploded perspective view of an imaging module according to an embodiment of the present invention.
图6是本发明实施方式的成像模组的另一个分解示意图。FIG. 6 is another exploded schematic view of an imaging module according to an embodiment of the present invention.
图7是本发明实施方式的成像模组的罩体的立体示意图。7 is a perspective view of a cover body of an imaging module according to an embodiment of the present invention.
图8是本发明实施方式的成像模组的柔性电路板的结构示意图。8 is a schematic structural view of a flexible circuit board of an imaging module according to an embodiment of the present invention.
具体实施方式detailed description
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals indicate the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it is to be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Orientations of "post", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", "clockwise", "counterclockwise", etc. The positional relationship is based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the present invention and the simplified description, and is not intended to indicate or imply that the device or component referred to has a specific orientation, and is constructed and operated in a specific orientation. Therefore, it should not be construed as limiting the invention. Moreover, the terms "first" and "second" are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining "first" or "second" may include one or more of the described features either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installation", "connected", and "connected" are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。 In the present invention, the first feature "on" or "under" the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them. Moreover, the first feature "above", "above" and "above" the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature. The first feature "below", "below" and "below" the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and arrangements of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention. In addition, the present invention may be repeated with reference to the numerals and/or reference numerals in the various examples, which are for the purpose of simplicity and clarity, and do not indicate the relationship between the various embodiments and/or arrangements discussed. Moreover, the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the use of other processes and/or the use of other materials.
图1是本发明实施方式的成像模组的结构示意图。图1未示出成像模组的罩体。1 is a schematic structural view of an imaging module according to an embodiment of the present invention. Figure 1 does not show the cover of the imaging module.
请参图1,本发明实施方式的成像模组100包括柔性电路板10及两个摄像模组20。柔性电路板10包括两个模组安装部11及连接器安装部12。两个模组安装部11相互连接。连接器安装部12连接两个模组安装部11。两个摄像模组20分别设置在两个模组安装部11上,两个摄像模组20间隔设置。Referring to FIG. 1 , an imaging module 100 according to an embodiment of the present invention includes a flexible circuit board 10 and two camera modules 20 . The flexible circuit board 10 includes two module mounting portions 11 and a connector mounting portion 12. The two module mounting portions 11 are connected to each other. The connector mounting portion 12 connects the two module mounting portions 11. The two camera modules 20 are respectively disposed on the two module mounting portions 11, and the two camera modules 20 are spaced apart.
本发明实施方式的成像模组100中,两个摄像模组20间隔设置使得两个摄像模组20之间有足够的空间,可方便地将两个摄像模组20的光轴调整至平行的位置,保证成像模组100的拍摄质量。In the imaging module 100 of the embodiment of the present invention, the two camera modules 20 are spaced apart such that there is sufficient space between the two camera modules 20, and the optical axes of the two camera modules 20 can be conveniently adjusted to be parallel. The position ensures the shooting quality of the imaging module 100.
具体地,在一个例子中,在组装成像模组100的时候,先将两个摄像模组20分别固定至模组安装部11,然后可用机械手夹持固定其中一个摄像模组20,之后通过机械手调整另一个摄像模组20的位置以使两个摄像模组20的光轴平行,然后将两个摄像模组20通过胶体粘接或焊接固定。当调整两个摄像模组20时,模组安装部11可产生微小的变形以使摄像模组20的位置能够调整。Specifically, in an example, when assembling the imaging module 100, the two camera modules 20 are respectively fixed to the module mounting portion 11, and then one of the camera modules 20 can be clamped by a robot, and then passed through a robot. The position of the other camera module 20 is adjusted such that the optical axes of the two camera modules 20 are parallel, and then the two camera modules 20 are fixed by gel bonding or welding. When the two camera modules 20 are adjusted, the module mounting portion 11 can be slightly deformed to enable the position of the camera module 20 to be adjusted.
可以理解,在其他实施方式中,模组安装部及摄像模组的数量均可为三个以上,三个以上的摄像模组间隔设置。三个以上的模组安装部间隔设置。三个以上的摄像模组分别设置在三个以上的模组安装部上。It can be understood that in other embodiments, the number of the module mounting portion and the camera module may be three or more, and three or more camera modules are spaced apart. More than three module mounting sections are spaced apart. Three or more camera modules are respectively disposed on three or more module mounting portions.
为了方便说明,下文以模组安装部的数量及摄像模组的数量均为两个的实施方式作进一步说明,但不能理解为对本发明的限制。For convenience of description, the following description is made by the embodiment in which the number of module mounting portions and the number of camera modules are two, but it is not to be construed as limiting the present invention.
请结合图8,本实施方式中,柔性电路板10包括间隔设置的两个连接部13,每个连接部13连接每个模组安装部11及连接器安装部12。Referring to FIG. 8 , in the present embodiment, the flexible circuit board 10 includes two connecting portions 13 disposed at intervals, and each connecting portion 13 is connected to each of the module mounting portions 11 and the connector mounting portion 12 .
两个连接部13间隔设置可进一步有利于柔性电路板10变形,从而有利于调整两个摄像模组20的位置以使两个摄像模组20的光轴平行。The two connecting portions 13 are spaced apart to further facilitate the deformation of the flexible circuit board 10, thereby facilitating adjustment of the positions of the two camera modules 20 such that the optical axes of the two camera modules 20 are parallel.
可以理解,在其他实施方式中,两个连接部可以相互连接。由于连接部的刚度较低,相互连接的连接部也可以产生变形以便调整两个摄像模组的位置。It will be appreciated that in other embodiments, the two connections may be connected to each other. Due to the low rigidity of the connecting portion, the interconnecting connecting portions can also be deformed to adjust the positions of the two camera modules.
请参阅图2-图4,本实施方式中,每个摄像模组20包印刷电路板21(Printed Circuit Board,PCB)及图像传感器22。两个图像传感器22的感测面相平行或共面并且朝向同一侧。印刷电路板21设置在模组安装部11上且与模组安装部11电性连接。图像传感 器22设置在印刷电路板21上且与印刷电路板21电性连接。Referring to FIG. 2 to FIG. 4 , in the embodiment, each camera module 20 includes a printed circuit board 21 (PCB) and an image sensor 22 . The sensing faces of the two image sensors 22 are parallel or coplanar and face the same side. The printed circuit board 21 is disposed on the module mounting portion 11 and is electrically connected to the module mounting portion 11. Image sensing The device 22 is disposed on the printed circuit board 21 and electrically connected to the printed circuit board 21.
如此,图像传感器22可获取物体的图像,并将图像通过印刷电路板21及柔性电路板10传至外部装置。As such, the image sensor 22 can acquire an image of the object and transmit the image to the external device through the printed circuit board 21 and the flexible circuit board 10.
具体地,图像传感器22可以采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)影像感测器或者电荷耦合元件(Charge-coupled Device,CCD)影像感测器。Specifically, the image sensor 22 may be a complementary metal oxide semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor.
本实施方式中,模组安装部11包括第一电性连接垫111,印刷电路板21包括与第一电性连接垫111对应连接的第二电性连接垫211,印刷电路板21通过第二电性连接垫211与第一电性连接垫111电性连接模组安装部11。In this embodiment, the module mounting portion 11 includes a first electrical connection pad 111, and the printed circuit board 21 includes a second electrical connection pad 211 correspondingly connected to the first electrical connection pad 111, and the printed circuit board 21 passes through the second The electrical connection pad 211 and the first electrical connection pad 111 are electrically connected to the module mounting portion 11 .
如此,第一电性连接垫111及第二电性连接垫211实现柔性电路板10与摄像模组20之间电性连接并通信。例如,第一电性连接垫111及第二电性连接垫211均采用导电胶。As such, the first electrical connection pad 111 and the second electrical connection pad 211 electrically connect and communicate between the flexible circuit board 10 and the camera module 20 . For example, the first electrical connection pad 111 and the second electrical connection pad 211 are each made of a conductive paste.
本实施方式中,印刷电路板21的形状及尺寸略小于与对应的模组安装部11的形状及尺寸。In the present embodiment, the shape and size of the printed circuit board 21 are slightly smaller than the shape and size of the corresponding module mounting portion 11.
这样可使成像模组100的结构更加紧凑,有利于减小成像模组100的体积。成像模组100应用于电子装置时,可进一步减小电子装置的体积。This makes the structure of the imaging module 100 more compact, and is advantageous for reducing the volume of the imaging module 100. When the imaging module 100 is applied to an electronic device, the volume of the electronic device can be further reduced.
本实施方式中,作为一个示例,每个印刷电路板21及与对应的模组安装部11的形状呈平板状。而在其他实施方式中,每个印刷电路板及与对应的模组安装部的形状可根据实际需求而具体设置。In the present embodiment, as an example, each printed circuit board 21 and the corresponding module mounting portion 11 have a flat shape. In other embodiments, the shape of each printed circuit board and the corresponding module mounting portion may be specifically set according to actual needs.
请结合图5及图6,本实施方式中,摄像模组20包括设置在印刷电路板21上并位于图像传感器22上方的镜头模组23。Referring to FIG. 5 and FIG. 6 , in the embodiment, the camera module 20 includes a lens module 23 disposed on the printed circuit board 21 and located above the image sensor 22 .
如此,镜头模组23可使图像传感器22获得品质较佳的图像,从而可提高成像模组100的拍摄品质。In this way, the lens module 23 can obtain an image of better quality by the image sensor 22, thereby improving the shooting quality of the imaging module 100.
本实施方式中,镜头模组23包括镜头231及音圈马达232,镜头231设置在音圈马达232内,音圈马达232包括壳体2321,两个摄像模组20的两个壳体2321间隔设置。In this embodiment, the lens module 23 includes a lens 231 and a voice coil motor 232. The lens 231 is disposed in the voice coil motor 232. The voice coil motor 232 includes a housing 2321. The two housings 2321 of the two camera modules 20 are spaced apart. Settings.
音圈马达232可以驱动镜头231沿镜头231的光轴方向移动以调整镜头231与图像传感器22之间的距离,进而实现成像模组100的自动对焦,使成像模组100获取品质较佳的图像。The voice coil motor 232 can drive the lens 231 to move along the optical axis of the lens 231 to adjust the distance between the lens 231 and the image sensor 22, thereby achieving autofocus of the imaging module 100, so that the imaging module 100 can obtain a better quality image. .
进一步地,镜头231与图像传感器22之间设置有滤光片24。滤光片24可以过滤预设频率的光线,使得图像传感器22根据过滤后的光线形成较佳的图像。Further, a filter 24 is disposed between the lens 231 and the image sensor 22. The filter 24 can filter the light of a predetermined frequency such that the image sensor 22 forms a better image based on the filtered light.
较佳地,滤光片24为红外截止滤光片。如此,红外截止滤光片24可以过滤红外线,避免图像传感器22的图像失真。Preferably, the filter 24 is an infrared cut filter. As such, the infrared cut filter 24 can filter infrared rays to avoid image distortion of the image sensor 22.
具体地,镜头模组23还包括基座233,基座233开设有凹槽2331,凹槽2331的底 面开设有通孔2332。滤光片24设置在凹槽2331内且支撑在凹槽2331的底面上,经过滤光片24过滤的光线可以通过通孔2332到达图像传感器22。Specifically, the lens module 23 further includes a base 233, and the base 233 is provided with a recess 2331, and the bottom of the recess 2331 A through hole 2332 is formed in the surface. The filter 24 is disposed in the recess 2331 and supported on the bottom surface of the recess 2331, and the light filtered by the filter 24 can pass through the through hole 2332 to reach the image sensor 22.
为了方便拿取滤光片24,基座233上开设有连接槽2333,连接槽2333连通凹槽2331。In order to facilitate the take-up of the filter 24, the base 233 is provided with a connecting groove 2333, and the connecting groove 2333 communicates with the groove 2331.
本实施方式中,成像模组100包括连接器组件30,连接器组件30包括基板31及设置在基板31上的连接器32。基板31设置在连接器安装部12上并与连接器安装部12电性连接。In the present embodiment, the imaging module 100 includes a connector assembly 30 including a substrate 31 and a connector 32 disposed on the substrate 31. The substrate 31 is disposed on the connector mounting portion 12 and electrically connected to the connector mounting portion 12.
如此,连接器32可将成像模组100快速地安装到电子设备上。As such, the connector 32 can quickly mount the imaging module 100 to the electronic device.
较佳地,基板31与连接器安装部12的形状及尺寸相对应。这样可使连接器32与柔性电路板10的结构更加紧凑。Preferably, the substrate 31 corresponds to the shape and size of the connector mounting portion 12. This makes the structure of the connector 32 and the flexible circuit board 10 more compact.
本实施方式中,成像模组100包括胶体40,胶体40粘接两个摄像模组20。In the embodiment, the imaging module 100 includes a colloid 40, and the colloid 40 bonds the two camera modules 20.
在将两个摄像模组20的光轴调至相互平行后,在两个摄像模组间点入胶体40。胶体40可保证两个摄像模组20相对固定。胶体40可增加两个摄像模组20的连接强度,可降低两个摄像模组20的光轴偏移的概率。After the optical axes of the two camera modules 20 are adjusted to be parallel to each other, the colloid 40 is inserted between the two camera modules. The colloid 40 ensures that the two camera modules 20 are relatively fixed. The colloid 40 can increase the connection strength of the two camera modules 20, and can reduce the probability of the optical axis offset of the two camera modules 20.
需要说明的是,本实施方式中,如图3中的方位所示,胶体40位于两个摄像模组20之间的间隙的下部。而在其他实施方式中,胶体可填满两个摄像模组之间的间隙。It should be noted that, in the present embodiment, as shown by the orientation in FIG. 3 , the colloid 40 is located at a lower portion of the gap between the two camera modules 20 . In other embodiments, the colloid can fill the gap between the two camera modules.
胶体40例如可为UV胶(Ultraviolet Glue)等具有黏性的胶体。The colloid 40 may be, for example, a colloidal colloid such as UV glue (Ultraviolet Glue).
在一些实施方式中,摄像模组包括与另一个摄像模组相对的连接侧,两个摄像模组通过焊接连接侧固定连接。In some embodiments, the camera module includes a connection side opposite to another camera module, and the two camera modules are fixedly connected by a solder connection side.
如此,两个摄像模组通过焊接可将牢固地固定在一起。例如,每个摄像模组的连接侧可通过激光点焊或锡膏或锡线焊接而与另一个摄像模组固定连接。In this way, the two camera modules can be firmly fixed together by welding. For example, the connection side of each camera module can be fixedly connected to another camera module by laser spot welding or solder paste or tin wire bonding.
本实施方式中,成像模组100包括罩体50,两个摄像模组20设置在罩体50中并与罩体50固定连接。In the present embodiment, the imaging module 100 includes a cover 50 , and the two camera modules 20 are disposed in the cover 50 and fixedly coupled to the cover 50 .
例如,罩体50与两个摄像模组20可通过焊接或者胶体固定连接。For example, the cover 50 and the two camera modules 20 can be fixedly connected by welding or colloid.
如此,罩体50可进一步固定两个摄像模组20的位置,减小了摄像模组20在跌落或震荡的过程中所受的冲击力,增加成像模组100结构的稳定性,提高了成像模组100的品质。In this way, the cover 50 can further fix the positions of the two camera modules 20, reduce the impact force of the camera module 20 during the falling or oscillating process, increase the stability of the structure of the imaging module 100, and improve the imaging. The quality of the module 100.
请结合图7,本实施方式中,罩体50包括围绕两个摄像模组20的框体51及与框体51顶部连接的顶盖52,框体51及顶盖52与两个摄像模组20固定连接。Referring to FIG. 7 , in the embodiment, the cover 50 includes a frame 51 surrounding the two camera modules 20 and a top cover 52 connected to the top of the frame 51 , the frame 51 and the cover 52 and two camera modules 20 fixed connections.
如此,罩体50的框体51及顶盖52与两个摄像模组20连接,可以增大罩体50与两个摄像模组20之间的连接面积,使得罩体50与两个摄像模组20连接更加牢固。In this manner, the frame body 51 and the top cover 52 of the cover 50 are connected to the two camera modules 20, so that the connection area between the cover 50 and the two camera modules 20 can be increased, so that the cover 50 and the two camera modules are Group 20 connections are more secure.
具体地,顶盖52开设有两个通光孔251,两个摄像模组20分别通过两个通光孔251暴露。光线依次经过通光孔251、镜头231及滤光片24后到达图像传感器22,图像传感器22从而可采集到外界图像。 Specifically, the top cover 52 defines two light-passing holes 251, and the two camera modules 20 are respectively exposed through the two light-passing holes 251. The light passes through the light-passing aperture 251, the lens 231 and the filter 24 in sequence, and then reaches the image sensor 22, so that the image sensor 22 can collect an external image.
需要说明的是,本实施方式中,两个通光孔251均呈圆柱形状。在其他实施方式中,两个通光孔的形状可分别具体而定。因此,本实施方式的通光孔的形状不能理解为对本发明的限制。It should be noted that in the present embodiment, both of the light-passing holes 251 have a cylindrical shape. In other embodiments, the shapes of the two light-passing holes may be specifically determined. Therefore, the shape of the light-passing hole of the present embodiment is not to be construed as limiting the invention.
本实施方式中,较佳地,通光孔251与镜头231的光轴同轴设置。In the present embodiment, preferably, the light passing hole 251 is disposed coaxially with the optical axis of the lens 231.
进一步地,成像模组100还包括加强板60,两个模组安装部11固定在加强板60上。Further, the imaging module 100 further includes a reinforcing plate 60, and the two module mounting portions 11 are fixed on the reinforcing plate 60.
如此,加强板60可进一步固定两个摄像模组20的位置,提高成像模组100的抗冲撞的能力,进而提高拍摄品质。In this way, the reinforcing plate 60 can further fix the positions of the two camera modules 20, improve the anti-collision capability of the imaging module 100, and thereby improve the shooting quality.
本实施方式中,成像模组100还包括防电磁波干扰件70,加强板60设置在防电磁波干扰件70上。In the embodiment, the imaging module 100 further includes an electromagnetic wave interference preventing member 70, and the reinforcing plate 60 is disposed on the electromagnetic wave preventing component 70.
防电磁波干扰件70可防止成像模组100受到电磁波的干扰,保证成像模组100获取品质较佳的图像。防电磁波干扰件70例如可采用金属材料制成。The anti-electromagnetic interference component 70 can prevent the imaging module 100 from being interfered by electromagnetic waves, and ensure that the imaging module 100 obtains a better quality image. The electromagnetic wave preventing member 70 can be made of, for example, a metal material.
本发明实施方式的电子装置包括上述的成像模组100。The electronic device of the embodiment of the present invention includes the imaging module 100 described above.
因此,电子装置可方便地将至少两个摄像模组20的光轴调整至平行的位置,保证了电子装置的拍摄质量。Therefore, the electronic device can conveniently adjust the optical axes of the at least two camera modules 20 to parallel positions, thereby ensuring the shooting quality of the electronic device.
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In the description of the present specification, the description with reference to the terms "one embodiment", "some embodiments", "illustrative embodiment", "example", "specific example", or "some examples", etc. Particular features, structures, materials or features described in the embodiments or examples are included in at least one embodiment or example of the invention. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。 While the embodiments of the present invention have been shown and described, the embodiments of the invention may The scope of the invention is defined by the claims and their equivalents.

Claims (13)

  1. 一种成像模组,其特征在于,包括:An imaging module, comprising:
    柔性电路板,所述柔性电路板包括至少两个模组安装部及连接所述至少两个模组安装部的连接器安装部,所述至少两个模组安装部相互连接;及a flexible circuit board comprising at least two module mounting portions and a connector mounting portion connecting the at least two module mounting portions, the at least two module mounting portions being connected to each other;
    至少两个摄像模组,所述至少两个摄像模组分别设置在所述至少两个模组安装部上,所述至少两个摄像模组间隔设置。The at least two camera modules are respectively disposed on the at least two module mounting portions, and the at least two camera modules are spaced apart.
  2. 如权利要求1所述的成像模组,其特征在于,所述模组安装部的数量及所述摄像模组的数量均为两个。The imaging module of claim 1 , wherein the number of the module mounting portions and the number of the camera modules are two.
  3. 如权利要求2所述的成像模组,其特征在于,所述柔性电路板包括相互连接或间隔设置的两个连接部,每个所述连接部连接每个所述模组安装部及所述连接器安装部。The imaging module according to claim 2, wherein the flexible circuit board comprises two connecting portions connected or spaced apart from each other, each of the connecting portions connecting each of the module mounting portions and the Connector mounting section.
  4. 如权利要求2所述的成像模组,其特征在于,每个所述摄像模组包括印刷电路板及设置在所述印刷电路板上且与所述印刷电路板电性连接的图像传感器,所述印刷电路板设置在所述模组安装部上且与所述模组安装部电性连接。The imaging module of claim 2, wherein each of the camera modules comprises a printed circuit board and an image sensor disposed on the printed circuit board and electrically connected to the printed circuit board. The printed circuit board is disposed on the module mounting portion and electrically connected to the module mounting portion.
  5. 如权利要求4所述的成像模组,其特征在于,所述模组安装部包括第一电性连接垫,所述印刷电路板包括与所述第一电性连接垫对应的第二电性连接垫,所述印刷电路板通过所述第二电性连接垫与所述第一电性连接垫电性连接所述模组安装部。The imaging module of claim 4, wherein the module mounting portion comprises a first electrical connection pad, and the printed circuit board comprises a second electrical property corresponding to the first electrical connection pad Connecting the pad, the printed circuit board is electrically connected to the module mounting portion through the second electrical connection pad and the first electrical connection pad.
  6. 如权利要求4所述的成像模组,其特征在于,所述摄像模组包括设置在所述印刷电路板上并位于所述图像传感器上方的镜头模组。The imaging module of claim 4, wherein the camera module comprises a lens module disposed on the printed circuit board and above the image sensor.
  7. 如权利要求6所述的成像模组,其特征在于,所述镜头模组包括镜头及音圈马达,所述镜头设置在所述音圈马达内,所述音圈马达包括壳体,两个所述摄像模组的两个所述壳体间隔设置。The imaging module according to claim 6, wherein the lens module comprises a lens and a voice coil motor, the lens is disposed in the voice coil motor, and the voice coil motor comprises a housing, two The two housings of the camera module are spaced apart.
  8. 如权利要求2所述的成像模组,其特征在于,所述成像模组包括连接器组件,所述连接器组件包括基板及设置在所述基板上的连接器,所述基板设置在所述连接器安装部上并与所述连接器安装部电性连接。 The imaging module of claim 2, wherein the imaging module comprises a connector assembly, the connector assembly comprising a substrate and a connector disposed on the substrate, the substrate being disposed on the The connector mounting portion is electrically connected to the connector mounting portion.
  9. 如权利要求2所述的成像模组,其特征在于,所述成像模组包括胶体,所述胶体粘接两个所述摄像模组。The imaging module of claim 2, wherein the imaging module comprises a glue body, and the glue body bonds the two camera modules.
  10. 如权利要求2所述的成像模组,其特征在于,所述摄像模组包括与另一个所述摄像模组相对的连接侧,两个所述摄像模组通过焊接所述连接侧固定连接。The imaging module of claim 2, wherein the camera module comprises a connecting side opposite to the other camera module, and the two camera modules are fixedly connected by soldering the connecting side.
  11. 如权利要求2所述的成像模组,其特征在于,所述成像模组包括罩体,两个所述摄像模组设置在所述罩体中且与所述罩体固定连接。The imaging module of claim 2, wherein the imaging module comprises a cover, and the two camera modules are disposed in the cover and fixedly connected to the cover.
  12. 如权利要求11所述的成像模组,其特征在于,所述罩体包括围绕两个所述摄像模组的框体及与所述框体顶部连接的顶盖,所述框体及所述顶盖与两个所述摄像模组固定连接。The imaging module of claim 11 , wherein the cover comprises a frame surrounding the two camera modules and a top cover connected to the top of the frame, the frame and the The top cover is fixedly connected to the two camera modules.
  13. 一种电子装置,其特征在于,包括如权利要求1-12任一项所述的成像模组。 An electronic device comprising the imaging module of any of claims 1-12.
PCT/CN2016/090062 2015-12-30 2016-07-14 Imaging module and electronic apparatus WO2017113751A1 (en)

Applications Claiming Priority (80)

Application Number Priority Date Filing Date Title
CN201511024922 2015-12-30
CN201511025532.1 2015-12-30
CN201521131513 2015-12-30
CN201521132821 2015-12-30
CN201511025532 2015-12-30
CN201511024922.7 2015-12-30
CN201521132821.7 2015-12-30
CN201521131513.2 2015-12-30
CN201620163024.3 2016-03-03
CN201610120876.9A CN107155041A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201610120898.5 2016-03-03
CN201620162897.2 2016-03-03
CN201610120867.XA CN107155040A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201620162944.3U CN205545560U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620162943.9U CN205545559U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201610120880.5 2016-03-03
CN201620162899.1 2016-03-03
CN201610120745.0A CN107155025A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201610120911.7A CN107155046A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201610120711.1A CN107155024A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201610120780.2 2016-03-03
CN201620162897.2U CN205566466U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620162763.0U CN205545552U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620163024.3U CN205545563U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620163009.9 2016-03-03
CN201620163035.1U CN205545565U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201610120876.9 2016-03-03
CN201610120468.3 2016-03-03
CN201620162720.2U CN205545550U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620163180.X 2016-03-03
CN201610120867.X 2016-03-03
CN201620162718.5U CN205545549U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620163154.7U CN205545575U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201610120775.1A CN106937033A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201610120468.3A CN107155021A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201620162899.1U CN205545557U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201610120714.5 2016-03-03
CN201620163152.8 2016-03-03
CN201620162720.2 2016-03-03
CN201620163142.4U CN205545573U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201620162944.3 2016-03-03
CN201620163154.7 2016-03-03
CN201610120898.5A CN107155043A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201610120880.5A CN107155042A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201620162941.X 2016-03-03
CN201610120777.0 2016-03-03
CN201620162868.6 2016-03-03
CN201610120777.0A CN107155029A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201620162941.XU CN205545558U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201620162943.9 2016-03-03
CN201610120775.1 2016-03-03
CN201620163142.4 2016-03-03
CN201620162728.9U CN205545551U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201610120714.5A CN106937031A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201610120772.8 2016-03-03
CN201620162868.6U CN205545555U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201610120778.5A CN106937034A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201620163009.9U CN205545562U (en) 2016-03-03 2016-03-03 Imaging module and electron device
CN201610120713.0A CN106937030A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201610120781.7 2016-03-03
CN201610120745.0 2016-03-03
CN201610120773.2A CN107155028A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201610120711.1 2016-03-03
CN201610120781.7A CN106937035A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201610120780.2A CN106937058A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201620162728.9 2016-03-03
CN201610120772.8A CN106937032A (en) 2015-12-30 2016-03-03 Imaging modules and electronic installation
CN201620163163.6 2016-03-03
CN201610120584.5 2016-03-03
CN201620163035.1 2016-03-03
CN201610120778.5 2016-03-03
CN201620162718.5 2016-03-03
CN201610120911.7 2016-03-03
CN201620163163.6U CN205647690U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201610120713.0 2016-03-03
CN201620162763.0 2016-03-03
CN201610120584.5A CN107155023A (en) 2016-03-03 2016-03-03 Imaging modules and electronic installation
CN201620163180.XU CN205545576U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201620163152.8U CN205545574U (en) 2015-12-30 2016-03-03 Imaging module and electron device
CN201610120773.2 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017113751A1 true WO2017113751A1 (en) 2017-07-06

Family

ID=59224421

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/CN2016/090062 WO2017113751A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic apparatus
PCT/CN2016/090057 WO2017113747A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic apparatus
PCT/CN2016/090064 WO2017113752A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090056 WO2017113746A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090060 WO2017113749A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090059 WO2017113748A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090061 WO2017113750A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/CN2016/090057 WO2017113747A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic apparatus
PCT/CN2016/090064 WO2017113752A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090056 WO2017113746A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090060 WO2017113749A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090059 WO2017113748A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device
PCT/CN2016/090061 WO2017113750A1 (en) 2015-12-30 2016-07-14 Imaging module and electronic device

Country Status (1)

Country Link
WO (7) WO2017113751A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109361877B (en) * 2018-12-25 2020-11-27 信利光电股份有限公司 Multi-camera module assembly and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203289497U (en) * 2013-01-23 2013-11-13 华晶科技股份有限公司 Portable electronic device
US20140212127A1 (en) * 2013-01-31 2014-07-31 Hon Hai Precision Industry Co., Ltd. Device allowing independent testing of dual camera module
CN204065527U (en) * 2014-08-29 2014-12-31 华晶科技股份有限公司 The lens assembly of tool collision prevention function
CN104834158A (en) * 2015-05-22 2015-08-12 南昌欧菲光电技术有限公司 Double-camera module group
CN104932174A (en) * 2015-06-25 2015-09-23 南昌欧菲光电技术有限公司 Double-camera module
CN104954654A (en) * 2015-07-03 2015-09-30 南昌欧菲光电技术有限公司 Double-camera module and camera shooting device
CN204707179U (en) * 2015-06-11 2015-10-14 华晶科技股份有限公司 Photographing module
CN204807890U (en) * 2015-06-25 2015-11-25 南昌欧菲光电技术有限公司 Two camera modules
CN105187697A (en) * 2015-08-04 2015-12-23 宁波舜宇光电信息有限公司 Multi-lens camera module one-piece bracket, multi-lens camera module and application of multi-lens camera module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277242B1 (en) * 2007-03-16 2007-10-02 Advanced Connection Technology Inc. Lens module
KR101140346B1 (en) * 2010-08-31 2012-05-03 엘지이노텍 주식회사 Dual camera device
CN104394304A (en) * 2014-11-11 2015-03-04 惠州Tcl移动通信有限公司 Camera assembling structure for electronic product
CN104333687B (en) * 2014-11-28 2017-12-19 广东欧珀移动通信有限公司 Double-camera device and its terminal device
CN104580857A (en) * 2014-12-25 2015-04-29 南昌欧菲光电技术有限公司 Camera module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203289497U (en) * 2013-01-23 2013-11-13 华晶科技股份有限公司 Portable electronic device
US20140212127A1 (en) * 2013-01-31 2014-07-31 Hon Hai Precision Industry Co., Ltd. Device allowing independent testing of dual camera module
CN204065527U (en) * 2014-08-29 2014-12-31 华晶科技股份有限公司 The lens assembly of tool collision prevention function
CN104834158A (en) * 2015-05-22 2015-08-12 南昌欧菲光电技术有限公司 Double-camera module group
CN204707179U (en) * 2015-06-11 2015-10-14 华晶科技股份有限公司 Photographing module
CN104932174A (en) * 2015-06-25 2015-09-23 南昌欧菲光电技术有限公司 Double-camera module
CN204807890U (en) * 2015-06-25 2015-11-25 南昌欧菲光电技术有限公司 Two camera modules
CN104954654A (en) * 2015-07-03 2015-09-30 南昌欧菲光电技术有限公司 Double-camera module and camera shooting device
CN105187697A (en) * 2015-08-04 2015-12-23 宁波舜宇光电信息有限公司 Multi-lens camera module one-piece bracket, multi-lens camera module and application of multi-lens camera module

Also Published As

Publication number Publication date
WO2017113752A1 (en) 2017-07-06
WO2017113750A1 (en) 2017-07-06
WO2017113749A1 (en) 2017-07-06
WO2017113747A1 (en) 2017-07-06
WO2017113748A1 (en) 2017-07-06
WO2017113746A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
CN106790792B (en) Imaging modules and mobile terminal
CN106937058A (en) Imaging modules and electronic installation
JP7059181B2 (en) Multi-lens camera module coupling stand, multi-lens camera module, and its use
US8159595B2 (en) Camera module having circuit component
JP5277105B2 (en) The camera module
WO2017148074A1 (en) Imaging module and electronic device
WO2021000161A1 (en) Lens module
WO2017113751A1 (en) Imaging module and electronic apparatus
WO2017148073A1 (en) Imaging module and electronic device
WO2017148068A1 (en) Imaging module and electronic device
WO2017148069A1 (en) Imaging module and electronic device
WO2017148070A1 (en) Imaging module and electronic device
CN107155020A (en) Imaging modules and electronic installation
WO2017148075A1 (en) Imaging module and electronic device
WO2017148072A1 (en) Imaging module and electronic device
CN107155041A (en) Imaging modules and electronic installation
CN107155035A (en) Imaging modules and electronic installation
WO2017148071A1 (en) Imaging module and electronic device
CN107155037A (en) Imaging modules and electronic installation
CN107155019A (en) Imaging modules and electronic installation
WO2022147839A1 (en) Circuit board assembly, camera module, and electronic device
CN107155032A (en) Imaging modules and electronic installation
CN107241539B (en) Imaging device assembly and electronic device
CN107155023A (en) Imaging modules and electronic installation
CN107155036A (en) Imaging modules and electronic installation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880548

Country of ref document: EP

Kind code of ref document: A1