WO2017110545A1 - 圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法 - Google Patents

圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法 Download PDF

Info

Publication number
WO2017110545A1
WO2017110545A1 PCT/JP2016/086867 JP2016086867W WO2017110545A1 WO 2017110545 A1 WO2017110545 A1 WO 2017110545A1 JP 2016086867 W JP2016086867 W JP 2016086867W WO 2017110545 A1 WO2017110545 A1 WO 2017110545A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ferrite
heat treatment
soft magnetic
dust
Prior art date
Application number
PCT/JP2016/086867
Other languages
English (en)
French (fr)
Inventor
賢 松原
ジョンハン ファン
正史 宇都野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016103244A external-priority patent/JP6836846B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/064,662 priority Critical patent/US10832840B2/en
Priority to DE112016006051.3T priority patent/DE112016006051T5/de
Publication of WO2017110545A1 publication Critical patent/WO2017110545A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Definitions

  • the present disclosure relates to a powder for a dust core and a manufacturing method thereof, and a dust core and a manufacturing method thereof.
  • Patent Document 1 discloses a ferrite-coated powder in which a soft magnetic metal particle is coated with a ferrite film. This document describes that the ferrite coating is formed by spraying a treatment liquid containing a metal element on the surface of heated soft magnetic metal particles and then spraying an alkaline solution.
  • a dust core formed by compacting a powder for a conventional dust core has a large eddy loss if the distortion caused by compacting is removed by annealing in order to reduce loss in a low frequency range. Increased and inferior in heat resistance.
  • the present disclosure has been made in view of such problems, and is capable of suppressing an increase in vortex loss due to annealing after compacting, and manufacturing a dust core having improved heat resistance and the dust core. It is an object of the present invention to provide a method, a powder for powder magnetic core suitable for obtaining the powder magnetic core, and a method for producing the powder for powder magnetic core.
  • a first aspect of the present disclosure is an aggregate of soft magnetic particles having soft magnetic metal particles and a ferrite film covering the surface of the soft magnetic metal particles, the ferrite film Is composed of ferrite crystal grains having a spinel structure, and is present in a powder for a powder magnetic core in which a diffraction peak derived from the ferrite crystal grains is present in a powder X-ray diffraction pattern.
  • the second aspect of the present disclosure provides a raw material powder composed of an aggregate of soft magnetic metal particles, and forms a large number of ferrite fine particles on the surface of each soft magnetic metal particle in the raw material powder.
  • the ferrite fine particles are coarsely crystallized by heat treatment to form a ferrite coating composed of ferrite crystal grains having a spinel structure on the surface of each soft magnetic metal particle.
  • a third aspect of the present disclosure is a powder magnetic core which is a powder compact of the powder for powder magnetic core and from which distortion is removed.
  • a fourth aspect of the present disclosure was annealed in a compacting process for compacting the powder for a powder magnetic core, an annealing process for annealing the obtained compacted article, and an annealing process. And a transformation heat treatment step in which FeO partially generated in the ferrite film included in the powder compact is re-ferritized by heat treatment.
  • the ferrite coating is damaged by the friction between the ferrite coatings or the deformation of the soft magnetic metal particles during the compacting. Even after the powder molding and before annealing, a certain degree of insulation is maintained by the air gap even if the ferrite coating in the powder magnetic core is damaged. However, adjacent soft magnetic metal particles contact and sinter at the damaged portion of the ferrite coating due to the annealing after the compacting. As a result, in the powder magnetic core after annealing, the insulating properties of the ferrite film are lowered, and the vortex loss is increased. In particular, the ferrite coating formed by spraying is in a state where ferrite fine particles are deposited on the surface of soft magnetic metal particles, and is not dense. Therefore, vortex loss tends to increase.
  • the ferrite film covering the surface of the soft magnetic metal particle is composed of ferrite crystal grains having a spinel structure, and the diffraction derived from the ferrite crystal grains in the powder X-ray diffraction pattern.
  • the strength of the ferrite coating is improved by the ferrite crystal grains coarsened to such an extent that the diffraction peak exists in the powder for powder magnetic core.
  • the powder for a powder magnetic core suppresses damage to the ferrite film due to a high stress during powder molding.
  • the powder for powder magnetic cores can suppress that adjacent soft magnetic metal particles sinter by the said ferrite film. Therefore, the powder for a dust core can suppress an increase in vortex loss due to annealing after dust molding, and is suitable for obtaining a dust core with improved heat resistance.
  • a large number of ferrite fine particles are formed on the surface of each soft magnetic metal particle in the raw material powder, and the ferrite fine particles are coarsely crystallized by heat treatment, whereby a ferrite crystal having a spinel structure is formed.
  • a ferrite coating composed of grains is formed. Therefore, according to the method for producing a powder for a powder magnetic core, an increase in vortex loss due to annealing after powder molding can be suppressed, and the pressure suitable for obtaining a powder magnetic core with improved heat resistance is obtained.
  • a powder for a powder magnetic core can be produced.
  • the powder magnetic core is a powder compact of the powder for powder magnetic core, and the distortion is removed. Therefore, a dust core having excellent heat resistance, high saturation magnetic flux density and low loss can be obtained.
  • the manufacturing method of the dust core has the transformation heat treatment step.
  • FeO is a substance having a smaller volume specific resistance than ferrite. For this reason, the ferrite film containing FeO has a lower volume resistivity.
  • the FeO is transformed by the transformation heat treatment. Re-ferritized. Therefore, according to the method for manufacturing a dust core, a dust core having excellent heat resistance, high saturation magnetic flux density, low loss, and high specific resistance can be obtained.
  • FIG. 3 is an explanatory view schematically showing a powder for a powder magnetic core according to Embodiment 1.
  • FIG. 3 is an explanatory view schematically showing a cross section of a ferrite coating in the powder for a powder magnetic core according to Embodiment 1.
  • FIG. 3 is an explanatory diagram schematically showing a powder X-ray diffraction pattern of the powder for a powder magnetic core according to Embodiment 1.
  • FIG. 3 is an explanatory view schematically showing a powder for a powder magnetic core according to Embodiment 1.
  • FIG. 2 is a cross-sectional TEM image of a ferrite-coated powder obtained in Experimental Example 1 and observed with a transmission electron microscope. It is a cross-sectional TEM image of the powder for powder magnetic cores of the sample 1 observed in the transmission electron microscope obtained in Experimental Example 1.
  • 3 is a powder X-ray diffraction pattern of a ferrite-coated powder, a powder for a powder magnetic core of Sample 1, and a powder for a powder magnetic core of Sample 2 obtained in Experimental Example 1.
  • FIG. 6 is a graph showing the relationship between the heat treatment temperature and the compressive strength and shrinkage rate of a ferrite coating obtained when producing a powder for a powder magnetic core obtained in Experimental Example 2. It is the graph which showed the relationship between the annealing temperature of a powder magnetic core and eddy loss which were obtained in Experimental example 3.
  • FIG. It is a cross-sectional SEM image of the powder magnetic core (after annealing) comprised from the ferrite coating powder obtained in Experimental example 3. It is a cross-sectional SEM image of the powder magnetic core (after powder molding and before annealing) comprised from the powder for powder magnetic cores of Sample 1 obtained in Experimental Example 3.
  • the powder 1 for dust core according to this embodiment is an aggregate of soft magnetic particles 2.
  • the soft magnetic particles 2 include soft magnetic metal particles 21 and a ferrite coating 22 that covers the surface of the soft magnetic metal particles 21.
  • the ferrite coating 22 is composed of ferrite crystal grains 221 having a spinel structure.
  • a diffraction peak 101 derived from the ferrite crystal grains 221 is present in the powder X-ray diffraction pattern 10. The details will be described below.
  • the soft magnetic metal particles 21 for example, pure iron particles, Fe-based alloy particles, and the like can be used from the viewpoint of improving the saturation magnetic flux density.
  • the Fe-based alloy include Fe—Si alloys, Fe—Co—V alloys, Fe—Si—Al alloys, and the like.
  • the particle diameter of the soft magnetic metal particles 21 is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 75 ⁇ m or more, from the viewpoints of moldability and reduction of hysteresis loss.
  • the particle diameter of the soft magnetic metal particles 21 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 106 ⁇ m or less from the viewpoint of reducing vortex loss.
  • the particle diameter of the soft magnetic metal particles 21 is measured in a dry manner by using the powder 1 for a powder magnetic core with a laser diffraction / scattering particle size distribution measuring device (“Partica LA-950v2” manufactured by Horiba, Ltd.). The value obtained by subtracting the film thickness of the ferrite coating 22 described later from the particle diameter (diameter) d50 when the volume-based cumulative frequency distribution indicates 50%.
  • the ferrite coating 22 may cover the entire surface of the soft magnetic metal particles 21 from the viewpoint of easily ensuring insulation between the soft magnetic metal particles 21 in the dust core 4. In addition, as long as the effect mentioned above is acquired, the part which is not covered with the ferrite film 22 may exist in a part of surface of the soft-magnetic metal particle 21. FIG.
  • the size of the ferrite crystal grains 221 can be 10 nm or more. In this case, the strength improvement of the ferrite coating 22 is ensured, an increase in vortex loss due to annealing after compacting can be suppressed, and the dust core 4 with improved heat resistance can be easily obtained.
  • the size of the ferrite crystal grains 221 is preferably 30 nm or more, more preferably 40 nm or more, still more preferably 50 nm or more, even more preferably 60 nm or more, and even more preferably, from the viewpoint of making the above effect more reliable. It can be 70 nm or more. Further, the size of the ferrite crystal grains 221 can be made equal to or less than the thickness of the ferrite coating 22. Specifically, the size of the ferrite crystal grains 221 is preferably 1000 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less, from the viewpoints of formability, suppression of peeling of the ferrite coating, suppression of cracking of the ferrite coating, and the like.
  • the size of the ferrite crystal grains 221 is determined by measuring the maximum diameter of each of the 10 ferrite crystal grains 221 included in the ferrite coating 22 in the soft magnetic particles 2 by using a cross-sectional TEM image of the powder 1 for a powder magnetic core. The average value of the obtained maximum diameters.
  • the ferrite coating 22 may include a portion where the interface 222 between the ferrite crystal grains 221 is linear in a cross-sectional view. In this case, a gap is reduced between adjacent ferrite crystal grains 221 and a dense film is obtained. Therefore, in this case, the strength improvement of the ferrite coating 22 is ensured, an increase in vortex loss due to annealing after compacting can be suppressed, and a dust core 4 with improved heat resistance can be easily obtained. Become.
  • the cross-sectional view is based on a cross-sectional TEM image.
  • the chemical composition of the ferrite coating 22 is M X Fe 2 O 4 , where M is at least one metal element selected from the group consisting of Fe, Cu, Mg, Ni, Zn, and Mn, 0 ⁇ X It can be set as ⁇ 1.
  • M contains two or more metal elements, each metal element satisfies 0 ⁇ X ⁇ 1.
  • the total value of X of each element is 1.
  • the powder 1 for a powder magnetic core having a good balance between the saturation magnetic flux density and the volume resistivity can be obtained.
  • the metal element M can be configured to include Mn and Zn, or Ni and Zn. In this case, it becomes easy to obtain the powder 1 for a dust core having a good balance between the saturation magnetic flux density and the volume resistivity.
  • the film thickness of the ferrite coating 22 can be in the range of 20 nm to 600 nm, for example. In this case, it is easy to ensure the insulation between the soft magnetic metal particles 21, and it is easy to obtain a dust core 4 that is advantageous for improving the saturation magnetic flux density with an appropriate density.
  • the film thickness of the ferrite coating 22 is preferably 10 nm or more, more preferably 50 nm or more, and still more preferably 100 nm or more, from the viewpoint of ensuring the insulation.
  • the film thickness of the ferrite coating 22 is preferably 1000 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoints of improvement of the saturation magnetic flux density and higher density.
  • the thickness of the ferrite coating 22 is the direction perpendicular to the interface 223 between the soft magnetic metal particle 21 and the ferrite coating 22 for one soft magnetic particle 2 using the cross-sectional TEM image of the powder 1 for the powder magnetic core.
  • the thickness of the ferrite coating 22 is measured at three points, and is an average value of the obtained values.
  • the powder X-ray diffraction pattern of the powder 1 for powder magnetic core is measured using a powder X-ray diffractometer (Rigaku, “RINT2000”) using a Cu tube as an X-ray source or an equivalent device.
  • the measurement range of the powder X-ray diffraction pattern 10 is set so that 2 ⁇ / ⁇ in which the spinel structure of the ferrite crystal grains 221 is clearly visible includes a range of 34 to 37 °.
  • the diffraction peak 101 is not observed in the ferrite-coated powder in which ferrite fine particles are deposited on the surface of the soft magnetic metal particles. Therefore, in the powder 1 for a powder magnetic core, the definition “the diffraction peak 101 derived from the ferrite crystal grains 221 exists” has a ferrite coating 22 different from a coating in which ferrite fine particles are deposited. It means that
  • the powder 1 for a dust core can be configured such that the half width of the diffraction peak 101 is 0.5 ° or less. In this case, an increase in vortex loss due to annealing after dust forming can be suppressed, and the dust core 4 with improved heat resistance can be easily obtained.
  • the half width is preferably 0.45 ° or less, more preferably 0.4 ° or less, still more preferably 0.35 ° or less, and even more preferably 0.3 ° or less.
  • the said half value width can be 0.18 degree or more.
  • the dust core powder 1 can contain a lubricant (not shown) in addition to the soft magnetic particles 2.
  • a lubricant include zinc stearate, lithium stearate, stearamide, and the like.
  • the ferrite coating 22 covering the surface of the soft magnetic metal particles 21 is composed of ferrite crystal grains 221 having a spinel structure, and the powder X-ray diffraction pattern 10 is derived from the ferrite crystal grains 221.
  • a diffraction peak 101 is present. Therefore, in the powder 1 for a powder magnetic core, the strength of the ferrite coating 22 is improved by the ferrite crystal grains 221 that are coarsened to the extent that the diffraction peak 101 exists. As a result, in the powder 1 for a powder magnetic core, breakage of the ferrite coating 22 due to high stress during powder molding is suppressed.
  • the ferrite coating 22 can suppress the adjacent soft magnetic metal particles 21 from being sintered. Therefore, the powder 1 for a powder magnetic core can suppress an increase in vortex loss due to annealing after powder molding, and is suitable for obtaining a powder magnetic core 4 with improved heat resistance.
  • Embodiment 2 The manufacturing method of the powder for powder magnetic cores of Embodiment 2 is demonstrated using FIG.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • a raw material powder 3 composed of an aggregate of soft magnetic metal particles 21 is prepared.
  • a large number of ferrite fine particles 220 are formed on the surface of each soft magnetic metal particle 21 in the raw material powder 3. Further, the ferrite fine particles 220 are coarsely crystallized by heat treatment, and the ferrite coating 22 composed of ferrite crystal grains 221 having a spinel structure is formed on the surface of each soft magnetic metal particle 21.
  • the raw material powder 3 can be prepared by, for example, an atomization method, a mechanical pulverization method, a reduction method, or the like.
  • the atomizing method include a water atomizing method, a gas atomizing method, and a gas water atomizing method.
  • the description of Embodiment 1 can be applied to the material of the soft magnetic metal particles 21 in the raw material powder 3.
  • the particle diameter of the soft magnetic metal particles 21 in the raw material powder 3 is measured by a dry method using the raw material powder 3 using a laser diffraction / scattering type particle size distribution measuring device (“Partica LA-950v2” manufactured by Horiba, Ltd.). The particle diameter (diameter) d50 when the volume-based cumulative frequency distribution indicates 50%.
  • a method of forming a large number of ferrite fine particles 220 on the surface of each soft magnetic metal particle 21 in the raw material powder 3 for example, while heating and stirring the raw material powder 3, Fe 2+ and the divalent metal element M are added to the raw material powder 3.
  • a method of spraying a treatment liquid containing the above ions, spraying a pH adjusting liquid onto the powder after the treatment liquid spraying, and then washing and drying the powder can be used. It should be noted that the spraying of the treatment liquid and the spraying of the pH adjusting liquid can be alternately repeated after the pH adjusting liquid is sprayed and before the cleaning. Also, spraying of the pH adjusting liquid can be omitted by spraying the treatment liquid that has been adjusted to about pH 6 to 10 in advance. According to these methods, a large number of ferrite fine particles 220 can be deposited on the surface of each soft magnetic metal particle 21 in the raw material powder 3.
  • the raw material powder 3 can be heated, for example, in the atmosphere at 90 to 150 ° C.
  • the treatment liquid can be an acidic solution.
  • the pH adjusting liquid can be an alkaline solution.
  • the particle diameter of the ferrite fine particles 220 can be set to, for example, 5 nm to 35 nm.
  • the particle diameter of the ferrite fine particles 220 is determined by measuring the maximum diameter of each of the 10 ferrite fine particles 220 formed on one soft magnetic metal particle 21 using a cross-sectional TEM image, and obtaining the average value of the obtained maximum diameters. It is. Note that all the contents described in JP2014-183199A can be incorporated into the present specification by reference.
  • the heat treatment temperature at the time of heat treatment of the ferrite fine particles 220 can be set within a range of 400 to 900 ° C., for example. In this case, the balance between the effect of improving the strength of the ferrite coating 22 by coarse crystallization of the ferrite fine particles 220 and the effect of reducing the shrinkage rate of the ferrite coating 22 is excellent.
  • the heat treatment temperature is preferably 450 ° C. or higher, more preferably 500 ° C. or higher, and still more preferably 550 ° C. or higher from the viewpoint of easily obtaining the effect of improving the strength of the ferrite coating 22 due to coarse crystallization of the ferrite fine particles 220. be able to.
  • the heat treatment temperature is preferably 850 ° C.
  • the shrinkage rate of the ferrite coating 22 is not excessively increased and the adhesion between the soft magnetic metal particles 21 and the ferrite coating 22 is improved. It can be 800 degrees C or less, More preferably, it is 750 degrees C or less, More preferably, it can be 700 degrees C or less.
  • the heat treatment time during the heat treatment of the ferrite fine particles 220 can be, for example, in the range of 0.5 to 5 hours. In this case, the balance between the effect of improving the strength of the ferrite coating 22 by coarse crystallization of the ferrite fine particles 220 and the effect of reducing the shrinkage rate of the ferrite coating 22 is excellent.
  • the heat treatment time is preferably 0.1 hours or more, more preferably 0.5 hours or more, and even more preferably 1 from the viewpoint of easily obtaining the effect of improving the strength of the ferrite coating 22 by coarse crystallization of the ferrite fine particles 220. It can be over time.
  • the heat treatment temperature is preferably 5 hours or less, more preferably, from the viewpoint that the shrinkage rate of the ferrite coating 22 is not excessively increased and the adhesion between the soft magnetic metal particles 21 and the ferrite coating 22 is improved. It can be 4 hours or less, more preferably 1 hour or less.
  • the atmosphere during heat treatment of the ferrite fine particles 220 can be, for example, an inert gas atmosphere, a vacuum atmosphere, or the like.
  • the ferrite coating 22 and the atmospheric gas are difficult to react, and the ferrite crystal grains 221 are promoted to become coarse.
  • the inert gas include nitrogen gas and argon gas.
  • the pressure during the heat treatment of the ferrite fine particles 220 is preferably 2 ⁇ 10 ⁇ 2 Pa or more, more preferably 10 Pa or more, and further preferably 100 Pa or more from the viewpoint of productivity and the like.
  • the pressure is preferably 101 kPa or less, more preferably 80 kPa or less, and even more preferably 50 kPa or less from the viewpoint of maintaining the oxygen element ratio in the coating.
  • the heat treatment of the ferrite fine particles 220 may be performed after the formation of the ferrite fine particles 220 or may be performed simultaneously with the formation of the ferrite fine particles 220. Further, the heat treatment of the ferrite fine particles 220 can also be performed in a dust forming process at the time of manufacturing the dust core 4. Examples of the compacting method include molding methods such as hot isostatic pressing, uniaxial or multiaxial press, and extrusion press.
  • a large number of ferrite fine particles 220 are formed on the surface of each soft magnetic metal particle 21 in the raw material powder 3, and the ferrite fine particles 220 are coarsely crystallized by heat treatment, whereby a spinel structure A ferrite film 22 composed of ferrite crystal grains 221 having the above is formed. Therefore, according to the method for manufacturing a powder for a powder magnetic core, an increase in vortex loss due to annealing after powder molding can be suppressed, and the pressure suitable for obtaining a powder magnetic core 4 with improved heat resistance.
  • the powder 1 for powder magnetic cores can be manufactured.
  • Embodiment 3 The powder magnetic core of Embodiment 2 is demonstrated using FIG. As illustrated in FIG. 5, the dust core 4 of the present embodiment is a dust compact of the dust core powder 1, and the distortion is removed. In this embodiment, the powder for powder magnetic core of Embodiment 1 can be used as the powder for powder magnetic core 1 constituting the powder magnetic core 4.
  • the shape of the dust core 4 is not particularly limited, and various known shapes can be employed. Note that whether or not the strain has been removed can be determined by measuring the coercive force.
  • the coercive force Hc can be, for example, 164 A / m (during 600 ° C. annealing) or less when the soft magnetic metal particles 21 are pure iron particles.
  • the coercive force Hc can be, for example, 313 A / m (at 1000 ° C. annealing) or less when the soft magnetic metal particles 21 are Fe—Si alloy particles.
  • the coercive force Hc can be 313 A / m (at 1100 ° C. annealing) or less, for example, when the soft magnetic metal particles 21 are Fe—Co—V alloy particles.
  • the coercive force Hc can be 46 A / m (during 700 ° C. annealing) or less, for example, when the soft magnetic metal particles 21 are Fe—Si—Al alloy particles.
  • the dust core 4 can be obtained, for example, by compacting the above-described dust core powder 1 and annealing.
  • the compacting method include molding methods such as hot isostatic pressing, uniaxial or multiaxial press, and extrusion press.
  • the pressure at the time of compaction can be, for example, in the range of 1000 MPa to 1568 MPa.
  • the annealing temperature can be specifically set within a range of 400 ° C. to 1000 ° C., for example.
  • the powder magnetic core 4 uses the powder 1 for powder magnetic core, it has excellent heat resistance, high saturation magnetic flux density and low loss.
  • the dust core 4 can be suitably used for, for example, a motor, an ignition coil, a fuel injection injector, and the like.
  • Embodiment 4 The powder magnetic core of Embodiment 4 is demonstrated using FIG.
  • a diffraction peak derived from FeO does not exist in the powder X-ray diffraction pattern.
  • the powder X-ray diffraction pattern of the dust core 4 is obtained by using a powder X-ray diffractometer (Rigaku, “RINT2000”) using a Cu tube as an X-ray source, or an equivalent device. Measured on fracture surface samples.
  • Other configurations are the same as those of the third embodiment.
  • the ferrite film 22 does not contain FeO having a small volume resistivity, and the ferrite film is composed of ferrite crystal grains 221. Therefore, in this case, a dust core having a high specific resistance can be obtained.
  • Other functions and effects are the same as those of the third embodiment.
  • the specific resistance of the dust core 4 is preferably 100 ⁇ ⁇ m or more, more preferably 500 ⁇ ⁇ m or more. From the viewpoint of reducing the magnetic flux density, the specific resistance of the dust core 4 can be set to, for example, 10,000 ⁇ ⁇ m or less.
  • the manufacturing method of the powder magnetic core of Embodiment 5 is demonstrated.
  • the manufacturing method of the powder magnetic core of this embodiment has a powder compacting process, an annealing process, and a transformation heat treatment process.
  • the compacting process is a process of compacting the powder for the powder magnetic core.
  • the powder for powder magnetic core the powder for powder magnetic core exemplified in the first embodiment and the powder for powder magnetic core obtained by the method for producing the powder for powder magnetic core exemplified in the second embodiment can be used.
  • the compacting method include molding methods such as hot isostatic pressing, uniaxial or multiaxial press, and extrusion press.
  • the pressure at the time of compaction can be, for example, in the range of 1000 MPa to 1568 MPa.
  • An annealing process is a process of annealing the obtained compacting body. By annealing, distortion generated in the green compact at the time of compacting is removed.
  • the annealing temperature can be preferably in the range of 400 ° C. to 1000 ° C.
  • the annealing temperature is preferably 450 ° C. or higher, more preferably 500 ° C. or higher, even more preferably 560 ° C. or higher, and still more preferably 600 ° C. or higher, from the viewpoint of ensuring the removal of strain.
  • the annealing temperature is preferably 980 ° C. or less, more preferably 950 ° C. or less, further preferably 930 ° C. or less, and still more preferably 900 ° C. or less, from the viewpoint of reducing the amount of FeO generated in the ferrite coating. Can do.
  • the annealing time is specifically preferably in the range of 0.5 hours to 5 hours, more preferably in the range of 0.5 hours to 1 hour, for example, from the viewpoint of ensuring the removal of strain. can do.
  • the annealing atmosphere can be, for example, an inert gas atmosphere or a vacuum atmosphere.
  • the annealing atmosphere is preferably an inert gas atmosphere from the viewpoint of maintaining the coating composition.
  • Specific examples of the inert gas include nitrogen gas and argon gas.
  • the transformation heat treatment step is a step of re-ferritizing FeO partially generated in the ferrite film included in the annealed green compact by heat treatment.
  • the heat treatment temperature in the transformation heat treatment step (hereinafter sometimes referred to as “transformation heat treatment temperature”) can be 560 ° C. or less.
  • the transformation heat treatment temperature is preferably 540 ° C. or less, more preferably 520 ° C. or less, and further preferably 500 ° C. or less from the viewpoint of promoting re-ferritization. From the standpoint of ensuring the above eutectoid transformation, the transformation heat treatment temperature is preferably 350 ° C. or higher, more preferably 370 ° C. or higher, and even more preferably 400 ° C. or higher.
  • the heat treatment time in the transformation heat treatment step (hereinafter sometimes referred to as “transformation heat treatment time”) is preferably 10 minutes or more, more preferably from the viewpoint of ensuring the above eutectoid transformation. It can be 5 hours or longer, more preferably 1 hour or longer.
  • the transformation heat treatment time is preferably 3 hours or less, more preferably 2.5 hours or less, and even more preferably 2 hours or less, from the viewpoint of improving the productivity of the dust core.
  • the atmosphere in the transformation heat treatment step can be a water vapor atmosphere or an inert gas atmosphere.
  • the eutectoid transformation can be ensured.
  • the transformation heat treatment atmosphere is a water vapor atmosphere
  • Fe generated by the eutectoid transformation becomes Fe 3 O 4 , and this Fe 3 O 4 is more likely to be converted into M X Fe 2 O 4 . Therefore, Fe having a low volume resistivity hardly remains in the ferrite film, which is advantageous for increasing the specific resistance of the dust core.
  • Specific examples of the inert gas include nitrogen gas and argon gas.
  • Experimental example 1 The raw material powder comprised from the aggregate
  • the raw material powder was heated and stirred at 150 ° C., and a ferrite forming liquid was sprayed as a treatment liquid onto the raw material powder in the heated and stirred state.
  • ferrite solution as ferrite oxide having a chemical composition of Mn 0.5 Zn 0.5 Fe 2 O 4 is formed, chloride Fe, chloride Mn, an aqueous solution of NaOH aqueous solution containing chloride Zn, urea
  • the pH adjusted to pH 8 was used.
  • the powder after spraying the ferrite forming liquid was washed with water, washed with ethanol, and then filtered. Thereby, NaCl remaining on the particle surface, residues, and the like were removed.
  • the washed powder was dried at 80 ° C.
  • the dried powder was classified through a sieve (mesh size: 106-212 ⁇ m).
  • a ferrite-coated powder was obtained.
  • the obtained ferrite-coated powder had a large number of ferrite fine particles 220 deposited on the surface of each pure iron particle 210.
  • the particle diameter of the ferrite fine particles 220 was 20 nm.
  • the ferrite-coated powder was heat-treated at 600 ° C. for 1 hour under an N 2 gas atmosphere and a pressure of 80 kPa, and then cooled in the furnace.
  • the surface of each pure iron particle 210 was coated with a ferrite coating 22 composed of ferrite crystal grains 221.
  • the ferrite crystal grains of this ferrite film are obtained by coarsely crystallizing ferrite fine particles in the ferrite-coated powder before heat treatment by heat treatment.
  • the size of the ferrite crystal grains was 100 nm, and the thickness of the ferrite coating was 100 nm. Further, as shown in FIG.
  • the ferrite coating includes a portion in which the interface between the ferrite crystal grains exhibits a linear shape in a cross-sectional view.
  • the particle diameter of the pure iron particles measured using the cross-sectional SEM image was 150 ⁇ m.
  • the powder for powder core of sample 2 was obtained in the same manner except that the heat treatment temperature was 400 ° C. Note that the powder for the powder magnetic core of Sample 2 also had the same ferrite coating as the powder for the powder magnetic core of Sample 1. However, the size of the ferrite crystal grains was 60 nm, and the thickness of the ferrite coating was 100 nm.
  • the derived diffraction peak was confirmed.
  • the half width of the diffraction peak in the powder for powder magnetic core of sample 1 was 0.2 °
  • the half width of the diffraction peak in the powder for powder magnetic core of sample 2 was 0.42 °. From this result, it can be said that the heat treatment at 600 ° C. is narrower than the heat treatment at 400 ° C., so that a ferrite film having a narrow half-width of the diffraction peak and a high crystallinity can be formed.
  • Experiment Example 3 will be described.
  • the ferrite-coated powder produced in Experimental Example 1 (no heat treatment), the powder for powder magnetic core of Sample 1 (heat treatment at 600 ° C.), and the powder for powder magnetic core of Sample 2 (heat treatment at 400 ° C.) were prepared. After these powders were compacted and then annealed at a predetermined annealing temperature, a plurality of dust cores were produced, and vortex loss was measured.
  • This experimental example is for evaluating the heat resistance of the dust core.
  • the green compact has a ring shape with an outer diameter of 24 mm, an inner diameter of 16 mm, and a thickness of 5 mm.
  • each green compact was annealed at a predetermined annealing temperature for 1 hour under an N 2 gas atmosphere and a pressure of 80 kPa, and then cooled in the furnace.
  • the said annealing temperature was made into three levels, 300 degreeC, 450 degreeC, and 600 degreeC.
  • winding (primary side: 157T, secondary side: 40T) is applied to each powder magnetic core after the annealing, and magnetic flux density B 10k (magnetic field: 10,000 A / m): 1T, frequency: 800 Hz. Vortex loss was measured.
  • a temperature of 130 ° C. on the horizontal axis means a temperature during warm compacting.
  • the temperature 300 ° C., the temperature 450 ° C., and the temperature 600 ° C. on the horizontal axis all mean the annealing temperature.
  • the powder magnetic cores using the powders for powder magnetic cores of Samples 1 and 2 are less likely to increase the vortex loss even when the annealing temperature is higher than the powder magnetic cores using the ferrite coated powder. I understand that. That is, it can be said that the dust cores using the dust core powders of Sample 1 and Sample 2 have improved heat resistance compared to the dust core using the ferrite-coated powder.
  • the dust core using the dust core powder of Sample 1 having a high heat treatment temperature can effectively suppress an increase in vortex loss due to annealing after dust forming.
  • FIG. 12 at the triple point A of the soft magnetic particles, no ferrite powder abrasion powder was deposited by compacting.
  • the dust core using the powder for the dust core of Sample 1 has a great effect of improving the strength of the ferrite coating.
  • the strength improvement effect of the ferrite coating was great, as shown in FIG. 13, the dust core using the powder magnetic core powder of Sample 1 is difficult to sinter between adjacent pure iron particles after annealing, It can also be seen that the insulation gap between the pure iron particles was easily maintained.
  • a ferrite film having a thickness of 10 ⁇ m was formed on the surface of an iron plate (material: SPCC) having a thickness of 0.3 mm.
  • the powder for the powder magnetic core of Sample 1 (heat treated at 600 ° C.) prepared in Experimental Example 1 was used as the raw material powder for the ferrite coating.
  • the ferrite coating was formed by warm compacting the powder for the powder magnetic core on the iron plate surface at 1300 MPa and 130 ° C. Thereby, the test body 1 was obtained.
  • the test body used in this experimental example simulates the arrangement of the soft magnetic metal and the ferrite film constituting the soft magnetic metal particles in the dust core.
  • the specimen 1 was annealed at 600 ° C. for 1 hour under an N 2 gas atmosphere and a pressure of 80 kPa, and then cooled in the furnace. Thereby, the test body 2 was obtained. Further, a test body 2-1 was obtained in the same manner as the preparation of the test body 2 except that the annealing temperature was set to 130 ° C. Further, a specimen 2-2 was obtained in the same manner as the specimen 2 except that the annealing temperature was 400 ° C.
  • the specimen 2 annealed at 600 ° C. which has an annealing temperature higher than the others, has a reduced volume resistivity of the ferrite coating due to annealing. Therefore, in order to analyze the structure of the ferrite film before and after annealing at 600 ° C., the cross sections of the specimen 1 (before annealing) and the specimen 2 (after annealing at 600 ° C.) were observed by SEM. The result is shown in FIG.
  • the specimen 2 (after annealing at 600 ° C.) has a thinner ferrite coating 22 than the specimen 1 (before annealing), and the intermediate between the iron plate 90 and the thinned ferrite coating 22. It was confirmed that the layer 91 was formed. Therefore, in order to specify the substance of the intermediate layer 91, elemental analysis by SEM-EDX analysis and crystal structure analysis by powder X-ray diffraction were performed. The results are shown in FIGS.
  • FeO is a thermodynamically unstable substance
  • FeO is Fe 3 due to the eutectoid transformation of 4FeO ⁇ Fe 3 O 4 + Fe at 560 ° C. or lower.
  • the specimen 2 after annealing at 600 ° C. was subjected to transformation heat treatment at 500 ° C. for 2.5 hours in a steam atmosphere. Thereby, the test body 3 was obtained. Then, the volume specific resistance of the test body 2 (after 600 degreeC annealing) and the test body 3 (after 500 degreeC transformation heat processing) was measured. As a result, the volume specific resistance of the test body 2 was 6.08 ⁇ 10 3 [ ⁇ ⁇ m], and the volume specific resistance of the test body 3 was 4.42 ⁇ 10 5 [ ⁇ ⁇ m]. From this, it was confirmed that the specific resistance of the powder magnetic core can be recovered by performing transformation heat treatment after strain relief annealing of the powder compact.
  • the specimen 2 (after annealing at 600 ° C.) and the specimen 3 (after the transformation heat treatment at 500 ° C.) were analyzed by SEM-EDX analysis in the same manner as described above. Analysis and crystal structure analysis by powder X-ray diffraction were performed. The results are shown in FIGS.
  • FIG. 19 is compared with FIG. 17 described above. As shown in FIG. 19, after the transformation heat treatment, it was confirmed that elements constituting the ferrite film, O, Fe, Mn, and Zn were distributed throughout the film. As shown in FIG. 20, the FeO diffraction peak observed after annealing at 600 ° C. was not observed after the transformation heat treatment. From these facts, it was confirmed that the intermediate layer made of FeO disappeared by transformation heat treatment and re-ferritization occurred. Incidentally, Zn that existed in the intermediate layer is formed parts consisting of FeO, Mn, after once taken into ferrite film thinned outside the intermediate layer, Fe 3 O 4 produced by transformation heat treatment taken again, it is inferred that has been turned into M X Fe 2 O 4.
  • the specific resistance of the dust core was measured by changing the transformation heat treatment temperature and the transformation heat treatment time. As a result, it was confirmed that the specific resistance was restored when the transformation heat treatment temperature was 500 ° C. and the transformation heat treatment time was 1 hour and 2 hours. Similarly, it was confirmed that the specific resistance was recovered when the transformation heat treatment temperature was 450 ° C. and the transformation heat treatment time was 1 hour and 2 hours. Similarly, it was confirmed that the specific resistance was recovered when the transformation heat treatment temperature was 400 ° C. and the transformation heat treatment time was 1 hour and 2 hours. In addition, the longer the transformation treatment time, the greater the degree of recovery of specific resistance. Further, when the transformation treatment temperature was less than 350 ° C., the degree of recovery of specific resistance tended to decrease. From this result, it can be said that the transformation heat treatment temperature is preferably 350 ° C. or higher.

Abstract

圧粉磁心用粉末(1)は、軟磁性金属粒子(21)と、軟磁性金属粒子(21)の表面を被覆するフェライト被膜(22)とを有する軟磁性粒子(2)の集合体であって、フェライト被膜(22)は、スピネル構造を有するフェライト結晶粒(221)より構成されており、粉末X線回折パターン(10)にフェライト結晶粒(221)に由来する回折ピーク(101)が存在している。また、圧粉磁心用粉末の製造方法によれば、軟磁性金属粒子(21)の集合体より構成される原料粉末(3)を準備し、原料粉末(3)における各軟磁性金属粒子(21)の表面にフェライト微粒子(220)を多数形成し、フェライト微粒子(220)を熱処理により粗大結晶化させ、上記各軟磁性金属粒子(21)の表面にスピネル構造を有するフェライト結晶粒(221)より構成されるフェライト被膜(22)を形成する。

Description

圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法 関連出願の相互参照
 本出願は、2015年12月24日に出願された日本特許出願番号2015-251107号と、2016年5月24日に出願された日本特許出願番号2016-103244号に基づくもので、ここにその記載内容を援用する。
 本開示は、圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法に関する。
 従来、モータや点火コイル等に圧粉磁心が用いられている。圧粉磁心に用いられる材料としては、例えば、特許文献1に、軟磁性金属粒子にフェライト被膜を被覆したフェライト被覆粉末が開示されている。同文献には、加熱した軟磁性金属粒子の表面に金属元素を含む処理液をスプレー噴霧した後、アルカリ性溶液をスプレー噴霧することにより、上記フェライト被膜を形成する点が記載されている。
特開2014-183199号公報
 しかしながら、従来の圧粉磁心用粉末を圧粉成形してなる圧粉磁心は、低周波域での低損失化を図るため、圧粉成形によって生じた歪を焼鈍により除去すると、渦損失が大きく増加し、耐熱性に劣る。
 本開示は、かかる課題に鑑みてなされたものであり、圧粉成形後の焼鈍による渦損失の増加を抑制することが可能な、耐熱性が向上された圧粉磁心、当該圧粉磁心の製造方法、上記圧粉磁心を得るのに適した圧粉磁心用粉末、当該圧粉磁心用粉末の製造方法を提供することを目的とする。
 上記目的を達成するため、本開示の第1の態様は、軟磁性金属粒子と、該軟磁性金属粒子の表面を被覆するフェライト被膜とを有する軟磁性粒子の集合体であって、上記フェライト被膜は、スピネル構造を有するフェライト結晶粒より構成されており、粉末X線回折パターンに上記フェライト結晶粒に由来する回折ピークが存在している、圧粉磁心用粉末にある。
 上記目的を達成するため、本開示の第2の態様は、軟磁性金属粒子の集合体より構成される原料粉末を準備し、該原料粉末における各軟磁性金属粒子の表面にフェライト微粒子を多数形成し、該フェライト微粒子を熱処理により粗大結晶化させ、上記各軟磁性金属粒子の表面にスピネル構造を有するフェライト結晶粒より構成されるフェライト被膜を形成する、圧粉磁心用粉末の製造方法にある。
 上記目的を達成するため、本開示の第3の態様は、上記圧粉磁心用粉末の圧粉成形体であり、かつ、歪が除去されている、圧粉磁心にある。
 上記目的を達成するため、本開示の第4の態様は、上記圧粉磁心用粉末を圧粉成形する圧粉成形工程と、得られた圧粉成形体を焼鈍する焼鈍工程と、焼鈍された圧粉成形体に含まれるフェライト被膜に部分的に生じたFeOを熱処理により再フェライト化する変態熱処理工程とを有する、圧粉磁心の製造方法にある。
 従来技術において、渦損失が増加する原因としては、以下の理由が推察される。従来の圧粉磁心用粉末は、圧粉成形時に、フェライト被膜同士の摩擦や軟磁性金属粒子の変形によってフェライト被膜が破損する。圧粉成形後、焼鈍前では、圧粉磁心中のフェライト被膜が破損していても、空気によるギャップによってある程度の絶縁性が保たれている。ところが、圧粉成形後の焼鈍により、フェライト被膜の破損部分にて隣り合う軟磁性金属粒子同士が接触し、焼結する。その結果、焼鈍後の圧粉磁心は、フェライト被膜の絶縁性が低下し、渦損失が増加する。特に、スプレー噴霧により形成されたフェライト被膜は、軟磁性金属粒子の表面にフェライト微粒子が堆積した状態にあり、緻密でない。そのため、渦損失が増加しやすい。
 これに対し、上記圧粉磁心用粉末は、軟磁性金属粒子の表面を被覆するフェライト被膜がスピネル構造を有するフェライト結晶粒より構成されており、粉末X線回折パターンにフェライト結晶粒に由来する回折ピークが存在している。そのため、上記圧粉磁心用粉末は、上記回折ピークが存在する程度まで粗大化されたフェライト結晶粒により、フェライト被膜の強度が向上する。その結果、上記圧粉磁心用粉末は、圧粉成形時の高い応力によるフェライト被膜の破損が抑制される。そのため、上記圧粉磁心用粉末は、圧粉成形後に焼鈍がなされた場合であっても、上記フェライト被膜により、隣接する軟磁性金属粒子同士が焼結するのを抑制することができる。それ故、上記圧粉磁心用粉末は、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心を得るのに適している。
 上記圧粉磁心用粉末の製造方法によれば、原料粉末における各軟磁性金属粒子の表面にフェライト微粒子が多数形成され、このフェライト微粒子が熱処理によって粗大結晶化することにより、スピネル構造を有するフェライト結晶粒より構成されるフェライト被膜が形成される。そのため、上記圧粉磁心用粉末の製造方法によれば、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心を得るのに適した上記圧粉磁心用粉末を製造することができる。
 上記圧粉磁心は、上記圧粉磁心用粉末の圧粉成形体であり、かつ、歪が除去されている。そのため、耐熱性に優れ、高飽和磁束密度かつ低損失な圧粉磁心が得られる。
 上記圧粉磁心の製造方法は、上記変態熱処理工程を有している。FeOは、フェライトに比べ、体積固有抵抗が小さい物質である。そのため、FeOを含むフェライト被膜は、体積固有抵抗が低下する。上記圧粉磁心の製造方法によれば、圧粉成形体の歪を除去するための焼鈍によって膜構造が変化し、フェライト被膜に部分的にFeOが生成した場合でも、当該FeOは、変態熱処理によって再フェライト化される。そのため、上記圧粉磁心の製造方法によれば、耐熱性に優れ、高飽和磁束密度かつ低損失であり、高比抵抗な圧粉磁心が得られる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
実施形態1の圧粉磁心用粉末を模式的に示した説明図である。 実施形態1の圧粉磁心用粉末におけるフェライト被膜の断面を模式的に示した説明図である。 実施形態1の圧粉磁心用粉末の粉末X線回折パターンを模式的に示した説明図である。 実施形態2における圧粉磁心用粉末の製造方法の流れを模式的に示した説明図である。 実施形態3、実施形態4の圧粉磁心を模式的に示した説明図である。 実験例1において得られた、透過型電子顕微鏡により観察されたフェライト被覆粉末の断面TEM像である。 実験例1において得られた、透過型電子顕微鏡により観察された試料1の圧粉磁心用粉末の断面TEM像である。 実験例1において得られた、フェライト被覆粉末、試料1の圧粉磁心用粉末、および、試料2の圧粉磁心用粉末の粉末X線回折パターンである。 実験例2において得られた、圧粉磁心用粉末の作製時における熱処理温度とフェライト被膜の圧縮強度および収縮率との関係を示したグラフである。 実験例3において得られた、圧粉磁心の焼鈍温度と渦損失との関係を示したグラフである。 実験例3において得られた、フェライト被覆粉末より構成される圧粉磁心(焼鈍後)の断面SEM像である。 実験例3において得られた、試料1の圧粉磁心用粉末より構成される圧粉磁心(圧粉成形後、焼鈍前)の断面SEM像である。 実験例3において得られた、試料1の圧粉磁心用粉末より構成される圧粉磁心(焼鈍後)の断面SEM像である。 実験例4において得られた、試験体2(600℃焼鈍)、試験体2-1(130℃焼鈍)、試験体2-2(400℃焼鈍)における各フェライト被膜の体積固有抵抗を、フェライト粉のバルク体の体積固有抵抗と対比して示した説明図である。 図15(a)は、実験例4において得られた試験体1(焼鈍前)の断面SEM像であり、図15(b)は、実験例4において得られた試験体2(600℃焼鈍後)の断面SEM像である。 実験例4において得られた、試験体1(焼鈍前)の元素マッピング結果である。 実験例4において得られた、試験体2(600℃焼鈍後)の元素マッピング結果である。 実験例4において得られた、試験体1(焼鈍前)および試験体2(600℃焼鈍後)の粉末X線回折パターンである。 実験例4において得られた、試験体3(500℃変態熱処理後)の元素マッピング結果である。 実験例4において得られた、試験体2(600℃焼鈍後)および試験体3(500℃変態熱処理後)の粉末X線回折パターンである。
(実施形態1)
 実施形態1の圧粉磁心用粉末について、図1~図3を用いて説明する。図1~図3に例示されるように、本実施形態の圧粉磁心用粉末1は、軟磁性粒子2の集合体である。軟磁性粒子2は、軟磁性金属粒子21と、軟磁性金属粒子21の表面を被覆するフェライト被膜22とを有している。フェライト被膜22は、スピネル構造を有するフェライト結晶粒221より構成されている。圧粉磁心用粉末1は、粉末X線回折パターン10にフェライト結晶粒221に由来する回折ピーク101が存在している。以下、詳説する。
 軟磁性金属粒子21としては、例えば、飽和磁束密度の向上等の観点から、純鉄粒子、Fe基合金粒子などを用いることができる。上記Fe基合金としては、例えば、Fe-Si系合金、Fe-Co-V系合金、Fe-Si-Al系合金などを例示することができる。
 軟磁性金属粒子21の粒子径は、成形性およびヒステリシス損失の低減等の観点から、好ましくは25μm以上、より好ましくは50μm以上、さらに好ましくは75μm以上とすることができる。また、軟磁性金属粒子21の粒子径は、渦損失の低減等の観点から、好ましくは300μm以下、より好ましくは200μm以下、さらに好ましくは106μm以下とすることができる。なお、軟磁性金属粒子21の粒子径は、圧粉磁心用粉末1をレーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、「ParticaLA-950v2」)を用いて乾式にて測定される、体積基準の累積度数分布が50%を示すときの粒子径(直径)d50から後述のフェライト被膜22の膜厚を差し引いた値である。
 フェライト被膜22は、圧粉磁心4における軟磁性金属粒子21間の絶縁性を確保しやすくなる等の観点から、軟磁性金属粒子21の表面の全てを被覆しているとよい。なお、上述した作用効果が得られる限り、軟磁性金属粒子21の表面の一部にフェライト被膜22に覆われていない部分が存在していてもよい。
 フェライト被膜22において、フェライト結晶粒221の大きさは、10nm以上とすることができる。この場合には、フェライト被膜22の強度向上が確実なものとなり、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心4を得やすくなる。
 フェライト結晶粒221の大きさは、上記効果をより確実なものにする観点から、好ましくは30nm以上、より好ましくは40nm以上、さらに好ましくは50nm以上、さらにより好ましくは60nm以上、さらにより一層好ましくは70nm以上とすることができる。また、フェライト結晶粒221の大きさは、フェライト被膜22の膜厚以下とすることができる。具体的には、フェライト結晶粒221の大きさは、形成性、フェライト被膜の剥離抑制、フェライト被膜の割れ抑制等の観点から、好ましくは1000nm以下、より好ましくは200nm以下、さらに好ましくは100nm以下とすることができる。なお、フェライト結晶粒221の大きさは、圧粉磁心用粉末1の断面TEM像を用いて、軟磁性粒子2におけるフェライト被膜22に含まれる10個のフェライト結晶粒221についてそれぞれ最大径を測定し、得られた各最大径の平均値である。
 フェライト被膜22は、断面視で、フェライト結晶粒221同士の界面222が直線状を呈する部分を含む構成とすることができる。この場合には、隣接するフェライト結晶粒221同士の間に隙間が少なくなって緻密質な膜となる。そのため、この場合には、フェライト被膜22の強度向上が確実なものとなり、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心4を得やすくなる。なお、上記断面視は、断面TEM像による。
 フェライト被膜22の化学組成は、MFe、但し、Mは、Fe、Cu、Mg、Ni、Zn、および、Mnからなる群より選択される少なくとも1種の金属元素、0<X≦1とすることができる。なお、Mが2種以上の金属元素を含む場合、各金属元素が0<X≦1を満たす。但し、各元素のXの値の合計は1である。この場合には、飽和磁束密度と体積固有抵抗とのバランスが良い圧粉磁心用粉末1が得られる。
 上記金属元素Mは、より具体的には、MnおよびZn、または、NiおよびZnを含む構成とすることができる。この場合には、飽和磁束密度と体積固有抵抗とのバランスが良い圧粉磁心用粉末1を得やすくなる。
 フェライト被膜22の膜厚は、例えば、20nm~600nmの範囲内とすることができる。この場合には、軟磁性金属粒子21同士の絶縁性を確保しやすく、適切な密度により飽和磁束密度の向上に有利な圧粉磁心4を得やすくなる。フェライト被膜22の膜厚は、上記絶縁性の確保等の観点から、好ましくは10nm以上、より好ましくは50nm以上、さらに好ましくは100nm以上とすることができる。フェライト被膜22の膜厚は、上記飽和磁束密度の向上、高密度化等の観点から、好ましくは1000nm以下、より好ましくは200nm以下、さらに好ましくは100nm以下とすることができる。なお、フェライト被膜22の膜厚は、圧粉磁心用粉末1の断面TEM像を用いて、1個の軟磁性粒子2について、軟磁性金属粒子21とフェライト被膜22との界面223に垂直な方向におけるフェライト被膜22の厚みを3点測定し、得られた各値の平均値である。
 圧粉磁心用粉末1の粉末X線回折パターンは、Cu管球をX線源とした粉末X線回折装置(Rigaku社製、「RINT2000」)またはこれと同等の装置を用いて測定される。粉末X線回折パターン10の測定範囲は、フェライト結晶粒221のスピネル構造がはっきりと見えやすい2θ/θが34~37°の範囲を含むように設定される。スピネル構造を有するフェライト結晶粒221に由来する回折ピークは、2θ/θ=35.5°に見られる。
 なお、軟磁性金属粒子の表面にフェライト微粒子が堆積してなるフェライト被覆粉末には、上記回折ピーク101が見られない。したがって、圧粉磁心用粉末1において、「フェライト結晶粒221に由来する回折ピーク101が存在している」という規定は、フェライト微粒子が堆積してなるような被膜とは異なるフェライト被膜22を有していることを意味している。
 圧粉磁心用粉末1は、より具体的には、回折ピーク101の半値幅が0.5°以下である構成とすることができる。この場合には、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心4を得やすくなる。なお、上記半値幅は、2θ/θ=35.5°における回折ピーク101の半値幅のことである。
 上記半値幅は、好ましくは0.45°以下、より好ましくは0.4°以下、さらに好ましくは0.35°以下、さらにより好ましくは0.3°以下とすることができる。なお、上記半値幅は、0.18°以上とすることができる。
 圧粉磁心用粉末1は、軟磁性粒子2以外にも、潤滑剤(不図示)を含むことができる。この場合には、圧粉成形時に、フェライト被膜22同士の摩擦による摩耗等を低減しやすくなる。そのため、この場合には、圧粉成形後におけるフェライト被膜22による絶縁性を確保しやすくなる。潤滑剤としては、例えば、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸アミドなどを例示することができる。
 圧粉磁心用粉末1は、軟磁性金属粒子21の表面を被覆するフェライト被膜22がスピネル構造を有するフェライト結晶粒221より構成されており、粉末X線回折パターン10にフェライト結晶粒221に由来する回折ピーク101が存在している。そのため、圧粉磁心用粉末1は、上記回折ピーク101が存在する程度まで粗大化されたフェライト結晶粒221により、フェライト被膜22の強度が向上する。その結果、圧粉磁心用粉末1は、圧粉成形時の高い応力によるフェライト被膜22の破損が抑制される。そのため、圧粉磁心用粉末1は、圧粉成形後に焼鈍がなされた場合であっても、フェライト被膜22により、隣接する軟磁性金属粒子21同士が焼結するのを抑制することができる。それ故、圧粉磁心用粉末1は、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心4を得るのに適している。
(実施形態2)
 実施形態2の圧粉磁心用粉末の製造方法について、図4を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 図4に例示されるように、本実施形態の圧粉磁心用粉末の製造方法では、軟磁性金属粒子21の集合体より構成される原料粉末3が準備される。また、原料粉末3における各軟磁性金属粒子21の表面にフェライト微粒子220が多数形成される。また、フェライト微粒子220を熱処理により粗大結晶化させ、各軟磁性金属粒子21の表面にスピネル構造を有するフェライト結晶粒221より構成されるフェライト被膜22が形成される。
 原料粉末3は、例えば、アトマイズ法、機械的粉砕法、還元法等により準備することができる。アトマイズ法としては、例えば、水アトマイズ法、ガスアトマイズ法、ガス水アトマイズ法などを例示することができる。なお、原料粉末3における軟磁性金属粒子21の材質は、実施形態1の記載を準用することができる。また、原料粉末3における軟磁性金属粒子21の粒子径は、原料粉末3をレーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、「ParticaLA-950v2」)を用いて乾式にて測定される、体積基準の累積度数分布が50%を示すときの粒子径(直径)d50である。
 原料粉末3における各軟磁性金属粒子21の表面にフェライト微粒子220を多数形成する方法としては、例えば、原料粉末3を加熱、撹拌しながら、原料粉末3へFe2+、上記金属元素Mの2価のイオンを含む処理液を噴霧し、処理液噴霧後の粉末へpH調整液を噴霧し、その後、粉末を洗浄し、乾燥させる方法などを用いることができる。なお、pH調整液を噴霧後、洗浄までの間に、処理液の噴霧とpH調整液の噴霧とを交互に繰り返し行うこともできる。また、予めpH6~10程度に調整された処理液を噴霧することにより、pH調整液の噴霧を省略することもできる。これらの方法によれば、原料粉末3における各軟磁性金属粒子21の表面にフェライト微粒子220を多数堆積させることができる。
 上記フェライト微粒子220の形成方法において、原料粉末3の加熱は、例えば、大気中、90~150℃で実施することができる。また、処理液は、酸性溶液とすることができる。また、pH調整液は、アルカリ性溶液とすることができる。また、フェライト微粒子220の粒子径は、例えば、5nm~35nmとすることができる。フェライト微粒子220の粒子径は、断面TEM像を用いて、1個の軟磁性金属粒子21に形成された10個のフェライト微粒子220についてそれぞれ最大径を測定し、得られた各最大径の平均値である。なお、特開2014-183199号に記載されるすべての内容は、参照により本明細書に組み入れることができる。
 フェライト微粒子220の熱処理時における熱処理温度は、例えば、400~900℃の範囲内とすることができる。この場合には、フェライト微粒子220の粗大結晶化によるフェライト被膜22の強度向上効果と、フェライト被膜22の収縮率の低減効果とのバランスに優れる。上記熱処理温度は、フェライト微粒子220の粗大結晶化によるフェライト被膜22の強度向上効果が得やすくなる等の観点から、好ましくは450℃以上、より好ましくは500℃以上、さらに好ましくは550℃以上とすることができる。また、上記熱処理温度は、フェライト被膜22の収縮率が過度に大きくならず、軟磁性金属粒子21とフェライト被膜22との密着性が向上する等の観点から、好ましくは850℃以下、より好ましくは800℃以下、さらに好ましくは750℃以下、さらにより好ましくは700℃以下とすることができる。
 フェライト微粒子220の熱処理時における熱処理時間は、例えば、0.5~5時間の範囲内とすることができる。この場合には、フェライト微粒子220の粗大結晶化によるフェライト被膜22の強度向上効果と、フェライト被膜22の収縮率の低減効果とのバランスに優れる。上記熱処理時間は、フェライト微粒子220の粗大結晶化によるフェライト被膜22の強度向上効果が得やすくなる等の観点から、好ましくは0.1時間以上、より好ましくは0.5時間以上、さらに好ましくは1時間以上とすることができる。また、上記熱処理温度は、フェライト被膜22の収縮率が過度に大きくならず、軟磁性金属粒子21とフェライト被膜22との密着性が向上する等の観点から、好ましくは5時間以下、より好ましくは4時間以下、さらに好ましくは1時間以下とすることができる。
 フェライト微粒子220の熱処理時における雰囲気は、例えば、不活性ガス雰囲気、真空雰囲気などとすることができる。この場合には、熱処理時に、フェライト被膜22と雰囲気ガスとが反応し難くなり、フェライト結晶粒221の粗大化が促進される。また、熱処理後に粉末を解砕する必要性が小さくなる等の利点がある。不活性ガスとしては、具体的には、例えば、窒素ガス、アルゴンガスなどを例示することができる。
 フェライト微粒子220の熱処理時における圧力は、例えば、生産性等の観点から、好ましくは2×10-2Pa以上、より好ましくは10Pa以上、さらに好ましくは100Pa以上とすることができる。また、上記圧力は、被膜中における酸素元素比率の維持等の観点から、好ましくは101kPa以下、より好ましくは80kPa以下、さらに好ましくは50kPa以下とすることができる。
 フェライト微粒子220の熱処理は、フェライト微粒子220の形成後に実施してもよいし、フェライト微粒子220の形成と同時に実施してもよい。また、フェライト微粒子220の熱処理は、圧粉磁心4の製造時における圧粉成形工程にて実施することもできる。圧粉成形方法としては、例えば、熱間静水圧プレス、一軸または多軸プレス、押し出しプレスなどの成形方法を例示することができる。
 上記圧粉磁心用粉末の製造方法によれば、原料粉末3における各軟磁性金属粒子21の表面にフェライト微粒子220が多数形成され、このフェライト微粒子220が熱処理によって粗大結晶化することにより、スピネル構造を有するフェライト結晶粒221より構成されるフェライト被膜22が形成される。そのため、上記圧粉磁心用粉末の製造方法によれば、圧粉成形後の焼鈍による渦損失の増加を抑制することができ、耐熱性が向上された圧粉磁心4を得るのに適した圧粉磁心用粉末1を製造することができる。
(実施形態3)
 実施形態2の圧粉磁心について、図5を用いて説明する。図5に例示されるように、本実施形態の圧粉磁心4は、圧粉磁心用粉末1の圧粉成形体であり、かつ、歪が除去されている。本実施形態では、圧粉磁心4を構成する圧粉磁心用粉末1として、実施形態1の圧粉磁心用粉末を用いることができる。
 圧粉磁心4の形状は、特に限定されるものではなく、各種の公知の形状を採用することができる。なお、歪が除去されているか否かは、保磁力を測定することによって判断することができる。保磁力Hcは、例えば、軟磁性金属粒子21が純鉄粒子の場合、164A/m(600℃焼鈍時)以下とすることができる。保磁力Hcは、例えば、軟磁性金属粒子21がFe-Si系合金粒子の場合、313A/m(1000℃焼鈍時)以下とすることができる。保磁力Hcは、例えば、軟磁性金属粒子21がFe-Co-V系合金粒子の場合、313A/m(1100℃焼鈍時)以下とすることができる。保磁力Hcは、例えば、軟磁性金属粒子21がFe-Si-Al系合金粒子の場合、46A/m(700℃焼鈍時)以下とすることができる。
 圧粉磁心4は、例えば、上述した圧粉磁心用粉末1を圧粉成形し、焼鈍することにより得ることができる。圧粉成形方法としては、例えば、熱間静水圧プレス、一軸または多軸プレス、押し出しプレスなどの成形方法を例示することができる。圧粉時の圧力は、具体的には、例えば、1000MPa~1568MPaの範囲内とすることができる。また、焼鈍温度は、具体的には、例えば、400℃~1000℃の範囲内とすることができる。
 圧粉磁心4は、圧粉磁心用粉末1を用いているので、耐熱性に優れ、高飽和磁束密度かつ低損失である。
 圧粉磁心4は、例えば、モータ、点火コイル、燃料噴射インジェクタなどに好適に用いることができる。
(実施形態4)
 実施形態4の圧粉磁心について、図5を用いて説明する。本実施形態の圧粉磁心4は、粉末X線回折パターンにFeOに由来する回折ピークが存在していない。なお、圧粉磁心4の粉末X線回折パターンは、Cu管球をX線源とした粉末X線回折装置(Rigaku社製、「RINT2000」)またはこれと同等の装置を用い、圧粉磁心4の破断面試料にて測定される。その他の構成は、実施形態3と同様である。
 この場合には、フェライト被膜22中に体積固有抵抗の小さなFeOを含まず、フェライト被膜がフェライト結晶粒221からなる。そのため、この場合には、高比抵抗な圧粉磁心が得られる。その他の作用効果は、実施形態3と同様である。
 圧粉磁心4の比抵抗は、好ましくは、100μΩ・m以上、より好ましくは、500μΩ・m以上とすることができる。なお、磁束密度低下などの観点から、圧粉磁心4の比抵抗は、例えば、10000μΩ・m以下とすることができる。
(実施形態5)
 実施形態5の圧粉磁心の製造方法について説明する。本実施形態の圧粉磁心の製造方法は、圧粉成形工程と、焼鈍工程と、変態熱処理工程とを有している。
 圧粉成形工程は、圧粉磁心用粉末を圧粉成形する工程である。圧粉磁心用粉末としては、実施形態1に例示される圧粉磁心用粉末、実施形態2に例示される圧粉磁心用粉末の製造方法によって得られる圧粉磁心用粉末を用いることができる。なお、圧粉成形方法としては、例えば、熱間静水圧プレス、一軸または多軸プレス、押し出しプレスなどの成形方法を例示することができる。圧粉時の圧力は、具体的には、例えば、1000MPa~1568MPaの範囲内とすることができる。
 焼鈍工程は、得られた圧粉成形体を焼鈍する工程である。焼鈍により、圧粉成形時に圧粉成形体に生じた歪が除去される。焼鈍温度は、好ましくは、400℃~1000℃の範囲内とすることができる。焼鈍温度は、歪除去を確実なものとするなどの観点から、より好ましくは450℃以上、さらに好ましくは500℃以上、さらにより好ましくは560℃以上、さらにより一層好ましくは600℃以上とすることができる。焼鈍温度は、フェライト被膜中に生成するFeO量の低減などの観点から、好ましくは980℃以下、より好ましくは950℃以下、さらに好ましくは930℃以下、さらにより一層好ましくは900℃以下とすることができる。
 また、焼鈍時間は、具体的には、例えば、歪除去を確実なものとするなどの観点から、好ましくは0.5時間~5時間、より好ましくは0.5時間~1時間の範囲内とすることができる。
 また、焼鈍雰囲気は、例えば、不活性ガス雰囲気、真空雰囲気などとすることができる。焼鈍雰囲気は、被膜組成の維持などの観点から、好ましくは、不活性ガス雰囲気であるとよい。不活性ガスとしては、具体的には、例えば、窒素ガス、アルゴンガスなどを例示することができる。
 変態熱処理工程は、焼鈍された圧粉成形体に含まれるフェライト被膜に部分的に生じたFeOを熱処理により再フェライト化する工程である。
 変態熱処理工程における熱処理温度(以下、「変態熱処理温度」ということがある。)は、560℃以下とすることができる。この場合には、4FeO→Fe+Feの共析変態が生じやすくなるとともに、生じたFeがMFe化しやすくなり、再フェライト化が促進される。変態熱処理温度は、再フェライト化促進などの観点から、好ましくは540℃以下、より好ましくは520℃以下、さらに好ましくは500℃以下とすることができる。変態熱処理温度は、上記共析変態を確実なものとするなどの観点から、好ましくは350℃以上、より好ましくは370℃以上、さらにより好ましくは400℃以上とすることができる。
 また、変態熱処理工程における熱処理時間(以下、「変態熱処理時間」ということがある。)は、上記共析変態を確実なものとするなどの観点から、好ましくは10分以上、より好ましくは0.5時間以上、さらに好ましくは1時間以上とすることができる。変態熱処理時間は、圧粉磁心の生産性向上などの観点から、好ましくは3時間以下、より好ましくは2.5時間以下、さらに好ましくは2時間以下とすることができる。
 また、変態熱処理工程における雰囲気(以下、「変態熱処理雰囲気」ということがある。)は、水蒸気雰囲気、または、不活性ガス雰囲気とすることができる。この場合には、上記共析変態を確実なものとすることができる。変態熱処理雰囲気が水蒸気雰囲気である場合には、上記共析変態で生じたFeがFeとなり、このFeがさらにMFe化しやすい。そのため、フェライト被膜中に体積固有抵抗の低いFeが残り難くなり、圧粉磁心の高比抵抗化に有利である。なお、不活性ガスとしては、具体的には、例えば、窒素ガス、アルゴンガスなどを例示することができる。
 以下、実験例を用いてより具体的に説明する。実験例1について説明する。ガス水アトマイズ法を用いて、純鉄粒子の集合体より構成される原料粉末を準備した。上述した方法により特定される純鉄粒子の粒子径は、150μmであった。
 次に、上記原料粉末を150℃にて加熱、撹拌し、この加熱撹拌状態にある原料粉末に、処理液としてフェライト生成液を噴霧した。なお、フェライト生成液は、Mn0.5Zn0.5Feの化学組成を有するフェライト酸化物が形成されるように、塩化Fe、塩化Mn、塩化Zn、尿素を含む水溶液をNaOH水溶液でpH8にpH調整したものを用いた。次いで、上記フェライト生成液を噴霧後の粉末を水洗し、エタノール洗いをした後、ろ過した。これにより、粒子表面に残存するNaClや残渣等を除去した。次いで、上記洗浄後の粉末を80℃で乾燥させた。次いで、上記乾燥後の粉末を、篩い(メッシュサイズ:106-212μm)へ通して分級した。以上によりフェライト被覆粉末を得た。図6に示されるように、得られたフェライト被覆粉末は、各純鉄粒子210の表面にフェライト微粒子220が多数堆積されていた。なお、フェライト微粒子220の粒子径は20nmであった。
 次に、熱処理炉を用い、Nガス雰囲気、圧力80kPa下にて、上記フェライト被覆粉末を600℃で1時間熱処理し、炉冷した。これにより、試料1の圧粉磁心用粉末を得た。図7に示されるように、試料1の圧粉磁心用粉末は、各純鉄粒子210の表面に、フェライト結晶粒221より構成されるフェライト被膜22が被覆されていた。このフェライト被膜のフェライト結晶粒は、熱処理前のフェライト被覆粉末におけるフェライト微粒子が熱処理によって粗大結晶化したものである。フェライト結晶粒の大きさは、100nm、フェライト被膜の膜厚は、100nmであった。また、図7に示されるように、フェライト被膜は、断面視で、フェライト結晶粒同士の界面が直線状を呈する部分を含んでいることが確認された。なお、断面SEM像を用いて測定した純鉄粒子の粒子径は、150μmであった。
 試料1の圧粉磁心用粉末の作製において、熱処理温度を400℃とした点以外は同様にして、試料2の圧粉磁心用粉末を得た。なお、試料2の圧粉磁心用粉末も、試料1の圧粉磁心用粉末と同様のフェライト被膜を有していた。但し、フェライト結晶粒の大きさは60nm、フェライト被膜の膜厚は100nmであった。
 Cu管球をX線源とした粉末X線回折装置(Rigaku社製、「RINT 2000」)を用いて、フェライト被覆粉末、試料1の圧粉磁心用粉末、および、試料2の圧粉磁心用粉末の粉末X線回折パターンを測定した。粉末X線回折パターンの測定範囲は、2θ/θ=34~37°の範囲とした。図8に示されるように、フェライト被覆粉末の粉末X線回折パターンでは、2θ/θ=35.5°に、スピネル構造を有するフェライト結晶粒に由来する回折ピークが見られなかった。これは、フェライト被覆粉末は、純鉄粒子表面に、粗大結晶化されていないフェライト微粒子が堆積してなる被膜を有しているためである。
 これに対し、試料1の圧粉磁心用粉末および試料2の圧粉磁心用粉末の粉末X線回折パターンでは、いずれも、2θ/θ=35.5°に、スピネル構造を有するフェライト結晶粒に由来する回折ピークが確認された。なお、試料1の圧粉磁心用粉末における回折ピークの半値幅は、0.2°であり、試料2の圧粉磁心用粉末における回折ピークの半値幅は、0.42°であった。この結果から、400℃で熱処理するよりも600℃で熱処理した方が、回折ピークの半値幅が狭く、結晶化度の高いフェライト被膜が形成できるといえる。
 実験例2について説明する。圧粉磁心用粉末におけるフェライト被膜の圧縮強度を向上させるための製造条件について検討するため、以下の基礎実験を行った。
 軟磁性金属粒子表面のフェライト被膜の圧縮強度を直接測定することは難易度が高い。そのため、本実験例では、便宜的に、フェライト粉の成形体を種々の温度で熱処理してなる焼成体を複数作製し、これら焼成体を用いて、フェライト被膜の圧縮強度および収縮率を評価した。なお、成形体の成形条件は、各焼成体ともに同一とした。また、上記熱処理温度は、200℃、400℃、600℃、1000℃の4水準とした。図9に得られた結果を示す。
 図9に示されるように、熱処理温度が400℃以上になると焼成体の圧縮強度が急激に向上することがわかる。この結果から、フェライト微粒子の熱処理時における熱処理温度を400℃以上とすることにより、フェライト微粒子の粗大結晶化によるフェライト被膜の強度向上効果を得やすくなるといえる。また、熱処理温度が600℃を超えると、焼成体の収縮率が大きくなりはじめ、1000℃では、約-16%の収縮率となることがわかる。この結果から、フェライト微粒子の熱処理時における熱処理温度を900℃以下とすることにより、フェライト被膜の収縮率が過度に大きくならず、軟磁性金属粒子とフェライト被膜との密着性を向上させやすくなるといえる。
 つまり、上記結果によれば、フェライト微粒子の熱処理時における熱処理温度を400~900℃の範囲内とすることにより、フェライト微粒子の粗大結晶化によるフェライト被膜の強度向上効果と、フェライト被膜の収縮率の低減効果とのバランスに優れることがわかる。また、上記結果から、上記熱処理温度が600℃前後であると、上記バランスに特に優れることがわかる。
 実験例3について説明する。実験例1で作製したフェライト被覆粉末(熱処理なし)、試料1の圧粉磁心用粉末(600℃で熱処理)、および、試料2の圧粉磁心用粉末(400℃で熱処理)を準備した。これら各粉末を圧粉成形した後、所定の焼鈍温度で焼鈍することにより、複数の圧粉磁心を作製し、渦損失を測定した。本実験例は、圧粉磁心の耐熱性を評価するためのものである。
 具体的には、各粉末に対して0.025質量%の潤滑剤を添加した。なお、圧粉成形に用いた型には潤滑剤が塗られている。次いで、各粉末を、1300MPa、130℃にて温間圧粉成形し、各圧粉成形体を得た。なお、圧粉成形体は、外径24mm、内径16mm、厚み5mmのリング形状を呈している。
 次いで、熱処理炉を用い、Nガス雰囲気、圧力80kPaの下にて、各圧粉成形体を所定の焼鈍温度にて1時間焼鈍し、炉冷した。なお、上記焼鈍温度は、300℃、450℃、600℃の3水準とした。
 次いで、上記焼鈍後の各圧粉磁心に巻き線(1次側:157T、二次側:40T)を施し、磁束密度B10k(磁場:10000A/m):1T、周波数:800Hzの条件にて渦損失を測定した。その結果を図10に示す。なお、図10において、横軸の温度130℃は、温間圧粉成形時の温度を意味する。また、横軸の温度300℃、温度450℃、温度600℃は、いずれも、焼鈍温度を意味する。
 図10に示されるように、熱処理がなされていないフェライト被覆粉末を用いた圧粉磁心は、焼鈍温度が高くなるにつれて渦損失が急激に増加することがわかる。これは、以下の理由による。すなわち、上記フェライト被覆粉末は、圧粉成形時に、フェライト被膜同士の摩擦や純鉄粒子の変形によってフェライト被膜が破損し、圧粉成形後の焼鈍により、フェライト被膜の破損部分にて隣り合う純鉄粒子同士が接触し、焼結する。これにより、上記フェライト被覆粉末は、フェライト被膜の絶縁性が低下して渦損失が増加した。実際、図11に示されるように、熱処理がなされていないフェライト被覆粉末を用いた圧粉磁心では、フェライト被膜による絶縁ギャップ部分9が複数確認された。
 これに対し、試料1、試料2の圧粉磁心用粉末を用いた圧粉磁心は、フェライト被覆粉末を用いた圧粉磁心と比較して、焼鈍温度が高くなっても渦損失が増加し難いことがわかる。つまり、試料1、試料2の圧粉磁心用粉末を用いた圧粉磁心は、フェライト被覆粉末を用いた圧粉磁心と比較して、耐熱性が向上されているといえる。
 とりわけ、熱処理温度が高い試料1の圧粉磁心用粉末を用いた圧粉磁心は、圧粉成形後の焼鈍による渦損失の増加を効果的に抑制できていることがわかる。図12に示されるように、軟磁性粒子の三重点Aには、圧粉成形によるフェライト被膜の摩耗粉が堆積していなかった。このように、試料1の圧粉磁心用粉末を用いた圧粉磁心は、フェライト被膜の強度向上効果が大きかったことがわかる。また、フェライト被膜の強度向上効果が大きかったため、図13に示されるように、試料1の圧粉磁心用粉末を用いた圧粉磁心は、焼鈍後に隣接する純鉄粒子同士が焼結し難く、純鉄粒子同士間の絶縁ギャップが保持されやすかったこともわかる。
 実験例4について説明する。圧粉成形後の圧粉成形体に対して焼鈍を行った後、さらに変態熱処理を実施した場合の効果について検討するため、以下の基礎実験を行った。
 板厚0.3mmの鉄板(材質:SPCC)表面に、膜厚10μmのフェライト被膜を形成した。なお、フェライト被膜の原料粉末には、実験例1で作製した試料1の圧粉磁心用粉末(600℃で熱処理)を用いた。また、フェライト被膜の形成は、鉄板表面上の圧粉磁心用粉末を、1300MPa、130℃にて温間圧粉成形することにより行った。これにより試験体1を得た。なお、本実験例で用いられる試験体は、圧粉磁心における軟磁性金属粒子を構成する軟磁性金属とフェライト被膜との配置を模擬したものである。
 次いで、熱処理炉を用い、Nガス雰囲気、圧力80kPaの下にて、試験体1を、600℃にて1時間焼鈍し、炉冷した。これにより、試験体2を得た。また、焼鈍温度を130℃とした点以外は試験体2の作製と同様にして、試験体2-1を得た。また、焼鈍温度を400℃とした点以外は試験体2の作製と同様にして、試験体2-2を得た。
 図14に示されるように、焼鈍温度が他よりも高い600℃で焼鈍した試験体2は、焼鈍によってフェライト被膜の体積固有抵抗が低下した。そこで、600℃焼鈍前後のフェライト被膜の構造を分析するため、試験体1(焼鈍前)および試験体2(600℃焼鈍後)について、断面をSEM観察した。その結果を、図15に示す。
 図15に示されるように、試験体2(600℃焼鈍後)は、試験体1(焼鈍前)に比べ、フェライト被膜22が薄くなり、鉄板90と薄くなったフェライト被膜22との間に中間層91が形成されていることが確認された。そこで、中間層91の物質を特定するため、SEM-EDX分析による元素分析と粉末X線回折による結晶構造分析を行った。その結果を、図16~図18に示す。
 図16に示されるように、焼鈍前では、フェライト被膜を構成する元素である、O、Fe、MnおよびZnが被膜全体に分布していることがわかる。これに対し、図17に示されるように、600℃焼鈍後では、図15で中間層が確認された部分において、FeおよびOは同様に確認されるものの、ZnおよびMnがほとんどなくなっていることが確認された。このことから、中間層は、FeとOとから構成される化合物であることが推察される。そして、図18に示されるように、600℃焼鈍後の試験体2は、フェライト被膜にFeOの回折ピークが見られた。これらの結果から、焼鈍によってフェライト被膜中に部分的に生成した中間層は、FeOであることが確認された。つまり、焼鈍によりフェライト被膜の被膜構造が部分的に変化していることが確認された。
 そこで、焼鈍によってフェライト被膜中に生成したFeOを再フェライト化する方法について検討した。具体的には、Fe-O系の状態図を参照し、FeOが熱力学的に不安定な物質であること、FeOは560℃以下で4FeO→Fe+Feの共析変態によりFeとFeとに分解することを勘案し、焼鈍後の後処理として560℃以下で熱処理することによってFeOの再フェライト化を試みた。
 より具体的には、600℃焼鈍後の試験体2に対して、水蒸気雰囲気中、500℃で2.5時間変態熱処理を施した。これにより、試験体3を得た。その後、試験体2(600℃焼鈍後)および試験体3(500℃変態熱処理後)の体積固有抵抗を測定した。その結果、試験体2の体積固有抵抗は、6.08×10[μΩ・m]、試験体3の体積固有抵抗は、4.42×10[μΩ・m]であった。このことから、圧粉成形体の歪取り焼鈍後に、変態熱処理を施すことにより、圧粉磁心の比抵抗を回復させることが可能であることが確認された。そこで、変態熱処理前後のフェライト被膜の被膜構造を分析するため、試験体2(600℃焼鈍後)および試験体3(500℃変態熱処理後)について、上記と同様にして、SEM-EDX分析による元素分析と粉末X線回折による結晶構造分析を行った。その結果を、図19、図20に示す。
 図19を上述の図17と対比する。図19に示されるように、変態熱処理後には、フェライト被膜を構成する元素である、O、Fe、MnおよびZnが被膜全体に分布していることが確認された。また、図20に示されるように、600℃焼鈍後に見られたFeOの回折ピークは、変態熱処理後には見られなくなった。これらのことから、FeOからなる中間層が変態熱処理によって消滅し、再フェライト化が生じていることが確認された。なお、FeOからなる中間層が形成された部分に存在していたZn、Mnは、中間層の外側にある薄くなったフェライト被膜中に一旦取り込まれた後、変態熱処理によって生じたFeに再度取り込まれ、MFe化したものと推察される。
 また、変態熱処理温度と変態熱処理時間とを変更し、圧粉磁心の比抵抗を測定した。その結果、変態熱処理温度を500℃、変態熱処理時間を1時間、2時間とした場合に、比抵抗の回復が確認された。同様に、変態熱処理温度を450℃、変態熱処理時間を1時間、2時間とした場合に、比抵抗の回復が確認された。同様に、変態熱処理温度を400℃、変態熱処理時間を1時間、2時間とした場合に、比抵抗の回復が確認された。また、変態処理時間が長い程、比抵抗の回復度合いが大きくなる傾向が見られた。また、変態処理温度が350℃未満になると、比抵抗の回復度合いが小さくなる傾向が見られた。この結果から、変態熱処理温度は、350℃以上であることが好ましいといえる。
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (15)

  1.  軟磁性金属粒子(21)と、該軟磁性金属粒子の表面を被覆するフェライト被膜(22)とを有する軟磁性粒子(2)の集合体であって、
     上記フェライト被膜は、スピネル構造を有するフェライト結晶粒(221)より構成されており、
     粉末X線回折パターン(10)に上記フェライト結晶粒に由来する回折ピーク(101)が存在している、圧粉磁心用粉末(1)。
  2.  上記フェライト結晶粒の大きさは、10nm以上である、請求項1に記載の圧粉磁心用粉末。
  3.  上記フェライト被膜は、断面視で、上記フェライト結晶粒同士の界面(222)が直線状を呈する部分を含む、請求項1または2に記載の圧粉磁心用粉末。
  4.  上記回折ピークの半値幅は、0.5°以下である、請求項1~3のいずれか1項に記載の圧粉磁心用粉末。
  5.  上記フェライト被膜の化学組成は、MFe、但し、Mは、Fe、Cu、Mg、Ni、Zn、および、Mnからなる群より選択される少なくとも1種の金属元素であり、0<X≦1である、請求項1~4のいずれか1項に記載の圧粉磁心用粉末。
  6.  上記金属元素Mは、MnおよびZn、または、NiおよびZnを含む、請求項5に記載の圧粉磁心用粉末。
  7.  上記フェライト被膜の膜厚は、20nm~600nmの範囲内にある、請求項1~6のいずれか1項に記載の圧粉磁心用粉末。
  8.  軟磁性金属粒子(21)の集合体より構成される原料粉末(3)を準備し、
     該原料粉末における各軟磁性金属粒子の表面にフェライト微粒子(220)を多数形成し、
     該フェライト微粒子を熱処理により粗大結晶化させ、上記各軟磁性金属粒子の表面にスピネル構造を有するフェライト結晶粒(221)より構成されるフェライト被膜(22)を形成する、圧粉磁心用粉末の製造方法。
  9.  上記熱処理時の熱処理温度は、400~900℃の範囲内にある、請求項8に記載の圧粉磁心用粉末の製造方法。
  10.  上記熱処理時の雰囲気は、不活性ガス雰囲気、または、真空雰囲気である、請求項8または9に記載の圧粉磁心用粉末の製造方法。
  11.  請求項1~7に記載の圧粉磁心用粉末の圧粉成形体であり、かつ、歪が除去されている、圧粉磁心(4)。
  12.  粉末X線回折パターンにFeOに由来する回折ピークが存在していない、請求項11に記載の圧粉磁心。
  13.  請求項1~7に記載の圧粉磁心用粉末を圧粉成形する圧粉成形工程と、
     得られた圧粉成形体を焼鈍する焼鈍工程と、
     焼鈍された圧粉成形体に含まれるフェライト被膜に部分的に生じたFeOを熱処理により再フェライト化する変態熱処理工程とを有する、圧粉磁心の製造方法。
  14.  上記変態熱処理工程における熱処理温度は、560℃以下である、請求項13に記載の圧粉磁心の製造方法。
  15.  上記変態熱処理工程における雰囲気は、水蒸気雰囲気、または、不活性ガス雰囲気である、請求項13または14に記載の圧粉磁心の製造方法。
PCT/JP2016/086867 2015-12-24 2016-12-12 圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法 WO2017110545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/064,662 US10832840B2 (en) 2015-12-24 2016-12-12 Powder for dust cores, method for producing same, dust core and method for producing dust core
DE112016006051.3T DE112016006051T5 (de) 2015-12-24 2016-12-12 Pulver für Massekerne, Verfahren zum Herstellen desselben, Massekern und Verfahren zum Herstellen des Massekerns

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015251107 2015-12-24
JP2015-251107 2015-12-24
JP2016103244A JP6836846B2 (ja) 2015-12-24 2016-05-24 圧粉磁心用粉末の製造方法および圧粉磁心の製造方法
JP2016-103244 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017110545A1 true WO2017110545A1 (ja) 2017-06-29

Family

ID=59090113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086867 WO2017110545A1 (ja) 2015-12-24 2016-12-12 圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法

Country Status (1)

Country Link
WO (1) WO2017110545A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037657A (ja) * 2020-08-25 2022-03-09 株式会社村田製作所 磁性粉の製造方法、圧粉成形体の製造方法、磁性粉および圧粉成形体
KR20220061901A (ko) 2020-11-06 2022-05-13 주식회사 펠레메드 신규한 캡시드 조립 저해제

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064396A (ja) * 2003-08-19 2005-03-10 Aisin Seiki Co Ltd 軟磁性粉末粒子、軟磁性粉末粒子の製造方法、軟磁性成形体
JP2005303132A (ja) * 2004-04-14 2005-10-27 Nec Tokin Corp フェライト膜、その製造方法、及びその製造装置
JP2014060183A (ja) * 2012-09-14 2014-04-03 Aisin Seiki Co Ltd 軟磁性体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064396A (ja) * 2003-08-19 2005-03-10 Aisin Seiki Co Ltd 軟磁性粉末粒子、軟磁性粉末粒子の製造方法、軟磁性成形体
JP2005303132A (ja) * 2004-04-14 2005-10-27 Nec Tokin Corp フェライト膜、その製造方法、及びその製造装置
JP2014060183A (ja) * 2012-09-14 2014-04-03 Aisin Seiki Co Ltd 軟磁性体及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022037657A (ja) * 2020-08-25 2022-03-09 株式会社村田製作所 磁性粉の製造方法、圧粉成形体の製造方法、磁性粉および圧粉成形体
JP7298568B2 (ja) 2020-08-25 2023-06-27 株式会社村田製作所 磁性粉の製造方法および圧粉成形体の製造方法
KR20220061901A (ko) 2020-11-06 2022-05-13 주식회사 펠레메드 신규한 캡시드 조립 저해제

Similar Documents

Publication Publication Date Title
JP6995429B2 (ja) 圧粉磁心用粉末および圧粉磁心
JP5227756B2 (ja) 軟磁性材料の製造方法
EP1840907B1 (en) Soft magnetic material and dust core
EP1912225B1 (en) Soft magnetic material, process for production of the material, powder compressed magnetic core, and process for production of the magnetic core
WO2012132783A1 (ja) 複合軟磁性粉末及びその製造方法、並びにそれを用いた圧粉磁心
JP4710485B2 (ja) 軟磁性材料の製造方法、および圧粉磁心の製造方法
JP5240234B2 (ja) 圧粉磁心の製造方法
JP2008028162A (ja) 軟磁性材料の製造方法、軟磁性材料、および圧粉磁心
JP2007012994A (ja) 絶縁軟磁性金属粉末成形体の製造方法
JP7045905B2 (ja) 軟磁性粉末及びその製造方法
KR20180103771A (ko) 압분자심
JP2007214366A (ja) 圧粉磁心用粉末、圧粉磁心およびそれらの製造方法
JP2017119908A5 (ja)
WO2013108643A1 (ja) 圧粉軟磁性体
Oikonomou et al. Effect of heat treatment in air on surface composition of iron-phosphate based soft magnetic composite components
JP2008172257A (ja) 絶縁軟磁性金属粉末成形体の製造方法
WO2005095030A1 (ja) 軟磁性材料の製造方法、軟磁性粉末および圧粉磁心
WO2017110545A1 (ja) 圧粉磁心用粉末およびその製造方法ならびに圧粉磁心およびその製造方法
JP2013171967A (ja) 軟磁性圧粉磁心並びにこれを用いたリアクトル、チョークコイル、固定子及びモータ並びに軟磁性圧粉磁心の製造方法
JP6556780B2 (ja) 圧粉磁心、磁心用粉末およびそれらの製造方法
JP2022168543A (ja) 磁性金属/フェライトコンポジット及びその製造方法
JP2009290128A (ja) 圧粉磁心の製造方法
TW202105421A (zh) 絕緣被膜軟磁性合金粉末
JP4586399B2 (ja) 軟磁性材料、圧粉磁心、および軟磁性材料の製造方法
JP5568983B2 (ja) 圧粉コアの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016006051

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878436

Country of ref document: EP

Kind code of ref document: A1