WO2017108010A1 - 一种伏立康唑中间体及伏立康唑的合成方法 - Google Patents

一种伏立康唑中间体及伏立康唑的合成方法 Download PDF

Info

Publication number
WO2017108010A1
WO2017108010A1 PCT/CN2017/071250 CN2017071250W WO2017108010A1 WO 2017108010 A1 WO2017108010 A1 WO 2017108010A1 CN 2017071250 W CN2017071250 W CN 2017071250W WO 2017108010 A1 WO2017108010 A1 WO 2017108010A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
organic solvent
reaction
aprotic organic
Prior art date
Application number
PCT/CN2017/071250
Other languages
English (en)
French (fr)
Inventor
黄虎
黄文锋
涂国良
刘节根
徐中明
吴强晖
孟昭旸
方玉玲
Original Assignee
浙江华海药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华海药业股份有限公司 filed Critical 浙江华海药业股份有限公司
Priority to ES17732011T priority Critical patent/ES2822081T3/es
Priority to US16/064,003 priority patent/US10633368B2/en
Priority to EP17732011.6A priority patent/EP3395813B1/en
Priority to JP2018532219A priority patent/JP6681989B2/ja
Publication of WO2017108010A1 publication Critical patent/WO2017108010A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/30Halogen atoms or nitro radicals

Definitions

  • the invention relates to a method for synthesizing an important intermediate condensate hydrochloride of voriconazole and voriconazole.
  • Voriconazole (VRC, UK109496) is a new antifungal drug synthesized by Pfizer Inc. on the basis of fluconazole. It is mainly used for patients with progressive and fatal immune damage. Because voriconazole has a broad spectrum of antifungal activity, strong antibacterial effect, good safety, and the demand for antifungal drugs in the domestic market is growing rapidly, the market prospect is huge.
  • Voriconazole its chemical name is (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-tri Zin-1-yl)-2-butanol, the structural formula is as shown in formula I:
  • the voriconazole condensate is an important intermediate with the chemical name: (2R, 3S/2S, 3R)-3-(6-chloro-5-fluoropyrimidin-4-yl)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl )-2-butanol, the structural formula is as shown in formula II:
  • the main synthesis method of the intermediate formula II is as shown in the reaction formula 1, using 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazole) having the structural formula as shown in III.
  • -1-yl)ethanone and 4-(1-bromoethyl)-5-fluoro-6-chloropyrimidine of the formula IV as in the presence of metallic zinc, iodine or Lewis acid and an aprotic organic solvent
  • the reaction is carried out in the presence or absence of lead.
  • the mechanism is that the zinc powder is first reacted with a compound of formula IV to form an organozinc reagent which is then reacted with a compound of formula III.
  • the compounds of formula III and IV can be prepared using commercially available starting materials or by methods disclosed in the prior art.
  • impurity A 3-(6-(1-(6-chloro-5-fluoropyrimidin-4-yl)ethyl)-5-fluoropyrimidin-4-yl)-2-(2,4-di Fluorophenyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol, the structural formula is as shown in formula V:
  • the invention provides a novel synthesis method of a voriconazole intermediate condensate of the formula II or an acid addition salt thereof, which can effectively reduce the formation of the impurity A by controlling the feeding mode.
  • the present invention provides a novel method for synthesizing a voriconazole intermediate condensate of formula II or an acid addition salt thereof, which comprises reacting a compound of formula III with a compound of formula IV in the presence of zinc and Lewis acid, and The reaction is carried out in an aprotic organic solvent at a certain reaction temperature in the absence of an activator. As shown in the reaction formula 1, the method comprises the following steps:
  • an activator is present therein.
  • the activator comprises iodine, bromine, dibromohydantoin or 1,2-dibromoethane, preferably iodine and bromine.
  • the activator is used in a weight ratio of the compound to the formula III of from 0.05 to 2.0:1, preferably from 0.1 to 0.2:1.
  • the molar ratio of zinc, compound of formula IV to compound III is from 1-10:0.5 to 2.5:1, preferably from 1.2 to 1.5:1.2 to 1.5:1.
  • the temperature of the reaction is from 0 to 50 ° C, preferably from 10 to 25 ° C.
  • the Lewis acid used in the reaction includes a chloride salt, a bromide salt, an iodide salt, an alumina trioxide, a titanium isopropoxide, a titanium triisopropoxide, a boron trifluoride or a boric acid.
  • the trimethyl ester is preferably zinc chloride.
  • the step (a1) is the same as the aprotic organic solvent used in the step (b1) or the step (a2) and the step (b2).
  • the aprotic organic solvent comprises a C 2 - C 10 aprotic organic solvent, preferably a substituted or unsubstituted ether solvent, an alkane solvent or an aromatic hydrocarbon solvent, more preferably tetrahydrofuran.
  • the invention also provides a method for synthesizing voriconazole, which comprises further reducing the intermediate condensate prepared by the synthesis method according to claim 1 or the acid addition salt thereof to obtain the formula VI, and then dissolving the voriconazole,
  • the specific synthetic route is as follows:
  • the reaction condition is mild and controllable by adjusting the feeding mode of the reaction for generating the voriconazole intermediate condensate;
  • the impurity A in the above reaction can be controlled within 0.74%, thereby reducing the formation of the impurity A;
  • THF (160 g) and compound III (20 g) were added to the flask under nitrogen atmosphere at 20 ⁇ 5 ° C, stirred until clear, and ZnCl 2 (13.6 g) and zinc powder (8.6 g) were added to form a suspension.
  • a solution of iodine (2.0 g) and compound IV (30 g) in THF (160 g) was added dropwise to the suspension. After the end of the reaction for 3 hours, the reaction was terminated by dropwise addition of a mixed solution of acetic acid (5.6 g) and water (160 mL).
  • the reaction mixture was concentrated under reduced pressure, and dichloromethane (208 g), water (100 mL) and acetic acid (5.8 g)
  • dichloromethane 208 g
  • water 100 mL
  • acetic acid 5.8 g
  • the aqueous layer was washed once with dichloromethane (110 g) and the organic phases were combined.
  • the organic phase was washed with a sodium hydrogencarbonate aqueous solution, dried and concentrated, and then hydrochloric acid was added dropwise to form a salt.
  • the reaction mixture was concentrated under reduced pressure, dichloromethane (40 g) and water (24 g) were evaporated. The mixture was partitioned and the aqueous layer was extracted twice with dichloromethane (40 g). Water (30 g) was added to the organic phase, and the pH was adjusted to 9 to 11 by adding a liquid alkali to separate the layers. The organic phase was dried over anhydrous magnesium sulfate, filtered and evaporated. Then, isopropanol (19 g) was added to the obtained concentrate, and the mixture was heated to reflux for 20 minutes with stirring, and then cooled to 20 to 30 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种新型的式II所示的伏立康唑中间体缩合物或其酸加成盐的合成方法,如反应式1所示,由化合物式III和式IV制备得到。本发明提供的合成方法调整了加料方式,使得反应条件温和可控,减少了杂质A的生成,同时避免了使用剧毒金属铅,消除了剧毒金属在药物中残留的危险性;使产品纯度更高,具有很大的工业应用价值。

Description

一种伏立康唑中间体及伏立康唑的合成方法
本申请要求于2015年12月23日提交中国专利局、申请号为201510984590.0、发明名称为“一种伏立康唑中间体的合成方法”以及于2016年1月18日提交中国专利局、申请号为201610031465.2、发明名称为“一种伏立康唑中间体的合成方法”的中国专利申请的优先权,其全部内容通过引用并入本申请中。
技术领域
本发明涉及一种伏立康唑的重要中间体缩合物盐酸盐及伏立康唑的合成方法。
背景技术
伏立康唑(voriconazole,VRC,UK109496)是美国辉瑞公司在氟康唑基础上合成的一种新型抗真菌药,主要用于进行性、有致命危险的免疫损害患者。由于伏立康唑抗真菌广谱、抗菌效力强,安全性好,且国内市场对抗真菌药物的需求增长迅速,因此市场前景巨大。
伏立康唑,其化学名为(2R,3S)-2-(2,4-二氟苯基)-3-(5-氟嘧啶-4-基)-1-(1H-1,2,4-三唑-1-基)-2-丁醇,结构式如式I所示:
Figure PCTCN2017071250-appb-000001
伏立康唑缩合物作为一种重要的中间体,化学名为:(2R,3S/2S, 3R)-3-(6-氯-5-氟嘧啶-4-基)-2-(2,4-二氟苯基)-1-(1H-1,2,4-三唑-1-基)-2-丁醇,结构式如式II所示:
Figure PCTCN2017071250-appb-000002
目前该中间体式II主要的合成方法为如反应式1所示,采用结构式如Ⅲ所示的1-(2,4-二氟苯基)-2-(1H-1,2,4-三唑-1-基)乙酮与结构式如Ⅳ所示的4-(1-溴代乙基)-5-氟-6-氯嘧啶在金属锌、碘或Lewis酸及非质子性有机溶剂存在下及有或无铅存在下进行反应。其机理是锌粉先与式IV化合物反应形成有机锌试剂,然后与式III化合物反应。式III和IV化合物可以采用市售的原料或使用现有技术公开的方法制备得到。
Figure PCTCN2017071250-appb-000003
但是锌粉与空气接触以后,比较容易氧化。在制备锌试剂的过程中,存在引发与活化的问题。以前的活化锌粉技术中多涉及到铅粉,铅是一种有剧毒的金属元素,在制药过程中是有严格控制的,因而不 利于大规模工业生产。此外,在合成伏立康唑缩合物的过程中,加料方式对反应有很大的影响。加料方式不当会导致反应中杂质A的含量上升,从而影响后处理的除杂以及后续的氢化,这对反应极其不利,所以严格控制加料方式对于该反应是重要的。杂质A的化学名为:3-(6-(1-(6-氯5-氟嘧啶-4-基)乙基)-5-氟嘧啶-4-基)-2-(2,4-二氟苯基)-1-(1H-1,2,4-三唑-1-基)-2-丁醇,结构式如式V所示:
Figure PCTCN2017071250-appb-000004
发明内容
本发明提供了一种伏立康唑中间体缩合物式II或其酸加成盐的合成新方法,该方法通过控制加料方式可以有效地降低杂质A的生成。
本发明提供了一种伏立康唑中间体缩合物式II或其酸加成盐的合成新方法,包括将式III所示的化合物与式IV所示的化合物在锌和Lewis酸存在下,及有或无活化剂存在下,在一定的反应温度下,在非质子性有机溶剂中进行反应,如反应式1所示,该方法包括如下步骤:
(a1)将化合物式III、锌和Lewis酸与非质子性有机溶剂混合,形成悬浮液;
(b1)将化合物式IV与非质子性有机溶剂混合,其中任选地有活化剂存在,形成溶液;
(c1)将步骤(b1)形成的溶液缓慢加入到步骤(a1)形成的悬 浮液中进行反应,得到式II所示的中间体缩合物;
(d1)任选地将式II化合物转化为其酸加成盐;
或者
(a2)将化合物式III、锌和Lewis酸与非质子性有机溶剂混合,形成悬浮液;
(b2)将化合物式IV与非质子性有机溶剂混合,形成溶液;
(c2)将步骤(b2)形成的溶液缓慢加入到步骤(a2)形成的悬浮液中进行反应,其中任选地有活化剂存在,得到式II所示的中间体缩合物;
(d2)任选地将式II化合物转化为其酸加成盐;
或者
(a3)将化合物式III、化合物式IV和Lewis酸与非质子性有机溶剂混合,形成悬浮液;
(b3)将锌加入到上述悬浮液中,其中任选地有活化剂存在,得到式II所示的中间体缩合物;
(c3)任选地将式II化合物转化为其酸加成盐;
Figure PCTCN2017071250-appb-000005
作为本发明的进一步改进,其中有活化剂存在。作为本发明的进一步改进,所述活化剂包括碘、溴、二溴海因或1,2-二溴乙烷,优选碘和溴。
作为本发明的进一步改进,所述活化剂的使用量与化合物式Ⅲ的重量比为0.05-2.0:1,优选0.1-0.2:1。
作为本发明的进一步改进,锌、化合物式Ⅳ的使用量与化合物式Ⅲ的摩尔比为1-10:0.5-2.5:1,优选1.2-1.5:1.2-1.5:1。
作为本发明的进一步改进,所述反应的温度为0-50℃,优选10-25℃。
作为本发明的进一步改进,反应中使用的Lewis酸包括氯化盐、溴化盐、碘化盐、三氧化二铝、异丙氧钛、三异丙氧氯化钛、三氟化硼或硼酸三甲酯,优选为氯化锌。
作为本发明的进一步改进,步骤(a1)与步骤(b1)或步骤(a2)与步骤(b2)所用的非质子性有机溶剂相同。
作为本发明的进一步改进,所述非质子性有机溶剂包括C2-C10的非质子性有机溶剂,优选取代或未取代的醚类溶剂、烷烃溶剂或芳香烃溶剂,更优选四氢呋喃。
本发明还提供了一种伏立康唑的合成方法,包括将根据权利要求1所述的合成方法制备得到的中间体缩合物式II或其酸加成盐进一步还原得到式VI,然后拆分得到伏立康唑,具体合成路线如下:
Figure PCTCN2017071250-appb-000006
本发明的技术方案至少具有以下有益技术效果:
1、通过调整生成伏立康唑中间体缩合物的反应的加料方式,使得反应条件温和可控;
2、能够将上述反应中的杂质A控制在0.74%之内,减少了杂质A的生成;
3、上述反应中没有铅粉参与,消除了剧毒金属在药物中残留的危险性;并且该反应过程中无需对锌粉进行单独活化处理。
具体实施方式
式II化合物及其酸加成盐的制备:实施例1-9
实施例1:
在氮气保护、20±5℃下,向烧瓶内加入THF(160g)和化合物III(20g),搅拌至溶清,加入ZnCl2(13.6g)和锌粉(8.6g)形成悬浮液,向该悬浮液中滴加碘(2.0g)和化合物IV(30g)的THF(160g)溶液进行反应。反应3小时结束后,滴加醋酸(5.6g)与水(160mL)的混合溶液终止反应。将反应所得混合物减压浓缩,再加入二氯甲烷(208g)、水(100mL)和醋酸(5.8g),搅拌后静置分层。将水层用二氯甲烷(110g)洗涤一次,合并有机相。将有机相用碳酸氢钠水溶液洗涤,干燥浓缩后滴加盐酸成盐,析晶得到固体。将该固体在50℃下真空干燥得到(2R,3S/2S,3R)-3-(6-氯-5-氟嘧啶-4-基)-2-(2,4-二氟苯基)-1-(1H-1,2,4-三唑-1-基)-2-丁醇盐酸盐(式II化合物盐酸盐)粗品(24.5g,产率65.1%),经液相色谱检测显示杂质A的含量为0.74%。
实施例2:
在氮气保护、20±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,向该悬浮液中滴加碘(2.0g)和化合物IV(15g)的THF(80g)溶液进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(11.7g,产率62.3%),经液相色谱检测显示杂质A的含量为0.72%。
实施例3:
在氮气保护、20±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,向该悬浮液中滴加碘(1.0g)和化合物IV(11.8g)的THF(80g)溶液进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(12.3g,产率65.3%),经液相色谱检测显示杂质A的含量为0.72%。
实施例4:
在氮气保护、15±5℃下,向烧瓶内依次加入THF(160g)和化合物III(10g)、化合物IV(16.1g)和ZnCl2(6.8g),形成悬浮液,然后向该悬浮液中加入锌粉(4.3g)进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(12.1g,产率64.4%),经液相色谱检测显示杂质A的含量为0.68%。
实施例5:
在氮气保护、15±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,然后向该悬浮液中滴加化合物IV(15g)的THF(80g)溶液,然后加入碘(1.0g)进行反应。反应3小时结束,之后的后处理同实 施例1。得到式II化合物盐酸盐粗品(10.1g,产率53.7%),经液相色谱检测显示杂质A的含量为0.6%。
实施例6:
在氮气保护、15±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,然后向该悬浮液中滴加二溴海因(1.3g)和化合物IV(16.1g)的THF(80g)溶液进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(9.4g,产率50.1%),经液相色谱检测显示杂质A的含量为0.5%。
实施例7:
在氮气保护、15±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,然后向该悬浮液中滴加化合物IV(16.1g)的THF(80g)溶液,然后加入二溴海因(1.3g)进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(10.4g,产率55.3%),经液相色谱检测显示杂质A的含量为1.3%。
实施例8:
在氮气保护、15±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,然后向该悬浮液中滴加溴素(1.0g)和化合物IV(16.1g)的THF(80g)溶液进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(11.4g,产率60.7%),经液相色谱检测显示杂质A的含量为0.63%。
实施例9:
在氮气保护、15±5℃下,向烧瓶内加入THF(80g)和化合物III(10g),搅拌至溶清,加入ZnCl2(6.8g)和锌粉(4.3g)形成悬浮液,然后向该悬浮液中滴加化合物IV(15g)的THF(80g)溶液,然后加入溴素(1.3g)进行反应。反应3小时结束,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(11.1g,产率59.1%),经液相色谱检测显示杂质A的含量为0.5%。
对比实施例:
在氮气保护、20±5℃下,向烧瓶内加入THF(100g),加入锌粉(8.6g)和ZnCl2(13.6g)并搅拌获得悬浮液,将溶解于THF(60g)中的碘(1.8g)用10分钟缓慢加入该悬浮液中获得混合物。然后向上述混合物中缓慢加入溶解于四氢呋喃(160g)中的化合物III(20g)、化合物IV(30g)和碘(0.2g)的混合液进行反应。反应3小时,之后的后处理同实施例1。得到式II化合物盐酸盐粗品(23.2g,产率62%),经液相色谱检测显示杂质A的含量为9%。
实施例10:式VI化合物的制备
向氢化釜中抽入甲醇(69g)、化合物式II(10g)、结晶乙酸钠(7.6g)和钯炭7%(湿基)(0.7g)。将反应釜用氮气置换3次,然后加氮气到0.4MPa后保压5分钟检查是否漏气。再用氢气置换三次,将氢气加压至0.3MPa,温度控制到25~30℃,搅拌反应3~5小时至30分钟内压力不再下降(压力降到0.2MPa则加压到0.3Mpa)。出料,将反应所得混合物减压浓缩,加入二氯甲烷(40g)和水(24g),萃取分层,水层再用二氯甲烷(40g)提取两次,合并有机相。向有机相中加入水(30g),滴加液碱调pH值至9~11,分层。将有机相用无水硫酸镁干燥,过滤,滤液减压浓缩得到浓缩物。然后向得到的浓缩物加入异丙醇(19g),搅拌加热至回流20分钟,然后降温至20~30℃, 保温搅拌1小时,继续降温至0℃,保温搅拌2小时,析出大量沉淀。过滤,滤饼真空干燥,得到式VI化合物(7.1g,85%)。
实施例11:伏立康唑的制备
向烧瓶中加入丙酮(58.5g),甲醇(19.5g),化合物式VI(3.5g),搅拌溶清后加入左旋樟脑磺酸(2.3g),加热至回流,保持回流状态30分钟。将反应混合物降至30℃,在30℃达到稳定后用1小时缓慢降温至20℃,保温搅拌2小时。过滤,滤饼真空干燥,得伏立康唑拆分物的樟脑磺酸盐,即(2R,3S)-2-(2,4-二氟苯基)-3-(5-氟嘧啶-4-基)-1-(1H-1,2,4-三唑-1-基)-2-丁醇的左旋樟脑磺酸盐(1.9g,32%)。将得到的伏立康唑拆分物的左旋樟脑磺酸盐溶解于二氯甲烷溶剂中,滴加碳酸氢钠游离即可得到伏立康唑。

Claims (10)

  1. 一种如式II所示的伏立康唑的重要中间体缩合物或其酸加成盐的合成方法,包括将式III所示的化合物与式IV所示的化合物在锌和Lewis酸存在下,及有或无活化剂存在下,在一定的反应温度下,在非质子性有机溶剂中进行反应,如反应式1所示,其特征在于,该方法包括如下步骤:
    (a1)将化合物式III、锌和Lewis酸与非质子性有机溶剂混合,形成悬浮液;
    (b1)将化合物式IV与非质子性有机溶剂混合,其中任选地有活化剂存在,形成溶液;
    (c1)将步骤(b1)形成的溶液缓慢加入到步骤(a1)形成的悬浮液中进行反应,得到式II所示的中间体缩合物;
    (d1)任选地将式II化合物转化为其酸加成盐;
    或者
    (a2)将化合物式III、锌和Lewis酸与非质子性有机溶剂混合,形成悬浮液;
    (b2)将化合物式IV与非质子性有机溶剂混合,形成溶液;
    (c2)将步骤(b2)形成的溶液缓慢加入到步骤(a2)形成的悬浮液中进行反应,其中任选地有活化剂存在,得到式II所示的中间体缩合物;
    (d2)任选地将式II化合物转化为其酸加成盐;
    或者
    (a3)将化合物式III、化合物式IV和Lewis酸与非质子性有机溶剂混合,形成悬浮液;
    (b3)将锌加入到上述悬浮液中,其中任选地有活化剂存在,得到式II所示的中间体缩合物;
    (c3)任选地将式II化合物转化为其酸加成盐;
    Figure PCTCN2017071250-appb-100001
  2. 根据权利要求1所述的合成方法,其特征在于:其中有活化剂存在。
  3. 根据权利要求2所述的合成方法,其特征在于:所述活化剂包括碘、溴、二溴海因或1,2-二溴乙烷,优选碘和溴。
  4. 根据权利要求2或3所述的合成方法,其特征在于:所述活化剂的使用量与化合物式III的重量比为0.05-2.0:1,优选0.1-0.2:1。
  5. 根据权利要求1-3任一项所述的合成方法,其特征在于:锌、化合物式IV的使用量与化合物式Ⅲ摩尔比为1-10:0.5-2.5:1,优选1.2-1.5:1.1-1.5:1。
  6. 根据权利要求1-3任一项所述的合成方法,其特征在于:所述反应的温度为0-50℃,优选10-25℃。
  7. 根据权利要求1-3任一项所述的合成方法,其特征在于:反应中使用的Lewis酸包括氯化盐、溴化盐、碘化盐、三氧化二铝、异丙氧钛、三异丙氧氯化钛、三氟化硼或硼酸三甲酯,优选为氯化锌。
  8. 根据权利要求1-3任一项所述的合成方法,其特征在于:步骤(a1)与步骤(b1)或步骤(a2)与步骤(b2)所用的非质子性有机溶剂相同。
  9. 根据权利要求1-3任一项所述的合成方法,其特征在于:所述非质子性有机溶剂为C2-C10的非质子性有机溶剂,优选取代或未取代的醚类溶剂、烷烃溶剂或芳香烃溶剂,更优选四氢呋喃。
  10. 一种伏立康唑的合成方法,包括将根据权利要求1所述的合成方法制备得到的中间体缩合物式II或其酸加成盐,经过进一步还原得到式VI,然后拆分得到伏立康唑,具体合成路线如下:
    Figure PCTCN2017071250-appb-100002
PCT/CN2017/071250 2015-12-23 2017-01-16 一种伏立康唑中间体及伏立康唑的合成方法 WO2017108010A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES17732011T ES2822081T3 (es) 2015-12-23 2017-01-16 Intermediario de voriconazol y método de síntesis de voriconazol
US16/064,003 US10633368B2 (en) 2015-12-23 2017-01-16 Voriconazole intermediate and voriconazole synthesis method
EP17732011.6A EP3395813B1 (en) 2015-12-23 2017-01-16 Voriconazole intermediate and voriconazole synthesis method
JP2018532219A JP6681989B2 (ja) 2015-12-23 2017-01-16 ボリコナゾール中間体及びボリコナゾールの合成方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510984590.0 2015-12-23
CN201510984590 2015-12-23
CN201610031465.2 2016-01-18
CN201610031465.2A CN105503834B (zh) 2015-12-23 2016-01-18 一种伏立康唑中间体的合成方法

Publications (1)

Publication Number Publication Date
WO2017108010A1 true WO2017108010A1 (zh) 2017-06-29

Family

ID=55712203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071250 WO2017108010A1 (zh) 2015-12-23 2017-01-16 一种伏立康唑中间体及伏立康唑的合成方法

Country Status (6)

Country Link
US (1) US10633368B2 (zh)
EP (1) EP3395813B1 (zh)
JP (1) JP6681989B2 (zh)
CN (1) CN105503834B (zh)
ES (1) ES2822081T3 (zh)
WO (1) WO2017108010A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105503834B (zh) * 2015-12-23 2021-03-05 浙江华海药业股份有限公司 一种伏立康唑中间体的合成方法
CN106432198B (zh) 2016-09-08 2022-10-21 浙江华海药业股份有限公司 一种制备伏立康唑拆分中间体的方法
CN109705102A (zh) * 2019-02-19 2019-05-03 浙江华海立诚药业有限公司 伏立康唑及其中间体的制备方法
CN110724130A (zh) * 2019-11-29 2020-01-24 怀化学院 伏立康唑及其中间体的合成方法
CN112645935A (zh) * 2020-12-15 2021-04-13 植恩生物技术股份有限公司 伏立康唑关键中间体的制备方法
CN116106434A (zh) * 2022-03-17 2023-05-12 南京易亨制药有限公司 高效检测4-氯-6-乙基-5-氟嘧啶中有关物质的方法
CN115724829A (zh) * 2022-12-23 2023-03-03 天津力生制药股份有限公司 一种分离真菌药物中间体杂质的液相色谱制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195346A (zh) * 1995-08-05 1998-10-07 辉瑞研究开发公司 通过有机金属化合物对酮及其中间体的加成合成三唑化合物
CN102344441A (zh) * 2010-07-25 2012-02-08 浙江华海药业股份有限公司 一种制备伏立康唑中间体的工艺改进方法
CN105503834A (zh) * 2015-12-23 2016-04-20 浙江华海药业股份有限公司 一种伏立康唑中间体的合成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1195340A (en) * 1916-08-22 Adjustable seat
WO2009084029A2 (en) * 2007-12-03 2009-07-09 Neuland Laboratories Ltd Improved process for the preparation of (2r,3s)-2-(2,4- difluqrophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1h-1,2,4-triazol-1-yl) butan-2-ol
AU2012221788A1 (en) * 2011-02-21 2013-09-05 Sun Pharmaceutical Industries Limited An improved process for the preparation of voriconazole and intermediates thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195346A (zh) * 1995-08-05 1998-10-07 辉瑞研究开发公司 通过有机金属化合物对酮及其中间体的加成合成三唑化合物
CN102344441A (zh) * 2010-07-25 2012-02-08 浙江华海药业股份有限公司 一种制备伏立康唑中间体的工艺改进方法
CN105503834A (zh) * 2015-12-23 2016-04-20 浙江华海药业股份有限公司 一种伏立康唑中间体的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONG, LIHUA ET AL.: "Synthesis of a Novel Antifungal Drug Voriconazole", CENTRAL SOUTH PHARMACY, vol. 8, no. 4, 30 April 2010 (2010-04-30), pages 280 - 282, XP009162282 *

Also Published As

Publication number Publication date
EP3395813B1 (en) 2020-08-26
EP3395813A4 (en) 2019-06-05
CN105503834A (zh) 2016-04-20
JP2019505499A (ja) 2019-02-28
CN105503834B (zh) 2021-03-05
JP6681989B2 (ja) 2020-04-15
US20190002440A1 (en) 2019-01-03
EP3395813A1 (en) 2018-10-31
US10633368B2 (en) 2020-04-28
ES2822081T3 (es) 2021-04-29

Similar Documents

Publication Publication Date Title
WO2017108010A1 (zh) 一种伏立康唑中间体及伏立康唑的合成方法
JP2016516696A5 (zh)
AU2011281421A1 (en) Process for preparing aminobenzoylbenzofuran derivatives
TW201912656A (zh) 舒更葡糖鈉之製備方法及其晶型
CN110446704B (zh) 用于制备磺酰胺结构化的激酶抑制剂的方法
CN113816927A (zh) 一种arv-471中间体的制备方法
CN105348220A (zh) 一种氢溴酸沃替西汀的合成方法
CN105622595A (zh) 一种阿奇沙坦酯钾盐及其中间体新的制备方法
WO2021088296A1 (zh) 一种新型4-硫氰基-1,4,5-三取代的1,2,3-三唑的制备方法
CN109593083B (zh) 一种苯醚甲环唑硝酸盐的制备方法
CA3115742C (en) Preparation method for efinaconazole
KR100990046B1 (ko) 신규한 몬테루카스트 4-할로 벤질아민염 및 이를 이용한 몬테루카스트 나트륨염의 제조방법
CN111718295B (zh) 一种高纯度米力农的制备方法
WO2014096018A1 (en) Methods for the preparation of substituted acetophenones
CN111718292B (zh) 一种米力农中间体化合物
US20020115707A1 (en) Process for preparing pure ondansetron hydrochloride dihydrate
CN113651762B (zh) 一种1-甲基-1h-1,2,4-三氮唑-3-甲酸甲酯的制备方法
EP2540717B1 (en) Lamivudine oxalate and preparation method thereof
KR20150075187A (ko) 텔미사르탄의 신규 제조 방법
CN109071438B (zh) 用于制备非索非那定和其中使用的中间体的方法
CN117777109A (zh) 伏立康唑及其中间体的制备方法
EP2989099A1 (en) A process for the synthesis of maraviroc
TW202328131A (zh) 一種色烯—4—酮化合物及其中間體的製備方法
EP2691387B1 (en) Process for the preparation of anhydrous aripiprazole crystal form ii
WO2021120064A1 (zh) 乙氧基亚甲基丙二腈的连续合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17732011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018532219

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017732011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017732011

Country of ref document: EP

Effective date: 20180723