WO2017113743A1 - 有机电致发光显示装置及其制备方法 - Google Patents

有机电致发光显示装置及其制备方法 Download PDF

Info

Publication number
WO2017113743A1
WO2017113743A1 PCT/CN2016/089906 CN2016089906W WO2017113743A1 WO 2017113743 A1 WO2017113743 A1 WO 2017113743A1 CN 2016089906 W CN2016089906 W CN 2016089906W WO 2017113743 A1 WO2017113743 A1 WO 2017113743A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
film transistor
emitting element
thin film
Prior art date
Application number
PCT/CN2016/089906
Other languages
English (en)
French (fr)
Inventor
辛龙宝
江元铭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/504,474 priority Critical patent/US10269886B2/en
Publication of WO2017113743A1 publication Critical patent/WO2017113743A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • Embodiments of the present invention relate to an organic electroluminescence display device and a method of fabricating the same.
  • An active matrix organic light emitting display has a current driven characteristic of an organic light emitting diode (OLED).
  • OLED organic light emitting diode
  • AMOLED active matrix organic light emitting display
  • TFTs thin film transistors
  • capacitors capacitors
  • an aperture ratio As display technology develops, The requirement for the aperture ratio is getting higher and higher.
  • the design of the top emission pixel is gradually presented in the high-end products, and the preparation of the display panel corresponding to the top emission pixel design has become a major challenge in the development of display technology.
  • Embodiments of the present invention provide an organic electroluminescence display device that forms a second thin film transistor on a first thin film transistor and is capable of emitting on a second thin film transistor, and a method of fabricating the same
  • the white light-emitting second light-emitting element changes the non-display area in the original organic electroluminescence display device into the display area, thereby improving the aperture ratio of the organic electroluminescence display device, thereby improving the display of the organic electroluminescence display device effect.
  • At least one embodiment of the present invention provides an organic electroluminescence display device including a substrate, a first thin film transistor disposed on the substrate, and disposed on the first thin film transistor a second thin film transistor, a first light emitting element electrically connected to a drain of the first thin film transistor, including a first electrode, a first light emitting layer and a second electrode, and a drain of the second thin film transistor
  • the electrically connected second light emitting element is disposed on the second thin film transistor and includes a third electrode, a second light emitting layer, and a fourth electrode, wherein the second light emitting element is configured to emit white light.
  • one of the first electrode and the second electrode is a reflective layer, and the other is a semi-transverse layer, thereby forming a microcavity structure.
  • the first electrode is disposed in the same layer as the gate of the second thin film transistor; and the second electrode and the second thin film transistor are The active layer is set in the same layer.
  • the microcavity structure further includes a fifth electrode disposed between the first electrode and the second electrode, the fifth electrode It is disposed in the same layer as the third electrode.
  • the first light emitting element includes a red light emitting element, a green light emitting element, and a blue light emitting element; and the organic electroluminescent display device further includes a light emitting unit
  • the light emitting unit includes a red light emitting unit corresponding to the red light emitting element, a green light emitting unit corresponding to the green light emitting element, a blue light emitting unit corresponding to the blue light emitting element, and a white light emitting corresponding to the second light emitting element unit.
  • the first light emitting element is a white light emitting element
  • the organic electroluminescent display device further includes a light emitting unit, wherein the light emitting unit includes the first a red light emitting unit of a light emitting element and a red color film, a green light emitting unit having a first light emitting element and a green color film, a blue light emitting unit having a first light emitting element and a blue color film, and a corresponding to the second light emitting element White light unit.
  • an organic electroluminescent display device further includes a first passivation layer disposed between the first thin film transistor and the second thin film transistor, disposed at the first passivation a first via in the layer, a projection of the second light emitting element perpendicularly projected on the first passivation layer covering the first via.
  • an organic electroluminescent display device further includes a second passivation layer disposed on the second thin film transistor, and a second via hole is disposed on the second passivation layer.
  • the third electrode is connected to the drain of the second thin film transistor through the second via.
  • a projection of the second light-emitting element perpendicularly projected on the second passivation layer covers the second via hole.
  • an organic electroluminescent display device further includes a capacitor disposed on the substrate, and a projection of the second illuminating element perpendicularly projected on a setting plane of the capacitor covers the capacitor .
  • the light emitting direction of the first light emitting element and the light emitting direction of the second light emitting element are the same.
  • At least one embodiment of the present invention also provides an organic electroluminescent display device
  • the method includes: providing a substrate; forming a first thin film transistor on the substrate; forming a second thin film transistor on the first thin film transistor; forming a first light emitting element electrically connected to a drain of the first thin film transistor
  • the first light emitting element includes a first electrode, a first light emitting layer, and a second electrode, which are disposed in a stacked manner; a second light emitting element electrically connected to a drain of the second thin film transistor, the second light emitting element being disposed And including a third electrode, a second luminescent layer, and a fourth electrode on the second thin film transistor; wherein the second illuminating element is configured to emit white light.
  • one of the first electrode and the second electrode is a reflective layer, and the other is a semi-transverse layer, thereby forming Microcavity structure.
  • the microcavity structure further includes a fifth electrode, and the fifth electrode and the third electrode are formed by a single patterning process.
  • a first patterning process is used to form a gate of the first electrode and the second thin film transistor; and the first patterning process is used to form the first a second electrode and an active layer of the second thin film transistor.
  • the method for fabricating an organic electroluminescence display device further includes: forming a first passivation layer between the first thin film transistor and the second thin film transistor, at the first A first via is formed on the passivation layer, and a projection of the second light emitting element perpendicularly projected on the first passivation layer covers the first via.
  • the method for fabricating an organic electroluminescence display device further includes: a second passivation layer on the second thin film transistor, and a second passivation layer on the second passivation layer a via hole, the third electrode being connected to a drain of the second thin film transistor through the second via hole.
  • a projection of the second illuminating element perpendicularly projected on the second passivation layer covers the second via.
  • the method for fabricating an organic electroluminescence display device further includes forming a capacitor, wherein one plate of the capacitor is disposed in the same layer as the gate or source of the first thin film transistor, and the other The plate is disposed in the same layer as the gate of the second thin film transistor, wherein a projection of the second light emitting element on a set plane of the capacitor covers the capacitor.
  • the light emitting direction of the first light emitting element and the light emitting direction of the second light emitting element are the same.
  • FIG. 1 is a schematic cross-sectional structural view of an organic electroluminescence display device according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of still another organic electroluminescent display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional structural view of still another organic electroluminescent display device according to an embodiment of the present invention.
  • 4a-4e are process diagrams of a method for fabricating an organic electroluminescence display device according to an embodiment of the present invention.
  • the present embodiment provides an organic electroluminescence display device that has a display function capable of emitting white light on a thin film transistor, so that an original non-display area on the organic electroluminescence display device has a display function, thereby The aperture ratio of the organic electroluminescence display device is improved, and the display effect of the organic electroluminescence display device is improved.
  • FIG. 1 is a schematic cross-sectional view showing an organic electroluminescent display device according to an embodiment of the present invention.
  • the organic electroluminescent display device includes a substrate 10, a first thin film transistor 20 disposed on the substrate 10, a second thin film transistor 30 disposed on the first thin film transistor 20, and a drain 21 of the first thin film transistor
  • An electrically connected first light-emitting element 40 comprising a first electrode 41, a first light-emitting layer 42 and a second electrode 43 disposed in a stacked manner; and a second light-emitting light electrically connected to the drain 34 of the second thin film transistor
  • the element 50 is disposed on the second thin film transistor 30 and includes a third electrode 51, a second luminescent layer 52, and a fourth electrode 53, wherein the second illuminating element 50 is configured to emit white light.
  • the second light-emitting element 50 emits white light to make the original non-display area a display area, thereby improving the aperture ratio of the organic electroluminescence display
  • one of the first electrode 41 and the second electrode 43 is a reflective layer, and the other is a semi-transverse layer, thereby forming a microcavity structure.
  • the light emitted by the first illuminating element is emitted from the electrode which is a transflective layer.
  • the first electrode 41 is a semi-transparent layer
  • the second electrode 43 is a reflective layer, thereby forming a microcavity structure between the first electrode 41 and the second electrode 43 so that the emitted light is of higher purity.
  • any one of the first electrode 41 and the second electrode 43 is a reflective electrode made of a reflective material, and the other is a transflective electrode made of a semi-transparent material.
  • the first electrode 41 is disposed in the same layer as the gate 31 of the second thin film transistor; the second electrode 43 is disposed in the same layer as the active layer 32 of the second thin film transistor.
  • FIG. 2 is a cross-sectional structural diagram of still another organic electroluminescent display device according to an embodiment of the present invention.
  • the microcavity structure further includes a fifth electrode 44 disposed between the first electrode 41 and the second electrode 43.
  • the microcavity structure refers to a structure having a thickness of a micrometer formed between a reflective layer and a half anti-transmissive layer, and the principle of enhancing the intensity of light is: light will The reflection between the reflective layer and the semi-transparent layer is continuously reflected. Due to the resonance, the light of a specific wavelength in the light finally emitted from the semi-transmissive layer is strengthened, and the enhanced wavelength is related to the thickness of the microcavity.
  • Different light-emitting units are used to emit light of different colors, and therefore different micro-cavities of different light-emitting units are required to be different in order to enhance light of different wavelengths in different light-emitting units.
  • the fifth electrode 44 is disposed in the same layer as the third electrode 51.
  • the original organic electroluminescent display device is The non-display area becomes a display area, thereby increasing the aperture ratio of the organic electroluminescence display device and improving the display effect of the organic electroluminescence display device.
  • a display area and a non-display area corresponding to the display device are disposed on the substrate, wherein a first thin film transistor is disposed at a position corresponding to the non-display area;
  • the pixel unit is set in the place.
  • the pixel unit includes a plurality of sub-pixels, such as a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the second thin film transistor 30 is disposed on the at least one first thin film transistor 20, and the second thin film transistor is disposed on the second thin film transistor A second light-emitting element 50 is formed on 30, and the second light-emitting element 50 is configured to emit white light so that the original non-display area becomes the display area.
  • the first light-emitting element 40 is formed in the process of forming the second thin film transistor 30, wherein the first electrode 41 of the first light-emitting element 40 is the same as the gate 31 of the second thin film transistor
  • the second electrode 43 is disposed in the same layer as the active layer 32 of the second thin film transistor 30; the fifth electrode 44 is disposed in the same layer as the third electrode 51, which simplifies the entire preparation process and saves the process steps.
  • the organic electroluminescent display device includes a plurality of sub-pixels, and the sub-pixels are a red sub-pixel, a green sub-pixel, a white sub-pixel, and a blue sub-pixel, respectively.
  • the organic electroluminescent display device includes a plurality of sub-pixels, and the sub-pixels are a red sub-pixel, a white sub-pixel, and a blue sub-pixel, respectively.
  • the pixel Pixels Per Inch, PPI
  • the pixel is improved by at least 1.5 times, so that the display effect of the organic electroluminescence display device provided by the embodiment is further improved. it is good.
  • the PPI refers to the number of pixels (Pixel) per inch.
  • the red sub-pixel and the blue sub-pixel The light emitted by the green sub-pixels is achieved by a filter.
  • the first light-emitting element 40 includes a red light-emitting element, a green light-emitting element, and a blue light-emitting element.
  • the organic electroluminescence display device further includes a light emitting unit including a red light emitting unit corresponding to the red light emitting element, a green light emitting unit corresponding to the green light emitting element, a blue light emitting unit corresponding to the blue light emitting element, and the second The white light emitting unit corresponding to the light emitting element 50.
  • the first light emitting element is a white light emitting element
  • the organic electroluminescent display device further includes a light emitting unit including a red light emitting unit having a first light emitting element and a red color film, having a first light emitting element and a green color film A green light emitting unit, a blue light emitting unit having a first light emitting element and a blue color film, and a white light emitting unit corresponding to the second light emitting element.
  • the sum of the thicknesses of the second electrode 43 and the fifth electrode 44 in the first light emitting element 40 can be adjusted.
  • the sum of the thicknesses of the second electrode 43 and the fifth electrode 44 in the first light-emitting element 40 may correspond to only the blue light-emitting unit to make the emitted blue light have higher purity, or may respectively correspond to two or three colors of light. unit.
  • the second electrode 43 and the fifth electrode 44 of different thicknesses are used, or an electrode of a certain thickness is further added to the first light-emitting element 40 to adjust the organic electroluminescent display device to emit different colors. Light.
  • the organic electroluminescent display device provided in this embodiment further includes a first passivation layer 23 disposed between the first thin film transistor 20 and the second thin film transistor 30.
  • a first passivation layer 23 disposed between the first thin film transistor 20 and the second thin film transistor 30.
  • an insulating layer 22 may be further included between the first thin film transistor 20 and the second thin film transistor 30.
  • a first via hole 24 is disposed on the insulating layer 22 and the first passivation layer 23, and a projection of the second light emitting element 50 perpendicularly projected on the first passivation layer 23 covers the first via hole 24.
  • the arrangement of the first vias 24 may facilitate the connection of other structures such that the wiring in the display device may be in communication with the layers.
  • the area corresponding to the first via hole 24 becomes a non-display area, resulting in a decrease in the aperture ratio of the display device.
  • the vertical projection formed on the first passivation layer 23 of the first light-emitting element 40 covers the first via hole 24, thereby avoiding the aperture ratio of the first via hole 24
  • the effect is that the area corresponding to the first via 24 is changed to the display area.
  • the organic electroluminescent display device provided in this embodiment further includes a second passivation layer 37 disposed on the second thin film transistor 30, and the second passivation layer 37 is provided with a second via hole 38, and the third electrode 51 The second via 38 is connected to the drain 34 of the second thin film transistor. By setting the second passivation layer The second thin film transistor 30 is protected by 37.
  • the projection of the second illuminating element 50 perpendicularly projected onto the second passivation layer 37 covers the second via 38.
  • the influence of the second via hole 38 on the aperture ratio is avoided, and the region corresponding to the second via hole 38 also becomes the display region.
  • the light-emitting direction of the first light-emitting element 40 and the light-emitting direction of the second light-emitting element 50 are the same.
  • the light emitted from the first light-emitting element 40 is emitted from the second electrode 43
  • the light emitted from the second light-emitting element 50 is emitted from the fourth electrode 53
  • the second electrode 43 and the fourth electrode 53 are both made of a transparent material. to make.
  • FIG. 3 is a schematic cross-sectional structural view of still another organic electroluminescent display device according to the embodiment.
  • the organic electroluminescent display device in this embodiment further includes a capacitor 60 disposed on the substrate 10, and the second light-emitting element is projected perpendicularly on the projection cover capacitor 60 on the set plane of the capacitor 60.
  • the display device provided in this embodiment is applied to a display device, the charging and discharging of the pixel circuit is realized by using a metal layer to realize storage of the capacitor.
  • the high PPI design faces the problem of insufficient capacitance. If the capacitance is increased by adding metal, the aperture ratio of the display device is lowered.
  • the display device provided in this embodiment can be used to make the aperture ratio of the display device unaffected by the capacitance.
  • the first plate 61 of the capacitor 60 and the gate 26 of the first thin film transistor (for example) Or the source 25) of the first thin film transistor is disposed in the same layer, and the second plate 62 is disposed in the same layer as the gate 31 of the second thin film transistor located above the first thin film transistor 20; wherein the second light emitting element is at the capacitor 60 Set the projection on the plane to cover the capacitor 60. That is, the aperture ratio of the display device is not affected by the capacitance by covering the capacitor with the second light-emitting element.
  • the projection of the second illuminating element perpendicularly projected on the set plane of the capacitor 60 covers the capacitor 60, thereby preventing the disposed capacitor 60 from affecting the aperture ratio of the display device.
  • the light-emitting direction of the first light-emitting element 40 and the light-emitting direction of the second light-emitting element 50 are the same.
  • the light emitted from the first light-emitting element 40 is emitted from the second electrode 43
  • the light emitted from the second light-emitting element 50 is emitted from the fourth electrode 53
  • the second electrode 43 and the fourth electrode 53 are both made of a transparent material. to make.
  • the embodiment provides a method for fabricating an organic electroluminescence display device, the method comprising: providing a substrate 10; forming a first thin film transistor 20 on the substrate 10; forming a second thin film transistor 30 on the first thin film transistor 20; forming a first light emitting element 40 electrically connected to the drain 21 of the first thin film transistor, the first light emitting element 40 includes a first electrode 41 and a first light emitting layer 42 stacked in a stack And a second electrode 43; forming a second light emitting element 50 electrically connected to the drain 34 of the second thin film transistor, the second light emitting element 50 being located on the second thin film transistor 30 and including the third electrode 51, the second light emitting layer 52, and The fourth electrode 53; wherein the second light emitting element 50 is configured to emit white light.
  • one of the first electrode 41 and the second electrode 43 is a reflective layer, and the other is a semi-transmissive layer, thereby forming a microcavity structure.
  • the microcavity structure further includes a fifth electrode 44, and the fifth electrode 44 and the third electrode 51 are formed by one patterning process.
  • the first electrode 41 and the gate 31 of the second thin film transistor are formed by one patterning process; the active layer 32 of the second electrode 43 and the second thin film transistor are formed by one patterning process.
  • the second light emitting element 50 includes the third electrode 51, the second light emitting layer 52, and the fourth electrode 53.
  • the aperture ratio of the organic electroluminescence display device is increased, and the display effect of the organic electroluminescence display device is improved.
  • the method for preparing the display device comprises the following steps:
  • Step 1 providing a substrate 10
  • Step 2 forming a first thin film transistor 20 on the substrate 10;
  • Step 3 forming a second thin film transistor 30 on the first thin film transistor 20 to form a first light emitting element 40 electrically connected to the drain 21 of the first thin film transistor, the first light emitting element 40 including the first electrode 41 stacked, a first luminescent layer 42 and a second electrode 43;
  • Step 4 forming a second light emitting element 50 electrically connected to the drain 34 of the second thin film transistor, the second light emitting element 50 being disposed on the second thin film transistor and including the third electrode 51, the second light emitting layer 52 and the fourth electrode 53. wherein the second illuminating element 50 is configured to emit white light.
  • Step 5 Forming a pixel defining layer 36.
  • the structure of the first thin film transistor 20 is prepared by a conventional method, wherein the gate electrode 26 of the first thin film transistor, the gate insulating layer 27 of the first thin film transistor, and the active layer of the first thin film transistor are prepared.
  • the first thin film transistor source 25, the first thin film transistor drain 21 and other processes can refer to the conventional preparation process, and will not be described herein.
  • an insulating layer 22 and a first passivation layer 23 are formed on the first thin film transistor 20 by a conventional method, and a first via hole 24 is formed on the insulating layer 22 and the first passivation layer 23.
  • a second thin film transistor 30 is formed on the first passivation layer 23
  • a second passivation layer 37 is formed on the second thin film transistor 30, and a second via hole is formed on the second passivation layer 37. 38.
  • the process of preparing the gate 31 of the second thin film transistor, the gate insulating layer 39 of the second thin film transistor, the active layer 32 of the second thin film transistor, the drain 34 of the second thin film transistor, and the like can be referred to conventional preparation. Process, no longer repeat here.
  • the first electrode 41 of the first light emitting element 40 is formed by one patterning process, and when the active layer 32 of the second thin film transistor is formed, the first light emitting process is used to form the first light emitting process.
  • the second electrode 43 in the element 40 is formed by one patterning process, and when the active layer 32 of the second thin film transistor is formed, the first light emitting process is used to form the first light emitting process.
  • a second light emitting element 50 electrically connected to the drain 34 of the second thin film transistor is formed.
  • the second light emitting element 50 includes a third electrode 51, a second light emitting layer 52, and a fourth electrode 53, wherein The two light emitting elements 50 are configured to emit white light.
  • the third electrode 51 is connected to the drain 34 of the second thin film transistor, and when the third electrode 51 is formed, the third electrode 43 of the first light emitting element 40 is formed by one patterning process.
  • the projection of the second light-emitting element 50 perpendicularly projected on the first passivation layer 23 covers the first via hole 24, and the projection of the second light-emitting element 50 perpendicularly projected on the second passivation layer 37 covers the second via hole 38.
  • a pixel defining layer 36 is formed on the second light emitting element and the first light emitting element 40. And the pixel defining layer 36 covers a portion of the third electrode 51, and the portion of the third electrode 51 not covered by the pixel defining layer 36 corresponds to the display region of the white sub-pixel.
  • the method for fabricating the organic electroluminescence display device provided by the embodiment further includes forming a capacitor on the substrate, and one plate of the capacitor is disposed in the same layer as the gate or source of the first thin film transistor, and the other plate is disposed. And being disposed in the same layer as the gate of the second thin film transistor; wherein the projection of the second light emitting element on the set plane of the capacitor covers the capacitance.
  • the organic electroluminescence display device provided in the embodiment improves the original non-display area of the organic electroluminescence display device into a display area by forming a light-emitting element on the original first thin film transistor.
  • the aperture ratio of the display device improves the display effect of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光显示装置及其制备方法。该有机电致发光显示装置包括基板(10),设置在所述基板(10)上的第一薄膜晶体管(20),设置在所述第一薄膜晶体管(20)上的第二薄膜晶体管(30),与所述第一薄膜晶体管(20)的漏极(21)电连接的第一发光元件(40),包括层叠设置的第一电极(41)、第一发光层(42)和第二电极(43),与所述第二薄膜晶体管(30)的漏极(34)电连接的第二发光元件(50),设置在第二薄膜晶体管(30)上并包括第三电极(51)、第二发光层(52)和第四电极(53),其中,所述第二发光元件(50)构造为发射白光。通过在第二薄膜晶体管(30)上形成第二发光元件(50),使非显示区域变成显示区域,提高了显示装置的开口率,进而改善了显示装置的显示效果。

Description

有机电致发光显示装置及其制备方法 技术领域
本发明的实施例涉及一种有机电致发光显示装置及其制备方法。
背景技术
有源矩阵有机发光显示器(AMOLED)具有有机发光二极管(OLED)所具有的电流驱动的特征。对于有源矩阵有机发光显示器(AMOLED),在设计像素(Pixel)时,通常设置多个薄膜晶体管(TFT)和多个电容,但是这样的结构设计会降低开口率,随着显示技术的发展,对开口率的要求越来越高。目前,顶发射像素的设计在高端产品中逐渐呈现,制备对应顶发射像素设计的显示面板也成为显示技术发展中的一大挑战。
为了降低OLED短路的风险,利用像素界定层来填补过孔处金属爬坡的结构设计是量产中常用的工艺,但这样又会带来开口率降低的问题。
发明内容
本发明的实施例提供了一种有机电致发光显示装置及其制备方法,该有机电致发光显示装置通过在第一薄膜晶体管上形成第二薄膜晶体管,且在第二薄膜晶体管上设置能够发射出白光的第二发光元件,使原来有机电致发光显示装置中的非显示区域变成显示区域,从而提高了有机电致发光显示装置的开口率,进而改善了有机电致发光显示装置的显示效果。
本发明的至少一个实施例提供了一种有机电致发光显示装置,该有机电致发光显示装置包括基板,设置在所述基板上的第一薄膜晶体管,设置在所述第一薄膜晶体管上的第二薄膜晶体管,与所述第一薄膜晶体管的漏极电连接的第一发光元件,包括层叠设置的第一电极、第一发光层和第二电极,与所述第二薄膜晶体管的漏极电连接的第二发光元件,设置在所述第二薄膜晶体管上并包括第三电极、第二发光层和第四电极,其中,所述第二发光元件构造为发射白光。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述第一电极与所述第二电极之一为反射层,另一个为半反半透层,由此形成微腔结构。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述第一电极与所述第二薄膜晶体管的栅极同层设置;所述第二电极与所述第二薄膜晶体管的有源层同层设置。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述微腔结构还包括设置在所述第一电极和所述第二电极之间的第五电极,所述第五电极与所述第三电极同层设置。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述第一发光元件包括红色发光元件、绿色发光元件和蓝色发光元件;所述有机电致发光显示装置还包括发光单元,所述发光单元包括与红色发光元件对应的红色发光单元、与绿色发光元件对应的绿色发光单元、与蓝色发光元件对应的蓝色发光单元以及与所述第二发光元件相对应的白色发光单元。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述第一发光元件为白光发光元件;所述有机电致发光显示装置还包括发光单元,所述发光单元包括具有第一发光元件和红色彩膜的红色发光单元、具有第一发光元件和绿色彩膜的绿色发光单元、具有第一发光元件和蓝色彩膜的蓝色发光单元以及与所述第二发光元件相对应的白色发光单元。
例如,本发明一实施例提供的有机电致发光显示装置,还包括设置在所述第一薄膜晶体管与所述第二薄膜晶体管之间的第一钝化层,设置在所述第一钝化层中的第一过孔,所述第二发光元件垂直投射在所述第一钝化层上的投影覆盖所述第一过孔。
例如,本发明一实施例提供的有机电致发光显示装置,还包括设置在所述第二薄膜晶体管上的第二钝化层,且所述第二钝化层上设置有第二过孔,所述第三电极穿过所述第二过孔与所述第二薄膜晶体管的漏极连接。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述第二发光元件垂直投射在所述第二钝化层上的投影覆盖所述第二过孔。
例如,本发明一实施例提供的有机电致发光显示装置,还包括设置在所述基板上的电容,且所述第二发光元件垂直投射在所述电容的设置平面上的投影覆盖所述电容。
例如,在本发明一实施例提供的有机电致发光显示装置中,所述第一发光元件的出光方向和所述第二发光元件的出光方向相同。
本发明的至少一个实施例还提供了一种有机电致发光显示装置的制备 方法,包括:提供基板;在所述基板上形成第一薄膜晶体管;在所述第一薄膜晶体管上形成第二薄膜晶体管;形成与所述第一薄膜晶体管的漏极电连接的第一发光元件,所述第一发光元件包括层叠设置的第一电极、第一发光层和第二电极;形成与所述第二薄膜晶体管的漏极电连接的第二发光元件,所述第二发光元件设置在所述第二薄膜晶体管上并包括第三电极、第二发光层和第四电极;其中,所述第二发光元件构造为发射白光。
例如,在本发明一实施例提供的有机电致发光显示装置的制备方法中,所述第一电极与所述第二电极之一为反射层,另一个为半反半透层,由此形成微腔结构。
例如,在本发明一实施例提供的有机电致发光显示装置的制备方法中,所述微腔结构还包括第五电极,采用一次构图工艺形成所述第五电极与所述第三电极。
例如,在本发明一实施例提供的有机电致发光显示装置的制备方法中,采用一次构图工艺形成所述第一电极与所述第二薄膜晶体管的栅极;采用一次构图工艺形成所述第二电极与所述第二薄膜晶体管的有源层。
例如,本发明一实施例提供的有机电致发光显示装置的制备方法,还包括:在所述第一薄膜晶体管与所述第二薄膜晶体管之间形成第一钝化层,在所述第一钝化层上形成第一过孔,所述第二发光元件垂直投射在所述第一钝化层上的投影覆盖所述第一过孔。
例如,本发明一实施例提供的有机电致发光显示装置的制备方法,还包括:在所述第二薄膜晶体管上的第二钝化层,且所述第二钝化层上设置有第二过孔,所述第三电极穿过所述第二过孔与所述第二薄膜晶体管的漏极连接。
例如,在本发明一实施例提供的有机电致发光显示装置的制备方法中,所述第二发光元件垂直投射在所述第二钝化层上的投影覆盖所述第二过孔。
例如,本发明一实施例提供的有机电致发光显示装置的制备方法,还包括形成电容,所述电容的一个极板与所述第一薄膜晶体管的栅极或源极同层设置,另一个极板与所述第二薄膜晶体管的栅极同层设置,其中,所述第二发光元件在所述电容的设置平面上的投影覆盖所述电容。
例如,在本发明一实施例提供的有机电致发光显示装置的制备方法中,所述第一发光元件的出光方向和所述第二发光元件的出光方向相同。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例提供的一种有机电致发光显示装置的截面结构示意图;
图2为本发明实施例提供的再一种有机电致发光显示装置的截面结构示意图;
图3为本发明实施例提供的又一种有机电致发光显示装置的截面结构示意图;
图4a~图4e为本发明实施例提供的有机电致发光显示装置的制备方法过程图。
附图标记:
10-基板;20-第一薄膜晶体管;30-第二薄膜晶体管;40-第一发光元件;50-第二发光元件;60-电容;
21-第一薄膜晶体管的漏极;22-绝缘层;23-第一钝化层;24-第一过孔;25-第一薄膜晶体管的源极;26-第一薄膜晶体管的栅极;27-第一薄膜晶体管的栅绝缘层;28-第一薄膜晶体管的有源层;
31-第二薄膜晶体管的栅极;32-第二薄膜晶体管的有源层;33-第二薄膜晶体管的源极;34-第二薄膜晶体管的漏极;36-像素界定层;37-第二钝化层;38-第二过孔;
41-第一电极;42-第一发光层;43-第二电极;44-第五电极;
51-第三电极;52-第二发光层;53-第四电极;
61-第一极板;62-第二极板。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的 前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例提供一种有机电致发光显示装置,该有机电致发光显示装置通过在薄膜晶体管上设置能够发射白光的结构,使有机电致发光显示装置上原来的非显示区域具有显示功能,从而提高了该有机电致发光显示装置的开口率,进而改善了该有机电致发光显示装置的显示效果,为了方便对本发明技术方案的理解,下面结合附图及具体实施例对本发明的技术方案进行详细地说明。
图1示出了本发明实施例提供的有机电致发光显示装置的截面结构示意图。该有机电致发光显示装置包括基板10,设置在该基板10上的第一薄膜晶体管20,设置在该第一薄膜晶体管20上的第二薄膜晶体管30;与该第一薄膜晶体管的漏极21电连接的第一发光元件40,该第一发光元件40包括层叠设置的第一电极41、第一发光层42和第二电极43;与第二薄膜晶体管的漏极34电连接的第二发光元件50,设置在第二薄膜晶体管30上并包括第三电极51、第二发光层52和第四电极53,其中,该第二发光元件50构造为发射白光。第二发光元件50发出白光,使原来的非显示区域成为了显示区域,提高了该有机电致发光显示装置的开口率,改善了该有机电致发光显示装置的显示效果。
例如,为了提高光的提取效率,增大显示装置的亮度,第一电极41与第二电极43之一为反射层,另一个为半反半透层,由此形成微腔结构(microcavity structure),第一发光元件发出的光线从为半反半透层的电极出射。例如,第一电极41为半反半透层,第二电极43为反射层,从而在第一电极41与第二电极43之间形成微腔结构,以使出射的光线纯度更高。例如,第一电极41和第二电极43中的任意一个是由反射材料制作的反射电极,另一个为半反半透材料制作的半反半透电极。
例如,如图1所示,第一电极41与第二薄膜晶体管的栅极31同层设置;第二电极43与第二薄膜晶体管的有源层32同层设置。
例如,图2为本发明实施例提供的再一种有机电致发光显示装置的截面结构示意图,该微腔结构还包括设置在第一电极41和第二电极43之间的第五电极44,由此来改变微腔结构的厚度。微腔结构是指在一反射层和一半反半透层间形成的厚度为微米量级的结构,其加强光的强度的原理为:光线会 在反射层和半反半透层间不断反射,由于谐振作用,最终从半反半透层射出的光线中特定波长的光会得到加强,而该得到加强的波长与微腔厚度有关。不同发光单元用于发出不同颜色的光,因此需要不同发光单元的微腔厚度不同,以使不同发光单元中不同波长的光获得增强。
例如,如图2所示,该第五电极44与第三电极51同层设置。
在本实施例中,通过在第一薄膜晶体管20上形成第二薄膜晶体管30,且在第二薄膜晶体管30上形成能够发射出白光的第二发光元件50,使原来有机电致发光显示装置中的非显示区域变成显示区域,从而提高了有机电致发光显示装置的开口率,改善了有机电致发光显示装置的显示效果。
为了方便对本发明实施例提供的有机电致发光显示装置的结构的描述,下面结合图1和图2对其结构进行详细的说明。
目前,在有机电致发光显示装置的结构中,基板上对应的有显示装置的显示区域与非显示区域,其中,在对应非显示区域的地方,设置了第一薄膜晶体管;在对应显示区的地方设置了像素单元。像素单元包含多个子像素,例如红色子像素、绿色子像素和蓝色子像素。
在本发明实施例提供的有机电致发光显示装置中,为了提高有机电致发光显示装置的开口率,通过在至少一个第一薄膜晶体管20上设置第二薄膜晶体管30,并在第二薄膜晶体管30上形成第二发光元件50,该第二发光元件50构造为发射白光,从而使原来的非显示区域成为显示区域。此外,在整个制备过程中,在形成第二薄膜晶体管30的过程中形成了第一发光元件40,其中,该第一发光元件40中的第一电极41与第二薄膜晶体管的栅极31同层设置;第二电极43与第二薄膜晶体管30的有源层32同层设置;第五电极44与第三电极51同层设置,简化了整个制备过程,节省了工艺步骤。
例如,在本实施例中,该有机电致发光显示装置包括多个子像素,且该子像素分别为红色子像素、绿色子像素、白色子像素及蓝色子像素。或者,有机电致发光显示装置包括多个子像素,且子像素分别为红色子像素、白色子像素及蓝色子像素。
例如,采用上述红色、蓝色、白色、绿色子像素混杂排列的方式,像素(Pixels Per Inch,PPI)提高了至少1.5倍,从而使得本实施例提供的有机电致发光显示装置的显示效果更好。需要说明的是,PPI是指每英寸所具有的像素(Pixel)的个数。例如,在实现上述效果时,红色子像素、蓝色子像素 及绿色子像素发射出的光线是通过滤光片来实现的。
例如,在本实施例提供的有机电致发光显示装置中,第一发光元件40包括红色发光元件、绿色发光元件和蓝色发光元件。有机电致发光显示装置还包括发光单元,该发光单元包括与红色发光元件对应的红色发光单元、与绿色发光元件对应的绿色发光单元、与蓝色发光元件对应的蓝色发光单元以及与第二发光元件50相对应的白色发光单元。
例如,第一发光元件为白光发光元件,该有机电致发光显示装置还包括发光单元,发光单元包括具有第一发光元件和红色彩膜的红色发光单元、具有第一发光元件和绿色彩膜的绿色发光单元、具有第一发光元件和蓝色彩膜的蓝色发光单元以及与第二发光元件相对应的白色发光单元。
例如,为了调节微腔结构的厚度,可以调节第一发光元件40中第二电极43和第五电极44的厚度之和。例如,第一发光元件40中第二电极43和第五电极44的厚度之和,可以只对应蓝色发光单元以使出射的蓝光纯度更高,也可以分别对应两种或三种颜色的发光单元。对应不同的发光单元时,采用不同厚度之和的第二电极43和第五电极44,或者在第一发光元件40中再增加一定厚度的电极,来调节有机电致发光显示装置发出不同颜色的光线。
例如,本实施例提供的有机电致发光显示装置,还包括设置在第一薄膜晶体管20与第二薄膜晶体管30之间的第一钝化层23。例如,在第一薄膜晶体管20与第二薄膜晶体管30之间还可以包括绝缘层22。且在该绝缘层22和第一钝化层23上设置有第一过孔24,第二发光元件50垂直投射在第一钝化层23上的投影覆盖第一过孔24。
例如,该第一过孔24的设置可以方便其他结构的连接,使显示装置中的布线可以隔层连通。但是,在此情形下,该第一过孔24对应的区域会变成非显示区域,从而导致显示装置的开口率降低。
在本实施例中,为了提高显示装置的开口率,第一发光元件40在第一钝化层23上形成的垂直投影覆盖该第一过孔24,从而避免了第一过孔24对开口率造成的影响,将第一过孔24对应的区域变成了显示区域。
本实施例提供的有机电致发光显示装置还包括设置在第二薄膜晶体管30上的第二钝化层37,且该第二钝化层37上设置有第二过孔38,第三电极51穿过第二过孔38与第二薄膜晶体管的漏极34连接。通过设置第二钝化层 37对第二薄膜晶体管30进行保护。
例如,第二发光元件50垂直投射在第二钝化层37上的投影覆盖第二过孔38。从而避免了第二过孔38对开口率造成的影响,将第二过孔38对应的区域也变成显示区域。
例如,如图2所示,第一发光元件40的出光方向和第二发光元件50的出光方向相同。例如,当第一发光元件40发出的光线从第二电极43出射时,第二发光元件50发出的光线从第四电极53出射,且第二电极43和第四电极53均由透明材料制作而成。
图3为本实施例提供的又一种的有机电致发光显示装置的截面结构示意图。本实施例中的有机电致发光显示装置还包括设置在基板10上的电容60,且第二发光元件垂直投射在电容60的设置平面上的投影覆盖电容60。本实施例提供的显示装置应用于显示器件中时,利用金属层实现像素电路的充放电来实现电容的存储。目前,高PPI设计面临电容不够的问题,如果通过增加金属来增加电容,会降低显示装置的开口率。
例如,可以采用本实施例提供的显示装置,使显示装置的开口率不受电容的影响,例如,如图3所示,电容60的第一极板61与第一薄膜晶体管的栅极26(或第一薄膜晶体管的源极25)同层设置,第二极板62与位于第一薄膜晶体管20上方的第二薄膜晶体管的栅极31同层设置;其中,第二发光元件在电容60的设置平面上的投影覆盖电容60。即通过采用第二发光元件覆盖电容的方式,使显示装置的开口率不受电容得影响。例如,第二发光元件垂直投射在电容60的设置平面上的投影覆盖电容60,从而避免了设置的电容60影响到显示装置的开口率。
例如,如图3所示,第一发光元件40的出光方向和第二发光元件50的出光方向相同。例如,当第一发光元件40发出的光线从第二电极43出射时,第二发光元件50发出的光线从第四电极53出射,且第二电极43和第四电极53均由透明材料制作而成。
实施例二
本实施例提供一种有机电致发光显示装置的制备方法,该方法包括:提供基板10;在基板10上形成第一薄膜晶体管20;在第一薄膜晶体管20上形成第二薄膜晶体管30;形成与第一薄膜晶体管的漏极21电连接的第一发光元件40,第一发光元件40包括层叠设置的第一电极41、第一发光层42 和第二电极43;形成与第二薄膜晶体管的漏极34电连接的第二发光元件50,第二发光元件50位于第二薄膜晶体管30上并包括第三电极51、第二发光层52和第四电极53;其中,第二发光元件50构造为发射白光。
例如,第一电极41与第二电极43之一为反射层,另一个为半反半透层,由此形成微腔结构。
例如,微腔结构还包括第五电极44,采用一次构图工艺形成第五电极44与第三电极51。
例如,采用一次构图工艺形成第一电极41与第二薄膜晶体管的栅极31;采用一次构图工艺形成第二电极43与第二薄膜晶体管的有源层32。
在本实施例中,通过在第二薄膜晶体管30上形成第二发光元件50,该第二发光元件50包括第三电极51、第二发光层52和第四电极53。由此增加了有机电致发光显示装置的开口率,改善了有机电致发光显示装置的显示效果。
为了方便对本实施例提供的显示装置的制备方法的理解,下面结合附图4a~图4e对本实施例提供的显示装置的制备方法进行详细地说明。该显示装置的制备方法包括如下步骤:
步骤一:提供基板10;
步骤二:在基板10上形成第一薄膜晶体管20;
步骤三:在第一薄膜晶体管20上形成第二薄膜晶体管30,形成与第一薄膜晶体管的漏极21电连接的第一发光元件40,第一发光元件40包括层叠设置的第一电极41、第一发光层42和第二电极43;
步骤四:形成与第二薄膜晶体管的漏极34电连接的第二发光元件50,第二发光元件50设置在第二薄膜晶体管上并包括第三电极51、第二发光层52和第四电极53,其中,第二发光元件50构造为发射白光。
步骤五:形成像素界定层36。
如图4a所示,采用常规的方法制备第一薄膜晶体管20的结构,其中,制备该第一薄膜晶体管的栅极26、第一薄膜晶体管的栅绝缘层27、第一薄膜晶体管的有源层28、第一薄膜晶体管的源极25、第一薄膜晶体管的漏极21等工艺均可参考常规的制备工艺,在此不再赘述。
如图4b所示,采用常规的方法在第一薄膜晶体管20上形成绝缘层22和第一钝化层23,并在绝缘层22和第一钝化层23上形成第一过孔24。
如图4c所示,在第一钝化层23上形成第二薄膜晶体管30,在第二薄膜晶体管30上形成第二钝化层37,并在第二钝化层37上形成第二过孔38。同样地,制备该第二薄膜晶体管的栅极31、第二薄膜晶体管的栅绝缘层39、第二薄膜晶体管的有源层32、第二薄膜晶体管的漏极34等工艺均可参考常规的制备工艺,在此不再赘述。并在形成第二薄膜晶体管的栅极31时,采用一次构图工艺形成第一发光元件40的第一电极41,在形成第二薄膜晶体管的有源层32时,采用一次构图工艺形成第一发光元件40中的第二电极43。
如图4d所示,形成与第二薄膜晶体管的漏极34电连接的第二发光元件50,第二发光元件50包括第三电极51、第二发光层52和第四电极53,其中,第二发光元件50构造为发射白光。第三电极51与第二薄膜晶体管的漏极34连接,并在形成第三电极51时,采用一次构图工艺形成第一发光元件40的第三电极43。第二发光元件50垂直投射在第一钝化层23上的投影覆盖第一过孔24,第二发光元件50垂直投射在第二钝化层37上的投影覆盖第二过孔38。
如图4e所示,在第二发光元件和第一发光元件40上形成像素界定层36。且该像素界定层36覆盖部分第三电极51,该第三电极51未被像素界定层36覆盖的部分与白色子像素的显示区域对应。
例如,本实施例提供的有机电致发光显示装置的制备方法,还包括在基板上形成电容,该电容的一个极板与第一薄膜晶体管的栅极或源极同层设置,另一个极板与位于第二薄膜晶体管的栅极同层设置;其中,第二发光元件在电容的设置平面上的投影覆盖电容。
通过上述描述可以看出,本实施例提供的有机电致发光显示装置通过在原来的第一薄膜晶体管上形成发光元件,使有机电致发光显示装置原来的非显示区域变成显示区域,从而提高了显示装置的开口率,进而改善了显示装置的显示效果。
显然,本领域的技术人员可以对本发明的实施例进行各种改动和变型而不脱离本公开的精神和范围。如果对本公开进行的修改和变型落于本公开权利要求及等同技术的范围之内,则本公开也包含这些改动和变型。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年12月31日递交的中国专利申请第 201511032464.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种有机电致发光显示装置,包括:
    基板,
    设置在所述基板上的第一薄膜晶体管,
    设置在所述第一薄膜晶体管上的第二薄膜晶体管,
    与所述第一薄膜晶体管的漏极电连接的第一发光元件,包括层叠设置的第一电极、第一发光层和第二电极,
    与所述第二薄膜晶体管的漏极电连接的第二发光元件,设置在所述第二薄膜晶体管上并包括第三电极、第二发光层和第四电极,其中,
    所述第二发光元件构造为发射白光。
  2. 如权利要求1所述的有机电致发光显示装置,其中,所述第一电极与所述第二电极之一为反射层,另一个为半反半透层,由此形成微腔结构。
  3. 如权利要求2所述的有机电致发光显示装置,其中,所述第一电极与所述第二薄膜晶体管的栅极同层设置;所述第二电极与所述第二薄膜晶体管的有源层同层设置。
  4. 如权利要求2所述的有机电致发光显示装置,其中,所述微腔结构还包括设置在所述第一电极和所述第二电极之间的第五电极,所述第五电极与所述第三电极同层设置。
  5. 如权利要求1-4中任一项所述的有机电致发光显示装置,其中,
    所述第一发光元件包括红色发光元件、绿色发光元件和蓝色发光元件;
    所述有机电致发光显示装置还包括发光单元,所述发光单元包括与红色发光元件对应的红色发光单元、与绿色发光元件对应的绿色发光单元、与蓝色发光元件对应的蓝色发光单元以及与所述第二发光元件相对应的白色发光单元。
  6. 如权利要求1-4中任一项所述的有机电致发光显示装置,其中,
    所述第一发光元件为白光发光元件;
    所述有机电致发光显示装置还包括发光单元,所述发光单元包括具有第一发光元件和红色彩膜的红色发光单元、具有第一发光元件和绿色彩膜的绿色发光单元、具有第一发光元件和蓝色彩膜的蓝色发光单元以及与所述第二发光元件相对应的白色发光单元。
  7. 如权利要求1-6中任一项所述的有机电致发光显示装置,还包括设置在所述第一薄膜晶体管与所述第二薄膜晶体管之间的第一钝化层,设置在所述第一钝化层中的第一过孔,所述第二发光元件垂直投射在所述第一钝化层上的投影覆盖所述第一过孔。
  8. 如权利要求1-6中任一项所述的有机电致发光显示装置,还包括设置在所述第二薄膜晶体管上的第二钝化层,且所述第二钝化层上设置有第二过孔,所述第三电极穿过所述第二过孔与所述第二薄膜晶体管的漏极连接。
  9. 如权利要求8所述的有机电致发光显示装置,其中,所述第二发光元件垂直投射在所述第二钝化层上的投影覆盖所述第二过孔。
  10. 如权利要求1-9中任一项所述的有机电致发光显示装置,还包括设置在所述基板上的电容,且所述第二发光元件垂直投射在所述电容的设置平面上的投影覆盖所述电容。
  11. 如权利要求1-10中任一项所述的有机电致发光显示装置,其中,所述第一发光元件的出光方向和所述第二发光元件的出光方向相同。
  12. 一种有机电致发光显示装置的制备方法,包括:
    提供基板;
    在所述基板上形成第一薄膜晶体管;
    在所述第一薄膜晶体管上形成第二薄膜晶体管;
    形成与所述第一薄膜晶体管的漏极电连接的第一发光元件,所述第一发光元件包括层叠设置的第一电极、第一发光层和第二电极;
    形成与所述第二薄膜晶体管的漏极电连接的第二发光元件,所述第二发光元件设置在所述第二薄膜晶体管上并包括第三电极、第二发光层和第四电极;其中,
    所述第二发光元件构造为发射白光。
  13. 如权利要求12所述的有机电致发光显示装置的制备方法,其中,所述第一电极与所述第二电极之一为反射层,另一个为半反半透层,由此形成微腔结构。
  14. 如权利要求13所述的有机电致发光显示装置的制备方法,其中,所述微腔结构还包括第五电极,采用一次构图工艺形成所述第五电极与所述第三电极。
  15. 如权利要求12所述的有机电致发光显示装置的制备方法,其中,
    采用一次构图工艺形成所述第一电极与所述第二薄膜晶体管的栅极;
    采用一次构图工艺形成所述第二电极与所述第二薄膜晶体管的有源层。
  16. 如权利要求12-15中任一项所述的有机电致发光显示装置的制备方法,还包括:
    在所述第一薄膜晶体管与所述第二薄膜晶体管之间形成第一钝化层,在所述第一钝化层上形成第一过孔,所述第二发光元件垂直投射在所述第一钝化层上的投影覆盖所述第一过孔。
  17. 如权利要求12-16中任一项所述的有机电致发光显示装置的制备方法,还包括:
    在所述第二薄膜晶体管上的第二钝化层,且所述第二钝化层上设置有第二过孔,所述第三电极穿过所述第二过孔与所述第二薄膜晶体管的漏极连接。
  18. 如权利要求17所述的有机电致发光显示装置的制备方法,其中,所述第二发光元件垂直投射在所述第二钝化层上的投影覆盖所述第二过孔。
  19. 如权利要求12-18任一项所述的有机电致发光显示装置的制备方法,还包括形成电容,所述电容的一个极板与所述第一薄膜晶体管的栅极或源极同层设置,另一个极板与所述第二薄膜晶体管的栅极同层设置,其中,所述第二发光元件在所述电容的设置平面上的投影覆盖所述电容。
  20. 如权利要求12-19中任一项所述的有机电致发光显示装置的制备方法,其中,所述第一发光元件的出光方向和所述第二发光元件的出光方向相同。
PCT/CN2016/089906 2015-12-31 2016-07-13 有机电致发光显示装置及其制备方法 WO2017113743A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/504,474 US10269886B2 (en) 2015-12-31 2016-07-13 Organic electroluminescent display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511032464.1A CN105428392A (zh) 2015-12-31 2015-12-31 一种有机电致发光显示装置及其制备方法
CN201511032464.1 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113743A1 true WO2017113743A1 (zh) 2017-07-06

Family

ID=55506467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089906 WO2017113743A1 (zh) 2015-12-31 2016-07-13 有机电致发光显示装置及其制备方法

Country Status (3)

Country Link
US (1) US10269886B2 (zh)
CN (1) CN105428392A (zh)
WO (1) WO2017113743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327782A4 (en) * 2015-07-23 2019-04-17 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE AND MANUFACTURING METHOD AND DISPLAY DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428392A (zh) 2015-12-31 2016-03-23 京东方科技集团股份有限公司 一种有机电致发光显示装置及其制备方法
CN110121783B (zh) * 2017-12-07 2023-11-28 京东方科技集团股份有限公司 具有调光区的显示面板、显示装置、调节显示面板显示对比度的方法、以及制造显示面板的方法
KR102564720B1 (ko) * 2018-04-17 2023-08-08 주식회사 디비하이텍 유기 발광 다이오드 표시 장치용 신호 제어 유닛, 이의 제조 방법 및 이를 포함하는 유기 발광 다이오드 소자
US11335789B2 (en) 2018-09-26 2022-05-17 Intel Corporation Channel structures for thin-film transistors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026611A1 (en) * 2008-07-29 2010-02-04 Hitachi Displays, Ltd. Display Device
CN102087829A (zh) * 2009-12-07 2011-06-08 索尼公司 显示器件、驱动显示器件的方法和电子装置
CN103928488A (zh) * 2013-06-19 2014-07-16 上海天马微电子有限公司 有机发光面板和装置、及其制备、短路检测和短路修复方法
CN105428392A (zh) * 2015-12-31 2016-03-23 京东方科技集团股份有限公司 一种有机电致发光显示装置及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903209B2 (en) * 2001-11-02 2011-03-08 Samsung Electronics Co., Ltd. Reflection-transmission type liquid crystal display device and method for manufacturing the same
CN101154677A (zh) * 2006-09-27 2008-04-02 群康科技(深圳)有限公司 主动矩阵式有机电激发光显示器及其制造方法
WO2013008765A1 (en) * 2011-07-08 2013-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting device, and method for manufacturing the light-emitting module
KR101837625B1 (ko) * 2011-11-10 2018-03-13 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN103022079B (zh) * 2012-12-12 2015-05-20 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
JP6509596B2 (ja) * 2014-03-18 2019-05-08 株式会社半導体エネルギー研究所 半導体装置
KR102268135B1 (ko) * 2014-11-07 2021-06-23 삼성디스플레이 주식회사 유기발광 표시장치
CN104716167B (zh) * 2015-04-13 2017-07-25 京东方科技集团股份有限公司 一种有机电致发光显示器件、其制作方法及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026611A1 (en) * 2008-07-29 2010-02-04 Hitachi Displays, Ltd. Display Device
CN102087829A (zh) * 2009-12-07 2011-06-08 索尼公司 显示器件、驱动显示器件的方法和电子装置
CN103928488A (zh) * 2013-06-19 2014-07-16 上海天马微电子有限公司 有机发光面板和装置、及其制备、短路检测和短路修复方法
CN105428392A (zh) * 2015-12-31 2016-03-23 京东方科技集团股份有限公司 一种有机电致发光显示装置及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327782A4 (en) * 2015-07-23 2019-04-17 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE AND MANUFACTURING METHOD AND DISPLAY DEVICE

Also Published As

Publication number Publication date
CN105428392A (zh) 2016-03-23
US20180226463A1 (en) 2018-08-09
US10269886B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2017113743A1 (zh) 有机电致发光显示装置及其制备方法
JP6335496B2 (ja) アレイ基板及びその製造方法、ディスプレイ
JP6286941B2 (ja) 発光装置、発光装置の製造方法、電子機器
WO2016062240A1 (zh) 一种顶发射oled器件及其制作方法、显示设备
US9425245B2 (en) Array substrate and method for manufacturing the same, display device
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2019196336A1 (zh) Oled面板
JP2005197011A (ja) 表示装置及びその製造方法
KR20190068102A (ko) 유기발광표시장치
US9362342B2 (en) Light-emitting element display device
US20140319475A1 (en) Organic light emitting diode display and manufacturing method thereof
WO2016095335A1 (zh) Oled显示装置及其制造方法
WO2023280110A1 (zh) 显示基板及其制备方法
WO2017012316A1 (zh) 显示基板及其制备方法以及显示装置
WO2020224143A1 (zh) 显示面板及其制作方法
WO2016074372A1 (zh) Amoled显示面板及其制作方法、显示装置
JP6724973B2 (ja) 発光装置及び電子機器
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
US20220059808A1 (en) Method for preparing organic electroluminescent device, and organic electroluminescent device and display apparatus
TW201419615A (zh) 薄膜電晶體陣列面板及包含其之有機發光二極體顯示器
JP6731748B2 (ja) 表示装置
WO2021097982A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
KR102382005B1 (ko) 유기 발광 표시 장치
KR101904466B1 (ko) 유기 발광 표시 장치 및 그 제조방법
WO2016090747A1 (zh) Oled显示装置及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15504474

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880541

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16880541

Country of ref document: EP

Kind code of ref document: A1