WO2017111102A1 - 塗装用の粉体および塗装物品 - Google Patents
塗装用の粉体および塗装物品 Download PDFInfo
- Publication number
- WO2017111102A1 WO2017111102A1 PCT/JP2016/088521 JP2016088521W WO2017111102A1 WO 2017111102 A1 WO2017111102 A1 WO 2017111102A1 JP 2016088521 W JP2016088521 W JP 2016088521W WO 2017111102 A1 WO2017111102 A1 WO 2017111102A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- fluororesin
- composite oxide
- particles
- units derived
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
- C09D5/031—Powdery paints characterised by particle size or shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/24—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
- B05D7/54—No clear coat specified
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/18—Homopolymers or copolymers of tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/69—Particle size larger than 1000 nm
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2248—Oxides; Hydroxides of metals of copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2262—Oxides; Hydroxides of metals of manganese
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2289—Oxides; Hydroxides of metals of cobalt
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2293—Oxides; Hydroxides of metals of nickel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
Definitions
- the present invention relates to a powder for coating and a coated article having a coating film formed using the powder.
- Fluororesin is excellent in heat resistance, chemical resistance, weather resistance and the like, and is used in various fields such as the semiconductor industry, the automobile industry, and the chemical industry.
- a powder containing fluororesin is applied to the surface of the base material by a technique such as electrostatic coating, fluid dipping, or rotational molding, so as to protect the surface of the base and improve chemical resistance.
- a film can be formed.
- a coating film provided on a surface that can come into contact with an acidic solution, such as various metal containers, piping, and stirring blades, is preferably excellent in acid resistance in order to prevent corrosion of the metal.
- Patent Document 1 relates to a molded article made of a composition containing a thermoplastic resin and a conductive metal oxide (for example, tin oxide, indium oxide, etc.).
- a conductive metal oxide for example, tin oxide, indium oxide, etc.
- the acid acceptor include composite metal compounds such as hydrotalcite, zeolite and bentonite, and metal compounds such as magnesium hydroxide, magnesium oxide and zinc oxide.
- the present invention relates to a powder capable of forming a coating film excellent in acid resistance, and a coated article having a coating film formed using the powder.
- the powder according to [2] or [3], wherein the powder comprising the fluororesin particles has an average particle diameter of 1 to 1,000 ⁇ m.
- the powder according to [5], wherein an average particle diameter of the powder composed of the composite oxide particles and particles containing a fluororesin is 1 to 1,000 ⁇ m.
- the fluororesin is a fluororesin comprising a fluorocopolymer having a unit derived from a monomer represented by CF 2 ⁇ CFX (X is F or Cl). ] Powder of any of. [8]
- the fluorine-containing copolymer has a unit derived from ethylene and a unit derived from tetrafluoroethylene, a unit derived from tetrafluoroethylene, and a unit derived from perfluoroalkyl vinyl ether, A copolymer having no unit derived from ethylene, a unit having a unit derived from tetrafluoroethylene and a unit derived from hexafluoropropylene, and having no unit derived from ethylene and a unit derived from perfluoroalkyl vinyl ether [7]
- the powder according to [7] which is a polymer or a copolymer having units derived from ethylene and units derived from chlorotrifluoroethylene, and having no
- the powder of the present invention can form a coating film excellent in acid resistance.
- a coated article having a coating film formed using the powder of the present invention is excellent in acid resistance.
- the “unit” means a portion derived from a monomer formed by polymerization of the monomer.
- the unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
- units derived from individual monomers are indicated by names obtained by adding “units” to the monomer names.
- the “composite oxide” in the present invention is a solid solution of a plurality of metal oxides.
- the powder of the present invention contains particles of a specific composite oxide (hereinafter also referred to as “composite oxide (Z)”) and a fluororesin.
- the powder of the present invention may be a powder containing composite oxide (Z) particles and fluororesin particles, or particles containing composite oxide (Z) particles and fluororesin (in other words, It may be a powder containing “particles of fluororesin containing composite oxide (Z) particles”.
- the powder containing the “fluorine resin containing the composite oxide (Z) particles” may be a powder containing one or both of the composite oxide (Z) particles and the fluororesin particles. Good.
- the powder of the present invention may contain two or more composite oxide (Z) particles.
- the “fluorine resin containing composite oxide (Z) particles” may contain two or more composite oxide (Z) particles.
- the powder of the present invention may contain two or more kinds of fluororesin particles each containing different types of composite oxide (Z) particles.
- the fluororesin in the powder of the present invention may be a fluororesin containing components other than the fluororesin (for example, additives such as an ultraviolet absorber).
- the powder of the present invention may contain two or more kinds of particles made of different fluororesins. Moreover, even if it is the same fluororesin, it may contain two or more kinds of fluororesin particles having different compositions such as different components of the additive.
- the powder of the present invention may further contain particles other than those described above (for example, pigment particles not corresponding to the composite oxide (Z) particles).
- the powder of the present invention is preferably a powder containing composite oxide (Z) particles and fluororesin particles.
- This powder is obtained by mixing a powder made of composite oxide (Z) particles and a powder made of fluororesin particles.
- a powder made of the composite oxide (Z) particles a commercially available powder can be used, and a commercially available powder can be used after being subjected to treatment such as particle size adjustment.
- a fluororesin particles commercially available fluororesin powder can be used, and a fluororesin material (pellet, sheet, etc.) can be used in powder form.
- the powder composed of the particles of “fluorine resin containing composite oxide (Z) particles” produces a fluororesin containing composite oxide (Z) particles. Obtained by pulverization.
- the composite oxide (Z) is a composite oxide containing two or more metals selected from the group consisting of Cu, Mn, Co, Ni, and Zn.
- the powder of the complex oxide (Z) is an aggregate of complex oxide (Z) particles, and may be an aggregate including two or more complex oxide (Z) particles as described above.
- the specific surface area of the powder of the composite oxide (Z) is preferably 5 ⁇ 80m 2 / g, more preferably 7 ⁇ 70m 2 / g, particularly preferably 20 ⁇ 60m 2 / g.
- the average particle size of the composite oxide (Z) powder is preferably 0.001 to 100 ⁇ m, more preferably 0.01 to 50 ⁇ m, and particularly preferably 0.01 to 10 ⁇ m. Within this range, the dispersibility of the composite oxide in the fluororesin is excellent.
- the average particle diameter of the composite oxide (Z) powder is a volume-based median diameter obtained by measurement using a laser diffraction / scattering particle size distribution measuring apparatus.
- the composite oxide (Z) is preferably a composite oxide containing Cu and Mn, or a composite oxide containing Co, Ni and Zn.
- the composite oxide (Z) powder can be appropriately selected from commercially available composite oxide pigments. Specific examples of commercially available composite oxide (Z) powders include dipyroxide black # 95550 and dipyroxide black # 3550 (both product names, manufactured by Dainichi Seika Co., Ltd., composition: Cu [Fe, Mn] O). 4 ), Pigment Green 50 (product name, manufactured by Asahi Kasei Kogyo Co., Ltd., composition: composite oxide containing Co, Zn, Ni, and Ti).
- the content of the composite oxide (Z) particles in the powder of the present invention is preferably 0.05 to 20% by mass, more preferably 0.05 to 15% by mass, and 0.1 to 10% by mass with respect to the powder. % Is more preferable.
- the content is within this range, the mixing property with the fluororesin or its powder is excellent, and the kneading property is excellent when melt-kneading with the fluororesin. Moreover, it is excellent in the acid resistance of a coating film.
- the fluororesin contained in the powder of the present invention is solid at room temperature (25 ° C.).
- a fluororesin known in the field of powder coating can be used.
- the average particle diameter in the powder comprising the fluororesin particles and the powder comprising the “fluorine resin containing composite oxide (Z) particles” in the present invention is not particularly limited, but is preferably, for example, 1 to 1,000 ⁇ m, It is more preferably 1 to 300 ⁇ m, further preferably 3 to 300 ⁇ m, particularly preferably 5 to 200 ⁇ m.
- the average particle size of the fluororesin powder is a volume-based median diameter obtained by measurement using a laser diffraction / scattering particle size distribution analyzer.
- the fluororesin is composed of at least one unit derived from a monomer represented by CF 2 ⁇ CFX (X is F or Cl; hereinafter referred to as formula (I)), and a single unit represented by formula (I).
- a fluororesin composed of a fluorine-containing copolymer having one or more units derived from monomers other than the monomer is preferable.
- the monomer represented by the formula (I) is tetrafluoroethylene (hereinafter also referred to as “TFE”) or chlorotrifluoroethylene.
- Any other monomer may be used as long as it is copolymerizable with the monomer represented by the formula (I).
- at least one selected from the following monomers (1) to (9) is preferable.
- Monomer (1) Ethylene (Hereinafter, the ethylene unit is also referred to as “E unit”.)
- Monomer (3) CH 2 ⁇ CX (CF 2 ) n Y (where X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8).
- n is preferably from 3 to 7, and more preferably from 4 to 6.
- Monomer (4) A fluoroolefin having a hydrogen atom in an unsaturated group such as vinylidene fluoride, vinyl fluoride, trifluoroethylene, hexafluoroisobutylene (excluding monomer (3)).
- Monomer (5) a fluoroolefin having no hydrogen atom in an unsaturated group such as hexafluoropropylene (excluding the monomer represented by the formula (I)).
- Monomer (6) Perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether).
- Monomer (8) perfluoro (2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, perfluoro (2-methylene-4) Fluorine-containing monomers having an aliphatic ring structure such as -methyl-1,3-dioxolane).
- Monomer (9) A monomer having a polar functional group and not having a fluorine atom (hereinafter also referred to as a polar functional group-containing monomer). A polar functional group contributes to the improvement of adhesiveness.
- polar functional group examples include a hydroxyl group, a carboxy group, an epoxy group, and an acid anhydride residue, and among them, an acid anhydride residue is preferable.
- polar functional group-containing monomers include vinyl ethers having a hydroxyl group or epoxy group such as hydroxybutyl vinyl ether and glycidyl vinyl ether, monomers having a carboxy group such as maleic acid, itaconic acid, citraconic acid and undecylenic acid.
- Monomers having an acid anhydride residue such as maleic anhydride, itaconic anhydride, citraconic anhydride, and hymic anhydride.
- a copolymer having an E unit and a TFE unit (hereinafter also referred to as “ETFE”), A copolymer having a TFE unit and a perfluoroalkyl vinyl ether unit and not having an E unit (hereinafter also referred to as “PFA”); A copolymer having a TFE unit and a hexafluoropropylene unit and having neither an E unit nor a perfluoroalkyl vinyl ether unit (hereinafter also referred to as “FEP”), A copolymer having E units and chlorotrifluoroethylene units and not having TFE units (hereinafter also referred to as “ECTFE”).
- ETFE A copolymer having an E unit and a TFE unit
- PFA perfluoroalkyl vinyl ether unit and not having an E unit
- FEP copolymer having a TFE unit and a hexafluoropropylene unit and having neither an E unit nor a perfluoroalkyl vinyl
- the ratio of E units to the total of E units and TFE units is preferably 20 to 70 mol%, more preferably 25 to 60 mol%, and even more preferably 35 to 55 mol%.
- E unit is not less than the lower limit of the above range, the mechanical strength is excellent, and when it is not more than the upper limit, the chemical resistance is excellent.
- ETFE may be a copolymer consisting of only E units and TFE units, or may contain one or more other monomer units.
- a preferable example of the other monomer includes the monomer (3).
- CH 2 ⁇ CH (CF 2 ) 2 F and CH 2 ⁇ CH (CF 2 ) 4 F ((perfluorobutyl) ethylene, hereinafter referred to as PFBE) are preferable.
- the total content is preferably 0.1 to 10 mol, more preferably 0.1 to 5 mol in terms of a molar ratio where the total of E units and TFE units is 100 mol. 0.2 to 4 mol is more preferable.
- the content of the other monomer unit is not less than the lower limit of the above range, the crack resistance is good, and when it is not more than the upper limit, the melting point of the fluororesin is lowered and the heat resistance of the molded product is lowered. .
- the ratio of TFE units to the total of TFE units and perfluoroalkyl vinyl ether units is preferably 9 to 99 mol%, more preferably 99 to 80 mol%, and even more preferably 99 to 90 mol%.
- the TFE unit is not less than the lower limit of the above range, the chemical resistance is excellent, and when it is not more than the upper limit, the melt processability is excellent.
- PFA may be a copolymer consisting only of TFE units and perfluoroalkyl vinyl ether units, or may contain one or more monomer units other than these. Preferable examples of other monomers include hexafluoropropylene.
- the content is preferably 0.1 to 10 mol, more preferably 0.1 to 6 mol in terms of a molar ratio where the total of TFE units and perfluoroalkyl vinyl ether units is 100 mol. 0.2 to 4 mol is more preferable. If the content of the other monomer unit is at least the lower limit of the above range, the melt viscosity is high, so that the moldability is good, and if it is at most the upper limit, the crack resistance is good.
- the ratio of TFE units to the total of TFE units and hexafluoropropylene units is preferably 99 to 70 mol%, more preferably 99 to 80 mol%, still more preferably 99 to 90 mol%.
- TFE unit is not less than the lower limit of the above range, the chemical resistance is excellent, and when it is not more than the upper limit, the melt processability is excellent.
- FEP may be a copolymer composed of only TFE units and hexafluoropropylene units, or may contain one or more monomer units other than these. Preferable examples of other monomers include perfluoroalkyl vinyl ether.
- the total content is preferably 0.1 to 10 mol in terms of a molar ratio where the total of TFE units and hexafluoropropylene units is 100 mol, preferably 0.1 to 6 mol. More preferred is 0.2 to 4 mol. If the content of the other monomer unit is at least the lower limit of the above range, the melt viscosity is high, so that the moldability is good, and if it is at most the upper limit, the crack resistance is good.
- the ratio of E units to the total of E units and chlorotrifluoroethylene units is preferably 2 to 98 mol%, more preferably 10 to 90 mol%, still more preferably 30 to 70 mol%.
- E unit is not less than the lower limit of the above range, the chemical resistance is excellent, and when it is not more than the upper limit, the gas barrier property is excellent.
- ECTFE may be a copolymer consisting only of E units and chlorotrifluoroethylene units, or may contain other monomer units. Preferable examples of other monomers include perfluoroalkyl vinyl ether.
- the total content is preferably 0.1 to 10 mol, preferably 0.1 to 5 mol in terms of a molar ratio where the total of E units and chlorotrifluoroethylene units is 100 mol. Is more preferable, and 0.2 to 4 mol is more preferable.
- the content of the other monomer unit is not less than the lower limit of the above range, the crack resistance is good, and when it is not more than the upper limit, the melting point of the fluororesin is lowered and the heat resistance of the molded product is lowered. .
- the powder made of fluororesin particles can be produced by a known production method. For example, a method in which a fluororesin is pulverized after synthesis, a method in which a fluororesin dispersion is prepared, and spray-dried are included. If necessary, the particle size may be adjusted by classification using a sieve or an air stream.
- a powder comprising particles of “fluorine resin containing composite oxide (Z) particles” the fluororesin and composite metal oxide (Z) powder are melt-kneaded with a melt-kneader and then pulverized. Preferably it is manufactured.
- the powder of this invention can contain components other than the said fluororesin and composite oxide (Z) particle
- Other components are contained in the fluororesin, and are contained in the powder of the present invention as fluororesin particles containing the component. Further, when the other component is a powder, it may be contained in the powder of the present invention as particles of the component.
- Other components include pigments that do not fall under the complex oxide (Z), fluidity improvers (silica, alumina, etc.), reinforcing materials (inorganic fillers), thermal stabilizers (cuprous oxide, cupric oxide, iodine) Cuprous iodide, cupric iodide, etc.) and additives such as ultraviolet absorbers.
- the fluororesin is a fluorine-containing copolymer containing units based on a polar functional group-containing monomer
- a compound having reactivity with the polar functional group also referred to as a curing agent
- a curing agent is used as another component. It is also preferable to use it.
- the curing agent examples include aliphatic polyamines, modified aliphatic polyamines, aromatic polyamines, dicyandiamide, and the like.
- the content thereof is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 8 parts by mass with respect to 100 parts by mass in total of the fluororesin and the composite oxide (Z). More preferably, 0.1 to 6 parts by mass.
- the powder of the present invention is obtained by mixing the fluororesin, the composite oxide (Z), and other components blended as necessary, if they are powders.
- the powder mixing method include a dry blend method using a V-type blender, a double cone type blender, a container blender, a drum type blender, a horizontal cylindrical mixer, a ribbon type mixer, a paddle type mixer, a screw type mixer and the like.
- the other components may be contained in the powder as a powder, or may be contained in the fluororesin particles.
- the fluororesin and other components are melt-kneaded with a melt-kneader and then pulverized with a pulverizer to form a powder composed of fluororesin particles containing the other components.
- melt kneader include a twin screw extruder.
- pulverizer include a cutter mill, a hammer mill, a pin mill, and a jet mill.
- the coated article of the present invention has a substrate and a coating film formed from the powder of the present invention.
- the material of the substrate is not particularly limited, but a metal is preferable in that the effect of protecting with a coating film excellent in acid resistance is great.
- the metal include iron, stainless steel, aluminum, copper, tin, titanium, chromium, nickel, and zinc. In particular, iron, stainless steel, and aluminum are preferable because they are inexpensive and have high strength.
- the base material is also a substrate having a coating surface with a layer or film made of a plating layer, a primer layer, a coating film (other than the coating film formed from the powder of the present invention), other metals or materials other than metal. It may be a material.
- the shape and application of the substrate are not particularly limited.
- Examples of the substrate include pipes, tubes, films, plates, tanks, rolls, vessels, valves, elbows and the like.
- Examples of base material applications include various containers, pipes, tubes, tanks, pipes, fittings, rolls, autoclaves, heat exchangers, distillation towers, jigs, valves, stirring blades, tank trucks, pumps, blower casings, Examples include centrifuges and cooking equipment.
- the coating film is a film made of a melted and cooled powder.
- the thickness of the coating film is preferably 5 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more, and particularly preferably 80 ⁇ m or more from the viewpoint of protecting the substrate.
- the upper limit of the thickness is not particularly limited, but if it is too thick, stress distortion occurs at the interface between the base material and the coating film due to the difference in thermal expansion coefficient from the base material, and the coating film tends to peel off. Moreover, since many times of coating is required, productivity is low and cost is high. From the viewpoint of preventing these disadvantages, the thickness of the coating film is preferably 10,000 ⁇ m or less, more preferably 5,000 ⁇ m or less, further preferably 3,000 ⁇ m or less, and particularly preferably 2,000 ⁇ m or less.
- the coating film is formed by a method in which powder is coated on a substrate to form a powder layer, the powder layer is heat-treated and melted, and then cooled and solidified. It can also be formed by a method in which the powder is melted and adhered onto the base material and, if necessary, further heat treatment is performed, followed by cooling and solidification.
- a coating method of powder Well-known powder coating methods, such as an electrostatic coating method, a fluid immersion method, and a rotational molding method, are applicable.
- the electrostatic coating method is preferable because it can be easily applied with a uniform thickness. You may form the coating film of the target thickness by repeating the process formed and heat-processed a powder layer in multiple times.
- the fluororesin is a fluorinated copolymer containing units based on a polar functional group-containing monomer and the powder contains a curing agent, the powder layer is heat treated and melted. It is preferable to cure the coating film.
- the heat treatment can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace set at a predetermined temperature.
- the heat treatment temperature is not particularly limited as long as it is a temperature at which the powder can be melted and homogenized, but it is particularly preferable to select an appropriate heat treatment temperature and heat treatment time depending on the type of fluororesin in the powder. For example, if the heat treatment temperature is too high, undesirable effects such as alteration of the fluororesin may occur. On the other hand, if the heat treatment temperature is too low, a coating film having good physical properties may not be formed.
- the heat treatment temperature is preferably 260 to 340 ° C., more preferably 265 to 320 ° C., and particularly preferably 270 to 310 ° C.
- the heat treatment temperature is 260 ° C. or higher, voids and bubble remaining due to insufficient firing are less likely to occur, and when it is 340 ° C. or lower, discoloration and foaming tend not to occur.
- the heat treatment time varies depending on the heat treatment temperature, but heat treatment for 1 to 180 minutes is preferable, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes.
- the heat treatment temperature is preferably 350 ° C. or higher and lower than 380 ° C. If the heat processing temperature is 350 degreeC or more, the adhesiveness of the fluororesin layer formed and a base material will be excellent. If heat processing temperature is less than 380 degreeC, it can suppress that a foaming and a crack arise in a fluorine-containing resin layer, and the laminated body excellent in the external appearance will be obtained.
- the heat treatment temperature is preferably 350 to 375 ° C, more preferably 350 to 370 ° C.
- the heat treatment temperature for each firing in two or more firings may be a different temperature or the same temperature.
- the coated article of the present invention may have a laminated structure in which a top coat layer is provided on a substrate via a primer layer, and the top coat layer is a coating film formed from the powder of the present invention.
- the primer layer and the top coat layer are made of different materials.
- the primer layer is preferably made of a material having excellent adhesiveness.
- an organic or inorganic coating layer hereinafter also referred to as “further coat layer”
- further coat layer which is a different material from the top coat layer, may be laminated on the surface of the top coat layer.
- the primer layer can be formed using a known primer.
- the primer is preferably a primer capable of forming a fluororesin film in order to enhance the adhesion to the coating film formed from the powder of the present invention.
- the fluororesin the same fluororesin as the fluororesin in the powder of the present invention is preferable.
- a fluororesin such as ETFE can be used.
- a primer can contain another component in the range which does not impair the effect of this invention. Examples of the other components include those described as the other components of the powder of the present invention.
- the thickness of the primer layer is preferably 1 to 1,000 ⁇ m, more preferably 5 to 500 ⁇ m, and even more preferably 10 to 200 ⁇ m.
- the primer is preferably a liquid material composed of a fluororesin solution or dispersion because of its high coating workability.
- Fluon (registered trademark) IL-300J product name, manufactured by Asahi Glass Co., Ltd.
- ETFE a dispersion of ETFE
- a primer layer can be formed by applying such a liquid primer to a substrate and evaporating and removing the solvent and the dispersion medium by heating. After removing the solvent and the dispersion medium, it is preferable to form a primer layer having good physical properties by heat treatment to improve adhesion with the substrate. The heat treatment can be performed following the removal of the solvent and the like.
- the heat treatment for forming the primer layer can be performed by an arbitrary heating means such as an electric furnace, a gas furnace or an infrared heating furnace set to a predetermined temperature.
- the heat treatment temperature is preferably 50 to 340 ° C., more preferably 60 to 320 ° C., and particularly preferably 70 to 310 ° C.
- the heat treatment time varies depending on the heat treatment temperature, but heat treatment for 1 to 180 minutes is preferable, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes.
- the heat treatment time is 1 minute or longer, there is no tendency for adhesive strength reduction or bubble remaining due to insufficient firing to occur, and when it is 180 minutes or shorter, discoloration and foam formation tend to be suppressed.
- the fluororesin in the primer is ETFE, sufficient adhesion can be obtained even if the heat treatment temperature is lowered.
- the heat treatment temperature is preferably 70 to 250 ° C., more preferably 80 to 200 ° C.
- the heat treatment time is preferably 5 to 60 minutes, more preferably 10 to 30 minutes.
- the further coat layer examples include a colored layer, a hard coat layer, and a penetration preventing layer.
- a layer containing a fluororesin and not containing the composite oxide (Z) is preferable.
- the thickness of the further coat layer is not particularly limited, but is preferably 1,000 ⁇ m or less, more preferably 500 ⁇ m or less. The lower limit of the thickness only needs to be equal to or greater than a thickness at which the effect of providing a further coat layer can be sufficiently obtained. For example, 10 ⁇ m or more is preferable, and 30 ⁇ m or more is more preferable.
- the coating film formed from the powder of the present invention is excellent in acid resistance.
- the coating film formed from the powder of the conventional powder coating even if the coating film formed from the powder of the present invention is thin even in applications where the coating film needs to be thick in order to obtain good acid resistance, Excellent acid resistance.
- the coating film formed from the powder of this invention is applicable also to the use which the coating film of the conventional powder coating material cannot apply because of insufficient acid resistance.
- An article having such a coating film is excellent in acid resistance because the surface of the article coated with the coating film is prevented from being deteriorated by acid.
- Fluororesin powder (A): ETFE (TFE unit / E unit / PFBE unit molar ratio: 54/46/2) powder containing 1.5 ppm (0.00015% by mass) of CuO as a heat stabilizer ( Average particle size 80-120 ⁇ m).
- Fluororesin powder (B): ETFE (TFE unit / E unit / PFBE unit molar ratio: 60/40/3) powder (average particle size 30 to 70 ⁇ m).
- Inorganic powder (1) Composite oxide powder.
- Product name: Daipyroxide Black # 95550 composition: Cu [Fe, Mn] O 4 , specific surface area: 26 m 2 / g, average particle diameter 1 ⁇ m, manufactured by Dainichi Seika Co., Ltd.
- Product name: Daipyroxide Black # 3550 composition: Cu [Fe, Mn] O 4 , specific surface area: 45 m 2 / g, average particle size 60 nm, manufactured by Dainichi Seika Co., Ltd.
- Inorganic powder (3) Oxide pigment powder, manufactured by Furukawa Denshi, product name: S-300, composition: CuO, specific surface area: 10 m 2 / g, average particle size 7.2 ⁇ m.
- Inorganic powder (6) Graphite powder, manufactured by Timcal, product name: KS75, specific surface area: 6.5 m 2 / g, average particle size 28 ⁇ m.
- Inorganic powder (7) Oxide pigment powder, manufactured by Dainichi Seika Co., Ltd., product name: TM yellow 8170, composition: FeOOH, specific surface area: 80 m 2 / g, average particle diameter 70 nm.
- Liquid primer (1) manufactured by Asahi Glass Co., Ltd., product name: Fullon (registered trademark) IL-300J).
- Example 1 to 12 Production of powder for coating> With the formulation shown in Table 1, a fluororesin powder and an inorganic powder were mixed to produce a coating powder.
- Examples 1 to 5 are examples containing powder of the composite oxide (Z), and examples 6 to 11 are comparative examples containing inorganic powder other than the composite oxide (Z).
- the fluororesin powder was weighed in a plastic bag with a chuck, and then the inorganic powder was weighed and premixed. After premixing, the entire amount was put into a juicer mixer and stirred for 30 seconds. After taking out into the bag, it was put into the juicer mixer again and stirred for 30 seconds to obtain powder for coating.
- a coating test piece was produced by the following method, and the initial adhesiveness, hot water resistance, and acid resistance were evaluated. The results are shown in Table 1.
- Example 12 is an example using only fluororesin powder (A).
- a part having a lateral width of 20 mm in advance at one end is formed so that a part without a primer layer (a part to be gripped at the time of a peeling test) is formed at one end in the lateral direction of the test substrate. Masked.
- the masking was removed, and the powder of each example was sprayed on the entire surface of the substrate with the primer layer by electrostatic coating, and baked at 275 ° C. for 15 minutes. This electrostatic coating and firing process was repeated three times to form a topcoat layer.
- the fluororesin powder (A) was electrostatically coated on the surface of the topcoat layer and baked at 275 ° C. for 15 minutes to form the outermost layer (further coat layer), thereby obtaining a coated test piece.
- the thickness of the top coat layer was 200 ⁇ m, and the total thickness of the top coat layer and the outermost layer was 250 ⁇ m.
- Example 12 in which the powder was composed of only the fluororesin powder (A), the initial adhesiveness was good, but the peel strength was remarkably reduced in the acid resistance test. Since there is no change in the coating film (outermost layer and top coat layer), a decrease in peel strength is considered to mean that the primer layer, which is the lower layer of the coating film made of powder, has been altered. In contrast, Examples 1 to 4 using the powder containing the fluororesin powder (A) and the composite oxide (Z) powder showed the peel strength even after being immersed in an aqueous hydrochloric acid solution in the acid resistance test. Was maintained at a high value.
- Example 1 using the powder containing the fluororesin powder (B) and the composite oxide (Z) powder not containing the heat stabilizer, the acid resistance and heat resistance of the coating film were the same as in Examples 1 to 4. The aqueous property was excellent.
- a powder was produced in the same manner as in Examples 1 to 12, except that the heat treatment temperature and heat treatment time shown in Table 2 were used when forming the primer layer, and the composition of the powder was shown in Table 2, and various evaluations were performed. It was. The results are shown in Table 2.
- the powder of the present invention was excellent in the heat resistance and hot water resistance of the coating film even when the heat treatment temperature of the primer layer was lowered and the heat treatment time was shortened.
- the coating powder has the composition shown in Table 3, the primer layer is not formed, the powder is used, and the heat treatment at 350 ° C. for 4 minutes is repeated 5 times, and then the heat treatment at 350 ° C. for 6 minutes is 1 This was repeated to form a topcoat layer.
- a coating film was formed in the same manner as in Examples 1 to 12 except that the outermost layer was not formed, and various evaluations were performed. The results are shown in Table 3.
- the powder of the present invention was superior in heat resistance and hot water resistance compared to the powder not containing the composite oxide (Z) even when the type of fluororesin was changed.
- the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2015-254091 filed on Dec. 25, 2015 are incorporated herein as the disclosure of the specification of the present invention. It is.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
例えば基材表面に、フッ素樹脂を含む粉体を、静電塗装法、流動浸漬法、回転成形法等の手法で塗装することで、基材表面の保護や耐薬品性の向上のための塗膜を形成できる。
特に、金属製の各種容器、配管、撹拌翼等の、酸性溶液と接触し得る面に設けられる塗膜は、金属の腐食を防止するために耐酸性に優れることが望まれる。
受酸剤としては、ハイドロタルサイト、ゼオライト、ベントナイト等の複合金属化合物や、水酸化マグネシウム、酸化マグネシウム、酸化亜鉛等の金属化合物が例示されている。
本発明は、耐酸性に優れる塗膜を形成できる粉体、および該粉体を用いて形成された塗膜を有する塗装物品に関する。
[1]Cu、Mn、Co、Ni、Znからなる群から選ばれる2種以上の金属を含む複合酸化物の粒子と、フッ素樹脂を含有することを特徴とする粉体。
[2]前記粉体が、前記複合酸化物の粒子と前記フッ素樹脂の粒子を含有する、[1]の粉体。
[3]前記複合酸化物の粒子からなる粉体の平均粒子径が0.01μm~50μmである、[1]または[2]の粉体。
[4]前記フッ素樹脂の粒子からなる粉体の平均粒子径が、1~1,000μmである、[2]または[3]の粉体。
[5]前記粉体が、前記複合酸化物粒子と前記フッ素樹脂とを含む粒子を含有する、[1]の粉体。
[6]前記複合酸化物粒子とフッ素樹脂とを含む粒子からなる粉体の平均粒子径が、1~1,000μmである、[5]の粉体。
[8]前記含フッ素共重合体が、エチレンに由来する単位とテトラフルオロエチレンに由来する単位を有する共重合体、テトラフルオロエチレンに由来する単位とペルフルオロアルキルビニルエーテルに由来する単位とを有し、エチレンに由来する単位を有さない共重合体、テトラフルオロエチレンに由来する単位とヘキサフルオロプロピレンに由来する単位を有し、エチレンに由来する単位およびペルフルオロアルキルビニルエーテルに由来する単位を有さない共重合体、またはエチレンに由来する単位とクロロトリフルオロエチレンに由来する単位とを有し、テトラフルオロエチレンに由来する単位を有さない共重合体である、[7]の粉体。
[9]前記複合酸化物が、CuとMnを含む複合酸化物、またはCoとNiとZnを含む複合酸化物である、[1]~[8]のいずれかの粉体。
[11]前記塗膜の厚さが5~10,000μmである、[10]の物品。
[12]基材上にプライマー層を形成し、次いで請求項1~9のいずれか一項に記載の粉体を用いて前記プライマー層上にトップコート層を形成する、塗装された物品の製造方法であって、前記プライマー層形成のための熱処理温度が80~200℃であることを特徴とする塗装物品の製造方法。
[13]前記プライマー層が、複合酸化物粒子を含まないフッ素樹脂の膜からなる、請求項12に記載の製造方法。
本発明の粉体を用いて形成された塗膜を有する塗装物品は耐酸性に優れる。
本発明における「複合酸化物」は、複数の金属酸化物の固溶体である。
本発明の粉体は、特定の複合酸化物(以下、「複合酸化物(Z)」とも記す。)の粒子とフッ素樹脂を含有する。本発明の粉体は、複合酸化物(Z)の粒子とフッ素樹脂の粒子とを含む粉体であってもよく、複合酸化物(Z)粒子とフッ素樹脂とを含む粒子(言いかえれば、「複合酸化物(Z)粒子を含むフッ素樹脂」の粒子)を含む粉体であってもよい。さらには、「複合酸化物(Z)粒子を含むフッ素樹脂」の粒子を含む粉体は、さらに、上記複合酸化物(Z)粒子およびフッ素樹脂粒子の一方または両方を含む粉体であってもよい。
本発明の粉体は、2種以上の複合酸化物(Z)の粒子を含んでいてもよい。また、「複合酸化物(Z)粒子を含むフッ素樹脂」の粒子は2種以上の複合酸化物(Z)粒子を含んでいてもよい。また、本発明の粉体は、異なる種類の複合酸化物(Z)粒子をそれぞれ含む、2種以上のフッ素樹脂粒子を含んでいてもよい。
また、本発明の粉体におけるフッ素樹脂はフッ素樹脂以外の成分(たとえば、紫外線吸収剤等の添加剤)を含むフッ素樹脂であってもよい。本発明の粉体は、異なるフッ素樹脂からなる2種以上の粒子を含んでいてもよい。また、同じフッ素樹脂であっても、添加剤の成分が異なる等の組成の異なるフッ素樹脂の2種以上の粒子を含んでいてもよい。
本発明の粉体は、さらに、上記以外の粒子(たとえば、複合酸化物(Z)粒子に該当しない顔料粒子)を含んでいてもよい。
また、「複合酸化物(Z)粒子を含むフッ素樹脂」の粒子からなる粉体は、複合酸化物(Z)粒子を含むフッ素樹脂を製造し、この複合酸化物(Z)粒子含有フッ素樹脂を粉体化することにより得られる。
複合酸化物(Z)は、Cu、Mn、Co、Ni、Znからなる群から選ばれる2種以上の金属を含む複合酸化物である。複合酸化物(Z)の粉体は、複合酸化物(Z)粒子の集合体であり、前記のように2種以上の複合酸化物(Z)粒子を含む集合体であってもよい。
複合酸化物(Z)の粉体の比表面積は5~80m2/gが好ましく、7~70m2/gがより好ましく、20~60m2/gが特に好ましい。該比表面積が上記範囲の下限値以上であるとフッ素樹脂に対する分散性が良好であり、上限値以下であると複合酸化物粒子の凝集が発生しづらい。
複合酸化物(Z)の粉体の平均粒子径は、0.001μm~100μmが好ましく、0.01μm~50μmがより好ましく、0.01~10μmが特に好ましい。この範囲にあるとフッ素樹脂中における複合酸化物の分散性に優れる。
複合酸化物(Z)の粉体の平均粒子径は、レーザー回折散乱粒度分布測定装置を用いて測定して得られる体積基準のメジアン径である。
複合酸化物(Z)の粉体は、市販の複合酸化物系顔料から適宜選択して用いることができる。
市販の複合酸化物(Z)粉体の具体例としては、ダイピロキサイドブラック♯9550、ダイピロキサイドブラック♯3550(いずれも製品名、大日精化社製、組成:Cu[Fe,Mn]O4)、Pigment Green50(製品名、アサヒ化成工業社製、組成:Co、Zn、Ni、Tiを含む複合酸化物)等が挙げられる。
本発明の粉体に含まれるフッ素樹脂は、常温(25℃)で固体である。フッ素樹脂としては、粉体塗料の分野において公知のフッ素樹脂を用いることができる。
本発明におけるフッ素樹脂粒子からなる粉体および「複合酸化物(Z)粒子を含むフッ素樹脂」の粒子からなる粉体における平均粒子径は、特に限定されないが、例えば1~1,000μmが好ましく、1~300μmがより好ましく、3~300μmがさらに好ましく、5~200μmが特に好ましい。平均粒子径が1μm以上であれば、塗装時の付着量が増えるために接着力や耐久性が安定し、1,000μm以下であれば、塗装後の粒子の脱落が少なく、塗膜は表面平滑性がよい傾向がある。
フッ素樹脂の粉体の平均粒子径は、レーザー回折散乱粒度分布測定装置を用いて測定して得られる体積基準のメジアン径である。
フッ素樹脂は、CF2=CFX(XはFまたはCl。以下式(I)と記す。)で表される単量体に由来する単位の1種以上と、式(I)で表される単量体以外の単量体に由来する単位の1種以上を有する含フッ素共重合体からなるフッ素樹脂であることが好ましい。
式(I)で表される単量体は、テトラフルオロエチレン(以下、「TFE」とも記す。)またはクロロトリフルオロエチレンである。
単量体(1):エチレン(なお、以下、エチレン単位を「E単位」とも記す。)
単量体(2):プロピレン等の炭素数3個のオレフィン、ブチレン、イソブチレン等の炭素数4個のオレフィン、等のオレフィン類。
単量体(3):CH2=CX(CF2)nY(ただし、XおよびYはそれぞれ独立に水素原子またはフッ素原子であり、nは2~8の整数である。)で表される化合物。例えばCH2=CF(CF2)nF、CH2=CF(CF2)nH、CH2=CH(CF2)nF、CH2=CH(CF2)nH等。整数nは3~7が好ましく、4~6がより好ましい。
単量体(4):フッ化ビニリデン、フッ化ビニル、トリフルオロエチレン、ヘキサフルオロイソブチレン等の不飽和基に水素原子を有するフルオロオレフィン(ただし、単量体(3)を除く)。
単量体(5):ヘキサフルオロプロピレン等の不飽和基に水素原子を有しないフルオロオレフィン(ただし、式(I)で表される単量体を除く。)。
単量体(6):ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(エチルビニルエーテル)、ペルフルオロ(プロピルビニルエーテル)、ペルフルオロ(ブチルビニルエーテル)等のペルフルオロ(アルキルビニルエーテル)。
単量体(7):CF2=CFOCF2CF=CF2、CF2=CFO(CF2)2CF=CF2等の不飽和結合を2個有するペルフルオロビニルエーテル類。
単量体(8):ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等の脂肪族環構造を有する含フッ素モノマー類。
単量体(9):極性官能基を有し、フッ素原子を有していない単量体(以下、極性官能基含有単量体とも記す。)。極性官能基は接着性の向上に寄与する。
極性官能基としては、水酸基、カルボキシ基、エポキシ基、酸無水物残基が挙げられ、中でも、酸無水物残基が好ましい。
極性官能基含有単量体の具体例としては、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル等の水酸基またはエポキシ基を有するビニルエーテル類、マレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸等のカルボキシ基を有する単量体、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸等の酸無水物残基を有する単量体、等が挙げられる。
E単位とTFE単位を有する共重合体(以下、「ETFE」とも記す。)、
TFE単位とペルフルオロアルキルビニルエーテル単位とを有し、E単位を有さない共重合体(以下、「PFA」とも記す。)、
TFE単位とヘキサフルオロプロピレン単位を有し、E単位およびペルフルオロアルキルビニルエーテル単位のいずれも有さない共重合体(以下、「FEP」とも記す。)、
E単位とクロロトリフルオロエチレン単位とを有し、TFE単位を有さない共重合体(以下、「ECTFE」とも記す。)。
E単位が上記範囲の下限値以上であると機械強度に優れ、上限値以下であると耐薬品性に優れる。
ETFEは、E単位およびTFE単位のみからなる共重合体でもよく、これら以外の単量体単位の1種以上を含んでもよい。
他の単量体の好ましい例としては、上記単量体(3)が挙げられる。特に、CH2=CH(CF2)2F、CH2=CH(CF2)4F((パーフルオロブチル)エチレン、以下、PFBEという。)が好ましい。
他の単量体単位を含む場合、その合計の含有量はE単位とTFE単位との合計を100モルとするモル比で0.1~10モルが好ましく、0.1~5モルがより好ましく、0.2~4モルがさらに好ましい。該他の単量体単位の含有量が上記範囲の下限値以上であると耐クラック性が良好であり、上限値以下であるとフッ素樹脂の融点が低下し、成形体の耐熱性が低下する。
TFE単位が上記範囲の下限値以上であると耐薬品性に優れ、上限値以下であると溶融加工性に優れる。
PFAは、TFE単位とペルフルオロアルキルビニルエーテル単位のみからなる共重合体でもよく、これら以外の単量体単位の1種以上を含んでもよい。
他の単量体の好ましい例としては、ヘキサフルオロプロピレンが挙げられる。
他の単量体単位を含む場合、その含有量はTFE単位とペルフルオロアルキルビニルエーテル単位との合計を100モルとするモル比で0.1~10モルが好ましく、0.1~6モルがより好ましく、0.2~4モルがさらに好ましい。該他の単量体単位の含有量が上記範囲の下限値以上であると溶融粘度が高いため成形加工性が良く、上限値以下であると耐クラック性が良好である。
TFE単位が上記範囲の下限値以上であると耐薬品性に優れ、上限値以下であると溶融加工性に優れる。
FEPは、TFE単位とヘキサフルオロプロピレン単位のみからなる共重合体でもよく、これら以外の単量体単位の1種以上を含んでもよい。
他の単量体の好ましい例としては、ペルフルオロアルキルビニルエーテルが挙げられる。
他の単量体単位を含む場合、その合計の含有量はTFE単位とヘキサフルオロプロピレン単位との合計を100モルとするモル比で0.1~10モルが好ましく、0.1~6モルがより好ましく、0.2~4モルがさらに好ましい。該他の単量体単位の含有量が上記範囲の下限値以上であると溶融粘度が高いため成形加工性が良く、上限値以下であると耐クラック性が良好である。
E単位が上記範囲の下限値以上であると耐薬品性に優れ、上限値以下であるとガスバリア性に優れる。
ECTFEは、E単位とクロロトリフルオロエチレン単位のみからなる共重合体でもよく、これら以外の単量体単位を含んでもよい。
他の単量体の好ましい例としては、ペルフルオロアルキルビニルエーテルが挙げられる。
他の単量体単位を含む場合、その合計の含有量はE単位とクロロトリフルオロエチレン単位との合計を100モルとするモル比で0.1~10モルが好ましく、0.1~5モルがより好ましく、0.2~4モルがさらに好ましい。該他の単量体単位の含有量が上記範囲の下限値以上であると耐クラック性が良好であり、上限値以下であるとフッ素樹脂の融点が低下し、成形体の耐熱性が低下する。
フッ素樹脂粒子からなる粉体は公知の製造方法で製造できる。例えば、フッ素樹脂を合成後に粉砕処理する方法、フッ素樹脂の分散液を調製して噴霧乾燥させる方法、等が挙げられる。必要に応じて篩や気流を用いて分級し、粒径を調整してもよい。
「複合酸化物(Z)粒子を含むフッ素樹脂」の粒子からなる粉体の場合は、フッ素樹脂と複合金属酸化物(Z)粉体とを、溶融混練機で溶融混練した後、粉砕して製造されることが好ましい。
本発明の粉体は、本発明の効果を損なわない範囲内で、上記フッ素樹脂および複合酸化物(Z)粒子以外の成分を含有することができる。他の成分はフッ素樹脂に含有され、その成分を含むフッ素樹脂の粒子として本発明の粉体に含有される。また、他の成分が粉体の場合、その成分の粒子として本発明の粉体に含有されてもよい。
他の成分としては、複合酸化物(Z)に該当しない顔料、流動性向上剤(シリカ、アルミナ等)、補強材(無機フィラー)、熱安定剤(酸化第一銅、酸化第二銅、ヨウ化第一銅、ヨウ化第二銅等)、紫外線吸収剤等の添加剤が挙げられる。
また、フッ素樹脂が、極性官能基含有単量体に基づく単位を含有する含フッ素共重合体である場合、他の成分として、該極性官能基と反応性を有する化合物(硬化剤ともいう)を使用することも好ましい。
硬化剤としては、脂肪族ポリアミン、変性脂肪族ポリアミン、芳香族ポリアミン、ジシアンジアミド等が挙げられる。
他の成分を含む場合、その含有量はフッ素樹脂および複合酸化物(Z)の合計100質量部に対して、0.01~10質量部が好ましく、0.05~8質量部がより好ましく、0.1~6質量部がさらに好ましい。
本発明の粉体は、フッ素樹脂、複合酸化物(Z)および必要に応じて配合される他の成分のいずれもが、粉体である場合、それらを混合して得られる。
粉体の混合方法は、V型ブレンダー、ダブルコーン型ブレンダー、コンテナブレンダー、ドラム式ブレンダー、水平円筒式ミキサー、リボン式ミキサー、パドル式ミキサー、スクリュー式ミキサーなどを用いたドライブレンド法が挙げられる。
他の成分は、粉体に、粉体として含有されてもよく、フッ素樹脂粒子に含有されてもよい。他の成分が、フッ素樹脂粒子に含有される場合、フッ素樹脂と他の成分とを溶融混練機で溶融混練した後、粉砕機で粉砕して、他の成分を含むフッ素樹脂粒子からなる粉体を得ることが好ましい。溶融混練機としては、2軸押出し機等が挙げられる。
また、粉砕機としては、カッターミル、ハンマーミル、ピンミル、ジェットミル等が挙げられる。
本発明の塗装物品は、基材と、本発明の粉体から形成された塗膜とを有する。
[基材]
基材の材質は特に限定されないが、耐酸性に優れた塗膜で保護することによる効果が大きい点で金属が好ましい。金属としては、鉄、ステンレス鋼、アルミニウム、銅、錫、チタン、クロム、ニッケル、亜鉛等が挙げられる。特に安価であり強度が高い点で鉄、ステンレス鋼、アルミニウムが好ましい。
基材は、また、メッキ層、プライマー層、塗装膜(本発明の粉体から形成された塗装膜以外のもの)、その他の金属や金属以外の材料からなる層や膜を塗装面に有する基材であってもよい。
基材の用途の例として、各種の容器、パイプ、チューブ、タンク、配管、継ぎ手、ロール、オートクレーブ、熱交換器、蒸留塔、治具類、バルブ、撹拌翼、タンクローリ、ポンプ、ブロワのケーシング、遠心分離機、調理機器等が挙げられる。
塗膜は、粉体が溶融、冷却されたものからなる膜である。
該塗膜の厚みは、基材の保護の点からは5μm以上が好ましく、30μm以上がより好ましく、50μm以上がさらに好ましく、80μm以上が特に好ましい。該厚みの上限は特に限定されないが、あまりに厚いと、基材との熱膨張係数の相違により、基材と塗膜との界面に応力ひずみを生じ、塗膜が剥離しやすい。また、多数回の塗装が必要であるため生産性が低く、コストが高くなる。これらの不都合を防止する点からは、塗膜の厚みは10,000μm以下が好ましく、5,000μm以下がより好ましく、3,000μm以下がさらに好ましく、2,000μm以下が特に好ましい。
塗膜は、基材上に粉体を塗装して粉体層を形成し、該粉体層を熱処理して溶融させ、その後冷却固化する方法で形成される。粉体を溶融しながら基材上に付着させ、必要によりさらに熱処理を行った後、冷却固化する方法で形成することもできる。
粉体の塗装方法としては、特に限定されないが、静電塗装法、流動浸漬法、回転成型法など公知の粉体塗装方法が適用できる。簡便に均一な厚みで塗装できる点で静電塗装法が好ましい。
粉体層を形成して熱処理する工程を、複数回繰り返すことで目的の厚みの塗膜を形成してもよい。
フッ素樹脂が、極性官能基含有単量体に基づく単位を含有する含フッ素共重合体であり、粉体が硬化剤を含有する場合には、該粉体層を熱処理して、溶融する過程で、塗膜を硬化することが好ましい。
上記熱処理温度は粉体を溶融させて均質化できる温度であれば特に限定されないが、特に粉体中のフッ素樹脂の種類によって適切な熱処理温度や熱処理時間を選択することが好ましい。たとえば、熱処理温度が高すぎるとフッ素樹脂の変質等の好ましくない影響が生じるおそれがあり、一方、熱処理温度が低すぎると、良好な物性の塗膜が形成できないおそれがある。
たとえば、粉体中のフッ素樹脂がETFEの場合、熱処理温度は、260~340℃であるのが好ましく、265~320℃であるのがより好ましく、270~310℃であるのが特に好ましい。熱処理温度が260℃以上であると、焼成不足によるボイドや気泡残りが生じにくく、340℃以下であると、変色や発泡が生じにくい傾向がある。熱処理時間は、熱処理温度により異なるが、1~180分の間での熱処理が好ましく、より好ましくは5~120分であり、特に好ましくは10~60分である。熱処理時間が1分以上であると、焼成不足による気泡残りが生じにくく、180分以下であると変色やタレが生じにくい傾向がある。
粉体中のフッ素樹脂がPFAの場合の熱処理温度は、350℃以上380℃未満が好ましい。熱処理温度が350℃以上であれば、形成されるフッ素樹脂層と基材との密着性が優れる。熱処理温度が380℃未満であれば、含フッ素樹脂層に発泡やクラックが生じることを抑制でき、外観に優れた積層体が得られる。熱処理温度は、350~375℃が好ましく、350~370℃がより好ましい。
2回以上の焼成における各焼成の熱処理温度は、異なる温度としてもよく、同じ温度としてもよい。
更に、トップコート層の表面上に、トップコート層とは異なる材質である有機物または無機物のコーティング層(以下「更なるコート層」とも記す。)が積層されていてもよい。
プライマー層は、公知のプライマーを用いて形成できる。プライマーとしては、本発明の粉体から形成される塗膜との接着性を高めるためにフッ素樹脂の膜を形成しうるプライマーが好ましい。フッ素樹脂としては、前記本発明の粉体中のフッ素樹脂と同種のフッ素樹脂が好ましい。たとえば、ETFE等のフッ素樹脂が挙げられる。
また、プライマーは、本発明の効果を損なわない範囲で他の成分を含有することができる。他の成分としては、前記本発明の粉体の他の成分として記載したものが挙げられる。
プライマー層の厚みは、1~1,000μmが好ましく、5~500μmがより好ましく、10~200μmがさらに好ましい。
なお、プライマー中のフッ素樹脂がETFEの場合、熱処理温度を下げても十分な接着性が得られる。この場合、熱処理温度は70~250℃が好ましく、80~200℃がより好ましい。熱処理時間は5~60分が好ましく、10~30分がより好ましい。
更なるコート層としては、着色層、ハードコート層、浸透防止層等が挙げられる。
更なるコート層としては、フッ素樹脂を含み複合酸化物(Z)を含まない層が好ましい。
更なるコート層の厚みは、特に限定されないが、1,000μm以下が好ましく500μm以下がより好ましい。該厚みの下限値は、更なるコート層を設けることによる効果が十分に得られる厚み以上であればよい。例えば10μm以上が好ましく、30μm以上がより好ましい。
かかる塗膜を有する物品は、該塗膜で被覆された面の酸による変質が抑えられ、耐酸性に優れる。
以下の例で用いた化合物は下記の通りである。
フッ素樹脂粉体(A):熱安定剤としてCuOを1.5ppm(0.00015質量%)含有するETFE(TFE単位/E単位/PFBE単位のモル比:54/46/2)の粉体(平均粒子径80~120μm)。
フッ素樹脂粉体(B):ETFE(TFE単位/E単位/PFBE単位のモル比:60/40/3)の粉体(平均粒子径30~70μm)。
フッ素樹脂粉体(C):PFA(TFE単位/ペルフルオロプロピルビニルエーテル単位/5-ノルボルネン-2,3-ジカルボン酸無水物単位のモル比:97.9/2.0/0.1)の粉体(平均粒子径20~30μm)。
無機物粉体(2):複合酸化物の粉体。大日精化社製、製品名:ダイピロキサイドブラック♯3550、組成:Cu[Fe,Mn]O4、比表面積:45m2/g、平均粒子径60nm。
無機物粉体(3):酸化物系顔料の粉体、古河電子社製、製品名:S-300、組成:CuO、比表面積:10m2/g、平均粒子径7.2μm。
無機物粉体(4):カーボンブラック粉体、三菱化学社製、製品名:♯45L、比表面積:110m2/g、平均粒子径24nm。
無機物粉体(5):カーボンブラック粉体、電気化学工業社製、製品名:デンカブラック、比表面積:69m2/g、平均粒子径35nm。
無機物粉体(6):グラファイト粉体、Timcal社製、製品名:KS75、比表面積:6.5m2/g、平均粒子径28μm。
無機物粉体(7):酸化物系顔料の粉体、大日精化社製、製品名:TMイエロー8170、組成:FeOOH、比表面積:80m2/g、平均粒子径70nm。
無機物粉体(8):酸化物系顔料の粉体、大日精化社製、製品名:TMレッド8270、組成:Fe2O3、比表面積:80m2/g、平均粒子径70nm。
液体プライマー(1):旭硝子社製、製品名:フルオン(登録商標)IL-300J)。
表1に示す配合で、フッ素樹脂粉体と無機物粉体とを混合して塗装用の粉体を製造した。
例1~5は複合酸化物(Z)の粉体を含有する実施例であり、例6~11は複合酸化物(Z)以外の無機物粉体を含有する比較例である。
具体的には、チャック付きポリ袋にフッ素樹脂粉体を計量し、次いで無機物粉体を計量し、予備混合を行った。予備混合後、全量をジューサーミキサーへ投入し、30秒間撹拌した。袋に取り出した後、再度ジューサーミキサーへ投入し、30秒間撹拌して塗装用の粉体を得た。
各例の粉体を用い、下記の方法で塗装試験片を製造し、初期接着性、耐熱水性、耐酸性の評価を行った。結果を表1に示す。
なお、例12は、フッ素樹脂粉体(A)のみを使用した例である。
縦40mm、横150mm、厚さ2mmのSUS304ステンレス鋼板の表面を、60メッシュのアルミナ粒子を用いて、表面粗さRa=5~10μmとなるようサンドブラスト処理した後、エタノールで清浄化し、試験用基材を作製した。
該試験用基材の表面に、液体塗料用エアー式スプレーガン(明治機械製作所社製)を使用して、液体プライマー(1)を塗装し、オーブン中に吊り下げて300℃で30分間焼成し、厚み23μmのプライマー層を形成し、プライマー層付き基材を得た。
なお、試験用基材の横方向の一端部にプライマー層が無い部分(剥離試験時の掴みしろとなる部分)が形成されるように、予め該一端部において横方向の幅が20mmの部分をマスキングした。
次いで、プライマー層を形成した後にマスキングを除去し、プライマー層付き基材の表面の全面に、各例の粉体を静電塗装で吹き付け、275℃で15分間焼成した。この静電塗装及び焼成工程を3回繰り返してトップコート層を形成した。さらに、該トップコート層の表面にフッ素樹脂粉体(A)を静電塗装し、275℃で15分間焼成して、最外層(更なるコート層)を形成し、塗装試験片を得た。
トップコート層の厚みは200μm、トップコート層と最外層の合計厚みは250μmとした。
[初期接着性評価]
塗装試験片上に形成された塗膜に、カッターナイフを用いて、横方向に平行な切り込みを10mm間隔で入れた。塗装試験片の一端部のプライマー層が無い部分で、最外層とトップコート層を基材から剥離して掴みしろとした。該掴みしろを、引張り試験機のチャックに固定し、引張り速度50mm/分で90度剥離強度(単位:N/cm)を測定し、得られた値を初期剥離強度として記録した。その値に基づき、以下基準により初期接着性を評価した。Dランクは不可とした。
50.0N/cm以上 : Aランク
35.0以上50.0N/cm未満 : Bランク
20.0以上35.0N/cm未満 : Cランク
20.0N/cm未満 : Dランク
塗装試験片を、プレッシャークッカー(高温蒸気圧力釜)により130℃で24時間処理した後、初期接着性評価と同様にして、90度剥離強度(単位:N/cm)を測定した。得られた値を耐熱水性試験後の剥離強度として記録し、その値に基づいて耐熱水性を評価した。評価基準は初期接着性と同様とした。
塗装試験片を、室温で濃度35%の塩酸水溶液に40時間浸漬した後、初期接着性評価と同様にして、90度剥離強度(単位:N/cm)を測定した。得られた値を耐酸性試験後の剥離強度として記録し、その値に基づいて耐酸性を評価した。評価基準は初期接着性と同様とした。
これに対して、フッ素樹脂粉体(A)と複合酸化物(Z)粉体とを含有する粉体を用いた例1~4は、耐酸性試験において塩酸水溶液に浸漬された後も剥離強度が高い値に維持された。すなわち、トップコート層の耐酸性が優れ、プライマー層の変質が抑制されたと考えられる。
また例1~4は、耐熱水性試験において高温蒸気に曝された後も、塗膜の剥離強度が高い値に維持され、塗膜の耐熱水性が優れていた。
熱安定剤を含まないフッ素樹脂粉体(B)と複合酸化物(Z)粉体とを含有する粉体を用いた例5も、例1~4と同様に、塗膜の耐酸性および耐熱水性が優れていた。
一方、フッ素樹脂粉体(A)と複合酸化物(Z)以外の無機物粉体とを含有する粉体を用いた例6~11は、耐酸性試験において剥離強度が低下し、塗膜の耐酸性が劣っていた。
なお、2015年12月25日に出願された日本特許出願2015-254091号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (13)
- Cu、Mn、Co、Ni、Znからなる群から選ばれる2種以上の金属を含む複合酸化物の粒子と、フッ素樹脂を含有することを特徴とする粉体。
- 前記粉体が、前記複合酸化物の粒子と前記フッ素樹脂の粒子を含有する、請求項1に記載の粉体。
- 前記複合酸化物の粒子からなる粉体の平均粒子径が0.01μm~50μmである、請求項1または2に記載の粉体。
- 前記フッ素樹脂の粒子からなる粉体の平均粒子径が、1~1,000μmである、請求項2または3に記載の粉体。
- 前記粉体が、前記複合酸化物粒子と前記フッ素樹脂とを含む粒子を含有する、請求項1に記載の粉体。
- 前記複合酸化物粒子とフッ素樹脂とを含む粒子からなる粉体の平均粒子径が、1~1,000μmである、請求項5に記載の粉体。
- 前記フッ素樹脂が、CF2=CFX(XはFまたはCl)で表される単量体に由来する単位を有する含フッ素共重合体からなるフッ素樹脂である、請求項1~6のいずれか一項に記載の粉体。
- 前記含フッ素共重合体が、
エチレンに由来する単位とテトラフルオロエチレンに由来する単位を有する共重合体、
テトラフルオロエチレンに由来する単位とペルフルオロアルキルビニルエーテルに由来する単位とを有し、エチレンに由来する単位を有さない共重合体、
テトラフルオロエチレンに由来する単位とヘキサフルオロプロピレンに由来する単位を有し、エチレンに由来する単位およびペルフルオロアルキルビニルエーテルに由来する単位を有さない共重合体、または
エチレンに由来する単位とクロロトリフルオロエチレンに由来する単位とを有し、テトラフルオロエチレンに由来する単位を有さない共重合体である、請求項7に記載の粉体。 - 前記複合酸化物が、CuとMnを含む複合酸化物、またはCoとNiとZnを含む複合酸化物である、請求項1~8のいずれか一項に記載の粉体。
- 基材と、請求項1~9のいずれか一項に記載の粉体から形成された塗膜とを有する物品。
- 前記塗膜の厚さが5~10,000μmである、請求項10に記載の物品。
- 基材上にプライマー層を形成し、次いで請求項1~9のいずれか一項に記載の粉体を用いて前記プライマー層上にトップコート層を形成する、塗装された物品の製造方法であって、前記プライマー層形成のための熱処理温度が80~200℃であることを特徴とする塗装物品の製造方法。
- 前記プライマー層が、複合酸化物粒子を含まないフッ素樹脂の膜からなる、請求項12に記載の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187013149A KR102711566B1 (ko) | 2015-12-25 | 2016-12-22 | 도장용의 분체 및 도장 물품 |
EP16878988.1A EP3395888A4 (en) | 2015-12-25 | 2016-12-22 | POWDER FOR COATING AND COATED ARTICLE |
JP2017558294A JP6874691B2 (ja) | 2015-12-25 | 2016-12-22 | 塗装用の粉体および塗装物品 |
CN201680075946.1A CN108431126B (zh) | 2015-12-25 | 2016-12-22 | 涂装用的粉体以及涂装物品 |
US16/001,977 US20180291211A1 (en) | 2015-12-25 | 2018-06-07 | Powder for coating and coated article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-254091 | 2015-12-25 | ||
JP2015254091 | 2015-12-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/001,977 Continuation US20180291211A1 (en) | 2015-12-25 | 2018-06-07 | Powder for coating and coated article |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017111102A1 true WO2017111102A1 (ja) | 2017-06-29 |
Family
ID=59090483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088521 WO2017111102A1 (ja) | 2015-12-25 | 2016-12-22 | 塗装用の粉体および塗装物品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180291211A1 (ja) |
EP (1) | EP3395888A4 (ja) |
JP (1) | JP6874691B2 (ja) |
KR (1) | KR102711566B1 (ja) |
CN (1) | CN108431126B (ja) |
TW (1) | TWI731010B (ja) |
WO (1) | WO2017111102A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020200414A (ja) * | 2019-06-12 | 2020-12-17 | 三井・ケマーズ フロロプロダクツ株式会社 | 高絶縁性濃色フッ素樹脂組成物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57205456A (en) * | 1981-06-10 | 1982-12-16 | Matsushita Electric Ind Co Ltd | Paint composition for selectively absorbing solar heat |
JPH02185572A (ja) * | 1989-01-12 | 1990-07-19 | Nippon Steel Chem Co Ltd | 太陽熱遮蔽塗料組成物及び被覆構造物 |
JPH06108103A (ja) * | 1992-06-02 | 1994-04-19 | Elf Atochem North America Inc | 粉末被覆 |
JP2008520434A (ja) * | 2004-11-19 | 2008-06-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | プライマ層およびオーバーコートとしてフルオロポリマー粉末塗料を被着させる方法 |
JP2012072250A (ja) * | 2010-09-28 | 2012-04-12 | Asahi Glass Co Ltd | 塗料用組成物の製造方法および塗装物品 |
JP2014185284A (ja) | 2013-03-25 | 2014-10-02 | Toyo Ink Sc Holdings Co Ltd | 熱可塑性樹脂組成物、およびその成形品 |
WO2015083730A1 (ja) * | 2013-12-03 | 2015-06-11 | 旭硝子株式会社 | 液体プライマー組成物及びそれを用いた積層体 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52126431A (en) * | 1976-04-16 | 1977-10-24 | Asahi Glass Co Ltd | Coating composition and method of coating the same |
DE60209224T2 (de) | 2001-06-18 | 2006-07-27 | Daikin Industries, Ltd. | Verwendung von Pulverlack |
US7625973B2 (en) * | 2005-02-24 | 2009-12-01 | Ppg Industries Ohio, Inc. | Methods for preparing fluoropolymer powder coatings |
JP5124135B2 (ja) | 2006-12-27 | 2013-01-23 | 株式会社大林組 | フィルムまたはシート及びその製造方法、並びに外装材、ガラス、及び外装施工方法 |
JP2013103172A (ja) | 2011-11-14 | 2013-05-30 | Asahi Glass Co Ltd | 金属板の被覆方法、および被覆された金属板 |
TWI492978B (zh) * | 2013-07-24 | 2015-07-21 | Grand Tek Advance Material Science Co Ltd | 複合材料微粉、陶瓷塗料、保護塗層、與複合材料微粉的形成方法 |
EP3133131B1 (en) * | 2014-04-18 | 2018-11-07 | AGC Inc. | Powder paint and painted article |
-
2016
- 2016-12-22 WO PCT/JP2016/088521 patent/WO2017111102A1/ja active Application Filing
- 2016-12-22 JP JP2017558294A patent/JP6874691B2/ja active Active
- 2016-12-22 CN CN201680075946.1A patent/CN108431126B/zh active Active
- 2016-12-22 EP EP16878988.1A patent/EP3395888A4/en not_active Withdrawn
- 2016-12-22 KR KR1020187013149A patent/KR102711566B1/ko active IP Right Grant
- 2016-12-23 TW TW105143072A patent/TWI731010B/zh active
-
2018
- 2018-06-07 US US16/001,977 patent/US20180291211A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57205456A (en) * | 1981-06-10 | 1982-12-16 | Matsushita Electric Ind Co Ltd | Paint composition for selectively absorbing solar heat |
JPH02185572A (ja) * | 1989-01-12 | 1990-07-19 | Nippon Steel Chem Co Ltd | 太陽熱遮蔽塗料組成物及び被覆構造物 |
JPH06108103A (ja) * | 1992-06-02 | 1994-04-19 | Elf Atochem North America Inc | 粉末被覆 |
JP2008520434A (ja) * | 2004-11-19 | 2008-06-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | プライマ層およびオーバーコートとしてフルオロポリマー粉末塗料を被着させる方法 |
JP2012072250A (ja) * | 2010-09-28 | 2012-04-12 | Asahi Glass Co Ltd | 塗料用組成物の製造方法および塗装物品 |
JP2014185284A (ja) | 2013-03-25 | 2014-10-02 | Toyo Ink Sc Holdings Co Ltd | 熱可塑性樹脂組成物、およびその成形品 |
WO2015083730A1 (ja) * | 2013-12-03 | 2015-06-11 | 旭硝子株式会社 | 液体プライマー組成物及びそれを用いた積層体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3395888A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020200414A (ja) * | 2019-06-12 | 2020-12-17 | 三井・ケマーズ フロロプロダクツ株式会社 | 高絶縁性濃色フッ素樹脂組成物 |
JP7432309B2 (ja) | 2019-06-12 | 2024-02-16 | 三井・ケマーズ フロロプロダクツ株式会社 | 高絶縁性濃色フッ素樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
TW201734147A (zh) | 2017-10-01 |
CN108431126A (zh) | 2018-08-21 |
KR20180098529A (ko) | 2018-09-04 |
EP3395888A1 (en) | 2018-10-31 |
EP3395888A4 (en) | 2019-07-03 |
TWI731010B (zh) | 2021-06-21 |
JPWO2017111102A1 (ja) | 2018-11-08 |
JP6874691B2 (ja) | 2021-05-19 |
CN108431126B (zh) | 2021-04-27 |
US20180291211A1 (en) | 2018-10-11 |
KR102711566B1 (ko) | 2024-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6819717B2 (ja) | 被覆組成物及び被覆物品 | |
JP6432521B2 (ja) | 液体プライマー組成物及びそれを用いた積層体 | |
JP5967230B2 (ja) | 被覆物品、及び、耐食性塗膜の形成方法 | |
JP6519481B2 (ja) | 粉体プライマー組成物及びそれを用いた積層体 | |
JP7265215B2 (ja) | 被覆用組成物及び被覆物品 | |
US11518901B2 (en) | Composition and coating film | |
JP6175928B2 (ja) | 被覆物品 | |
US11970628B2 (en) | Fluororesin coating composition for forming a topcoat and coating film therefrom | |
US7985790B2 (en) | Water-based fluoropolymer composition | |
JP6327372B2 (ja) | 混合粉末、皮膜及び物品 | |
JP6874691B2 (ja) | 塗装用の粉体および塗装物品 | |
JP7137113B1 (ja) | 溶融性フッ素樹脂プライマー | |
JP2003053261A (ja) | フッ素樹脂塗膜製造方法、フッ素樹脂塗膜及び加工物品 | |
JP6838636B2 (ja) | 組成物及び塗膜 | |
KR20230146585A (ko) | 분말 코팅 조성물 | |
WO2022054916A1 (ja) | 塗料組成物及び塗装品 | |
JP2020111644A (ja) | 粉体組成物、物品 | |
JP6171495B2 (ja) | 混合粉末、皮膜及び物品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878988 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187013149 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017558294 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016878988 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016878988 Country of ref document: EP Effective date: 20180725 |