WO2017111442A1 - 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법 - Google Patents

미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법 Download PDF

Info

Publication number
WO2017111442A1
WO2017111442A1 PCT/KR2016/014963 KR2016014963W WO2017111442A1 WO 2017111442 A1 WO2017111442 A1 WO 2017111442A1 KR 2016014963 W KR2016014963 W KR 2016014963W WO 2017111442 A1 WO2017111442 A1 WO 2017111442A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
steel sheet
plating layer
hot press
weight
Prior art date
Application number
PCT/KR2016/014963
Other languages
English (en)
French (fr)
Inventor
황현석
손일령
김종상
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP16879309.9A priority Critical patent/EP3396006B1/en
Priority to JP2018532709A priority patent/JP6661772B2/ja
Priority to US16/064,785 priority patent/US20190003031A1/en
Priority to CN201680075864.7A priority patent/CN108431286B/zh
Publication of WO2017111442A1 publication Critical patent/WO2017111442A1/ko
Priority to US18/385,162 priority patent/US20240082902A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment

Definitions

  • the present invention relates to a hot press molded article in which microcracks are suppressed and a method of manufacturing the same.
  • Hot press molding is a method in which a steel sheet is softened at high temperature and processed into a complex shape at a high temperature by using a property of high ductility. At the same time, by quenching, the structure of the steel sheet is transformed into martensite to produce a product having a high strength and precise shape.
  • the galvanized steel sheet having a zinc-based plating layer is a steel material improved corrosion resistance by using the self-sacrificing corrosion resistance of zinc.
  • patent document 1 U.S. Patent No. 6296805 proposed the technique which performs Al type plating on the steel plate surface on the steel plate surface.
  • Patent Document 1 while Al-plated to maintain the plating layer in the heating furnace while suppressing the oxidation reaction on the surface of the steel sheet and by using the passivation coating of Al, there is an advantage to increase the corrosion resistance, Al-plated steel sheet There was a problem that the corrosion resistance is greatly inferior.
  • micro-crack may act as a starting point for propagation of cracks in the steel sheet, or may act as a cause of fatigue cracking, and thus may have a high possibility of impairing durability of components.
  • One of the objects of the present invention is to provide a hot press-molded product in which microcracks are suppressed and a method of manufacturing the same.
  • the zinc-based plating layer is Sb, Sn and Bi
  • At least one element selected from the group consisting of: 0.05-2.0 wt% in total, the balance Zn and inevitable impurities, and at least 70 wt% of the at least one element selected from the group consisting of Sb, Sn and Bi is zinc-based
  • the step of preparing a zinc-based galvanized steel sheet the first step of heating the zinc-based galvanized steel sheet to a temperature of 640 ⁇ 680 °C at a rate of 3.5 ⁇ 4.2 °C / sec, the first heated Secondary heating the zinc-based plated steel sheet to a temperature of 900 to 930 ° C.
  • a hot press-formed product including a zinc-based plating layer containing 0.05 to 2.0% by weight of elements or more in total.
  • the hot press-molded product according to an embodiment of the present invention is effectively suppressed from propagating the microcracks in the plating layer generated during the hot press molding to the steel sheet has an advantage of excellent durability.
  • FIG. 1 shows the observation of the microcracks of Comparative Example 1
  • FIG. 2 shows the observation of the microcracks of Example 1
  • FIG. 3 shows the observation of the microcracks of Example 3
  • FIG. 4 shows the comparative example. Observing and showing the micro cracks of 4, Figure 5 is to observe and show the micro cracks of the invention example 5.
  • FIG. 6 (a) is the GDS data analyzing the content of Al, Mg and Sn according to the plating layer depth of Inventive Example 1
  • Figure 6 (b) of Al, Mg and Sn according to the plating layer depth of Inventive Example 3 Content is GDS data analyzed
  • Figure 6 (c) is GDS data analyzed the content of Al, Mg and Sn according to the plating layer depth of the invention example 5.
  • the present inventors have studied in depth to provide a hot press molded article suppressed microcracks, and as a result, a zinc-based plated steel sheet having a zinc-based plated layer containing an appropriate amount of grain boundary segregation element is used as a material for hot press molding,
  • the present invention has been completed by finding that it is possible to effectively prevent the propagation of microcracks in the plating layer to the base steel sheet by appropriately controlling the heating conditions during hot press molding and concentrating the grain boundary segregation elements in the plating layer surface layer.
  • the hot press-formed product which is an aspect of the present invention, is manufactured by hot pressing a zinc-based plated steel sheet including a base steel sheet and a zinc-based plating layer formed on a surface of the base steel sheet.
  • the type of base steel sheet is not particularly limited, and may be, for example, a hot rolled steel sheet or a cold rolled steel sheet used as a base of a conventional galvanized steel sheet.
  • a hot rolled steel sheet has a large amount of oxidation scale on the surface, such an oxidation scale has a problem of lowering the plating adhesion by deteriorating the plating adhesion, so that the hot rolled steel sheet has been removed from the oxidation scale in advance by the acid solution More preferred.
  • the zinc-based plating layer is formed on one side or both sides of the base steel sheet, the zinc-based plating layer is alloyed during heat treatment for hot press molding is changed to an alloyed zinc-based plating layer.
  • the zinc-based plating layer preferably contains at least one element selected from the group consisting of Sb, Sn and Bi: 0.05 to 2.0% by weight in total, the balance Zn and unavoidable impurities.
  • Sb, Sn, and Bi are grain boundary segregation elements and are elements that inhibit internal oxide formation due to grain boundary penetration of oxygen in a high temperature working environment.
  • the sum of the contents of the elements is preferably 0.05% by weight or more, and more preferably 0.3% by weight or more.
  • the sum of the sum of the elements is preferably 2.0% by weight or less, and more preferably 1.5% by weight or less.
  • the zinc-based plating layer may further include Mg: 0.1 to 5.0% by weight and Al: 0.1 to 7.5% by weight.
  • Mg is an element which plays a role of improving the corrosion resistance of a hot press-molded product.
  • the upper limit of magnesium content is 5.0 weight%, It is more preferable that it is 4.0 weight%, It is still more preferable that it is 3.0 weight%.
  • Al serves to suppress Mg oxide dross. If the content is too low, the effect of preventing Mg oxidation in the plating bath is insignificant. Therefore, it is preferable that the minimum of aluminum content is 0.1 weight%, and it is more preferable that it is 1.5 weight%. However, when the content is excessive, there is a problem in that the plating bath temperature must be increased. If the plating bath temperature is high, it causes corrosion of the plating equipment. Therefore, the upper limit of the aluminum content is preferably 7.5% by weight, more preferably 7.2% by weight.
  • the Fe alloying degree of the alloyed zinc-based plating layer formed by alloying the zinc-based plating layer is preferably 30 to 85%, more preferably 45 to 78%, even more preferably 50 to 75%. .
  • the Fe alloying degree satisfies the above range, it is possible to effectively prevent the surface cracks during hot press, there is an advantage that the corrosion resistance by the sacrificial method is excellent. If the Fe alloying degree is less than 30%, a portion of the Zn-concentrated region in the plating layer is present in the liquid phase and may cause liquid embrittlement cracking during processing. On the other hand, when Fe alloying degree exceeds 85%, there exists a possibility that corrosion resistance may fall.
  • the hot press-formed product of the present invention is characterized in that at least 70% by weight of at least one element selected from the group consisting of Sb, Sn, and Bi is concentrated in an area within 3 ⁇ m from the surface of the galvanized zinc-based plating layer.
  • the specific method for measuring the content of one or more elements selected from the group consisting of Sb, Sn, and Bi concentrated in a region within 3 ⁇ m from the surface of the galvanized zinc-based plating layer is not particularly limited.
  • the following methods can be used. That is, after cutting the hot press-formed product vertically, the distribution of one or more elements selected from the group consisting of Sb, Sn and Bi in the cross section of the plated layer was measured by using a glow discharge spectrometry (GDS).
  • GDS glow discharge spectrometry
  • Sb which is concentrated in an area within 3 ⁇ m from the surface of the galvanized zinc-based plating layer by integrating the area in the graph of the content of one or more elements selected from the group consisting of Sb, Sn and Bi with respect to the depth from the surface of the plating layer,
  • the content of one or more elements selected from the group consisting of Sn and Bi can be measured.
  • the hot press molded article of the present invention described above can be produced by various methods, the production method is not particularly limited. However, it can be manufactured by the following method as an embodiment.
  • a zinc-based plated steel sheet having the alloy composition described above is prepared.
  • a specific method for preparing a zinc-based galvanized steel sheet is not particularly limited, and may be manufactured according to a conventional method of manufacturing a hot-dip galvanized steel sheet, and may be, for example, possessed in a zinc-based plating bath having the above-described composition. After immersing the steel sheet, it is possible to prepare a zinc-based galvanized steel sheet by cooling it.
  • the inert gas may be at least one selected from the group consisting of nitrogen (N 2 ), argon (Ar), and helium (He).
  • the Sb, Sn, and Bi not only help to distribute more homogeneously in the zinc-based plating bath, but also are obtained by the plating operation described later. It helps to more evenly distribute Sb, Sn and Bi in the interconnect plating layer, and also helps to thicken Sb, Sn and Bi on the surface of the alloyed zinc-based plating layer of the resulting hot press formed product. This is because the more homogeneous the distribution of Sb, Sn and Bi in the plating layer before heating for hot press forming, the easier the surface concentration of Sb, Sn and Bi is.
  • the supply of inert gas is preferably maintained for at least 1 hour, more preferably at least 3 hours.
  • the plated zinc-based galvanized steel sheet is first heated to form a molded article.
  • the zinc of the plated layer is alloyed with ferrous iron before oxidizing in the air, thereby increasing the melting point, and thus is sufficient to impart the zinc content of the plated layer in a subsequent heating process.
  • the average heating rate is 3.5-4.2 degreeC / sec. If the temperature is less than 3.5 ° C / sec, the rise time is long, and the melting point increase effect due to the alloying may be delayed, resulting in excessive oxidation of zinc. On the other hand, if the temperature is higher than 4.2 ° C / sec, the zinc on the surface may be higher than the alloying of the material. There is a fear that the surface is first melted to deepen the surface oxidation of the plating layer.
  • primary heating end temperature is 640-680 degreeC. If the temperature is less than 650 ° C., the diffusion coefficient in the plating layer may be low due to the low temperature, so that the plating layer may not be uniformly alloyed. On the other hand, if the temperature exceeds 680 ° C., the plating layer may be liquefied beyond the melting point of the zinc delta and zinc may be vaporized. This may cause loss of the plating layer.
  • the first heated zinc-based galvanized steel sheet is secondly heated. This step is performed to suppress fine cracks by preventing the intergranular oxidation by oxygen segregated at the grain boundaries by adding the internally inhibited substances that are sufficiently transformed into the Delta phase to the Fe-alpha stably.
  • the average heating rate is preferably 1.1 to 1.6 deg. C / sec. If the temperature is less than 1.1 ° C / sec, the alloying time to Fe-alpha is longer, and there is a concern of grain boundary oxidation by oxygen than the grain boundary segregation element. There is a concern that the plating layer liquefaction occurs, the quality of the uniform surface.
  • secondary heating end temperature is 900-930 degreeC. If the temperature is less than 900 ° C, sufficient austenite transformation of the material may not be achieved, and thus, it may be difficult to secure the strength of the final product. If the temperature is higher than 930 ° C, the plating layer may be liquefied to suppress fine cracks caused by the grain boundary element added. Will fall.
  • the secondary heated zinc-based galvanized steel sheet is kept constant for 1 to 5 minutes at the secondary heating end temperature. If the holding time is less than 1 minute, it may be difficult to secure sufficient time for the transformation of the austenite of the material due to the lack of the total heating time. On the other hand, if the holding time is longer than 5 minutes, the zinc content in the plating layer is reduced due to excessive alloying of the plating layer. It leads to deterioration of corrosion resistance.
  • the secondary heated zinc-based galvanized steel sheet is molded by a mold and quenched at the same time.
  • molding and quenching by a mold are enough according to the usual hot press molding method, this is not specifically limited in this invention.
  • a low carbon cold rolled steel sheet having a thickness of 0.8 mm, a width of 100 mm, and a length of 200 mm was prepared as a holding steel plate as a test piece for plating, and then the holding steel plate was immersed in acetone and ultrasonically washed to remove foreign substances such as rolling oil present on the surface. Subsequently, after performing a 750 ° C. reducing atmosphere heat treatment performed to ensure mechanical properties of the steel sheet at a general hot dip plating site, a plated steel material was manufactured by immersing in a zinc-based plating bath having the composition shown in Table 1 below. Thereafter, each of the prepared plated steels was gas wiped to adjust the plated adhesion amount to 70 g / m 2 per one side, and cooled at a rate of 12 ° C./sec.
  • each hot press-formed product was cut vertically, and the distribution of grain boundary segregation elements in the plating layer was measured by GDS analysis, and the results are shown in Table 2 together.
  • the specific measuring method is as above-mentioned.
  • FIG. 1 is observed and shown the micro cracks of Comparative Example 1
  • Figure 2 is observed and shown the micro cracks of Inventive Example 1
  • Figure 3 is observed and shown the micro cracks of Inventive Example 3
  • Figure 4 is The micro cracks of Comparative Example 4 were observed and shown
  • FIG. 5 illustrates the micro cracks of Inventive Example 5.
  • Figure 6 (a) is GDS data analyzing the content of Al, Mg and Sn according to the plating layer depth of Inventive Example 1
  • Figure 6 (b) is Al, Mg and according to the plating layer depth of Inventive Example 3
  • Figure 6 (c) is GDS data analyzing the content of Al, Mg and Sn according to the plating layer depth of the invention example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

소지강판 및 상기 소지강판의 표면에 형성된 아연계 도금층을 포함하는 아연계 도금강판을 열간 프레스 성형하여 제조되는 열간 프레스 성형품에 있어서, 상기 아연계 도금층은 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소: 합계 0.05~2.0중량%, 잔부 Zn 및 불가피한 불순물을 포함하며, 상기 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 70중량% 이상은 상기 아연계 도금층이 합금화되어 형성된 상기 열간 프레스 성형품의 합금화 아연계 도금층의 표면으로부터 3μm 이내의 영역에 농화된 열간 프레스 성형품과 이를 제조하는 방법이 개시된다.

Description

미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법
본 발명은 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법에 관한 것이다.
최근, 자동차의 경량화를 위해 고강도강의 활용이 증가하고 있으나, 이러한 고강도강은 상온에서 가공시 쉽게 마모되거나 파단되는 문제가 있다. 또한, 가공시 스프링 백의 현상도 발생함에 따라 정밀한 치수가공이 어려워 복잡한 제품의 성형이 어렵다. 이에 따라, 고강도강을 가공하기 위한 바람직한 방법으로서, 열간 프레스 성형(Hot Press Forming, HPF)이 적용되고 있다.
열간 프레스 성형(HPF)은 강판이 고온에서는 연질화 되고, 고연성이 되는 성질을 이용하여 고온에서 복잡한 형상으로 가공을 하는 방법으로서, 보다 구체적으로 강판을 오스테나이트 영역 이상으로 가열한 상태에서 가공과 동시에 급냉을 실시함으로써 강판의 조직을 마르텐사이트로 변태시켜 고강도의 정밀한 형상을 가진 제품을 만들 수 있는 방법이다.
다만, 강재를 고온으로 가열할 경우에는 강재 표면에 부식이나 탈탄 등과 같은 현상이 발생할 우려가 있는데, 이를 방지하기 위해 열간 프레스 성형을 위한 소재로서 표면에 아연계 또는 알루미늄계 도금층이 형성된 도금 강재가 많이 사용된다. 특히 아연계 도금층을 갖는 아연도금강판은 아연의 자기희생방식성을 이용하여 내식성을 향상시킨 강재이다.
그러나, 이러한 도금 강재를 열간 프레스 성형하는 경우에 있어서, 금형과 도금층이 직접 맞닿아 표면 마찰이 심한 심가공 부위에서 도금층에 크랙이 발생되고, 도금층에 발생된 크랙을 따라 소지강판 표면에까지 미세한 균열을 발생하는 문제가 발견되었다.
이와 같은 문제를 해결하기 위해서 특허문헌 1(미국 등록특허공보 제6296805호)에서는 강판 표면에 강판 표면에 Al계 도금을 실시하는 기술을 제안하였다. 상기 특허문헌 1이 제안한 바와 같이, Al계 도금을 실시하여 가열로에서 도금층이 유지되면서 강판 표면의 산화 반응을 억제하고 Al의 부동태 피막 형성을 이용함으로써, 내식성을 증대시키는 장점이 있지만, Al도금강판은 내식성이 크게 열위되는 문제가 있었다.
이와 같은 문제를 해결하기 위하여, Zn 도금 열간 프레스 강판에 관한 연구가 재조명되어 진행되고 있고 있으나, 도금 강재가 900를 넘는 고온 작업환경과 열간 프레스 성형시 합금화된 Zn-Fe 합금화층과 다이스 사이의 마찰에 의한 스트레스로 인하여 소지강판의 표면까지 미세크랙(micro-crack)이 발생하는 문제가 있다. 이러한 미세크랙은 소지강판에서 크랙이 전파되는 시작점으로 작용하거나, 피로균열을 일으키는 원인으로 작용할 수 있어 부품의 내구성을 저해할 소지가 높아 문제가 있다.
본 발명의 목적 중 하나는, 미세크랙이 억제된 열간 프레스 성형품과 이를 제조하는 방법을 제공하는 것이다.
본 발명의 일 측면은, 소지강판 및 상기 소지강판의 표면에 형성된 아연계 도금층을 포함하는 아연계 도금강판을 열간 프레스 성형하여 제조되는 열간 프레스 성형품에 있어서, 상기 아연계 도금층은 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소: 합계 0.05~2.0중량%, 잔부 Zn 및 불가피한 불순물을 포함하며, 상기 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 70중량% 이상은 상기 아연계 도금층이 합금화되어 형성된 상기 열간 프레스 성형품의 합금화 아연계 도금층의 표면으로부터 3μm 이내의 영역에 농화된 열간 프레스 성형품을 제공한다.
본 발명의 다른 일 측면은, 아연계 도금강판을 준비하는 단계, 상기 아연계 도금강판을 3.5~4.2℃/sec의 속도로 640~680℃의 온도까지 1차 가열하는 단계, 상기 1차 가열된 아연계 도금강판을 1.1~1.6℃/sec의 속도로 900~930℃의 온도까지 2차 가열하는 단계, 상기 2차 가열된 아연계 도금강판을 1~5분 간 항온 유지하는 단계, 및 상기 항온 유지된 아연계 도금강판을 금형에 의해 성형함과 동시에 급냉하는 단계를 포함하고, 상기 아연계 도금강판은 소지강판 및 상기 소지강판의 표면에 형성되고, Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소를 합계로 0.05~2.0중량% 포함하는 아연계 도금층을 포함하는 열간 프레스 성형품의 제조방법을 제공한다.
본 발명의 여러 효과 중 하나로서, 본 발명의 일 실시예에 따른 열간 프레스 성형품은 열간 프레스 성형시 발생하는 도금층 내 미세크랙이 소지강판으로 전파되는 것이 효과적으로 억제되어 내구성이 우수한 장점이 있다.
다만, 본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 비교예 1의 미세 크랙을 관찰하여 나타낸 것이고, 도 2는 발명예 1의 미세 크랙을 관찰하여 나타낸 것이며, 도 3은 발명예 3의 미세 크랙을 관찰하여 나타낸 것이고, 도 4는 비교예 4의 미세 크랙을 관찰하여 나타낸 것이며, 도 5는 발명예 5의 미세 크랙을 관찰하여 나타낸 것이다.
도 6의 (a)는 발명예 1의 도금층 깊이에 따른 Al, Mg 및 Sn의 함량을 분석한 GDS 데이터이고, 도 6의 (b)는 발명예 3의 도금층 깊이에 따른 Al, Mg 및 Sn의 함량을 분석한 GDS 데이터이며, 도 6의 (c)는 발명예 5의 도금층 깊이에 따른 Al, Mg 및 Sn의 함량을 분석한 GDS 데이터이다.
본 발명자들은 미세크랙이 억제된 열간 프레스 성형품을 제공하기 위해 깊이 있게 연구하였으며, 그 결과, 적정량의 입계 편석 원소가 함유된 아연계 도금층을 가지는 아연계 도금강판을 열간 프레스 성형용 소재로 이용하되, 열간 프레스 성형시 가열 조건을 적절히 제어하여 상기 입계 편석 원소를 도금층 표층에 농화시킴으로써, 도금층 내 미세크랙이 소지강판으로 전파되는 것을 효과적으로 차단할 수 있음을 알아내고 본 발명을 완성하기에 이르렀다.
이하, 본 발명의 일 측면인 열간 프레스 성형품에 대하여 상세히 설명한다.
본 발명의 일 측면인 열간 프레스 성형품은, 소지강판 및 상기 소지강판의 표면에 형성된 아연계 도금층을 포함하는 아연계 도금강판을 열간 프레스 성형하여 제조된다.
본 발명에서는 소지강판의 종류에 대해서는 특별히 한정하지 않으며, 예를 들면, 통상의 아연계도금강판의 소지로 사용되는 열연강판 또는 냉연강판일 수 있다. 다만, 열연강판의 경우 그 표면에 다량의 산화 스케일을 가지며, 이러한 산화 스케일은 도금 밀착성을 저하시켜 도금 품질을 저하시키는 문제가 있으므로, 산 용액에 의해 미리 산화 스케일을 제거한 열연강판을 소지로 함이 보다 바람직하다.
한편, 아연계 도금층은 소지강판의 일면 또는 양면에 형성되며, 상기 아연계 도금층은 열간 프레스 성형을 위한 열처리시 합금화되어 합금화 아연계 도금층으로 변화된다.
아연계 도금층은, Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소: 합계 0.05~2.0중량%, 잔부 Zn 및 불가피한 불순물을 포함하는 것이 바람직하다.
Sb, Sn 및 Bi는 입계편석원소로써, 고온의 작업 환경에서 산소의 입계 침투에 의한 내부 산화물 형성을 억제하는 역할을 하는 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 상기 원소들의 함량의 합이 0.05중량% 이상인 것이 바람직하고, 0.3중량% 이상인 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 도금층 표면에 형성되는 알루미늄 산화막 형성을 방해하여 알루미늄의 배리어 역할을 저해할 우려가 있으며, 그 함량 증가에 비해 효과가 떨어져 경제성이 저하되는 문제가 있다. 따라서, 상기 원소들의 합량의 합은 2.0중량% 이하인 것이 바람직하고, 1.5중량% 이하인 것이 보다 바람직하다.
일 예에 따르면, 아연계 도금층은, Mg: 0.1~5.0 중량% 및 Al: 0.1~7.5중량%를 더 포함할 수 있다.
Mg는 열간 프레스 성형품의 내식성을 향상시키는 역할을 하는 원소이다. 본 발명에서 이러한 효과를 나타내기 위해서는 0.1중량% 이상 포함하는 것이 바람직하고, 1중량% 이상 포함하는 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 도금욕 내 Mg 산화에 의한 도금욕 드로스 발생의 문제가 있다. 따라서, 마그네슘 함량의 상한은 5.0중량%인 것이 바람직하고, 4.0중량%인 것이 보다 바람직하며, 3.0중량%인 것이 보다 더 바람직하다.
Al은 Mg 산화물 드로스를 억제하는 역할을 한다. 만약, 그 함량이 지나치게 낮을 경우 도금욕 내 Mg 산화 방지 효과가 미미하다. 따라서, 알루미늄 함량의 하한은 0.1중량%인 것이 바람직하고, 1.5중량%인 것이 보다 바람직하다. 다만, 그 함량이 과다할 경우, 도금욕 온도를 높여야하는 문제가 있다. 도금욕 온도가 높으면 도금설비의 침식 등을 유발하게 된다. 따라서, 알루미늄 함량의 상한은 7.5중량%인 것이 바람직하고, 7.2중량%인 것이 보다 바람직하다.
일 예에 따르면, 아연계 도금층이 합금화되어 형성된 합금화 아연계 도금층의 Fe 합금화도는 30~85%인 것이 바람직하고, 45~78%인 것이 보다 바람직하며, 50~75%인 것이 보다 더 바람직하다. Fe 함금화도가 상기의 범위를 만족할 경우, 열간 프레스 중 표면 균열을 효과적으로 방지할 수 있으며, 희생 방식에 의한 내식 특성이 우수해지는 장점이 있다. 만약, Fe 합금화도가 30% 미만인 경우에는 도금층 내 일부 Zn이 농화된 영역이 액상으로 존재하여 가공시 액상 취화 균열을 유발할 수 있다. 한편, Fe 합금화도가 85%를 초과하는 경우에는 내식성이 저하될 우려가 있다.
본 발명의 열간 프레스 성형품은, Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 70중량% 이상이 합금화 아연계 도금층의 표면으로부터 3μm 이내의 영역에 농화되어 있는 것을 특징으로 한다.
상기와 같이 Sb, Sn 및 Bi가 합금화 아연계 도금층의 표면에 다량 농화되어 있을 경우, 산소가 도금층 표면에서 침투하여 입계 편석을 일으키는 것보다 먼저 Sb, Sn 및 Bi가 도금층 표면에 자리잡음으로써, 내부 산화물 형성을 억제하여 도금층에서 입계 크랙이 발생하는 것을 방지하며, 이를 통해 소지 부재로의 마이크로 크랙의 전파를 차단할 수 있다. 더욱이, 마이크로 크랙은 금형과 도금층의 마찰이 극심한 부위에서 주로 발생되는데, 표면에 농화된 Sb, Sn 및 Bi의 산화물은 금형과 도금층 간 마찰 계수를 줄여 마이크로 크랙의 발생 자체를 감소시켜 열간 프레스 성형품의 내구성을 보다 향상시킬 수 있다.
한편, 본 발명에서는 합금화 아연계 도금층의 표면으로부터 3μm 이내의 영역에 농화된 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 함량을 측정하는 구체적인 방법에 대해서는 특별히 한정하지 않으나, 예를 들면, 다음와 같은 방법을 이용할 수 있다. 즉, 열간 프레스 성형품을 수직으로 절단한 후, 글로우방전분광분석기(GDS, Glow Discharge Emission Spectrometry)을 이용하여 도금층 단면에서의 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 분포를 측정한 후, 도금층 표면으로부터의 깊이에 대한 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 함량에 관한 그래프에서 그 면적을 적분함으로써 합금화 아연계 도금층의 표면으로부터 3μm 이내의 영역에 농화된 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 함량을 측정할 수 있다.
이상에서 설명한 본 발명의 열간 프레스 성형품은 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 그 일 구현예로써 다음과 같은 방법에 의하여 제조될 수 있다.
이하, 본 발명의 다른 일 측면인 내구성이 우수한 열간 프레스 성형품의 제조방법에 대하여 상세히 설명한다.
먼저, 전술한 합금 조성을 가지는 아연계 도금강판을 준비한다. 본 발명에서는 아연계 도금강판을 준비하는 구체적인 방법에 대해서는 특별히 한정하지 않으며, 통상적인 용융 아연계 도금강판의 제조방법에 따라 제조할 수 있으며, 예를 들어, 상술한 조성을 가지는 아연계 도금욕에 소지강판을 침지한 후, 이를 냉각함으로써 아연계 도금강판을 준비할 수 있다.
다만, 본 발명에서 목적하는 효과를 보다 극대화하기 위해서는, 아연계 도금욕에 소지강판을 침지하기 전, 미리 아연계 도금욕 중 비활성 가스를 공급하여 버블링(Bubbling)을 실시함이 바람직하다. 이때, 비활성 가스는 질소(N2), 아르곤(Ar) 및 헬륨(He)으로 이루어진 군으로부터 선택된 1종 또는 2종 이상일 수 있다.
이와 같이 도금을 수행함에 앞서, 아연계 도금욕 내 버블링을 실시할 경우, Sb, Sn 및 Bi가 아연계 도금욕 내 보다 균질하게 분포시키는데 도움이 될 뿐만 아니라, 후술할 도금 작업에 의해 얻어지는 아연계 도금층 내 Sb, Sn 및 Bi를 보다 고르게 분포시키는데 도움이 되며, 결과적으로 얻어지는 열간 프레스 성형품의 합금화 아연계 도금층의 표면에 Sb, Sn 및 Bi를 농화시키는데에도 도움이 된다. 이는 열간 프레스 성형을 위한 가열 전 도금층 내 Sb, Sn 및 Bi의 분포가 균질할수록 Sb, Sn 및 Bi의 표면 농화가 용이하기 때문이다.
한편, 상기와 같은 효과를 얻기 위해서는, 비활성 가스의 공급은 1시간 이상 유지되는 것이 바람직하며, 3시간 이상 유지되는 것이 보다 바람직하다. 한편, 비활성 가스의 공급 시간이 늘어날수록 도금욕 내 성분을 고르게 분포시키는데 보다 유리하므로, 그 상한에 대해서는 특별히 한정하지 않는다.
다음으로, 도금된 아연계 도금강판을 성형품으로 가공하기 위해 1차 가열한다. 본 단계는 도금층의 아연이 대기중에서 산화하기 전에 소지철과 합금화 함으로써 용융점을 높여 이후 가열되는 공정에서 도금층의 아연함량을 충분히 부여하기 위해 실시되는 단계이다.
1차 가열시, 평균 가열 속도는 3.5~4.2℃/sec인 것이 바람직하다. 만약, 3.5℃/sec 미만인 경우, 상승시간이 길어져 합금화에 의한 용융점상승효과가 지연되어 아연의 과도한 산화가 일어날 우려가 있으며, 반면, 4.2℃/sec를 초과할 경우 소재의 합금화보다 표면의 아연이 먼저 용융되어 도금층의 표면 산화가 심화될 할 우려가 있다.
1차 가열시, 1차 가열종료온도는 640~680℃인 것이 바람직하다. 만약, 650℃ 미만인 경우, 낮은 온도로 인해 도금층내 확산계수가 낮아 도금층의 균일한 합금화가 되지 않을 우려가 있으며, 반면, 680℃를 초과할 경우 아연 Delta상의 융점을 넘어서 도금층이 액상화되어 아연이 기화하여 도금층의 손실을 야기할 수 있다.
다음으로, 1차 가열된 아연계 도금강판을 2차 가열한다. 본 단계는 충분히 Delta상으로 변화된 도금층을 안정적으로 Fe-alpha상으로 변화시키면서 첨가한 내부산화억제 물질들이 입계에 먼저 편석되어 산소에 의한 입계산화를 막아 미세크랙을 억제하기 위해 실시되는 단계이다.
2차 가열시, 평균 가열 속도는 1.1~1.6℃/sec인 것이 바람직하다. 만약, 1.1℃/sec 미만인 경우, Fe-alpha상으로의 합금화 시간이 길어져 입계편석 원소보다 산소에 의한 입계산화의 우려가 있으며, 반면, 1.6℃/sec를 초과할 경우 고온의 도금층 표면에서 부분적인 도금층 액화가 발생하여 분균일한 표면에 의한 품질 우려가 있다.
2차 가열시, 2차 가열종료온도는 900~930℃인 것이 바람직하다. 만약, 900℃ 미만인 경우, 소재의 충분한 오스테나이트 변태가 이루어지지 못해 최종제품의 강도확보에 어려움이 있으며, 930℃를 초과할 경우 도금층이 모두 액상화되어 첨가한 입계산화원소에 의한 미세크랙 억제효과가 떨어지게 된다.
다음으로, 2차 가열된 아연계 도금강판을 2차 가열종료온도에서 1~5분간 항온 유지한다. 만약, 유지 시간이 1분 미만일 경우 총 가열시간의 부족으로 소재의 오스테이나이트 변태의 충분한 시간확보가 어려울 우려가 있으며, 반면, 5분을 초과할 경우 도금층의 과도한 합금화 발생으로 도금층내 아연함량의 저하로 인한 내식성의 저하를 가져온다.
다음으로, 2차 가열된 아연계 도금강판을 금형에 의해 성형함과 동시에 급냉한다. 이때, 금형에 의한 성형 및 급냉은 통상의 열간 프레스 성형 방법에 의하면 충분하므로, 본 발명에서는 이를 특별히 한정하지 않는다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
도금용 시험편으로 두께 0.8mm, 폭 100mm, 길이 200mm인 저탄소 냉연강판을 소지강판으로 준비한 후, 상기 소지강판을 아세톤에 침지하고 초음파 세척하여 표면에 존재하는 압연유 등의 이물질을 제거하였다. 이후, 일반 용융도금 현장에서 강판의 기계적 특성 확보를 위하여 실시하는 750℃ 환원 분위기 열처리를 실시한 후, 하기 표 1의 조성을 갖는 아연계 도금욕에 침지하여 도금 강재를 제조하였다. 이후, 제조된 각각의 도금 강재를 가스 와이핑하여 도금 부착량을 편면당 70g/m2으로 조절하였으며, 12℃/sec의 속도로 냉각하였다.
이후, 냉각된 각각의 도금 강재를 하기 표 2의 조건으로 가열한 후, 열간 프레스 성형하여 열간 프레스 성형품을 얻었다.
이후, 각각의 열간 프레스 성형품을 수직으로 절단하고, GDS 분석을 통해 도금층 내 입계 편석 원소의 분포를 측정하였으며, 그 결과를 하기 표 2에 함께 나타내었다. 구체적인 측정 방법은 전술한 바와 같다.
이후, 성형 중 인장과 표면 마찰이 가장 심한 부위에서의 미세크랙 최대 깊이를 측정하였으며, 그 결과를 하기 표 2에 함께 나타내었다.
Figure PCTKR2016014963-appb-T000001
Figure PCTKR2016014963-appb-T000002
표 2를 참조할 때, 본 발명의 조건을 모두 만족하는 발명예 1 내지 10의 경우 미세 크랙의 최대 깊이가 10μm 이하로 억제되었음을 확인할 수 있다.
한편, 도 1은 비교예 1의 미세 크랙을 관찰하여 나타낸 것이고, 도 2는 발명예 1의 미세 크랙을 관찰하여 나타낸 것이며, 도 3은 발명예 3의 미세 크랙을 관찰하여 나타낸 것이고, 도 4는 비교예 4의 미세 크랙을 관찰하여 나타낸 것이며, 도 5는 발명예 5의 미세 크랙을 관찰하여 나타낸 것이다. 도 1 내지 도 5를 참조하면, 발명예들의 경우, 도금층 내 미세크랙이 소지강판으로 전파되는 것이 효과적으로 차단되었음을 확인할 수 있다.
한편, 도 6의 (a)는 발명예 1의 도금층 깊이에 따른 Al, Mg 및 Sn의 함량을 분석한 GDS 데이터이고, 도 6의 (b)는 발명예 3의 도금층 깊이에 따른 Al, Mg 및 Sn의 함량을 분석한 GDS 데이터이며, 도 6의 (c)는 발명예 5의 도금층 깊이에 따른 Al, Mg 및 Sn의 함량을 분석한 GDS 데이터이다.

Claims (7)

  1. 소지강판 및 상기 소지강판의 표면에 형성된 아연계 도금층을 포함하는 아연계 도금강판을 열간 프레스 성형하여 제조되는 열간 프레스 성형품에 있어서,
    상기 아연계 도금층은 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소: 합계 0.05~2.0중량%, 잔부 Zn 및 불가피한 불순물을 포함하며,
    상기 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소의 70중량% 이상은 상기 아연계 도금층이 합금화되어 형성된 상기 열간 프레스 성형품의 합금화 아연계 도금층의 표면으로부터 3μm 이내의 영역에 농화된 열간 프레스 성형품.
  2. 제1항에 있어서,
    상기 아연계 도금층은 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소를 합계로 0.3~1.5중량% 포함하는 열간 프레스 성형품.
  3. 제1항에 있어서,
    상기 아연계 도금층은 중량%로, Al: 0.1~5.0% 및 Mg: 0.1~5.0%을 더 포함하는 열간 프레스 성형품.
  4. 제1항에 있어서,
    상기 합금화 아연계 도금층의 Fe 합금화도는 30~85%인 열간 프레스 성형품.
  5. 아연계 도금강판을 준비하는 단계;
    상기 아연계 도금강판을 3.5~4.2℃/sec의 속도로 640~680℃의 온도까지 1차 가열하는 단계;
    상기 1차 가열된 아연계 도금강판을 1.1~1.6℃/sec의 속도로 900~930℃의 온도까지 2차 가열하는 단계;
    상기 2차 가열된 아연계 도금강판을 1~5분 간 항온 유지하는 단계; 및
    상기 항온 유지된 아연계 도금강판을 금형에 의해 성형함과 동시에 급냉하는 단계를 포함하고,
    상기 아연계 도금강판은 소지강판 및 상기 소지강판의 표면에 형성되고, Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소를 합계로 0.05~2.0중량% 포함하는 아연계 도금층을 포함하는 열간 프레스 성형품의 제조방법.
  6. 제1항에 있어서,
    상기 아연계 도금층은 Sb, Sn 및 Bi로 이루어진 군으로부터 선택된 1종 이상의 원소를 합계로 0.3~1.5중량% 포함하는 열간 프레스 성형품의 제조방법.
  7. 제1항에 있어서,
    상기 아연계 도금층은 중량%로, Al: 0.1~5.0% 및 Mg: 0.1~5.0%을 더 포함하는 열간 프레스 성형품의 제조방법.
PCT/KR2016/014963 2015-12-24 2016-12-21 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법 WO2017111442A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16879309.9A EP3396006B1 (en) 2015-12-24 2016-12-21 Microcrack-reduced, hot press-formed article, and method for manufacturing same
JP2018532709A JP6661772B2 (ja) 2015-12-24 2016-12-21 微細クラックが抑制された熱間プレス成形品及びその製造方法
US16/064,785 US20190003031A1 (en) 2015-12-24 2016-12-21 Microcrack-reduced, hot press-formed article, and method for manufacturing same
CN201680075864.7A CN108431286B (zh) 2015-12-24 2016-12-21 抑制微细裂纹的热压成型品及其制造方法
US18/385,162 US20240082902A1 (en) 2015-12-24 2023-10-30 Microcrack-reduced, hot press-formed article, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150186107A KR101726094B1 (ko) 2015-12-24 2015-12-24 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법
KR10-2015-0186107 2015-12-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/064,785 A-371-Of-International US20190003031A1 (en) 2015-12-24 2016-12-21 Microcrack-reduced, hot press-formed article, and method for manufacturing same
US18/385,162 Division US20240082902A1 (en) 2015-12-24 2023-10-30 Microcrack-reduced, hot press-formed article, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017111442A1 true WO2017111442A1 (ko) 2017-06-29

Family

ID=58580256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014963 WO2017111442A1 (ko) 2015-12-24 2016-12-21 미세크랙이 억제된 열간 프레스 성형품 및 그 제조방법

Country Status (6)

Country Link
US (2) US20190003031A1 (ko)
EP (1) EP3396006B1 (ko)
JP (1) JP6661772B2 (ko)
KR (1) KR101726094B1 (ko)
CN (1) CN108431286B (ko)
WO (1) WO2017111442A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950160A (zh) * 2018-08-25 2018-12-07 马鞍山钢铁股份有限公司 一种基于csp流程的锌基镀层热成形钢及其制备方法
CN113564507B (zh) * 2021-07-28 2022-08-09 东北大学 一种热镀锌低温镀液及其制法和应用
DE102023103033A1 (de) 2023-02-08 2024-08-08 Thyssenkrupp Steel Europe Ag Kalt geformtes Bauteil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR20030063484A (ko) * 2000-12-29 2003-07-28 니폰 스틸 코포레이션 도금 밀착성 및 프레스 성형성이 뛰어난 고강도 용융아연계 도금강판 및 그 제조방법
KR20090072357A (ko) * 2007-12-28 2009-07-02 주식회사 포스코 용접성이 우수한 고강도 박강판과 그 제조방법
KR20110015180A (ko) * 2009-08-07 2011-02-15 주식회사 포스코 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR20150029734A (ko) * 2012-08-07 2015-03-18 신닛테츠스미킨 카부시키카이샤 열간 성형용 아연계 도금 강판
KR101528010B1 (ko) * 2012-12-21 2015-06-10 주식회사 포스코 도금성이 우수한 고망간강 용융아연도금강판 및 이의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055590B2 (ja) * 1980-07-18 1985-12-05 新日本製鐵株式会社 耐経時めっき剥離性に優れたゼロスパングル亜鉛めっき鋼板及びその製造方法並びに溶融亜鉛めっき被覆浴
JP2004124207A (ja) * 2002-10-04 2004-04-22 Nippon Steel Corp 熱間プレス用Zn系めっき鋼板及びこれを使用した高強度自動車部品
KR20080060981A (ko) * 2006-12-27 2008-07-02 주식회사 포스코 표면품질이 우수한 아연도금용 강판 및 그 제조방법
WO2011081043A1 (ja) * 2009-12-28 2011-07-07 住友金属工業株式会社 熱間プレス成形部材の製造方法
DE202011107125U1 (de) * 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Warmformbares Band, Blech oder Zuschnitt und warmgeformtes Produkt
EP2728032A4 (en) * 2011-06-28 2015-03-11 Posco PLATED STEEL PLATE WITH PLATED LAYER WITH EXCELLENT STABILITY FOR HOT PRESSING
JP5488735B2 (ja) * 2012-07-31 2014-05-14 Jfeスチール株式会社 溶融亜鉛めっき鋼管の製造方法
ES2891582T3 (es) * 2013-04-10 2022-01-28 Tata Steel Ijmuiden Bv Producto conformado mediante conformado en caliente de chapa de acero con revestimiento metálico, método para conformar el producto y fleje de acero
CN103350539A (zh) * 2013-07-23 2013-10-16 江苏克罗德科技有限公司 耐高温防腐蚀镀铝锌钢板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR20030063484A (ko) * 2000-12-29 2003-07-28 니폰 스틸 코포레이션 도금 밀착성 및 프레스 성형성이 뛰어난 고강도 용융아연계 도금강판 및 그 제조방법
KR20090072357A (ko) * 2007-12-28 2009-07-02 주식회사 포스코 용접성이 우수한 고강도 박강판과 그 제조방법
KR20110015180A (ko) * 2009-08-07 2011-02-15 주식회사 포스코 도금성 및 굽힘가공성이 우수한 초고강도 용융아연도금강판 및 그 제조방법
KR20150029734A (ko) * 2012-08-07 2015-03-18 신닛테츠스미킨 카부시키카이샤 열간 성형용 아연계 도금 강판
KR101528010B1 (ko) * 2012-12-21 2015-06-10 주식회사 포스코 도금성이 우수한 고망간강 용융아연도금강판 및 이의 제조방법

Also Published As

Publication number Publication date
JP6661772B2 (ja) 2020-03-11
CN108431286B (zh) 2020-03-20
KR101726094B1 (ko) 2017-04-12
US20240082902A1 (en) 2024-03-14
US20190003031A1 (en) 2019-01-03
EP3396006A1 (en) 2018-10-31
CN108431286A (zh) 2018-08-21
EP3396006A4 (en) 2018-11-07
EP3396006B1 (en) 2019-11-20
JP2019508575A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2019132461A1 (ko) 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
WO2015099455A1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
CA2648429C (en) Method of production of hot dip galvannealed steel sheet with excellent workability, powderability, and slidability
WO2017111400A1 (ko) 내마찰성 및 내백청성이 우수한 도금 강재 및 그 제조방법
WO2019132336A1 (ko) 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법
WO2017111431A1 (ko) 내식성이 우수한 열간 프레스 성형품 및 그 제조방법
JP2012112010A (ja) 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材
WO2018117714A1 (ko) 용접성 및 프레스 가공성이 우수한 용융 아연계 도금강재 및 그 제조방법
WO2015099399A1 (ko) 내식성 및 용접성이 우수한 열간 프레스 성형용 강판, 성형부재 및 그 제조방법
KR102501440B1 (ko) 표면 품질이 우수한 열간 프레스 성형용 도금 강판 및 이의 제조방법
US20240082902A1 (en) Microcrack-reduced, hot press-formed article, and method for manufacturing same
WO2020111881A1 (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
WO2021125696A2 (ko) 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법
WO2021125885A1 (ko) 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
WO2017111491A1 (ko) 도금성 및 용접성이 우수한 오스테나이트계 용융 알루미늄 도금강판 및 그 제조방법
JP5023871B2 (ja) 熱間プレス鋼板部材の製造方法
WO2018117770A1 (ko) 가공부 내식성이 우수한 알루미늄계 합금 도금강판
WO2021112584A1 (ko) 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
KR100722492B1 (ko) 유리질 법랑용 강판 및 그 제조 방법
WO2020111883A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
WO2019132288A1 (ko) 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
WO2022131848A1 (ko) 열간 프레스 성형용 도금강판 및 그 제조 방법
WO2021125888A2 (ko) 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
WO2018117703A1 (ko) 희생방식성 및 도금성이 우수한 고망간 용융 알루미늄 도금강판 및 그 제조방법
WO2021125887A2 (ko) 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879309

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879309

Country of ref document: EP

Effective date: 20180724