WO2017107307A1 - 一种具有圆形晶片结构的石英晶体谐振器及其制作方法 - Google Patents

一种具有圆形晶片结构的石英晶体谐振器及其制作方法 Download PDF

Info

Publication number
WO2017107307A1
WO2017107307A1 PCT/CN2016/074957 CN2016074957W WO2017107307A1 WO 2017107307 A1 WO2017107307 A1 WO 2017107307A1 CN 2016074957 W CN2016074957 W CN 2016074957W WO 2017107307 A1 WO2017107307 A1 WO 2017107307A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
package
quartz
electrode region
circular
Prior art date
Application number
PCT/CN2016/074957
Other languages
English (en)
French (fr)
Inventor
叶竹之
陆旺
雷晗
蒲波
Original Assignee
成都泰美克晶体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都泰美克晶体技术有限公司 filed Critical 成都泰美克晶体技术有限公司
Priority to JP2016570254A priority Critical patent/JP2018504793A/ja
Priority to KR1020167032159A priority patent/KR20170136967A/ko
Publication of WO2017107307A1 publication Critical patent/WO2017107307A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • the present invention relates to the field of quartz crystal resonator technology, and more particularly to a quartz crystal resonator having a circular wafer structure and a method of fabricating the same.
  • a quartz crystal resonator is generally composed of a piezoelectric quartz wafer and a package casing, and the package casing material is ceramic, glass, or the like.
  • the electrodes on the upper and lower sides of the piezoelectric quartz wafer are vapor-deposited, and the electrodes are connected to the pedestal pins in the package by sealing the leads of the package.
  • the AC voltage can be connected to the upper and lower electrodes of the quartz wafer through the pins, causing the quartz wafer to have an inverse piezoelectric effect, thereby generating oscillation.
  • Quartz crystal resonators are widely used in electronic industries such as mobile electronic devices, mobile phones, and mobile communication devices due to their accuracy and stability.
  • Quartz crystal resonator package structure has two kinds of in-line type and plane mount.
  • in-line type With the rapid development of mobile communication electronics, the demand for miniaturization of devices is getting higher and higher, and the miniaturization of quartz crystal resonators is also imperative.
  • the in-line type is gradually replaced by a flat mount type in recent years due to its large size.
  • Planar Mounted Quartz Crystal Resonators Due to specifications and process limitations, only rectangular quartz wafers are currently available. In the face of the need for miniaturization of resonators, rectangular quartz wafers face many challenges in the design and manufacture of packages. First, the smaller the volume of a rectangular quartz wafer, the more difficult the design, the longer the design cycle, and the more difficult it is to meet the design tolerances of existing processes.
  • the traditional cutting, etching and other processes are also difficult to process ultra-small quartz wafers, which cannot meet the needs of miniaturized resonators.
  • the quartz wafer is fixed in the pedestal by means of dispensing, and the dispensing method limits the size of the quartz wafer. If the quartz wafer is too small, the size of the dispensing is constant, and the performance of the quartz crystal resonator is It has a huge impact.
  • the miniaturization of the quartz crystal resonator has improved the manufacturing difficulty of the conventional package casing, and the conventional packaging process has become more and more difficult to meet the demand for miniaturization.
  • the object of the present invention is to overcome the shortcomings of the prior art, and to provide a circular wafer which can be used for low-cost mass production of miniaturized resonators, can enhance the central energy trapping effect of quartz wafers, and greatly improve product consistency. Structured quartz crystal resonator and its fabrication method.
  • a quartz crystal resonator having a circular wafer structure, which comprises a quartz wafer, a package cover and a package base;
  • the quartz wafer includes a circular member, a connection And a protective frame, the circular member is disposed in the protective frame through the connecting portion, and the shape of the connecting portion is a rectangular or trapezoidal shape, and the upper and lower surfaces of the circular member are plated with electrodes to form an electrode region, preferably The electrode area is circular in shape;
  • the metal layer A is disposed on the connecting portion and the protection frame, and the positioning hole is further disposed on the protection frame, the metal layer B is disposed in the positioning hole, and the bottom surface of the package base is provided with a pin and an electrode
  • the region is electrically connected to the lead through the metal layer A and the metal layer B.
  • the package cover, the quartz wafer and the package base are sequentially packaged from top to bottom to form a cavity structure for the circular member to oscillate freely.
  • the quartz wafer material is a quartz crystal
  • the package cover and the package base material are quartz crystal, glass, ceramic, and the like.
  • the resulting piezoelectric quartz crystal resonator has a length of 0.8 to 3.2 mm and a width of 0.6 to 2.5 mm.
  • the protection frame has a rectangular shape and functions as a support and a package connection; the circular member is located at a center of the protection frame, and the circular member is connected to a frame of the protection frame through the connection portion, The circular member can freely vibrate within the packaged cavity, and when the protective frame is subjected to external force, the force is not transmitted to the circular member, thereby well protecting the circular member. Further, the circular member is connected to any short frame of the protective frame through the connecting portion. The area material between the circular member and the protective frame is removed by chemical etching or physical cutting of the quartz substrate, and the shapes of the circular member, the connecting portion and the protective frame are integrally formed by removing the material.
  • the protection frame has a rectangular shape, and the positioning holes are disposed at four corners of the rectangle.
  • the outer frame of the package cover is provided with a package groove A for preventing leakage of the package liquid
  • the outer frame of the package base is provided with a package groove B for preventing leakage of the package liquid.
  • the electrode region includes an upper electrode region and a lower electrode region, and the upper electrode region and the lower electrode region are respectively disposed on the upper surface and the lower surface of the circular member
  • the metal layer A includes an upper surface metal layer and a lower portion.
  • the surface metal layer, the upper surface metal layer and the lower surface metal layer are respectively disposed on the upper surface and the lower surface of the connecting portion and the protective frame, the upper electrode region is electrically connected to the upper surface metal layer, and the lower electrode region is electrically connected to the lower surface metal layer.
  • the upper surface metal layer and the lower surface metal layer are respectively connected to the metal layer B in different positioning holes, and the metal layer B is also connected to different pins.
  • the surface of the circular member is provided with a boss, and the boss is disposed on one side or both sides of the circular member; when a surface of the circular member is provided with a boss, the electrode region They are respectively disposed on the surface of the boss and the other surface of the circular member; when both surfaces of the circular member are provided with the bosses, the electrode regions are disposed on the surface of the boss.
  • the boss structure can effectively reduce the parasitic vibration generated by the edge and enhance the trapping effect at the center of the quartz wafer.
  • a method for fabricating a quartz crystal resonator having a circular wafer structure comprising the steps of: [0013] Sl, using a quartz substrate as a substrate, preparing a boss, a circular member, and positioning on a quartz substrate a hole, and an electrode region and a metal layer A are prepared, and the electrode region is connected to the metal layer A; the boss and the circular member can be wet etched, dry etched, laser etched, physically blasted, etc.
  • step S1 includes the following sub-steps:
  • the outer frame of the package cover is provided with a package groove A
  • the outer frame of the package base is provided with a package groove B
  • the package cover, the quartz wafer and the package base are stacked.
  • step S3 the detailed process of the step S3 is: performing vapor deposition of the conductive metal layer B on the side surface of the positioning hole on the packaged quartz substrate, so that the upper surface metal layer and the lower surface metal layer are respectively positioned differently
  • the metal layers B in the holes are connected and the metal layer B is in electrical communication with the pins on the package substrate.
  • the present invention has the following advantages:
  • the present invention uses a circular quartz wafer for miniaturized patch-type quartz crystal resonators, and creatively improves the overall structure of a conventional patch-type quartz crystal resonator; Moreover, the packaged wafer is not easy to be fixed, and the invention adopts a novel process for processing the wafer, the process is simple, and the wafer is directly connected with the protection frame, and the package is simple.
  • the invention can be used for mass production of miniaturized quartz crystal resonators, reducing the production cost, greatly improving the manufacturing efficiency of the resonator, and improving the consistency and overall quality of the same resonator.
  • FIG. 1 is a schematic structural view of an unpackaged composite crucible according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a package cover according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a quartz wafer according to an embodiment of the present invention.
  • FIG. 4 is a plan view of a quartz wafer in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a package base according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a main cross-sectional structure of a package assembly according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a quartz substrate according to an embodiment of the present invention.
  • a quartz crystal resonator having a circular wafer structure includes a quartz wafer 10, a package cover 20, and a package base 30.
  • the quartz wafer 10 includes a circular member 11, a connecting portion 12, and a protective frame 13, and the protective frame 13 has a rectangular shape to serve as a support and package connection.
  • the circular member 11 is disposed at the center of the protective frame 13 and is free to vibrate.
  • the circular member 11 is connected to a short frame of the protective frame 13 through the connecting portion 12, and when the protective frame 13 is subjected to external force, the force is not It is transmitted to the circular member 11, so that the circular member 11 is well protected.
  • the package cover 20, the quartz wafer 10 and the package base 30 are sequentially packaged and pressed from top to bottom, and the package cover 20, the quartz wafer 10 and the package base 30 are packaged and pressed to form a circular member 11 Freely oscillating cavity structure.
  • a package trench A21 is disposed on the outer frame of the package cover 20, and a package trench B32 is disposed on the outer frame of the package base 30.
  • the package trench is used to prevent leakage of the package liquid and form a vacuum inside the resonator. Cavity.
  • the package structure is simple and easy to process, and the thickness of the quartz crystal resonator is reduced.
  • the working principle of the quartz crystal resonator is based on the piezoelectric effect, and the electrical connection relationship in this embodiment is as follows:
  • the upper surface of the circular member 11 is provided with a boss 18 on which the electrode is plated on the upper surface of the boss 18 Forming the upper electrode region 141, plating the electrodes on the lower surface of the circular member 11 to form the lower electrode region 142, the rational arrangement of the upper electrode region 141 and the lower electrode region 142, and the design of the boss 18 can effectively reduce the spurious vibration generated by the edge And capable of enhancing the energy trapping effect of the center of the quartz wafer and reducing the coupling;
  • the upper surface and the lower surface of the connecting portion 12 and the protective frame 13 are respectively provided with an upper surface metal layer 151 and a lower surface metal layer 152, at the four corners of the protective frame 13
  • a positioning hole 16 is disposed, and a metal layer B17 is disposed in the positioning hole 16;
  • a lead 31 is disposed on the bottom surface of the package base 30.
  • the upper electrode region 141 is electrically connected to the upper surface metal layer 151
  • the lower electrode region 142 is electrically connected to the lower surface metal layer 152
  • the upper surface metal layer 151 and the lower surface metal layer 152 are respectively different from the positioning holes 16
  • the inner metal layer B17 is connected, and the metal layer B17 is connected to different pins 31.
  • the electrode region 141 and the lower electrode region 142 are all circular in shape, and the connecting portion 12 has a rectangular shape.
  • the boss 18 is designed to reduce the parasitic vibration generated by the edge, and enhance the energy trapping effect at the center of the quartz wafer, thereby reducing the coupling; the actual production crucible can be disposed on either side of the upper surface and the lower surface of the circular member 11, It is also possible to provide the boss 18 on both surfaces, or the boss 18 may not be provided according to the actual application.
  • the quartz wafer 10 is of an AT cut type, and this cut type is generally applied to a quartz crystal resonator.
  • the long side of the quartz wafer 10 is parallel to the X axis, the X axis is the electric axis of the quartz crystal, the short side is parallel to the Z' axis, and the thickness direction is parallel to the Y' axis. It is also possible to have the long side of the quartz wafer parallel to the Z' axis, the width parallel to the X axis, and the thickness direction parallel to the Y' axis.
  • the main vibration mode of the AT-cut quartz wafer is the thickness trimming mode.
  • the generated parasitic vibrations such as bending vibration and surface shear vibration increase, and coupling is easy, for the quartz crystal resonator.
  • Performance has a huge impact.
  • the probability of spurious vibration at the edge of the wafer is reduced, the coupling is less likely to occur, the design tolerance is larger, the process requirements are lowered, and the design cost is lowered.
  • the materials of the quartz wafer 10, the package cover 20, and the package base 30 are all quartz crystals. According to actual needs, a piezoelectric quartz crystal oscillator having a length of 0.8 to 3.2 mm and a width of 0.6 to 2.5 mm can be produced. In this embodiment, the piezoelectric quartz crystal oscillator has a length of 1.6 mm and a width of 1.2 mm.
  • the resonant frequency of the quartz crystal oscillator in this example is between 8MHz and 70 ⁇ .
  • a method for fabricating a quartz crystal resonator having a circular wafer structure comprising the steps of: [0043] Sl, using a quartz substrate 40 as a substrate, preparing a boss 18, a circular shape on the quartz substrate 40 The member 11 and the positioning hole 16 are formed, and the electrode region 14 and the metal layer A15 are prepared.
  • the electrode region 14 is connected to the metal layer A15, and specifically includes the following sub-steps:
  • the boss 18 can be obtained by wet etching or dry etching, and the specific preparation process is as follows: First, take out one The quartz substrate 40 of a predetermined size is subjected to grinding and polishing treatment on the upper and lower surfaces of the quartz substrate 40. Secondly, a lithographic anti-etching protective layer ER having a uniform thickness is formed on the surface of the quartz substrate 40 by spin coating or spraying. And forming a pattern to be etched on the surface of the lithographic anti-etching protective layer ER by using photolithography; finally, etching the surface of the quartz substrate 40 by wet etching or dry etching to form a surface of the quartz substrate 40 Boss 18. The etching depth of the land 18 is determined by controlling the reaction between wet etching or dry etching.
  • the circular member 11 can be obtained by wet etching, dry etching, laser etching, physical blasting, etc., and the specific preparation process is as follows: First, the lithography resistance formed during the process of fabricating the bump 18 is removed.
  • the package cover 20, the quartz wafer 10 and the package base 30 are sequentially stacked and packaged and soldered; to prevent leakage of the package liquid, the outer frame of the package cover 20 is provided with a package trench A21, and the package base 30 is provided.
  • a package trench B32 is disposed on the outer frame, and during the process of soldering the package cover 20, the quartz wafer 10 and the package base 30, glass solder or resin solder is added to the package trench A21 and the package trench B32, and the whole Package soldering in a vacuum environment.
  • the quartz wafer 10 is cut off from the quartz substrate 40, thereby preparing a quartz crystal resonator having a circular wafer structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种具有圆形晶片结构的石英晶体谐振器及其制作方法,所述谐振器由石英晶片(10)、封装盖(20)和封装基座(30)封装而成,石英晶片(10)包括圆形构件(11)、连接部(12)和保护框(13),圆形构件(11)可在封装后的腔体内自由振荡,圆形构件(11)上设置有电极区(14),连接部(12)和保护框(13)上设置有金属层A(15),保护框(13)上的定位孔(16)内设置有金属层B(17),封装基座(30)上设置有引脚(31),电极区(14)通过金属层A(15)、金属层B(17)与引脚(31)电连接。所述谐振器的制作方法可用于小型化谐振器的低成本批量化生产,并能够增强石英晶片中心能陷效应、大幅度提升产品一致性。

Description

说明书 发明名称:一种具有圆形晶片结构的石英晶体谐振器及其制作方法 技术领域
[0001] 本发明涉及石英晶体谐振器技术领域, 特别是一种具有圆形晶片结构的石英晶 体谐振器及其制作方法。
背景技术
[0002] 石英晶体谐振器通常由压电石英晶片及封装外壳构成, 封装外壳材料为陶瓷、 玻璃等。 压电石英晶片上下两面需蒸镀电极, 电极通过密封封装的引线, 与封 装外壳中的基座引脚相连。 交流电压可通过引脚连通石英晶片的上下电极, 使 石英晶片产生逆压电效应, 从而产生振荡。 石英晶体谐振器因其频率的准确性 和稳定性等特性广泛应用于移动电子设备、 手机、 移动通信装置等电子行业中
[0003] 石英晶体谐振器封装结构有直插式和平面贴装两种, 随着移动通信电子的迅速 发展, 器件小型化需求越来越高, 石英晶体谐振器的小型化也势在必行, 其中 直插式因体积大, 近几年逐渐被平面贴装式取代。 平面贴装式石英晶体谐振器 因规格和工艺的限制, 目前, 只能采用矩形石英晶片。 而面对谐振器小型化的 需求, 矩形石英晶片在设计和制造封装的过程面临诸多难题。 首先, 矩形石英 晶片的体积越小, 设计越困难, 设计周期越长, 且现有工艺也越难满足设计的 公差要求。 其次, 传统的切条、 腐蚀等工艺方式也难以加工出超小型石英晶片 , 已经不能满足小型化谐振器的需求。 此外, 传统谐振器封装工艺, 采用点胶 方式将石英晶片固定在基座中, 点胶方式限制了石英晶片的尺寸, 如果石英晶 片过小, 点胶大小不变, 会对石英晶体谐振器性能产生巨大的影响。 且石英晶 体谐振器的小型化, 提升了传统封装外壳等的制作难度, 传统封装工艺越来越 难以满足小型化的需求。
[0004] 对比矩形石英晶片, 若采用圆形石英晶片, 设计难度将会降低, 成品石英晶体 谐振器的各项性能也会有显著提高。 目前, 平面贴装工艺都采用矩形石英晶片 封装, 若利用现有生产工艺制造圆形石英晶片, 成本高、 难以实现, 且后道封 装难度大。 所以, 为了实现石英晶体谐振器的小型化同吋降低设计和生产成本 , 降低制造难度, 急需对石英晶片结构及前道、 后道工艺进行改进。
技术问题
[0005] 本发明的目的在于克服现有技术的缺点, 提供一种可用于小型化谐振器低成本 批量生产, 并能够增强石英晶片中心能陷效应、 大幅度提升产品一致性的具有 圆形晶片结构的石英晶体谐振器及其制作方法。
问题的解决方案
技术解决方案
[0006] 本发明的目的通过以下技术方案来实现: 一种具有圆形晶片结构的石英晶体谐 振器, 它包括石英晶片、 封装盖和封装基座; 所述的石英晶片包括圆形构件、 连接部和保护框, 圆形构件通过连接部设置在保护框内, 连接部的形状为矩形 或梯形等适当的形状, 所述的圆形构件的上下表面上镀覆电极, 形成电极区, 优选地, 电极区形状为圆形; 连接部和保护框上设置有金属层 A, 保护框上还设 置有定位孔, 定位孔内设置有金属层 B, 封装基座的底面上设置有引脚, 电极区 通过金属层 A、 金属层 B与引脚电连接; 所述的封装盖、 石英晶片和封装基座从 上到下依次封装压合后形成供圆形构件自由振荡的腔体结构。 石英晶片材料为 石英晶体, 封装盖和封装基座材料为石英晶体、 玻璃、 陶瓷等。 最终形成的压 电石英晶体谐振器的长度为 0.8~3.2mm, 宽度为 0.6~2.5mm。
[0007] 进一步地, 所述的保护框为矩形形状, 起到支撑和封装连接作用; 所述的圆形 构件位于保护框的中心处, 圆形构件通过连接部与保护框的一条边框连接, 圆 形构件可以在封装后的腔体内自由振动, 且当保护框受到外界力的作用吋, 力 不会传递到圆形构件上, 从而很好地保护了圆形构件。 更进一步地, 圆形构件 通过连接部与保护框的任意一条短边框连接。 圆形构件与保护框中间的区域材 料通过化学腐蚀或物理切割石英基板去除, 圆形构件、 连接部和保护框的形状 通过去除材料一体形成。
[0008] 进一步地, 所述的保护框为矩形形状, 定位孔设置在矩形的四角处。
[0009] 进一步地, 所述的封装盖的外框上设置有防止封装液体泄漏的封装沟槽 A, 所 述的封装基座的外框上设置有防止封装液体泄漏的封装沟槽 B。 [0010] 进一步地, 所述的电极区包括上电极区和下电极区, 上电极区和下电极区分别 设置在圆形构件的上表面和下表面, 金属层 A包括上表面金属层和下表面金属层 , 上表面金属层和下表面金属层分别设置在连接部和保护框的上表面和下表面 , 上电极区与上表面金属层电连接, 下电极区与下表面金属层电连接, 上表面 金属层和下表面金属层分别与不同定位孔内的金属层 B连接, 金属层 B还与不同 的引脚连接。
[0011] 进一步地, 所述的圆形构件的表面上设置有凸台, 凸台设置在圆形构件的一面 或双面上; 当圆形构件的一个表面上设置有凸台吋, 电极区分别设置在凸台的 表面和圆形构件的另一表面上; 当圆形构件的两个表面均设置有凸台吋, 电极 区均设置在凸台的表面上。 凸台结构能够有效减弱边缘产生的寄生振动, 并能 够增强石英晶片中心的能陷效应。
[0012] 一种具有圆形晶片结构的石英晶体谐振器的制作方法, 它包括以下步骤: [0013] Sl、 以石英基板为基材, 在石英基板上制备出凸台、 圆形构件和定位孔, 并制 备出电极区和金属层 A, 制得的电极区与金属层 A连通; 凸台、 圆形构件可通过 湿法刻蚀、 干法刻蚀、 激光刻蚀、 物理喷砂等方式制造而成;
[0014] S2、 将封装盖、 石英晶片和封装基座依次堆叠并封装焊接;
[0015] S3、 在定位孔的侧面上制备金属层 B, 金属层 B连通金属层 A与封装基座上的引 脚;
[0016] S4、 将石英晶片从石英基板上切除, 从而制备出具有圆形晶片结构的石英晶体 谐振器。
[0017] 进一步地, 所述的步骤 S1包括以下子步骤:
[0018] Sl l、 以石英基板为基材, 在石英基板上制备出凸台、 圆形构件和定位孔, 凸 台在圆形构件表面上, 凸台设置在圆形构件的一面或双面上;
[0019] S12、 在凸台或圆形构件的上表面上制备上电极区, 在凸台或圆形构件的下表 面上制备下电极区, 在石英基板的上下表面上分别制备上表面金属层和下表面 金属层, 并使上电极区与上表面金属层连接, 下电极区与下表面金属层连接。
[0020] 进一步地, 所述的步骤 S2中封装盖的外框上设置有封装沟槽 A, 封装基座的外 框上设置有封装沟槽 B, 将封装盖、 石英晶片和封装基座堆叠封装焊接的过程中 , 在封装沟槽 A和封装沟槽 B中添加玻璃焊料或树脂焊料, 且整体在真空环境下 进行封装焊接。
[0021] 进一步地, 所述步骤 S3的详细过程为: 对封装焊接后的石英基板上的定位孔的 侧面进行蒸镀导电金属层 B, 使得上表面金属层和下表面金属层分别与不同定位 孔中的金属层 B相连, 并使金属层 B与封装基板上的引脚形成电连通。
发明的有益效果
有益效果
[0022] 本发明具有以下优点:
[0023] 1、 对比矩形石英晶片, 本发明中圆形石英晶片中的圆片边缘产生寄生振动的 几率下降, 不易产生耦合, 谐振器整体性能提高; 且设计公差较大, 对工艺要 求降低, 设计成本降低。
[0024] 2、 本发明将圆形石英晶片用于小型化贴片式石英晶体谐振器, 对传统贴片式 石英晶体谐振器整体结构进行了创造性的改进; 此外, 传统工艺生产圆片工艺 复杂, 且封装吋圆片不易固定, 本发明采用新型工艺加工圆片, 工艺简单, 且 圆片与保护框直接相连, 封装简单。
[0025] 3、 本发明可用于小型化石英晶体谐振器批量型生产, 降低生产成本的同吋, 大幅度提升谐振器的制造效率, 同吋谐振器的一致性及综合质量也得到了提升
对附图的简要说明
附图说明
[0026] 图 1为本发明具体实施方式中未封装组合吋的结构示意图;
[0027] 图 2为本发明具体实施方式中封装盖的结构示意图;
[0028] 图 3为本发明具体实施方式中石英晶片的结构示意图;
[0029] 图 4为本发明具体实施方式中石英晶片的俯视图;
[0030] 图 5为本发明具体实施方式中封装基座的结构示意图;
[0031] 图 6为本发明具体实施方式中封装组合后的主剖结构示意图;
[0032] 图 7为本发明具体实施方式中石英基板结构示意图;
[0033] 图中: 10-石英晶片, 11-圆形构件, 12-连接部, 13-保护框, 14-电极区, 141- 上电极区, 142-下电极区, 15-金属层 A, 151-上表面金属层, 152-下表面金属层 , 16-定位孔, 17-金属层 B, 18-凸台, 20-封装盖, 21-封装沟槽 A, 30-封装基座 , 31-引脚, 32-封装沟槽 B, 40-石英基板。
本发明的实施方式
[0034] 下面结合附图对本发明做进一步的描述, 但本发明的保护范围不局限于以下所 述。
[0035] 如图 1〜图 7所示, 一种具有圆形晶片结构的石英晶体谐振器, 它包括石英晶片 1 0、 封装盖 20和封装基座 30。 所述的石英晶片 10包括圆形构件 11、 连接部 12和保 护框 13, 保护框 13呈矩形状, 起到支撑和封装连接作用。 圆形构件 11设置在保 护框 13的中心处, 且可以自由振动, 圆形构件 11通过连接部 12与保护框 13的一 条短边框连接, 当保护框 13受到外界力的作用吋, 力不会传递到圆形构件 11上 , 从而很好地保护了圆形构件 11。
[0036] 所述的封装盖 20、 石英晶片 10和封装基座 30从上到下依次封装压合连接, 封装 盖 20、 石英晶片 10和封装基座 30封装压合后形成供圆形构件 11自由振荡的腔体 结构。 封装盖 20的外框上设置有封装沟槽 A21, 封装基座 30的外框上设置有封装 沟槽 B32, 采用玻璃封装吋, 封装沟槽可以防止封装液体外泄, 使谐振器内部形 成真空腔体。 相比传统工艺, 此封装结构简单易加工, 且石英晶体谐振器的厚 度有所下降。
[0037] 石英晶体谐振器的工作原理是基于压电效应, 本实施例中的电连接关系如下: 圆形构件 11的上表面上设置有凸台 18, 凸台 18的上表面上镀覆电极形成上电极 区 141, 圆形构件 11的下表面上镀覆电极形成下电极区 142, 上电极区 141和下电 极区 142的合理设置, 以及凸台 18的设计能够有效减弱边缘产生的寄生振动, 并 能够增强石英晶片中心的能陷效应, 降低耦合; 连接部 12和保护框 13的上表面 和下表面上分别设置有上表面金属层 151和下表面金属层 152, 保护框 13的四角 处设置有定位孔 16, 定位孔 16内设置有金属层 B17; 封装基座 30的底面上设置有 引脚 31。 所述的上电极区 141与上表面金属层 151电连接, 下电极区 142与下表面 金属层 152电连接, 上表面金属层 151和下表面金属层 152还分别与不同定位孔 16 内的金属层 B17连接, 金属层 B17又与不同的引脚 31连接。 所述的电极区 141和下 电极区 142的形状均为圆形, 所述的连接部 12的形状为矩形。
[0038] 凸台 18的设计是为了减弱边缘产生的寄生振动, 并增强石英晶片中心的能陷效 应, 降低耦合; 实际生产吋可在圆形构件 11的上表面和下表面的任意一面设置 , 也可以在两个表面上均设置凸台 18, 或者可根据实际应用情况不设置凸台 18
[0039] 所述的石英晶片 10采用 AT切型, 此切型普遍应用于石英晶体谐振器中。 其中 石英晶片 10的长边平行于 X轴, X轴是石英晶体的电轴, 短边平行于 Z'轴, 厚度 方向平行于 Y'轴。 亦可以让石英晶片的长边平行于 Z'轴, 宽度平行于 X轴, 厚度 方向平行于 Y'轴。
[0040] AT切型石英晶片的主振动模式为厚度切边模式, 因石英晶片越来越小, 产生 的寄生振动如弯曲振动和面剪切振动增多, 易产生耦合, 对石英晶体谐振器的 性能影响极大。 对比矩形片, 圆片的边缘产生寄生振动的几率下降, 相比不易 产生耦合, 设计公差较大, 对工艺要求降低, 设计成本降低。
[0041] 本实施例中, 石英晶片 10、 封装盖 20和封装基座 30的材料均为石英晶体。 根据 实际需要可生产出长度在 0.8~3.2mm, 宽度为 0.6~2.5mm的压电石英晶体振荡器 ; 本实施例中压电石英晶体振荡器的长度为 1.6mm, 宽度为 1.2mm, 该石英晶体 振荡器的谐振频率为 t=1664/F, t表示石英晶片的厚度, 单位为 μηι, F表示谐振频 率, 单位为 ΜΗζ, 本实例中的石英晶体振荡器的谐振频率在 8MHz ~70ΜΗζ之间
[0042] 一种具有圆形晶片结构的石英晶体谐振器的制作方法, 它包括以下步骤: [0043] Sl、 以石英基板 40为基材, 在石英基板 40上制备出凸台 18、 圆形构件 11和定位 孔 16, 并制备出电极区 14和金属层 A15, 制得的电极区 14与金属层 A15连通, 具 体包括以下子步骤:
[0044] Sl l、 以石英基板 40为基材, 在石英基板 40上制备出凸台 18、 圆形构件 11和定 位孔 16, 凸台 18在圆形构件 11表面上, 本实施例中凸台 18设置在圆形构件 11的 上表面。
[0045] 凸台 18可以通过湿法刻蚀或干法刻蚀而得, 具体制备过程如下: 首先, 取出一 定规格的石英基板 40, 并对石英基板 40的上、 下表面进行研磨、 抛光处理; 其 次, 通过旋涂或喷淋方式在石英基板 40表面形成厚度均匀的光刻抗刻蚀保护层 E R, 并使用光刻曝光在光刻抗刻蚀保护层 ER表面形成待刻蚀图形; 最后, 通过湿 法刻蚀或干法刻蚀方式在石英基板 40上表面刻蚀, 从而在石英基板 40表面形成 凸台 18。 凸台 18的刻蚀深度通过控制湿法刻蚀或干法刻蚀的反应吋间决定。
[0046] 圆形构件 11可以通过湿法刻蚀、 干法刻蚀、 激光刻蚀、 物理喷砂等方式得到, 具体制备过程如下: 首先, 去除制作凸台 18过程中形成的光刻抗刻蚀保护层 ER 并将石英基板 40表面清洗干净; 其次, 通过旋涂或喷淋方式再次在石英基板 40 表面形成厚度均匀的光刻抗刻蚀保护层 ER, 并利用光刻曝光在光刻抗刻蚀保护 层 ER上表面形成待刻蚀图形; 最后, 通过湿法刻蚀、 干法刻蚀、 激光刻蚀、 物 理喷砂等方式在石英基板 40上表面刻蚀, 得到圆形构件 11, 并去除光刻抗刻蚀 保护层 ER并将石英基板 40表面清洗干净, 从而制得具有圆形晶片结构的石英晶 片 10。
[0047] S12、 在凸台 18的上表面上制备上电极区 141, 在圆形构件 11的下表面上制备下 电极区 142, 在石英基板 40的上下表面上分别制备上表面金属层 151和下表面金 属层 152, 并使上电极区 141与上表面金属层 151连接, 下电极区 142与下表面金 属层 152连接。
[0048] S2、 将封装盖 20、 石英晶片 10和封装基座 30依次堆叠并封装焊接; 为防止封装 液的泄露, 封装盖 20的外框上设置有封装沟槽 A21, 封装基座 30的外框上设置有 封装沟槽 B32, 将封装盖 20、 石英晶片 10和封装基座 30堆叠封装焊接的过程中, 在封装沟槽 A21和封装沟槽 B32中添加玻璃焊料或树脂焊料, 且整体在真空环境 下进行封装焊接。
[0049] S3、 对封装焊接后的石英基板 40上的定位孔 16的侧面进行蒸镀导电金属层 B17 , 使得上表面金属层 151和下表面金属层 152分别与不同定位孔 16中的金属层 B17 相连, 并使金属层 B 17与封装基板 30上的弓 I脚 31形成电连通。
[0050] S4、 将石英晶片 10从石英基板 40上切除, 从而制备出具有圆形晶片结构的石英 晶体谐振器。

Claims

权利要求书
[权利要求 1] 一种具有圆形晶片结构的石英晶体谐振器, 其特征在于: 它包括石英 晶片 (10) 、 封装盖 (20) 和封装基座 (30) , 所述的石英晶片 (10 ) 包括圆形构件 (11) 、 连接部 (12) 和保护框 (13) , 圆形构件 ( 11) 通过连接部 (12) 设置在保护框 (13) 内, 所述的圆形构件 (11 ) 的上下表面上设置有电极区 (14) , 连接部 (12) 和保护框 (13) 上设置有金属层 A (15) , 保护框 (13) 上还设置有定位孔 (16) , 定位孔 (16) 内设置有金属层 B (17) , 封装基座 (30) 的底面上设 置有引脚 (31) , 电极区 (14) 通过金属层 A (15) 、 金属层 B (17 ) 与引脚 (31) 电连接, 所述的封装盖 (20) 、 石英晶片 (10) 和封 装基座 (30) 从上到下依次封装压合后形成供圆形构件 (11) 自由振 荡的腔体结构。
[权利要求 2] 根据权利要求 1所述的一种具有圆形晶片结构的石英晶体谐振器, 其 特征在于: 所述的保护框 (13) 为矩形形状, 所述的圆形构件 (11) 位于保护框 (13) 的中心处, 圆形构件 (11) 通过连接部 (12) 与保 护框 (13) 的一条边框连接。
[权利要求 3] 根据权利要求 1所述的一种具有圆形晶片结构的石英晶体谐振器, 其 特征在于: 所述的保护框 (13) 为矩形形状, 定位孔 (16) 设置在矩 形的四角处。
[权利要求 4] 根据权利要求 1所述的一种具有圆形晶片结构的石英晶体谐振器, 其 特征在于:
所述的封装盖 (20) 的外框上设置有防止封装液体泄漏的封装沟槽 A (21) , 所述的封装基座 (30) 的外框上设置有防止封装液体泄漏的 封装沟槽 B (32) 。
[权利要求 5] 根据权利要求 1所述的一种具有圆形晶片结构的石英晶体谐振器, 其 特征在于:
所述的电极区 (14) 包括上电极区 (141) 和下电极区 (142) , 上 电极区 (141) 和下电极区 (142) 分别设置在圆形构件 (11) 的上表 面和下表面, 金属层 A (15) 包括上表面金属层 (151) 和下表面金 属层 (152) , 上表面金属层 (151) 和下表面金属层 (152) 分别设 置在连接部 (12) 和保护框 (13) 的上表面和下表面, 上电极区 (14 1) 与上表面金属层 (151) 电连接, 下电极区 (142) 与下表面金属 层 (152) 电连接, 上表面金属层 (151) 和下表面金属层 (152) 分 别与不同定位孔 (16) 内的金属层 B (17) 连接, 金属层 B (17) 还 与不同的引脚 (31) 连接。
[权利要求 6] 根据权利要求 1所述的一种具有圆形晶片结构的石英晶体谐振器, 其 特征在于: 所述的圆形构件 (11) 的表面上设置有凸台 (18) , 电极 区 (14) 设置在凸台 (18) 的表面上。
[权利要求 7] —种具有圆形晶片结构的石英晶体谐振器的制作方法, 其特征在于:
它包括以下步骤:
51、 以石英基板 (40) 为基材, 在石英基板 (40) 上制备出凸台 (18 ) 、 圆形构件 (11) 和定位孔 (16) , 并制备出电极区 (14) 和金属 层 A (15) , 制得的电极区 (14) 与金属层 A (15) 连通;
52、 将封装盖 (20) 、 石英晶片 (10) 和封装基座 (30) 依次堆叠并 封装焊接;
53、 在定位孔 (16) 的侧面上制备金属层 B (17) , 金属层 B (17) 连通金属层 A (15) 与封装基座 (30) 上的引脚 (31) ;
54、 将石英晶片 (10) 从石英基板 (40) 上切除, 从而制备出具有圆 形晶片结构的石英晶体谐振器。
[权利要求 8] 根据权利要求 7所述的一种具有圆形晶片结构的石英晶体谐振器的制 作方法, 其特征在于: 所述的步骤 S1包括以下子步骤:
511、 以石英基板 (40) 为基材, 在石英基板 (40) 上制备出凸台 (1 8) 、 圆形构件 (11) 和定位孔 (16) , 凸台 (18) 在圆形构件 (11
) 表面上, 凸台 (18) 设置在圆形构件 (11) 的一面或双面上;
512、 在凸台 (18) 或圆形构件 (11) 的上表面上制备上电极区 (141 ) , 在凸台 (18) 或圆形构件 (11) 的下表面上制备下电极区 (142 ) , 在石英基板 (40) 的上下表面上分别制备上表面金属层 (151) 和下表面金属层 (152) , 并使上电极区 (141) 与上表面金属层 (15 1) 连接, 下电极区 (142) 与下表面金属层 (152) 连接。
[权利要求 9] 根据权利要求 7所述的一种具有圆形晶片结构的石英晶体谐振器的制 作方法, 其特征在于: 所述的步骤 S2中封装盖 (20) 的外框上设置有 封装沟槽 A (21) , 封装基座 (30) 的外框上设置有封装沟槽 B (32 ) , 将封装盖 (20) 、 石英晶片 (10) 和封装基座 (30) 堆叠封装焊 接的过程中, 在封装沟槽 A (21) 和封装沟槽 B (32) 中添加玻璃焊 料或树脂焊料, 且整体在真空环境下进行封装焊接。
[权利要求 10] 根据权利要求 8所述的一种具有圆形晶片结构的石英晶体谐振器的制 作方法, 其特征在于: 所述步骤 S3的详细过程为: 对封装焊接后的石 英基板 (40) 上的定位孔 (16) 的侧面进行蒸镀导电金属层 B (17) , 使得上表面金属层 (151) 和下表面金属层 (152) 分别与不同定位 孔 (16) 中的金属层 B (17) 相连, 并使金属层 B (17) 与封装基板 (30) 上的引脚 (31) 形成电连通。
PCT/CN2016/074957 2015-12-22 2016-02-29 一种具有圆形晶片结构的石英晶体谐振器及其制作方法 WO2017107307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016570254A JP2018504793A (ja) 2015-12-22 2016-02-29 円形のウェハ構造を有する水晶共振器及びその製造方法
KR1020167032159A KR20170136967A (ko) 2015-12-22 2016-02-29 원형 웨이퍼 구조를 갖는 석영크리스탈 공진기 및 그 제작방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510966616.9A CN105634436A (zh) 2015-12-22 2015-12-22 一种具有圆形晶片结构的石英晶体谐振器及其制作方法
CN201510966616.9 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017107307A1 true WO2017107307A1 (zh) 2017-06-29

Family

ID=56049057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074957 WO2017107307A1 (zh) 2015-12-22 2016-02-29 一种具有圆形晶片结构的石英晶体谐振器及其制作方法

Country Status (5)

Country Link
JP (1) JP2018504793A (zh)
KR (1) KR20170136967A (zh)
CN (1) CN105634436A (zh)
TW (1) TWI602327B (zh)
WO (1) WO2017107307A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224683A (zh) * 2019-07-09 2019-09-10 成都泰美克晶体技术有限公司 一种长h型结构的高频抛光石英晶片
CN110224681A (zh) * 2019-07-09 2019-09-10 成都泰美克晶体技术有限公司 一种短h型结构的高频抛光石英晶片
CN111313855A (zh) * 2020-03-16 2020-06-19 研创科技(惠州)有限公司 一种新型谐振器组装方法
CN114351094A (zh) * 2021-12-20 2022-04-15 唐山万士和电子有限公司 一种增镀石墨层微天平石英晶片的生产方法
CN116455343A (zh) * 2023-05-15 2023-07-18 烟台明德亨电子科技有限公司 一种晶振用陶瓷基座的加工方法
CN117411457A (zh) * 2023-12-14 2024-01-16 西安电子科技大学 一种环形类拱形石英谐振器
CN117674764A (zh) * 2023-12-04 2024-03-08 泰晶科技股份有限公司 晶圆级封装谐振器及其制备方法、电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107769750A (zh) * 2017-11-13 2018-03-06 成都泰美克晶体技术有限公司 一种改进电极连接结构的全石英晶体谐振器及其制备方法
CN111256673B (zh) * 2020-01-19 2021-09-10 北京晨晶电子有限公司 一种石英音叉和基座的连接结构、连接方法及其应用
CN113300689B (zh) * 2021-03-29 2023-01-31 天津大学 具有加固结构的石英谐振器及其形成方法、电子设备
CN113271082A (zh) * 2021-06-22 2021-08-17 泰晶科技股份有限公司 一种具有高斯型电极结构的压电石英晶片及其制造工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1167700A1 (ru) * 1983-12-26 1985-07-15 Всесоюзный Ордена Трудового Красного Знамени Заочный Политехнический Институт Перестраиваемый пьезоэлектрический резонатор
CN1326266A (zh) * 2000-05-26 2001-12-12 威廉·比华 表面贴装石英晶体谐振器及制造方法
CN1750393A (zh) * 2004-09-13 2006-03-22 威廉·比华 一种新型表面贴装石英晶体谐振器及制造方法
CN104283523A (zh) * 2013-07-11 2015-01-14 日本电波工业株式会社 压电振动片及其制造方法、压电元件及其制造方法
CN205179003U (zh) * 2015-12-22 2016-04-20 成都泰美克晶体技术有限公司 一种具有圆形晶片结构的石英晶体谐振器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988621A (en) * 1971-09-16 1976-10-26 Citizen Watch Co., Ltd. Supporting structure for a thickness-shear type quartz oscillator
JPS59128812A (ja) * 1983-01-13 1984-07-25 Nippon Dempa Kogyo Co Ltd 圧電振動子
JPH0429229U (zh) * 1990-07-04 1992-03-09
JP2006166390A (ja) * 2004-02-05 2006-06-22 Seiko Epson Corp 圧電振動片、圧電振動子及び圧電発振器
JP5325151B2 (ja) * 2010-03-31 2013-10-23 日本電波工業株式会社 水晶デバイス、及びその製造方法
JP2012060628A (ja) * 2010-08-07 2012-03-22 Nippon Dempa Kogyo Co Ltd 圧電デバイス及びその製造方法
JP2012074837A (ja) * 2010-09-28 2012-04-12 Nippon Dempa Kogyo Co Ltd 圧電デバイス
CN102957394B (zh) * 2011-08-18 2016-12-21 精工爱普生株式会社 振动元件、振子、电子装置、电子设备、移动体及振动元件的制造方法
JP2013051512A (ja) * 2011-08-30 2013-03-14 Nippon Dempa Kogyo Co Ltd 水晶振動子
JP5883665B2 (ja) * 2012-01-31 2016-03-15 日本電波工業株式会社 水晶振動片及び水晶デバイス
JP2015173366A (ja) * 2014-03-12 2015-10-01 日本電波工業株式会社 圧電振動片及び圧電デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1167700A1 (ru) * 1983-12-26 1985-07-15 Всесоюзный Ордена Трудового Красного Знамени Заочный Политехнический Институт Перестраиваемый пьезоэлектрический резонатор
CN1326266A (zh) * 2000-05-26 2001-12-12 威廉·比华 表面贴装石英晶体谐振器及制造方法
CN1750393A (zh) * 2004-09-13 2006-03-22 威廉·比华 一种新型表面贴装石英晶体谐振器及制造方法
CN104283523A (zh) * 2013-07-11 2015-01-14 日本电波工业株式会社 压电振动片及其制造方法、压电元件及其制造方法
CN205179003U (zh) * 2015-12-22 2016-04-20 成都泰美克晶体技术有限公司 一种具有圆形晶片结构的石英晶体谐振器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224683A (zh) * 2019-07-09 2019-09-10 成都泰美克晶体技术有限公司 一种长h型结构的高频抛光石英晶片
CN110224681A (zh) * 2019-07-09 2019-09-10 成都泰美克晶体技术有限公司 一种短h型结构的高频抛光石英晶片
CN110224681B (zh) * 2019-07-09 2024-01-26 成都泰美克晶体技术有限公司 一种短h型结构的高频抛光石英晶片
CN110224683B (zh) * 2019-07-09 2024-02-02 成都泰美克晶体技术有限公司 一种长h型结构的高频抛光石英晶片
CN111313855A (zh) * 2020-03-16 2020-06-19 研创科技(惠州)有限公司 一种新型谐振器组装方法
CN114351094A (zh) * 2021-12-20 2022-04-15 唐山万士和电子有限公司 一种增镀石墨层微天平石英晶片的生产方法
CN114351094B (zh) * 2021-12-20 2023-08-04 唐山万士和电子有限公司 一种增镀石墨层微天平石英晶片的生产方法
CN116455343A (zh) * 2023-05-15 2023-07-18 烟台明德亨电子科技有限公司 一种晶振用陶瓷基座的加工方法
CN116455343B (zh) * 2023-05-15 2024-01-23 烟台明德亨电子科技有限公司 一种晶振用陶瓷基座的加工方法
CN117674764A (zh) * 2023-12-04 2024-03-08 泰晶科技股份有限公司 晶圆级封装谐振器及其制备方法、电子设备
CN117411457A (zh) * 2023-12-14 2024-01-16 西安电子科技大学 一种环形类拱形石英谐振器
CN117411457B (zh) * 2023-12-14 2024-03-19 西安电子科技大学 一种环形类拱形石英谐振器

Also Published As

Publication number Publication date
JP2018504793A (ja) 2018-02-15
CN105634436A (zh) 2016-06-01
TW201724587A (zh) 2017-07-01
TWI602327B (zh) 2017-10-11
KR20170136967A (ko) 2017-12-12

Similar Documents

Publication Publication Date Title
TWI602327B (zh) A quartz crystal resonator with a circular wafer structure and a manufacturing method thereof
WO2010079803A1 (ja) 圧電振動デバイスの製造方法
US20100207698A1 (en) Method for manufacturing glass-sealed package, apparatus for manufacturing glass-sealed package, and oscillator
JP2013157831A (ja) 水晶振動片及び水晶デバイス
KR20170022976A (ko) 양면이 볼록 구조를 갖는 신형 압전 석영 웨이퍼 및 그 가공공정
JP2011166364A (ja) 厚み系水晶振動子
JPH04322507A (ja) 水晶振動子の加工方法
JP5929244B2 (ja) 厚みすべり振動型水晶片、電極付きの厚みすべり振動型水晶片、水晶振動板、水晶振動子および水晶発振器
JP5720152B2 (ja) 振動子の作製方法、振動子および発振器
JP2013046085A (ja) 圧電振動素子、圧電振動子、電子デバイス、及び電子機器
JP5824958B2 (ja) 振動素子、振動子、電子デバイス、及び電子機器
JP2011193436A (ja) 音叉型水晶振動片、音叉型水晶振動子、および音叉型水晶振動片の製造方法
CN205179003U (zh) 一种具有圆形晶片结构的石英晶体谐振器
JP5987321B2 (ja) 圧電振動片、圧電振動片の製造方法、圧電デバイス及び電子機器
KR101892651B1 (ko) 일면이 볼록 구조를 갖는 압전 석영 웨이퍼
JP5742620B2 (ja) 水晶振動子および水晶振動子の製造方法
KR20170004207A (ko) 수정 진동자 및 이를 포함하는 수정 진동자 패키지
JP2009124587A (ja) 圧電振動片、圧電振動デバイス、および圧電振動片の製造方法
JP7462882B2 (ja) 圧電振動子及びその製造方法
CN204859129U (zh) 一种具有单凸结构的压电石英晶片
CN204836102U (zh) 一种新型具有双凸结构的压电石英晶片
WO2024027737A1 (zh) 双基板和压电层形成三明治结构的石英谐振器及电子器件
WO2023181487A1 (ja) 水晶振動素子及びその製造方法
JP2013143640A (ja) 水晶振動子及び水晶振動子の製造方法
JP2012075053A (ja) パッケージおよび圧電振動子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167032159

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016570254

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877121

Country of ref document: EP

Kind code of ref document: A1