WO2017104724A1 - スターポリマー - Google Patents

スターポリマー Download PDF

Info

Publication number
WO2017104724A1
WO2017104724A1 PCT/JP2016/087317 JP2016087317W WO2017104724A1 WO 2017104724 A1 WO2017104724 A1 WO 2017104724A1 JP 2016087317 W JP2016087317 W JP 2016087317W WO 2017104724 A1 WO2017104724 A1 WO 2017104724A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
compound
star polymer
ring
Prior art date
Application number
PCT/JP2016/087317
Other languages
English (en)
French (fr)
Inventor
進 北川
暢彦 細野
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2017556111A priority Critical patent/JPWO2017104724A1/ja
Publication of WO2017104724A1 publication Critical patent/WO2017104724A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule

Definitions

  • the present invention relates to a star polymer.
  • a star polymer with a structure in which multiple (especially 3 or more) polymer chains are branched from a central point has an extremely compact structure compared to its molecular weight, so its unique shape It exhibits special physical properties (low viscosity, etc.) due to the above, and is treated as an industrially important compound.
  • Such star polymers include, for example, various additives such as additives for polymer compounds, surfactants, substance separation membranes (gas separation membranes, etc.), lithography using nanophase separation structures as templates, and medical applications (drug delivery). Application to various uses is expected.
  • star polymers having polymer chains of different or different chain lengths are expected to form a variety of phase separation structures and self-assembled structures, including simple uses such as surfactants. It is expected that
  • the star polymer has a very unique shape as described above, the currently known synthesis method is very complicated and usually requires several synthesis steps. In addition to the highly efficient reaction conditions, it is necessary to carry out the polymerization under strict control.
  • a star polymer having a polymer chain with a different or different chain length has a more complicated synthesis method and higher technical requirements than a star polymer having a single polymer chain. For example, when trying to introduce a plurality of polymer chains into a molecule that is a central point, it is necessary to carry out a reaction for each polymer chain to be introduced, resulting in an increase in the number of steps and a low yield. In addition, it is very difficult to adjust the content of the polymer chain. For this reason, a simple method for synthesizing a star polymer having a polymer chain of different or different chain length is not known, and is currently hindering industrialization.
  • the present invention is intended to solve the above-described problems, and an object of the present invention is to provide a method for simply synthesizing a star polymer (particularly a star polymer having a different or different chain length polymer chain).
  • the present inventors have found that a star polymer can be easily synthesized by reacting a polymer compound having a predetermined structure with a predetermined metal compound.
  • a star polymer having a polymer chain having a different or different chain length can be easily obtained by using a plurality of polymer compounds having a predetermined structure during this reaction.
  • the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
  • the organic ligand is a star polymer containing two or more types of ligands in which a group having a polymer chain is bonded to an aromatic hydrocarbon ring or a heteroaromatic ring having two carboxy anions.
  • the organic ligand is represented by the general formula (1):
  • Y is a halogen atom, an optionally substituted aromatic group, or —S (C ⁇ S)
  • R 1 ⁇ R 1 is an optionally substituted aromatic group, or —R (R 3 ) m
  • R represents a sulfur atom, carbon atom, oxygen atom or nitrogen atom.
  • R 3 represents an optionally substituted alkyl group or aryl group.
  • m represents an integer of 1 to 3 depending on the type of R. When m is plural, a plurality of R 3 may be the same or different.
  • Y ′ represents an aromatic hydrocarbon ring or a heteroaromatic ring.
  • R 2 represents a single bond or a divalent group.
  • n Z is the same or different and represents a monomer unit of a polymerized polymer. n represents 5 to 20000.
  • Item 2 comprising two or more types of ligands represented by formula (1).
  • Y ′ is a single ring consisting of a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, or thiophene ring, or a condensed ring in which one or more benzene rings are condensed to the single ring, Said monocyclic or condensed and COO - in the binding of the group, the general formula (7):
  • R 4 are the same or different and each represents a carbon atom or a nitrogen atom.
  • R 5 represents a divalent aromatic hydrocarbon group which may be substituted.
  • k represents an integer of 0-2.
  • Item 3 The star polymer according to Item 1 or 2, which may contain a group represented by:
  • the organic ligand is represented by the general formula (1-1A):
  • Item 4 The star polymer according to Item 2 or 3, which contains two or more organic ligands represented by the formula:
  • Item 5. The star polymer according to any one of Items 1 to 4, comprising the metal ion and the organic ligand.
  • Item 6. The star polymer according to any one of Items 2 to 5, wherein R 1 is an optionally substituted aromatic group or a group represented by —SR 3 .
  • Item 7. The star polymer according to any one of Items 2 to 6, wherein R 2 is an alkylene group which may be substituted.
  • Item 8 The star polymer according to any one of Items 1 to 7, which contains 4 or more metal ions and 4 or more organic ligands.
  • Item 9 The star polymer according to any one of Items 1 to 8, wherein the metal ion is a divalent metal ion.
  • Z is at least selected from the group consisting of methacrylic acid or its derivative residue, acrylic acid or its derivative residue, styrene or its derivative residue, 4-vinylpyridine residue, vinyl acetate residue, and vinyl alcohol residue Item 10.
  • the star polymer according to any one of Items 1 to 9, which is one type.
  • Item 11 The star polymer according to any one of Items 1 to 10, having an average diameter of 2 nm to 400 nm.
  • a method for producing a star polymer comprising a ligand in which a group having a polymer chain is bonded to an aromatic hydrocarbon ring or a heteroaromatic ring having a carboxy anion, Production comprising a reaction step of reacting a polymer compound in which a group having a polymer chain is bonded to an aromatic hydrocarbon ring or heteroaromatic ring having two carboxy groups and a metal compound containing a divalent or higher metal.
  • Item 13 Before the reaction step, Item 13.
  • a method for preparing the number of polymer chains of a star polymer containing a ligand in which a group having a polymer chain is bonded to an aromatic hydrocarbon ring or a heteroaromatic ring having a carboxy anion A polymer compound in which a group having a polymer chain is bonded to an aromatic hydrocarbon ring or heteroaromatic ring having two carboxy anions, and a compound having an aromatic hydrocarbon ring or heteroaromatic ring having two carboxy anions
  • a reaction step of reacting a metal compound containing a divalent or higher metal with a metal compound is
  • R 1 represents an aromatic group which may be substituted, or —R (R 3 ) m (R represents a sulfur atom, a carbon atom, an oxygen atom or a nitrogen atom. R 3 may be substituted) And m represents an integer of 1 to 3 depending on the type of R. When m is plural, plural R 3 may be the same or different. Indicates a group.
  • R 2 represents a single bond or a divalent group.
  • n Z is the same or different and represents a monomer unit of a polymerized polymer. n represents 5 to 20000.
  • a star polymer having a predetermined structure can be synthesized by a simpler method as compared with the conventional one.
  • a star polymer especially a star polymer having a polymer chain with a different or different chain length
  • the star polymer (especially with a higher length of a different or different chain length) can be obtained.
  • the content of each polymer chain can be easily adjusted.
  • FIG. 3 is a result of GPC analysis of polymer compound 1 of Example 1 and star polymer 1 of Example 4.
  • FIG. 4 shows the results of GPC analysis of the polymer compound 2 obtained in Example 2, the polymer compound 3 obtained in Example 3, and the star polymer 3 obtained in Example 6.
  • 2 is an atomic force microscope (AFM) image of star polymer 2 obtained in Example 5.
  • FIG. 4 is a result of GPC analysis of star polymer 10 of Example 13.
  • 4 is a result of GPC analysis of the star polymer 2 of Example 5 and the star polymer obtained in Test Example 6.
  • FIG. It is a result of the GPC analysis of the star polymer 11 of Example 14. It is a result of the GPC analysis of the star polymer 12 of Example 15.
  • 4 is a result of GPC analysis of star polymer 13 of Example 16.
  • the star polymer of the present invention is a star polymer containing a divalent or higher valent metal ion and an organic ligand, and wherein the metal ion and the organic ligand are alternately coordinated.
  • the organic ligand has a polymer chain on an aromatic hydrocarbon ring or heteroaromatic ring having two carboxy anions (5th position of isophthalate anion, 9th position of carbazole-3,6-dicarboxylate anion, etc.). 2 or more types of ligands (hereinafter sometimes referred to as “ligands (1)”) to which the groups having them are bonded.
  • transition metal ions can be preferably employed.
  • a divalent metal ion (particularly a divalent transition metal ion) is preferred from the viewpoint of easily forming a star polymer by coordination with the ligand (1).
  • the metal ion is preferably used alone from the viewpoint of easily forming a star polymer by coordination with the ligand (1), but may be used in combination of two or more.
  • the star polymer of the present invention contains two or more kinds of ligands (1).
  • the ligand (1) has a plurality (two) of carboxy groups (COO ⁇ ) capable of coordinating with metal ions from the viewpoint of linking metal ions or clusters thereof to give a star polymer. ing.
  • the star polymer of the present invention can be made into a spherical polymer compound having micropores inside.
  • carboxy group (COO ⁇ ) is present, the star polymer of the present invention cannot be synthesized.
  • Y is a halogen atom, an optionally substituted aromatic group, or —S (C ⁇ S)
  • R 1 ⁇ R 1 is an optionally substituted aromatic group, or —R (R 3 ) m
  • R represents a sulfur atom, carbon atom, oxygen atom or nitrogen atom.
  • R 3 represents an optionally substituted alkyl group or aryl group.
  • m represents an integer of 1 to 3 depending on the type of R. When m is plural, a plurality of R 3 may be the same or different.
  • Y ′ represents an aromatic hydrocarbon ring or a heteroaromatic ring.
  • R 2 represents a single bond or a divalent group.
  • n Z is the same or different and represents a monomer unit of a polymerized polymer. n represents 5 to 20000.
  • the ligand represented by these is mentioned.
  • examples of the halogen atom represented by Y include bromine, chlorine, iodine, and fluorine. From the viewpoint of ease of synthesis and yield, bromine, chlorine and the like are preferable, and bromine is more preferable. preferable.
  • the aromatic group represented by Y is not particularly limited, and is phenyl group, pentarenyl group, indenyl group, naphthyl group, anthracenyl group, tetracenyl group, pentacenyl group, pyrenyl group, perylenyl group, triphenylenyl.
  • azulenyl group heptalenyl group, biphenylenyl group, indacenyl group, acenaphthyl group, fluorenyl group, phenalenyl group, phenanthrenyl group and the like aryl group; furyl group, thienyl group, pyrrolyl group, silylyl group, boronyl group, phosphoryl group, oxazolyl group And heteroaryl groups such as a thiazolyl group, a pyridyl group, a pyridazyl group, a pyrimidinyl group, a pyrazinyl group, a thienothienyl group, and a quinolyl group.
  • aromatic groups include, for example, halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group) 1 to 4 (especially 1 to 3) substituents such as an isobutyl group and a t-butyl group.
  • halogen atoms fluorine atom, chlorine atom, bromine atom, etc.
  • alkyl groups methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group 1 to 4 (especially 1 to 3) substituents such as an isobutyl group and a t-butyl group.
  • R 1 is a group represented by —R (R 3 ) m
  • R is a sulfur atom, a carbon atom, an oxygen atom or a nitrogen atom.
  • a sulfur atom is preferable from the viewpoint of easily introducing a desired polymer chain into the ligand (1) and easily obtaining the star polymer of the present invention.
  • R 1 is a group represented by —R (R 3 ) m
  • the alkyl group represented by R 3 is not particularly limited, and any of a linear alkyl group and a branched alkyl group can be employed.
  • a linear alkyl group is preferable from the viewpoint of further improving solvent solubility in a nonpolar solvent during polymerization.
  • the number of carbon atoms of such an alkyl group is preferably 1 to 20, preferably 2 to 10 from the viewpoint of further improving the solvent solubility of the ligand (1) mainly in a nonpolar solvent during the polymerization reaction. Is more preferable, and 3 to 8 is more preferable.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, and n-pentyl groups. Is mentioned.
  • alkyl groups can have, for example, about 1 to 10 (particularly 1 to 5) substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.).
  • R 1 is a group represented by —R (R 3 ) m
  • examples of the aryl group represented by R 3 include the aryl groups described above. The kind and number of substituents are the same.
  • R 3 an alkyl group which may be substituted is preferable from the viewpoint of easily introducing a desired polymer chain into the ligand (1) and easily obtaining the star polymer of the present invention.
  • R 1 is a group represented by —R (R 3 ) m
  • m is an integer depending on the type of R.
  • m is preferably 1 when R is a sulfur atom or an oxygen atom
  • m is preferably 3 when R is a carbon atom
  • m is 2 when R is a nitrogen atom. Is preferred.
  • R 1 is an aromatic group which may be substituted from the viewpoint of easily introducing a desired polymer chain into the ligand (1) and easily obtaining the star polymer of the present invention, represented by —SR 3 . And the like are preferred.
  • R 1 is preferably an aromatic group (particularly an aryl group) from the viewpoint of high polymerization reactivity, and —SR from the viewpoint of high polymerization reactivity and solvent solubility in a nonpolar solvent.
  • the group represented by 3 is preferred. For this reason, it can adjust suitably according to a required characteristic.
  • the ligand (1) preferably has a dithioester structure that can be the starting point of reversible addition-fragmentation chain transfer polymerization (RAFT polymerization) that can be employed in the production method described later.
  • RAFT polymerization reversible addition-fragmentation chain transfer polymerization
  • Y is preferably a group represented by —S (C ⁇ S) R 1 .
  • the ligand (1) and the metal ion alternately form a coordinate bond to form a spherical polymer compound. Is preferably less than 180 ° between the two Y′—COO — bonds. In the ligand (1), if the angle formed by the two Y′—COO ⁇ bonds is less than 180 °, the angle formed by the two Y′—COO ⁇ bonds is used.
  • a star polymer can be produced.
  • an aromatic hydrocarbon ring or a heteroaromatic ring is preferable, and a benzene ring, a naphthalene ring, a pyridine ring, a pyrrole ring, a thiophene ring, or the like, or one or more of these rings
  • the general formula (7) the general formula (7):
  • R 4 are the same or different and each represents a carbon atom or a nitrogen atom.
  • R 5 represents a divalent aromatic hydrocarbon group which may be substituted.
  • k represents an integer of 0-2.
  • the group represented by may be included.
  • examples of the divalent aromatic hydrocarbon group represented by R 5 include a benzene ring, a pentalene ring, an indene ring, a naphthalene ring, an anthracene ring, a tetracene ring, a pentacene ring, a pyrene ring, and a perylene.
  • groups derived from aromatic hydrocarbon rings such as a ring, triphenylene ring, azulene ring, heptalene ring, biphenylene ring, indacene ring, acenaphthylene ring, fluorene ring, phenalene ring and phenanthrene ring.
  • These groups derived from aromatic hydrocarbon rings include, for example, 0 to 4 substituents such as halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, etc.), alkyl groups (methyl groups, ethyl groups, propyl groups, etc.). It can also have about 1 (particularly 1 to 3).
  • k is preferably an integer of 0 to 2, and more preferably 0 or 1.
  • Y ′ is preferably a benzene ring, naphthalene ring, pyridine ring, pyrrole ring, thiophene ring, or the like, or a ring in which one or two or more benzene rings are condensed to these rings.
  • Pyridine ring, pyrrole ring, thiophene ring, carbazole ring and the like are more preferable, and benzene ring, carbazole ring and the like are more preferable.
  • R 2 is a single bond or a divalent group.
  • the divalent group represented by R 2 is preferably an alkylene group.
  • acyclic alkylene groups such as methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group and s-butylene group (preferably having 1 to 6 carbon atoms, especially carbon Acyclic alkylene group having a number of 1 to 4); a cyclic alkylene group such as a cyclopropylene group, a cyclobutylene group, a cyclopentylene group or a cyclohexylene group (preferably having a carbon number of 3 to 10, particularly having 3 to 8 carbon atoms) Cyclic alkylene group) and the like.
  • a linear acyclic alkylene group can also be employ
  • These divalent groups are halogen atoms (fluorine atom, chlorine atom, bromine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group) 1 to 5 (especially 1 to 3) substituents such as a cyano group and the like.
  • R 2 in the general formula (1) may be an ester group in which these alkylene groups are linked.
  • —CH 2 COO— group —CH 2 CH 2 COO— group, —CH 2 CH 2 CH 2 COO— group, —CH 2 CH 2 CH 2 COO— group, —CH 2 CH 2 CH 2 CH 2 COO— group, —C (CH 3 ) 2 COO— group and the like can also be mentioned.
  • R 2 in the general formula (1) is preferably an optionally substituted alkylene group, more preferably an unsubstituted acyclic alkylene group, from the viewpoint of high polymerization reactivity and the like.
  • Acyclic alkylene groups are more preferred.
  • Z is a monomer unit of a polymerized polymer. More specifically, the monomer unit of this polymerized polymer is a structural unit derived from the monomer compound used in obtaining the ligand (1) into which the polymer chain is introduced by living polymerization in the production method described later. That is, depending on the type of Z, various properties can be imparted to the star polymer of the present invention.
  • methacrylic acid or its derivative residue methyl methacrylate residue, butyl methacrylate residue, hexyl methacrylate residue, isobornyl methacrylate residue, methacrylic acid residue, methoxypolyethyleneglycol methacrylate (PEG) residue
  • Acrylic acid or its derivative residues methyl acrylate residue, butyl acrylate residue, hexyl acrylate residue, isobornyl acrylate residue, acrylic acid residue, methoxypolyethylene glycol acrylate (PEG) residue, acrylamide) Residue, N-isopropylacrylamide residue), styrene or its derivative residue (styrene residue, pentafluorostyrene residue), 4-vinylpyridine residue, vinyl acetate residue, vinyl alcohol residue, etc.
  • Polymethyl methacrylate resin poly Crylic acid resin, polystyrene resin, polyacrylamide resin, polyvinyl alcohol resin, polyester (polycaprolactone, polylactic acid, polybutylene succinate, polyethylene succinate, poly 3-hydroxybutyrate, polyethylene terephthalate), polyamide (nylon 6, nylon 6 , 6, nylon 6,10) and other polymer compound-derived groups, the viscosity is further reduced in spite of its very high molecular weight, solvent solubility and moldability (especially thermoformability) ) Can be further improved.
  • polymethacrylic acid polysodium methacrylate, polyacrylic acid, polyacrylic acid such as methacrylic acid residue, acrylic acid residue, vinyl alcohol residue, methoxy acrylate acrylate residue, 4-vinylpyridine residue, etc.
  • groups derived from water-soluble polymer compounds such as sodium acid, polyvinyl alcohol, methoxy PEG polyacrylate, and poly (4-vinylpyridine), it is possible to further reduce the viscosity and improve the water solubility. It is.
  • the above Z may contain only one type of the above monomer units, or may contain two or more types. That is, the polymer chain of the star polymer of the present invention may be a homopolymer chain, a random copolymer chain, or a block copolymer chain.
  • Z is preferably acrylic acid or a derivative residue thereof.
  • n which is the number of repeating Z, is not particularly limited, and further improves the ease of synthesis, solvent solubility, and molding processability (particularly thermoforming processability) of the star polymer of the present invention. From the viewpoint, 5 to 20000 is preferable, and 10 to 500 is more preferable.
  • Such a ligand (1) is not particularly limited, and for example, the general formula (1-1):
  • n and tBu are the same as described above.
  • nBu represents an n-butyl group. The same applies hereinafter.
  • the ligand etc. which are represented by these can be used preferably.
  • any star polymer can be easily synthesized. By appropriately selecting such a plurality of ligands (1), it is possible to easily synthesize a star polymer having desired characteristics.
  • the star polymer of the present invention may contain a ligand other than the above-mentioned ligand (1).
  • ligand other than the ligand (1) include, for example, the general formula (2A):
  • ligand (2) Such a ligand (2A), ligand (2B) and ligand (2C) (hereinafter sometimes collectively referred to as “ligand (2)”) include, for example,
  • the star polymer of the present invention preferably comprises only the divalent metal ion and the ligand (1). .
  • the number of metal ions contained in the star polymer of the present invention varies depending on the type of metal ion, the average diameter of the star polymer of the present invention, etc., but is preferably 4 to 128, more preferably 12 to 48, and 24 Particularly preferred.
  • the number of ligands (1) possessed by the star polymer of the present invention varies depending on the type of metal ion, the average diameter of the star polymer of the present invention, etc., but is preferably 4 to 128, and preferably 12 to 48. More preferably, 24 is particularly preferable.
  • the said ligand (2) is also contained other than a ligand (1), the said number is preferable in the sum total of a ligand (1) and a ligand (2).
  • a star polymer having 24 copper ions (Cu 2+ ) and 24 ligands (1) each is likely to be generated.
  • the star polymer of the present invention in the ligand (1), has a spherical or substantially spherical shape depending on the angle formed by the bonds between two benzene rings and a carboxy group (COO ⁇ ). It can be a molecular compound. This spherical polymer compound may have micropores inside.
  • the average diameter is not particularly limited, the viscosity is further reduced, and the molding processability (particularly thermoforming processability) and the solvent solubility are further improved. From the viewpoint of improving, etc., 2 to 400 nm is preferable, and 3 to 50 nm is more preferable.
  • the average diameter of the pores present in the interior is not particularly limited, and is 0.1 to 5 nm from the viewpoint that the star polymer of the present invention can exist stably. Preferably, 0.1 to 1.5 nm is more preferable. In this case, there may be a plurality of micropores inside, but it is preferable that only one be provided.
  • the average molecular weight of the star polymer of the present invention is not particularly limited, and the number average molecular weight is preferably 5,000 to 2,000,000, more preferably 7,000 to 500,000, from the viewpoint that the star polymer of the present invention can exist stably.
  • the star polymer of the present invention having such a structure includes an additive for a polymer compound, a surfactant, a substance separation membrane (such as a gas separation membrane), lithography using a nanophase separation structure as a template, and medical use (drug delivery). It is expected to be applied to various uses such as.
  • the star polymer of the present invention is not particularly limited and can be synthesized by various methods. For example, living polymerization is carried out using a compound having an aromatic hydrocarbon ring or heteroaromatic ring having two carboxy anions (for example, an isophthalic acid skeleton, a carbazole-3,5-dicarboxylic acid skeleton, etc.) and a monomer compound.
  • a compound having an aromatic hydrocarbon ring or heteroaromatic ring having two carboxy anions for example, an isophthalic acid skeleton, a carbazole-3,5-dicarboxylic acid skeleton, etc.
  • the star polymer of the present invention can be obtained by reacting the polymer compound with a metal compound containing a divalent or higher metal.
  • RAFT polymerization reversible addition-fragmentation chain transfer polymerization
  • R 1 is the same as defined above.
  • M represents an alkali metal.
  • R 2 is the same as defined above.
  • X represents a halogen atom.
  • Examples of the deesterification method include a method of reacting with trifluoroacetic acid or the like in an organic solvent (dichloromethane or the like).
  • ester of compound (6) examples include general formula (6A):
  • R 2 and X are the same as defined above.
  • R 3 represents the above alkyl group.
  • the alkali metal represented by M is not particularly limited, and examples thereof include potassium, sodium, cesium and the like, and potassium is preferable from the viewpoint of ease of synthesis, yield, and the like.
  • the halogen atom represented by X is not particularly limited, and examples thereof include bromine, chlorine, iodine, fluorine and the like. From the viewpoint of ease of synthesis, yield, etc., bromine, chlorine, etc. Preferably, bromine is more preferable.
  • the amount of the compound (6) or ester thereof used is not particularly limited, and is 0.3 to 3.0 mol (especially 0.5 to 2) with respect to 1 mol of the compound (5) from the viewpoint of yield and the like. 0.0 mol) is preferably used.
  • organic solvent examples include aromatic hydrocarbons such as toluene, xylene, benzene, and mesitylene; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and dichloroethane; diethyl ether, dimethoxyethane, and diisopropyl.
  • chain ethers such as ether and t-butyl methyl ether
  • cyclic ethers such as tetrahydrofuran and 1,4-dioxane
  • ketones such as acetone and methyl ethyl ketone.
  • reaction conditions are not limited as long as the reaction proceeds sufficiently.
  • the reaction temperature is preferably ⁇ 50 to 100 ° C., particularly preferably 0 to 50 ° C.
  • reaction time is 10 minutes to 48 hours, particularly 30 minutes to 24. Time is preferred.
  • RAFT polymerization Polymerization reaction (RAFT polymerization)
  • a polymer chain is introduced into the compound (4A) by causing RAFT polymerization to the compound (4A) using a desired monomer compound according to the required properties of the star polymer of the present invention.
  • the polymerization degree of a polymer chain can be adjusted by selecting the amount of monomer charged and the polymerization time, and the final star polymer size can be arbitrarily adjusted.
  • compound (3) can be obtained by RAFT-polymerizing compound (4A) and the monomer compound using a radical polymerization initiator in an organic solvent.
  • the monomer compound is not particularly limited, and the star polymer of the present invention can be easily obtained, the size can be adjusted according to the purpose, and water solubility, solvent solubility and moldability (particularly thermoformability) are further improved.
  • methacrylic acid or a derivative thereof methacrylic acid; C1-4 alkyl methacrylate such as methyl methacrylate and t-butyl methacrylate
  • acrylic acid or a derivative thereof acrylic acid; methyl acrylate, methacrylic acid t C1-4 alkyl acrylate such as butyl; methoxypolyethylene glycol acrylate (PEG); acrylamide), styrene or derivatives thereof (styrene, pentafluorostyrene, etc.), vinyl acetate, 4-vinylpyridine and the like are preferable.
  • acrylic acid or a derivative thereof is preferable, C1-4 alkyl acrylate is more preferable, and t-butyl acrylate is preferable. Is more preferable.
  • These monomer compounds can be used alone or in combination of two or more.
  • copolymer polymer chains random copolymer chains, block copolymer chains, etc.
  • the radical polymerization initiator is not particularly limited, and is t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyoctanoate, t-butyl peroxyneodecanoate, peroxy Hydrogen peroxides such as t-butyl isobutyrate, lauroyl peroxide, t-amyl peroxypivalate, t-butyl peroxypivalate, dicumyl peroxide, benzoyl peroxide, potassium persulfate, ammonium persulfate; 2,2'- Azobis (isobutyronitrile), 2,2′-azobis (2-butenonitrile), 4,4′-azobis (4-pentanoic acid), 1,1′-azobis (cyclohexanecarbonitrile), 2- (t- Butylazo) -2-cyanopropane, 2,
  • the amount of the monomer compound and radical polymerization initiator used is not particularly limited. From the viewpoint of yield and the like, the monomer compound is used in an amount of 20 to 20000 mol (especially 50 to 5000 mol), radical, and 1 mol of the compound (4A). It is preferable to use 0.01 to 2 mol (particularly 0.1 to 1 mol) of a polymerization initiator.
  • organic solvent examples include aromatic hydrocarbons such as toluene, xylene, benzene, and mesitylene; halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, and dichloroethane; diethyl ether, dimethoxyethane, and diisopropyl.
  • chain ethers such as ether and t-butyl methyl ether
  • cyclic ethers such as tetrahydrofuran and 1,4-dioxane
  • ketones such as acetone and methyl ethyl ketone.
  • reaction conditions are not limited as long as the reaction proceeds sufficiently.
  • the reaction temperature is preferably 10 to 150 ° C., particularly preferably 50 to 100 ° C., and preferably 10 minutes to 24 hours, particularly 30 minutes to 12 hours.
  • usual isolation and purification steps can be performed as necessary.
  • the compound (3) thus obtained is a novel compound not described in any literature.
  • the completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography, high performance liquid chromatography or the like.
  • the metal compound is not particularly limited, and a divalent metal salt is preferable from the viewpoint of easily constituting the star polymer of the present invention.
  • the metal species constituting such a divalent metal salt is not particularly limited, but from the viewpoint of easily forming the star polymer of the present invention by coordination bond with the organic ligand (1), copper, zinc, cobalt Transition metals such as cadmium, rhodium, manganese, nickel, palladium and zirconium are preferable, and copper, zinc and the like are more preferable.
  • organic acid salts such as acetates and formates; inorganic acid salts such as sulfates, nitrates, carbonates, hydrochlorides, and hydrobromides can be used.
  • metal compounds include copper (II) acetate, copper (II) nitrate, copper (II) chloride, zinc nitrate, cobalt (II) nitrate, cadmium acetate, nickel (II) chloride, and the like. It can be preferably used.
  • the metal compound may be a hydrate or a solvate.
  • the metal compound is preferably used alone from the viewpoint of easy synthesis and structural analysis and from the viewpoint of easily forming a stable star polymer, but may be used in combination of two or more.
  • the amount of the metal compound used is preferably 0.5 to 2.0 mol with respect to 1 mol of the compound (3).
  • the organic solvent that can be used in this step for example, amide solvents such as dimethylformamide, diethylformamide, dimethylacetamide, N-methylpyrrolidone and the like are preferable.
  • the reaction conditions are not limited as long as the reaction proceeds sufficiently.
  • the reaction temperature is preferably ⁇ 50 to 100 ° C., particularly preferably 0 to 50 ° C., and preferably 10 minutes to 24 hours, particularly 30 minutes to 12 hours. .
  • it may be purified by precipitation in an alcohol solvent such as methanol, if necessary.
  • the star polymer thus obtained contains a divalent or higher valent metal ion and an organic ligand, wherein the metal ion and the organic ligand are alternately coordinated and the organic coordination.
  • the ligand has the general formula (1-1A):
  • R 1 , R 2 , Z and n are the same as defined above.
  • It is a star polymer containing the organic ligand represented by these.
  • a star polymer having a single polymer chain can be synthesized, and when two or more compounds (3) are used, they are different or different.
  • a star polymer (star polymer of the present invention) having a polymer chain having a chain length can be synthesized.
  • the ratio of the amount of each compound used is almost the same as the ratio of the polymer chains of the star polymer of the present invention.
  • compound (3A) and compound (3B) are used as compound (3)
  • the ratio of the amounts used of compound (3A) and compound (3B) is almost as derived from compound (3A). It is the ratio of the polymer chain to the polymer chain derived from the compound (3B). For this reason, it is possible to freely adjust the polymer chain content ratio of the star polymer of the present invention. Therefore, it is possible to freely synthesize a star polymer containing a desired amount of a desired polymer chain according to required characteristics.
  • compound (4) examples include, for example:
  • the number of polymer chains of the obtained star polymer can be adjusted by the ratio of the addition amounts of the compound (3) and the compound (4). Specifically, the larger the amount of compound (3) added and the smaller the amount added of compound (4), the larger the number of polymer chains of the resulting star polymer, and the smaller amount of compound (3) added. ) Is added, the number of polymer chains of the resulting star polymer decreases. For this reason, when a copper compound is used as the metal compound, if the compound (4) is not added in this step, a star polymer having 24 polymer chains can be easily obtained, but the compound (4) is added. As a result, the number of polymer chains of the obtained star polymer can be adjusted to 23 or less (for example, 5 to 23).
  • reaction formula 2 when employing atom transfer radical polymerization (ATRP polymerization) as living polymerization, for example, reaction formula 2:
  • Example 4 Synthesis of star polymer 1 (SP-PtBA54) Copper acetate monohydrate in N-methylpyrrolidone solution (NMP, 0.5 mL) of polymer compound 1 (PtBA54, 38 mg, 5 ⁇ mol) obtained in Example 1 The product (1.5 mg, 7.5 ⁇ mol) in NMP (0.5 mL) was added, and the mixture was stirred at room temperature for 1 hour to obtain star polymer 1 (SP-PtBA54). A small amount of the reaction solution was taken and subjected to GPC analysis.
  • NMP N-methylpyrrolidone solution
  • Example 5 Synthesis of star polymer 2 (SP-PtBA272) Copper acetate monohydrate in N-methylpyrrolidone solution (NMP, 0.5 mL) of polymer compound 2 (PtBA272, 221 mg, 5 ⁇ mol) obtained in Example 2 The product (1.5 mg, 7.5 ⁇ mol) in NMP (0.5 mL) was added, and the mixture was stirred at room temperature for 1 hour to obtain star polymer 2 (SP-PtBA272). A small amount of the reaction solution was taken and subjected to GPC analysis.
  • NMP N-methylpyrrolidone solution
  • NMP N-methylpyrrolidone solution
  • the amount of polymer compound 3 (PnBA56) obtained in Example 3 was 28 mg (3 ⁇ mol) and obtained in Example 2.
  • the obtained polymer was analyzed by GPC analysis of the reaction solution obtained during the treatment in the same manner as in Example 6.
  • Polymer Compound 1 (PtBA54, 48.2 mg, 6 ⁇ mol) obtained in Example 1 and 5-t-butylisophthalic acid (tBipa, 1.3) mg, 6 ⁇ mol) is mixed in N-methylpyrrolidone solution (NMP, 0.5 mL), and NMP solution (0.5 mL) of copper acetate monohydrate (3.6 mg, 18 ⁇ mol) is added to the solution. Stir. A small amount of the reaction solution was taken and subjected to GPC analysis.
  • Polymer compound 1 (PtBA54) obtained in Example 1 was added in an amount of 72 mg (9 ⁇ mol), and 5-t-butylisophthalate was added.
  • the obtained polymer was analyzed by GPC analysis of the reaction solution obtained during the treatment in the same manner as in Example 8.
  • Polymer compound 1 (PtBA54) obtained in Example 1 was added in an amount of 24 mg (3 ⁇ mol), and 5-t-butylisophthalate was added.
  • the obtained polymer was analyzed by GPC analysis of the reaction solution obtained during the treatment in the same manner as in Example 8.
  • the amount of polymer compound 1 (PtBA54) obtained in Example 1 was changed to 16.1 mg (2 ⁇ mol), and 5-t-butylisophthalate was added.
  • the obtained polymer was analyzed by GPC analysis of the reaction solution obtained during the treatment in the same manner as in Example 8.
  • the amount of polymer compound 1 (PtBA54) obtained in Example 1 was 12 mg (1.5 ⁇ mol), and 5-t-butyl
  • the obtained polymer was analyzed by GPC analysis of the reaction solution obtained during the treatment in the same manner as in Example 8.
  • Test example 1 The results of GPC analysis of polymer compound 1 of Example 1 and star polymer 1 of Example 4 are shown in FIG. As a result, in the star polymer 1 of Example 4, it can be understood that the polymer compound 1 of Example 1 has almost disappeared. For this reason, it can be understood that the polymer compound 1 of Example 1 gathers to form a star polymer by the treatment of Example 4.
  • the result of the analysis is shown in FIG.
  • the star polymer 3 of Example 6 it can be understood that the polymer compound 2 of Example 2 and the polymer compound 3 of Example 3 are almost lost. For this reason, it can be understood that the polymer compound 2 of Example 2 and the polymer compound 3 of Example 3 are gathered by the treatment of Example 6 to form a star polymer composed of different polymer chains.
  • Test example 3 An atomic force microscope (AFM) image of the star polymer 2 (SP-PtBA272) obtained in Example 5 is shown in FIG.
  • AFM atomic force microscope
  • the star polymer 2 is composed of a central portion (core) and an outer portion (corona).
  • This outer portion is a portion made of a polymer chain.
  • the diameter of the star polymer 2 is about 2.7 nm.
  • Test example 4 In the star polymers of Examples 4 to 8, since the polymer chains are not entangled and exist one by one, N, N, N ′, N ′′ in tetrahydrofuran (THF) or heavy acetone solvent. , N ′′ -pentamethyldiethylenetriamine (PMDETA) or deuterated hydrochloric acid can be added in small amounts (for example, 1 drop) to decompose the polymer chains one by one.
  • the polymer composed of the polymer chain of the star polymer 1 obtained in Example 4 can be synthesized as follows.
  • Table 1 shows the results of GPC analysis for the star polymers of Examples 4 to 7 and the polymer (arm polymer) composed of the polymer chain.
  • Test Example 5 When synthesizing the star polymer, not only the polymer compound of the present invention (for example, the polymer compound of Examples 1 to 3) but also other ligand compounds (for example, compounds having an isophthalic acid skeleton) are added. The number of polymer chains of the resulting star polymer is reduced depending on the addition ratio of other ligand compounds. For this reason, the number of polymer chains of the obtained star polymer can be easily adjusted depending on the blending ratio of the polymer compound of the present invention and another ligand compound.
  • the polymer compound of the present invention for example, the polymer compound of Examples 1 to 3
  • other ligand compounds for example, compounds having an isophthalic acid skeleton
  • Table 2 shows the analysis results of the star polymer obtained in Examples 1 and 8 to 12 and the compound obtained in Comparative Example 1.
  • the polymer solution was poured into methanol (30 mL), and the precipitated polymer was recovered with an ultracentrifuge (15000 rpm, 10 min). This operation was repeated twice to remove residual monomers, and the resulting polymer was dried at 70 ° C. under reduced pressure for 16 hours (yield 1.6 g).
  • the obtained polymer powder 300 mg was dissolved again in dichloromethane (3 mL), trifluoroacetic acid (TFA, 1 mL) was added, and the mixture was stirred at room temperature for 16 hours.
  • the solution was poured into methanol (30 mL), and the precipitated polymer was collected by an ultracentrifuge (15000 rpm, 10 min).
  • Example 13 Synthesis of star polymer 10 (SP-PMMA158)
  • Polymer solution 4 (PMMA158, 50 mg, 3.1 ⁇ mol) obtained in Synthesis Example 7 was added to an N-methylpyrrolidone solution (NMP, 0.5 mL) with copper acetate monohydrate.
  • NMP N-methylpyrrolidone solution
  • a NMP solution (0.5 mL) of a Japanese product (0.94 mg, 4.7 ⁇ mol) was added, and the mixture was stirred at room temperature for 4 hours to obtain a star polymer (SP-PMMA158).
  • a small amount of the reaction solution was taken and subjected to GPC analysis. The results are shown in FIG. As a result, it can be understood that a star polymer can be synthesized in the same manner by reacting PMMA having an isophthalic acid terminal obtained by the ATRP method with copper acetate.
  • Test Example 6 When synthesizing a star polymer, if not only the polymer compound of the present invention but also other ligand compounds are added, the number of polymer chains of the obtained star polymer is determined by the addition ratio of the other ligand compounds. Reduce. For this reason, the number of polymer chains of the obtained star polymer can be easily adjusted depending on the blending ratio of the polymer compound of the present invention and another ligand compound.
  • polymer compound 2 (PtBA272) obtained in Example 2 and the following compound A were mixed at 1: 1 (molar ratio).
  • Polymer compound 2 (PtBA272, 223 mg, 5 ⁇ mol) and Compound A (1.3 mg, 5 ⁇ mol) were mixed in N-methylpyrrolidone solution (NMP, 0.5 mL), and copper acetate monohydrate (1.5 mg) was added to the solution. , 7.5 ⁇ mol) of NMP solution (0.5 mL) was added and stirred at room temperature for 1 hour. A small amount of the reaction solution was taken and subjected to GPC analysis. The results are shown in FIG.
  • SP-PtBA272 / Compound A using Compound A as a co-ligand has a total of 6 arms.
  • SP-PtBA272 / Compound A gives a peak on the lower molecular weight side than SP-PtBA272 having a total of 24 arm polymers. That is, it can be seen that by adding Compound A, the number of arms decreases, and the star polymer of SP-PtBA272 / Compound A can be actually synthesized.
  • Trifluoroacetic acid (4.2 mL, 5.5 mmol) was added to a dichloromethane solution (40 mL) of Cb-tBu-PEG900 (4.0 g, 3.67 mmol), and the mixture was heated to reflux for 18 hours. The solvent was removed by an evaporator, and the compound was purified by repeated reprecipitation in ice-cold ether. Vacuum drying at 40 ° C. yielded 2.7 g of Cb-PEG900.
  • silica gel column ethyl acetate / hexane
  • Ip-Me-PEG410 13 g, 21 mmol
  • 2M KOH aqueous solution 105 mL, 210 mmol
  • 6N Hydrochloric acid was added while cooling the solution with ice to make the solution acidic, and then the solvent was distilled off with an evaporator.
  • the compound was dissolved again in dichloromethane, and the insoluble material was purified by filtration. The solvent was removed from the filtrate and vacuum dried at 70 ° C. to obtain 11.3 g of Ip-PEG410.
  • Ip-Me-PEG900 9.4 g, 10 mmol
  • 2M KOH aqueous solution 50 mL, 100 mmol
  • 6N Hydrochloric acid was added while cooling the solution with ice to make the solution acidic, and then the solvent was distilled off with an evaporator.
  • the compound was dissolved again in dichloromethane, and the insoluble material was purified by filtration. The solvent was removed from the filtrate and vacuum dried at 60 ° C. to obtain 9.0 g of Ip-PEG900.
  • FIG. 9 compares the results of GPC analysis of the star polymers (star polymers 12 and 13) obtained in Examples 15 and 16 and the ligands (polymer compounds 6 and 7) as raw materials. As a result, it can be understood that as the raw material (ligand) having a higher molecular weight is used, the molecular weight of the arm portion of the star polymer increases, and as a result, the molecular weight of the star polymer increases.
  • FIG. 10 shows a comparison of IR spectra of the star polymers (star polymers 12 and 13) obtained in Examples 15 and 16 and the ligands (polymer compounds 6 and 7) as raw materials.
  • the C O stretching vibration derived from the carboxylic acid of the ligand disappears, resulting from the inversely symmetric and symmetric stretching vibration of the carboxylate coordinated with the Cu ion.
  • the formation of a peak was confirmed, suggesting that a star polymer structure was formed.
  • Test Example 7 Gas separation is performed by dissolving 100 mg of the star polymer (star polymers 12 and 13) obtained in Examples 15 and 16 in 2 mL of toluene or THF, impregnating the polymer into a commercially available porous membrane, and drying at 40 ° C. overnight. A membrane was obtained. The sample of Example 15 was dissolved in THF, and the sample of Example 16 was dissolved in toluene. The appearance is shown in FIG.
  • Example 16 a film made of the star polymer 13 obtained in Example 16 and a similar film made of PEG750 (without star polymer) were prepared, respectively, and measured for carbon dioxide, helium and nitrogen permeability (Performance). The selectivity was calculated. The results are shown in Table 3. As a result, the ratio of carbon dioxide permeability to nitrogen permeability (CO 2 / N 2 ) is approximately 10 times that of the gas separation membrane using the star polymer of the present invention compared to the membrane without the star polymer. It shows selectivity and is useful as a gas separation membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Indole Compounds (AREA)
  • Polyethers (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

2価以上の金属イオンと、有機配位子とを含有し、且つ、前記金属イオンと前記有機配位子とが交互に配位結合されたスターポリマーであって、前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を2種類以上含有することで、特に異種又は異鎖長の高分子鎖を有するスターポリマーも簡便に得ることができる。前記有機配位子は、一般式:[式中、Yはハロゲン原子、置換されていてもよい芳香族基、又は-S(C=S)R{Rは置換されていてもよい芳香族基、又は-R(R(Rは硫黄原子、炭素原子、酸素原子又は窒素原子を示す。Rは置換されていてもよいアルキル基又はアリール基を示す。mはRの種類に依存し、1~3の整数を示す。mが複数の場合、複数のRは同一でも異なっていてもよい。)で表される基を示す。}で表される基を示す。Y'は芳香族炭化水素環又は複素芳香環を示す。Rは単結合又は2価の基を示す。n個のZは同一又は異なって、重合高分子のモノマー単位を示す。nは5~20000を示す。] で表される配位子を2種類以上含有している。

Description

スターポリマー
 本発明は、スターポリマーに関する。
 複数(特に3個以上)の高分子鎖をある中心点から分岐させた構造を有するスターポリマーは、分子量の大きさと比較して極端にコンパクトな構造を有していることから、その特異な形状に起因した特別な物理的性質(低粘度等)を示し、産業的にも重要な化合物として扱われている。このようなスターポリマーは、例えば、高分子化合物用添加剤、界面活性剤、物質分離膜(ガス分離膜等)、ナノ相分離構造をテンプレートとしたリソグラフィー、医療用途(ドラッグデリバリー)等の種々様々な用途への適用が期待されている。例えば、医療用途では、血液適合性、抗菌性表面の創出、がんの放射線治療における線量の低減を目指したX線増感剤の開発等、種々様々な用途への適用が期待されている(例えば、非特許文献1参照)。また、異種又は異鎖長の高分子鎖を有するスターポリマーは、界面活性剤等の単純な用途をはじめ、多彩な相分離構造及び自己集合構造を形成することが期待され、その応用範囲は多岐にわたることが期待される。
 しかしながら、上記のようにスターポリマーは非常に特異な形状を有していることから、現在知られている合成方法は非常に煩雑であり、通常は幾つかの合成ステップが必要とされており、しかも、高効率の反応条件に加え、厳密に制御して重合を行うことが必要とされる。特に、異種又は異鎖長の高分子鎖を有するスターポリマーは、単独の高分子鎖を有するスターポリマーと比較して、合成方法がさらに煩雑となり、技術面での要求がより高度となる。例えば、ある中心点となる分子に複数の高分子鎖を導入しようとする場合、導入しようとする高分子鎖ごとに反応を行う必要があるためにステップ数が多くなり低収率にならざるを得ず、しかも、高分子鎖の含有量を調整することは非常に困難である。このため、異種又は異鎖長の高分子鎖を有するスターポリマーの簡便な合成方法は知られておらず、産業化の妨げになっているのが現状である。
安藤剛、高分子論文集2015, Vol. 72, No. 7 p. 410-420.
 本発明は、上記の課題を解決しようとするものであり、スターポリマー(特に異種又は異鎖長の高分子鎖を有するスターポリマー)を簡便に合成する手法を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意検討した結果、所定の構造を有する高分子化合物と所定の金属化合物とを反応させることで、簡便にスターポリマーを合成することができることを見出した。また、この反応の際、所定の構造を有する複数の高分子化合物を使用することで、異種又は異鎖長の高分子鎖を有するスターポリマーを簡便に得ることができることも見出した。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。すなわち、本発明は、以下の構成を包含する。
 項1.2価以上の金属イオンと、有機配位子とを含有し、且つ、前記金属イオンと前記有機配位子とが交互に配位結合されたスターポリマーであって、
前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を2種類以上含有している、スターポリマー。
 項2.前記有機配位子は、一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式中、Yはハロゲン原子、置換されていてもよい芳香族基、又は-S(C=S)R{Rは置換されていてもよい芳香族基、又は-R(R(Rは硫黄原子、炭素原子、酸素原子又は窒素原子を示す。Rは置換されていてもよいアルキル基又はアリール基を示す。mはRの種類に依存し、1~3の整数を示す。mが複数の場合、複数のRは同一でも異なっていてもよい。)で表される基を示す。}で表される基を示す。Y’は芳香族炭化水素環又は複素芳香環を示す。Rは単結合又は2価の基を示す。n個のZは同一又は異なって、重合高分子のモノマー単位を示す。nは5~20000を示す。]
で表される配位子を2種類以上含有している、項1に記載のスターポリマー。
 項3.前記Y’は、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、若しくはチオフェン環からなる単環、又は前記単環に1個又は2個以上のベンゼン環が縮合した縮合環であり、
前記単環又は縮合環とCOO基との結合中に、一般式(7):
Figure JPOXMLDOC01-appb-C000006
[式中、Rは同一又は異なって、炭素原子又は窒素原子を示す。Rは置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
で表される基が含まれていてもよい、項1又は2に記載のスターポリマー。
 項4.前記有機配位子は、一般式(1-1A):
Figure JPOXMLDOC01-appb-C000007
[式中、R、R、Z及びnは前記に同じである。]
で表される有機配位子を2種類以上含有する、項2又は3に記載のスターポリマー。
 項5.前記金属イオンと、前記有機配位子とからなる、項1~4のいずれかに記載のスターポリマー。
 項6.前記Rが置換されていてもよい芳香族基又は-SRで表される基である、項2~5のいずれかに記載のスターポリマー。
 項7.前記Rが置換されていてもよいアルキレン基である、項2~6のいずれかに記載のスターポリマー。
 項8.前記金属イオンを4個以上含有し、且つ、前記有機配位子を4個以上含有する、項1~7のいずれかに記載のスターポリマー。
 項9.前記金属イオンが2価の金属イオンである、項1~8のいずれかに記載のスターポリマー。
 項10.前記Zがメタクリル酸若しくはその誘導体残基、アクリル酸若しくはその誘導体残基、スチレン若しくはその誘導体残基、4-ビニルピリジン残基、酢酸ビニル残基、並びにビニルアルコール残基よりなる群から選ばれる少なくとも1種である、項1~9のいずれかに記載のスターポリマー。
 項11.平均直径が2nm~400nmである、項1~10のいずれかに記載のスターポリマー。
 項12.2価以上の金属イオンと、有機配位子とを含有し、前記金属イオンと前記有機配位子とが交互に配位結合され、且つ、前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を含有するスターポリマーの製造方法であって、
2個のカルボキシ基を有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した高分子化合物と、2価以上の金属を含む金属化合物とを反応させる反応工程
を備える、製造方法。
 項13.前記反応工程の前に、
2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環を有する化合物と、モノマー化合物とを用いて、リビング重合を施す重合工程
を備える、項12に記載の製造方法。
 項14.2価以上の金属イオンと、有機配位子とを含有し、前記金属イオンと前記有機配位子とが交互に配位結合され、且つ、前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を含有するスターポリマーが有する高分子鎖の本数を調製する方法であって、
2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した高分子化合物と、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環を有する化合物と、2価以上の金属を含む金属化合物とを反応させる反応工程
を備える、方法。
 項15.一般式(3):
Figure JPOXMLDOC01-appb-C000008
[式中、Rは置換されていてもよい芳香族基、又は-R(R(Rは硫黄原子、炭素原子、酸素原子又は窒素原子を示す。Rは置換されていてもよいアルキル基又はアリール基を示す。mはRの種類に依存し、1~3の整数を示す。mが複数の場合、複数のRは同一でも異なっていてもよい。)で表される基を示す。Rは単結合又は2価の基を示す。n個のZは同一又は異なって、重合高分子のモノマー単位を示す。nは5~20000を示す。]
で表される高分子化合物。
 本発明によれば、所定の構造を有するスターポリマーを従来と比較してより簡便な手法で合成することができる。特に、本発明によれば、異種又は異鎖長の高分子鎖を有するスターポリマーを簡便な手法で合成することも可能である。本発明によれば、少ないステップ数でスターポリマー(特に異種又は異鎖長の高分子鎖を有するスターポリマー)を合成することができるため高収率にスターポリマー(特に異種又は異鎖長の高分子鎖を有するスターポリマー)を得ることも可能である。また、合成される異種又は異鎖長の高分子鎖を有するスターポリマーにおいて、各高分子鎖の含有率を容易に調整することも可能である。
実施例1の高分子化合物1と実施例4のスターポリマー1のGPC分析の結果である。 実施例2で得た高分子化合物2、実施例3で得た高分子化合物3、実施例6で得たスターポリマー3のGPC分析の結果である。 実施例5で得たスターポリマー2の原子間力顕微鏡(AFM)画像である。 実施例13のスターポリマー10のGPC分析の結果である。 実施例5のスターポリマー2と試験例6で得たスターポリマーのGPC分析の結果である。 実施例14のスターポリマー11のGPC分析の結果である。 実施例15のスターポリマー12のGPC分析の結果である。 実施例16のスターポリマー13のGPC分析の結果である。 実施例15及び16で得たスターポリマーと、原料となる配位子のGPC分析結果の比較である。 実施例15及び16で得たスターポリマーと、原料となる配位子のIRスペクトルの比較である。 実施例15及び16で得たスターポリマーと、原料となる配位子のUVスペクトルの比較である。 実施例15及び16で得たスターポリマーの粉末X線回折スペクトルである。 試験例7で得たガス分離膜の外観である。
 1.スターポリマー
 本発明のスターポリマーは、2価以上の金属イオンと、有機配位子とを含有し、且つ、前記金属イオンと前記有機配位子とが交互に配位結合されたスターポリマーであって、
前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環(イソフタル酸アニオンの5位、カルバゾール-3,6-ジカルボン酸アニオンの9位等)に高分子鎖を有する基が結合した配位子(以下、「配位子(1)」と言うこともある)を2種類以上含有する。
 本発明のスターポリマーを構成する2価以上の金属イオンとしては、遷移金属イオンを好ましく採用することができる。なかでも、配位子(1)と配位結合することによりスターポリマーを構成しやすい観点から、2価の金属イオン(特に2価の遷移金属イオン)が好ましい。具体的には、2価の銅イオン、2価の亜鉛イオン、2価のコバルトイオン、2価のカドミウムイオン、2価のロジウムイオン、2価のカルシウムイオン、2価のマグネシウムイオン、2価のマンガンイオン、2価のニッケルイオン、2価のパラジウムイオン、2価のランタンイオン、2価のジルコニウムイオン等が好ましく、2価の銅イオン、2価の亜鉛イオン等がより好ましい。金属イオンは、配位子(1)と配位結合することによりスターポリマーを構成しやすい観点から単独で用いることが好ましいが、2種以上を組合せて用いることもできる。
 本発明のスターポリマーは、配位子(1)を2種類以上含有している。
 具体的には、配位子(1)は、金属イオン又はそのクラスターを連結しスターポリマーを与える観点から、金属イオンと配位結合し得るカルボキシ基(COO)を複数(2個)有している。このような構成を採用することにより、本発明のスターポリマーを内部に微小孔を有する球状の高分子化合物とし得る。なお、カルボキシ基(COO)が1個のみの場合は、本発明のスターポリマーを合成することができない。
 このような条件を有する配位子(1)としては、例えば、一般式(1):
Figure JPOXMLDOC01-appb-C000009
[式中、Yはハロゲン原子、置換されていてもよい芳香族基、又は-S(C=S)R{Rは置換されていてもよい芳香族基、又は-R(R(Rは硫黄原子、炭素原子、酸素原子又は窒素原子を示す。Rは置換されていてもよいアルキル基又はアリール基を示す。mはRの種類に依存し、1~3の整数を示す。mが複数の場合、複数のRは同一でも異なっていてもよい。)で表される基を示す。}で表される基を示す。Y’は芳香族炭化水素環又は複素芳香環を示す。Rは単結合又は2価の基を示す。n個のZは同一又は異なって、重合高分子のモノマー単位を示す。nは5~20000を示す。]
で表される配位子が挙げられる。
 一般式(1)において、Yで示されるハロゲン原子としては、臭素、塩素、ヨウ素、フッ素等が挙げられ、合成の容易さ、収率等の観点から、臭素、塩素等が好ましく、臭素がより好ましい。
 一般式(1)において、Yで示される芳香族基としては、特に制限されず、フェニル基、ペンタレニル基、インデニル基、ナフチル基、アントラセニル基、テトラセニル基、ペンタセニル基、ピレニル基、ペリレニル基、トリフェニレニル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、インダセニル基、アセナフチル基、フルオレニル基、フェナレニル基、フェナントレニル基等のアリール基;フリル基、チエニル基、ピロリル基、シロリル基、ボロニル基、ホスホリル基、オキサゾリル基、チアゾリル基、ピリジル基、ピリダジル基、ピリミジニル基、ピラジニル基、チエノチエニル基、キノリル基等のヘテロアリール基等が挙げられる。
 これらの芳香族基には、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等)等の置換基を1~4個(特に1~3個)程度有することもできる。
 一般式(1)において、Yが-S(C=S)Rで表される基である場合、Rで示される芳香族基としては、上記した芳香族基が挙げられる。置換基の種類及び数も同様である。
 上記Rが-R(Rで表される基である場合、Rは硫黄原子、炭素原子、酸素原子又は窒素原子である。なかでも、所望の高分子鎖を配位子(1)中に導入しやすく本発明のスターポリマーを得やすい観点から、硫黄原子が好ましい。
 上記Rが-R(Rで表される基である場合、Rで示されるアルキル基としては、特に制限はなく、直鎖アルキル基及び分岐鎖アルキル基のいずれも採用し得る。なかでも、重合の際に非極性溶媒中への溶媒溶解性をさらに向上させる観点から直鎖アルキル基が好ましい。このようなアルキル基の炭素数は、配位子(1)に、重合反応中での主に非極性溶媒中への溶媒溶解性をさらに向上させる観点から、1~20が好ましく、2~10がより好ましく、3~8がさらに好ましい。このようなアルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。
 これらアルキル基は、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)等の置換基を1~10個(特に1~5個)程度有することもできる。
 上記Rが-R(Rで表される基である場合、Rで示されるアリール基としては、上記したアリール基が挙げられる。置換基の種類及び数も同様である。
 なかでも、Rとしては、所望の高分子鎖を配位子(1)中に導入しやすく本発明のスターポリマーを得やすい観点から、置換されていてもよいアルキル基が好ましい。
 上記Rが-R(Rで表される基である場合、mはRの種類に依存する整数である。例えば、Rが硫黄原子又は酸素原子の場合はmが1であることが好ましく、Rが炭素原子の場合はmが3であることが好ましく、Rが窒素原子の場合はmが2であることが好ましい。
 また、Rとしては、所望の高分子鎖を配位子(1)中に導入しやすく本発明のスターポリマーを得やすい観点から、置換されていてもよい芳香族基、-SRで表される基等が好ましい。Rとしては、重合反応性の高さの観点からは芳香族基(特にアリール基)が好ましく、重合反応性の高さ及び非極性溶媒中への溶媒溶解性等の観点からは、-SRで表される基が好ましい。このため、要求特性に応じて適宜調整することができる。
 なお、配位子(1)は、後述の製造方法で採用し得る可逆的付加開裂連鎖移動重合(RAFT重合)の開始点となり得るジチオエステル構造を有することが好ましい。これにより、配位子(1)中に重合高分子成分を導入することができ、このような配位子(1)を使用することでスターポリマーを容易に合成することが可能である。このような観点から、Yとしては、-S(C=S)Rで表される基が好ましい。
 配位子(1)を用いて、本発明のスターポリマーを製造するには、前記配位子(1)と、前記金属イオンとが交互に配位結合を構成することにより球状の高分子化合物を形成するために、2個のY’-COO結合同士のなす角度は180°未満であることが好ましい。なお、前記配位子(1)において、2個のY’-COO結合同士のなす角度を180°未満とすれば、この2個のY’-COO結合同士のなす角度を利用して、スターポリマーを製造することができる。
 このような条件を満たすY’としては、芳香族炭化水素環又は複素芳香環が好ましく、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、チオフェン環等、又はこれらの環に1個又は2個以上のベンゼン環が縮合した環等が挙げられ、これらの環とCOO基との結合中に、一般式(7):
Figure JPOXMLDOC01-appb-C000010
[式中、Rは同一又は異なって、炭素原子又は窒素原子を示す。Rは置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
で表される基が含まれていてもよい。
 一般式(7)において、Rで示される2価の芳香族炭化水素基としては、例えば、ベンゼン環、ペンタレン環、インデン環、ナフタレン環、アントラセン環、テトラセン環、ペンタセン環、ピレン環、ペリレン環、トリフェニレン環、アズレン環、ヘプタレン環、ビフェニレン環、インダセン環、アセナフチレン環、フルオレン環、フェナレン環、フェナントレン環等の芳香族炭化水素環由来の基が挙げられる。これらの芳香族炭化水素環由来の基には、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルキル基(メチル基、エチル基、プロピル基等)等の置換基を0~4個(特に1~3個)程度有することもできる。また、一般式(7)において、kは0~2の整数が好ましく、0又は1がより好ましい。
 なかでも、Y’としては、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、チオフェン環等、又はこれらの環に1個又は2個以上のベンゼン環が縮合した環が好ましく、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、チオフェン環、カルバゾール環等がより好ましく、ベンゼン環、カルバゾール環等がさらに好ましい。
 このようなY’としては、例えば、
Figure JPOXMLDOC01-appb-C000011
等が挙げられる。
 一般式(1)において、Rは単結合又は2価の基である。
 一般式(1)において、Rで示される2価の基としては、アルキレン基が好ましい。具体的には、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、s-ブチレン基等の非環式アルキレン基(好ましくは炭素数1~6、特に炭素数1~4の非環式アルキレン基);シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基等の環式アルキレン基(好ましくは炭素数3~10、特に炭素数3~8の環式アルキレン基)等が挙げられる。なお、非環式アルキレン基を採用する場合、直鎖非環式アルキレン基を採用することもできるし、分岐鎖非環式アルキレン基を採用することもできる。これら2価の基は、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等)、シアノ基等の置換基を1~5個(特に1~3個)程度有することもできる。また、一般式(1)におけるRは、これらアルキレン基が連結したエステル基であってもよく、例えば、-CHCOO-基、-CHCHCOO-基、-CHCHCHCOO-基、-CHCHCHCHCOO-基、-CHCHCHCHCHCOO-基、-C(CHCOO-基等も挙げられる。
 一般式(1)におけるRとしては、重合反応性の高さ等の観点から、置換されていてもよいアルキレン基が好ましく、置換されていてもよい非環式アルキレン基がより好ましく、非置換非環式アルキレン基がさらに好ましい。
 一般式(1)において、Zは重合高分子のモノマー単位である。より詳細には、この重合高分子のモノマー単位は、後述の製造方法において、リビング重合によってポリマー鎖を導入した配位子(1)を得る際に用いられるモノマー化合物に由来する構成単位である。つまり、Zの種類によっては、種々様々な特性を本発明のスターポリマーに付与することができる。例えば、メタクリル酸若しくはその誘導体残基(メタクリル酸メチル残基、メタクリル酸ブチル残基、メタクリル酸ヘキシル残基、メタクリル酸イソボルニル残基、メタクリル酸残基、メタクリル酸メトキシポリエチレングリコール(PEG)残基)、アクリル酸若しくはその誘導体残基(アクリル酸メチル残基、アクリル酸ブチル残基、アクリル酸ヘキシル残基、アクリル酸イソボルニル残基、アクリル酸残基、アクリル酸メトキシポリエチレングリコール(PEG)残基、アクリルアミド残基、N-イソプロピルアクリルアミド残基)、スチレン若しくはその誘導体残基(スチレン残基、ペンタフルオロスチレン残基)、4-ビニルピリジン残基、酢酸ビニル残基、ビニルアルコール残基等のように、ポリメタクリル酸メチル樹脂、ポリアクリル酸樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、ポリビニルアルコール樹脂、ポリエステル(ポリカプロラクトン、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ3-ヒドロキシブチレート、ポリエチレンテレフタレート)、ポリアミド(ナイロン6、ナイロン6,6、ナイロン6,10)等の高分子化合物由来の基を導入することにより、その非常に高い分子量にもかかわらず、粘度をより低減し、溶剤可溶性及び成形加工性(特に熱成形加工性)をさらに向上させることができる。なお、従来は、副反応等により、スチレン若しくはその誘導体残基を導入することは困難であったが、本発明の製造方法によれば、容易にスチレン若しくはその誘導体残基を導入したスターポリマーを得ることもできる。
 また、メタクリル酸残基、アクリル酸残基、ビニルアルコール残基、アクリル酸メトキシPEG残基、4-ビニルピリジン残基等のように、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリアクリル酸メトキシPEG、ポリ(4-ビニルピリジン)等の水溶性高分子化合物由来の基を導入することにより、粘度をより低減し、水溶性をより向上させることも可能である。
 なお、本発明においては、上記のZは、上記したモノマー単位のうち1種のみを含んでいてもよいし、2種以上を含んでいてもよい。つまり、本発明のスターポリマーが有する高分子鎖は、ホモポリマー鎖であってもよいし、ランダムコポリマー鎖であってもよいし、ブロックコポリマー鎖であってもよい。
 これらのなかでも、本発明のスターポリマーの合成の容易さの観点から、Zとしては、アクリル酸若しくはその誘導体残基が好ましく、例えば、
Figure JPOXMLDOC01-appb-C000012
[tBuはt-ブチル基を示す。以下同様である。]
を採用することが好ましい。
 一般式(1)において、Zの繰り返し数であるnは、特に制限されず、本発明のスターポリマーの合成の容易さ、溶媒溶解性及び成形加工性(特に熱成形加工性)をさらに向上させる観点から、5~20000が好ましく、10~500がより好ましい。
 このような配位子(1)としては、特に制限されず、例えば、一般式(1-1):
Figure JPOXMLDOC01-appb-C000013
[式中、Y、R、Z及びnは前記に同じである。]
で表される配位子が好ましく、一般式(1-1A):
Figure JPOXMLDOC01-appb-C000014
[式中、R、R、Z及びnは前記に同じである。]
で表される配位子(1-1A)等を好ましく使用することができ、さらに、一般式(1-1A1)~(1-1A2):
Figure JPOXMLDOC01-appb-C000015
[式中、n及びtBuは前記に同じである。nBuはn-ブチル基を示す。以下同様である。]
で表される配位子等を好ましく使用することができる。
 本発明のスターポリマーにおいては、上記の配位子(1)を2種以上含有する。つまり、一般式(1)においてR、R、Z等が異なる異種の配位子(1)を複数含有することもできるし、nが異なる異鎖長の配位子(1)を複数含有することもできる。本発明の製造方法によれば、いずれのスターポリマーであっても容易に合成することが可能である。このような複数の配位子(1)を適宜選択することにより、所望の特性を有するスターポリマーを容易に合成することが可能である。
 また、本発明のスターポリマーにおいては、上記の配位子(1)以外の配位子を含有することもできる。このような配位子(1)以外の配位子としては、例えば、一般式(2A):
Figure JPOXMLDOC01-appb-C000016
[式中、R及びRは前記に同じである。]
で表される配位子(以下、「配位子(2A)」と言うこともある)、
一般式(2B):
Figure JPOXMLDOC01-appb-C000017
[式中、Rは前記に同じである。]
で表される配位子(以下、「配位子(2B)」と言うこともある)、
一般式(2C):
Figure JPOXMLDOC01-appb-C000018
[式中、Yは同一又は異なって、前記に同じである。kは同一又は異なって、0又は1を示す。]
で表される配位子(以下、「配位子(2C)」と言うこともある)等が挙げられる。
 このような配位子(2A)、配位子(2B)及び配位子(2C)(以下、まとめて「配位子(2)」と言うこともある)としては、例えば、
Figure JPOXMLDOC01-appb-C000019
等が挙げられる。
 ただし、合成及び解析の容易さと、本発明のスターポリマーをより安定に存在させる観点から、本発明のスターポリマーは、前記2価の金属イオン及び前記配位子(1)のみからなることが好ましい。
 本発明のスターポリマーが有する金属イオンの数は、金属イオンの種類、本発明のスターポリマーの平均直径等によっても異なるが、4~128個が好ましく、12~48個がより好ましく、24個が特に好ましい。また、本発明のスターポリマーが有する配位子(1)の数は、金属イオンの種類、本発明のスターポリマーの平均直径等によっても異なるが、4~128個が好ましく、12~48個がより好ましく、24個が特に好ましい。なお、配位子(1)以外に上記配位子(2)も含有している場合は、配位子(1)及び配位子(2)の合計で上記個数が好ましい。また、金属イオンとして銅イオン(Cu2+)を採用する場合には、銅イオン(Cu2+)及び配位子(1)をそれぞれ24個ずつ有するスターポリマーが生成されやすい。
 本発明のスターポリマーにおいては、前記配位子(1)において、2個のベンゼン環とカルボキシ基(COO)との結合同士のなす角度によって、本発明のスターポリマーを球状又は略球状の高分子化合物とすることができる。この球状の高分子化合物は、内部に微小孔を有し得る。
 本発明のスターポリマーが球状又は略球状の高分子化合物である場合、その平均直径は、特に制限されず、粘度をより低減し、成形加工性(特に熱成形加工性)、溶媒溶解性をより向上させる等の観点から、2~400nmが好ましく、3~50nmがより好ましい。
 本発明のスターポリマーが内部に微小孔を有する場合、その内部に存在する孔の平均直径は、特に制限されず、本発明のスターポリマーが安定に存在し得る観点から、0.1~5nmが好ましく、0.1~1.5nmがより好ましい。この場合、内部に有する微小孔は、複数であってもよいが、1個のみであることが好ましい。
 本発明のスターポリマーの平均分子量は、特に制限されず、本発明のスターポリマーが安定に存在し得る観点から、数平均分子量が5000~2000000が好ましく、7000~500000がより好ましい。
 このような構成を有する本発明のスターポリマーは、高分子化合物用添加剤、界面活性剤、物質分離膜(ガス分離膜等)、ナノ相分離構造をテンプレートとしたリソグラフィー、医療用途(ドラッグデリバリー)等の種々様々な用途への適用が期待される。
 2.スターポリマーの製造方法
 本発明のスターポリマーは、特に制限されず、種々様々な方法で合成することができる。例えば、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環(例えばイソフタル酸骨格、カルバゾール-3,5-ジカルボン酸骨格等)を有する化合物と、モノマー化合物とを用いて、リビング重合を施すことで2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環(例えばイソフタル酸又はイソフタル酸誘導体の5位、カルバゾール-3,5-ジカルボン酸又はその誘導体の9位等)に高分子鎖を有する基が結合した高分子化合物を得た後、当該高分子化合物と2価以上の金属を含む金属化合物とを反応させることによって本発明のスターポリマーを得ることができる。具体的には、リビング重合として可逆的付加開裂連鎖移動重合(RAFT重合)を採用し、有機配位子として上記配位子(1-1A)を含有するスターポリマーを得る場合には、例えば、反応式1:
Figure JPOXMLDOC01-appb-C000020
[式中、R、R及びnは前記に同じである。]
にしたがって合成することができる。
 (2-1)化合物(4A)
 上記反応式1における化合物(4A)は、公知又は市販の化合物を用いることもできるし、合成することもできる。なお、化合物(4A)を合成する場合は、例えば、有機溶媒中で、一般式(5):
Figure JPOXMLDOC01-appb-C000021
[式中、Rは前記に同じである。Mはアルカリ金属を示す。]
で表される化合物(以下、「化合物(5)」と言うこともある)と、一般式(6):
Figure JPOXMLDOC01-appb-C000022
[式中、Rは前記に同じである。Xはハロゲン原子を示す。]
で表される化合物(以下、「化合物(6)」と言うこともある)又はそのエステルとを反応させ、その後必要に応じて、常法で脱エステル化することにより得ることができる。脱エステル化の方法としては、例えば、有機溶媒(ジクロロメタン等)中でトリフルオロ酢酸等と反応させる方法が挙げられる。
 化合物(6)のエステルとしては、例えば、一般式(6A):
Figure JPOXMLDOC01-appb-C000023
[式中、R及びXは前記に同じである。Rは上記アルキル基を示す。]
で表される化合物(以下、「化合物(6A)」と言うこともある)が挙げられる。
 一般式(5)において、Mで示されるアルカリ金属としては、特に制限はなく、カリウム、ナトリウム、セシウム等が挙げられ、合成の容易さ、収率等の観点から、カリウムが好ましい。
 一般式(6)において、Xで示されるハロゲン原子としては、特に制限はなく、臭素、塩素、ヨウ素、フッ素等が挙げられ、合成の容易さ、収率等の観点から、臭素、塩素等が好ましく、臭素がより好ましい。
 上記化合物(6)又はそのエステルの使用量は、特に制限はなく、収率等の観点から、化合物(5)1モルに対して、0.3~3.0モル(特に0.5~2.0モル)使用することが好ましい。
 本工程において使用され得る有機溶媒としては、例えば、トルエン、キシレン、ベンゼン、メシチレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素;ジエチルエーテル、ジメトキシエタン、ジイソプロピルエーテル、t-ブチルメチルエーテル等の鎖状エーテル;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン等のケトンが挙げられる。なかでも、収率等の観点から、ケトンが好ましく、アセトンがより好ましい。また、反応条件は、反応が十分に進行する限り制限はなく、例えば、反応温度は-50~100℃、特に0~50℃が好ましく、反応時間は10分~48時間、特に30分~24時間が好ましい。反応終了後、必要に応じて通常の単離及び精製工程を施すこともできる。
 (2-2)ポリマー化反応(RAFT重合)
 本工程では、化合物(4A)に対して、本発明のスターポリマーの要求特性に応じて所望のモノマー化合物を用いて、RAFT重合を引き起こすことにより、化合物(4A)に対してポリマー鎖を導入する。これにより、モノマーの仕込み量や重合時間の選択することで、ポリマー鎖の重合度を調整でき、最終的なスターポリマーの大きさを任意に調整することができる。具体的には、有機溶媒中で、化合物(4A)と、モノマー化合物とを、ラジカル重合開始剤を用いてRAFT重合させることにより、化合物(3)を得ることができる。
 モノマー化合物としては、特に制限されず、本発明のスターポリマーが容易に得られ、目的に応じて大きさが調整でき、水溶性、溶媒溶解性及び成形加工性(特に熱成形加工性)をさらに向上させる観点からは、メタクリル酸又はその誘導体(メタクリル酸;メタクリル酸メチル、メタクリル酸t-ブチル等のメタクリル酸C1-4アルキル)、アクリル酸又はその誘導体(アクリル酸;アクリル酸メチル、メタクリル酸t-ブチル等のアクリル酸C1-4アルキル;アクリル酸メトキシポリエチレングリコール(PEG);アクリルアミド)、スチレン又はその誘導体(スチレン、ペンタフルオロスチレン等)、酢酸ビニル、4-ビニルピリジン等が好ましい。
 なかでも、本発明のスターポリマーの合成の容易さ、及び大きさの調整の容易さの観点からは、アクリル酸又はその誘導体が好ましく、アクリル酸C1-4アルキルがより好ましく、アクリル酸t-ブチルがさらに好ましい。
 これらのモノマー化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。特に、複数のモノマー化合物を用いることにより、本発明のスターポリマー中に共重合体ポリマー鎖(ランダムコポリマー鎖、ブロックコポリマー鎖等)を導入し、異なる複数のポリマー由来の特性を付与することも可能である。
 ラジカル重合開始剤としては、特に制限はなく、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ペルオキシ酢酸t-ブチル、ペルオキシ安息香酸t-ブチル、ペルオキシオクタン酸t-ブチル、ペルオキシネオデカン酸t-ブチル、ペルオキシイソ酪酸t-ブチル、過酸化ラウロイル、ペルオキシピバリン酸t-アミル、ペルオキシピバリン酸t-ブチル、過酸化ジクミル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム等の過酸化水素類;2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-ブテノニトリル)、4,4’-アゾビス(4-ペンタン酸)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2-(t-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス[2-メチル-N-(1,1)-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド、2,2’-アゾビス(2-メチル-N-ヒドロキシエチル)プロピオンアミド、二塩化2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、二塩化2,2’-アゾビス(2-アミジノプロパン)、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド)、2,2’-アゾビス(2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(イソブチリルアミド)二水和物等のアゾ化合物等が挙げられる。
 上記モノマー化合物及びラジカル重合開始剤の使用量は特に制限はなく、収率等の観点から、化合物(4A)1モルに対して、モノマー化合物を20~20000モル(特に50~5000モル)、ラジカル重合開始剤を0.01~2モル(特に0.1~1モル)使用することが好ましい。
 本工程において使用され得る有機溶媒としては、例えば、トルエン、キシレン、ベンゼン、メシチレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素;ジエチルエーテル、ジメトキシエタン、ジイソプロピルエーテル、t-ブチルメチルエーテル等の鎖状エーテル;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;アセトン、メチルエチルケトン等のケトンが挙げられる。なかでも、収率等の観点から、環状エーテルが好ましく、テトラヒドロフランがより好ましい。また、反応条件は、反応が十分に進行する限り制限はなく、例えば、反応温度は10~150℃、特に50~100℃が好ましく、10分~24時間、特に30分~12時間が好ましい。反応終了後、必要に応じて通常の単離及び精製工程を施すこともできる。このようにして得られる化合物(3)は、文献未記載の新規化合物である。
 反応が終了したことはガスクロマトグラフィー、高速液体クロマトグラフィー等により原料の残存量を定量することにより確認することができる。
 (2-3)スターポリマー化反応
 本工程では、有機溶媒中で、上記反応式1における化合物(3)と、2価以上の金属を含む金属化合物とを反応させることにより、本発明のスターポリマーを得ることができる。
 金属化合物としては、特に制限されず、本発明のスターポリマーを構成しやすい観点から、2価の金属塩が好ましい。このような2価の金属塩を構成する金属種も特に制限されないが、有機配位子(1)と配位結合することにより本発明のスターポリマーを構成しやすい観点から、銅、亜鉛、コバルト、カドミウム、ロジウム、マンガン、ニッケル、パラジウム、ジルコニウム等の遷移金属が好ましく、銅、亜鉛等がより好ましい。また、これらの金属塩としては、酢酸塩、ギ酸塩等の有機酸塩;硫酸塩、硝酸塩、炭酸塩、塩酸塩、臭化水素酸塩等の無機酸塩を使用することができる。
 このような金属化合物としては、具体的には、酢酸銅(II)、硝酸銅(II)、塩化銅(II)、硝酸亜鉛、硝酸コバルト(II)、酢酸カドミウム、塩化ニッケル(II)等を好適に使用することができる。なお、金属化合物は、水和物、溶媒和物であってもよい。また、金属化合物は、合成及び構造解析が容易である点並びに安定なスターポリマーを構成しやすい観点から単独で用いることが好ましいが、2種以上を組合せて用いることもできる。
 上記金属化合物の使用量は化合物(3)1モルに対して0.5~2.0モル使用することが好ましい。
 本工程において使用され得る有機溶媒としては、例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒が好ましい。また、反応条件は、反応が十分に進行する限り制限はなく、例えば、反応温度は-50~100℃、特に0~50℃が好ましく、10分~24時間、特に30分~12時間が好ましい。反応終了後、必要に応じてメタノール等のアルコール溶媒中で析出、沈殿させ精製してもよい。
 このようにして得られるスターポリマーは、2価以上の金属イオンと、有機配位子とを含有し、前記金属イオンと前記有機配位子とが交互に配位結合され、且つ、前記有機配位子は、一般式(1-1A):
Figure JPOXMLDOC01-appb-C000024
[式中、R、R、Z及びnは前記に同じである。]
で表される有機配位子を含有するスターポリマーである。
 なお、1種のみの化合物(3)を使用した場合は、単独の高分子鎖を有するスターポリマーを合成することができるし、2種以上の化合物(3)を使用した場合は、異種又は異鎖長の高分子鎖を有するスターポリマー(本発明のスターポリマー)を合成することができる。
 2種以上の化合物(3)を使用した場合、各々の化合物の使用量の比が、ほとんどそのまま本発明のスターポリマーが有する高分子鎖の比となる。具体的には、化合物(3)として化合物(3A)と化合物(3B)とを使用した場合、化合物(3A)と化合物(3B)との使用量の比が、ほとんどそのまま化合物(3A)由来の高分子鎖と化合物(3B)由来の高分子鎖との比となる。このため、本発明のスターポリマーが有する高分子鎖の含有量比を自在に調整することが可能である。よって、要求特性に応じて、所望の高分子鎖を所望の量含むスターポリマーを自在に合成することが可能である。
 また、スターポリマー化工程において、化合物(3)以外に、例えば、一般式(4A):
Figure JPOXMLDOC01-appb-C000025
[式中、R及びRは前記に同じである。]
で表される化合物(以下、「化合物(4A)」と言うこともある)、
一般式(4B):
Figure JPOXMLDOC01-appb-C000026
[式中、Rは前記に同じである。]
で表される化合物(以下、「化合物(4B)」と言うこともある)、
一般式(4C):
Figure JPOXMLDOC01-appb-C000027
[式中、Yは同一又は異なって、前記に同じである。kは同一又は異なって、0又は1を示す。]
で表される化合物(以下、「配位子(4C)」と言うこともある)等を添加することも可能である。
 このような化合物(4A)、化合物(4B)及び化合物(4C)(以下、まとめて「化合物(4)」と言うこともある)としては、例えば、
Figure JPOXMLDOC01-appb-C000028
等が挙げられる。
 この場合、化合物(3)と化合物(4)との添加量の比によって、得られるスターポリマーが有する高分子鎖の本数を調整することができる。具体的には、化合物(3)の添加量が多く化合物(4)の添加量が少ないほど得られるスターポリマーが有する高分子鎖の本数が多く、化合物(3)の添加量が少なく化合物(4)の添加量が多いほど得られるスターポリマーが有する高分子鎖の本数が少なくなる。このため、金属化合物として銅化合物を使用した場合には、本工程で化合物(4)を添加しない場合は、高分子鎖が24本のスターポリマーが得られやすいが、化合物(4)を添加することにより、得られるスターポリマーが有する高分子鎖の本数を23本以下(例えば5~23本)に調整することができる。
 なお、上記では、RAFT重合によりポリマー鎖を導入した後にスターポリマーを合成する方法を示したが、他のリビング重合(原子移動ラジカル重合(ATRP)法、ニトロキシドを介したラジカル重合(NMP)法、アニオン重合法等)によってもポリマー鎖を導入した後にスターポリマーを合成することが可能である。または、既成のポリマー(例えば末端修飾型PEG、ポリエステル(ポリカプロラクトン、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ3-ヒドロキシブチレート、ポリエチレンテレフタレート)、ポリアミド(ナイロン6、ナイロン6,6、ナイロン6,10)等)の片末端をイソフタル酸の5位へエステル結合やエーテル結合生成反応、Huisgen 環化(クリック)反応により接合することで同様の有機配位子を合成した後にスターポリマーを合成することも可能である。
 例えば、リビング重合として原子移動ラジカル重合(ATRP重合)を採用する場合には、例えば、反応式2:
Figure JPOXMLDOC01-appb-C000029
にしたがって合成することができる。
 各種試薬の種類、使用量、条件等については、通常のATRP重合のものを採用する他は上記RAFT重合を用いた場合と同様に処理を行うことができる。
 以下に実施例及び比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
 合成例1:化合物3の合成
Figure JPOXMLDOC01-appb-C000030
 化合物3は、文献(Davis, B. G.; Shang, X.; DeSantis, G.; Bott, R. R.; Jones, J. B. Bioorg. Med. Chem. 1999, 7, 2293-2301)に準ずる方法で合成した(収率70%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.13 (d, J = 1.4 Hz, isophH, 2H), 4.52 (s, benzyl, 2H), 1.59 (s, -C(CH3)3, 18H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 164.6, 138.4, 133.7, 133.3, 130.4, 82.0, 32.0, 28.2。
 合成例2:化合物4の合成
Figure JPOXMLDOC01-appb-C000031
 化合物4は、文献(Kato, S.; Yamada, S.; Goto, H.; Terashima, K.; Mizuta, M.; Katada, T. Z. Naturforsch. B 1980, 35, 458-462)に準ずる方法で得た(収率98%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.43-8.35 (m, 2H), 7.26-7.18 (m, 1H), 7.16-7.08 (m, 2H). 13C NMR (100 MHz, CDCl3): δ (ppm) 253.5, 153.7, 128.9, 127.7, 126.8。
 合成例3:化合物1の合成
Figure JPOXMLDOC01-appb-C000032
 [化合物5の合成]
 合成例1で得た化合物3(5.3 g, 14.4 mmol)のアセトン溶液(50 mL)に、合成例2で得た化合物4(3.6 g, 18.7 mmol)を加え、窒素雰囲気下、室温で3時間撹拌した。反応溶液に20 mLの水を加え、ロータリーエバポレーターで15 mL程度まで濃縮した後、残渣を酢酸エチルで抽出した。抽出した有機相を硫酸マグネシウムで乾燥後、ロータリーエバポレーターで溶媒を減圧留去し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、目的化合物5を得た(収率94%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.48 (t, J = 1.4 Hz, isophH, 1H), 8.16 (d, J = 1.4 Hz, isophH, 2H), 8.01-7.99 (m, ArH, 2H), 7.56-7.52 (m, ArH, 1H), 7.41-7.37 (m, ArH, 2H), 4.66 (s, benzyl, 2H), 1.60 (s, -C(CH3)3, 18H). 13C NMR (100 MHz, CDCl3): δ (ppm) 226.8, 164.7, 144.5, 135.8, 133.9, 132.7, 132.6, 129.8, 128.4, 126.9, 81.8, 41.2, 28.1. ESI-MS (methanol with a trace amount of KI, positive mode): calcd. for [M + K]+, m/z = 483.11; found m/z = 483.13。
 [化合物1の合成]
 得られた化合物5(6.67 g, 15 mmol)のジクロロメタン溶液(15 mL)にトリフルオロ酢酸(TFA, 18.4 mL, 240 mmol)のジクロロメタン溶液(15 mL)を加え、窒素雰囲気下、室温で1時間撹拌した。生成した沈殿物をろ取し、漏斗上でジクロロメタン及び水で洗浄した。得られた粉末状固体を減圧下80℃で24時間乾燥させ、目的化合物1を得た(収率96%)。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.38 (t, J = 1.8 Hz, isophH, 1H), 8.23 (d, J = 1.8 Hz, isophH, 2H), 7.99-7.94 (m, ArH, 2H), 7.67-7.60 (m, ArH, 1H), 7.51-7.42 (m, ArH, 2H), 4.84 (s, benzyl, 2H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 227.0, 166.3, 143.9, 137.0, 134.0, 133.2, 131.5, 129.1, 128.8, 126.6, (the benzyl carbon signal was overlapped with a solvent signal.). ESI-MS (methanol, negative mode): calcd. for [M - H]-, m/z = 331.01; found m/z = 331.03。
 合成例4:化合物2の合成
Figure JPOXMLDOC01-appb-C000033
 [化合物6の合成]
 リン酸カリウム(1.63 g, 7.7 mmol)をアセトン(10 mL)に懸濁させ撹拌した。そこへ1-ブタンチオール(0.83 mL, 7.7 mmol)を加えた後、撹拌しながら二硫化炭素(0.47 mL, 7.7 mmol)を滴下し、窒素雰囲気下、室温で3時間撹拌した。この溶液に、合成例1で得た化合物3(2.60 g, 7.0 mmol)のアセトン溶液(8 mL)を加え、さらに室温で16時間撹拌した。反応溶液に水(20 mL)を加え、溶液をロータリーエバポレーターで濃縮後、残渣を酢酸エチルで抽出した。有機相を硫酸マグネシウムで乾燥させ、ロータリーエバポレーターで溶媒を減圧留去後、得られる粗生成物をシリカゲルカラムクロマトグラフィーで精製し、目的化合物6を得た(収率88%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.46 (t, J = 1.8 Hz, isophH, 1H), 8.11 (d, J = 1.8 Hz, isophH, 2H), 4.67 (s, benzyl, 2H), 3.39 (t, J = 7.3 Hz, S=C-S-CH2-, 2H), 1.69 (quin., J = 7.3 Hz, S=C-S-CH2-CH2-, 2H), 1.60 (s, -C(CH3)3, 18H), 1.43 (sext., J = 7.3 Hz, -CH2-CH2-CH3, 2H), 0.94 (t, J = 7.3 Hz, -CH2-CH3, 3H). 13C NMR (100 MHz, CDCl3): δ (ppm) 223.1, 164.8, 136.2, 134.0, 132.8, 129.9, 81.9, 40.4, 37.1, 30.1, 28.1, 22.2, 13.7. ESI-MS (methanol with a trace amount of KI, positive mode): calcd. for [M + K]+, m/z = 495.11; found m/z = 495.15。
 [化合物2の合成]
 得られた化合物6(3.54 g, 7.75 mmol)のジクロロメタン溶液(15 mL)にトリフルオロ酢酸(TFA, 1.4 mL, 18.3 mmol)のジクロロメタン溶液(15 mL)を加え、窒素雰囲気下、室温で1.5時間撹拌した。生成した沈殿物をろ取し、漏斗上でヘキサン及び水で洗浄した。得られた粉末状固体を減圧下30℃で24時間乾燥させ、目的化合物2を得た(収率94%)。
1H NMR (400 MHz, DMSO-d6): δ (ppm) 13.6-13.0 (br, -COOH, 2H), 8.56 (d, J = 1.4 Hz, isophH, 1H), 8.17 (d, J = 1.4 Hz, isophH, 2H), 4.82 (s, benzyl, 2H), 3.38 (t, J = 7.3 Hz, S=C-S-CH2-, 2H), 1.61 (quin., J = 7.3 Hz, S=C-S-CH2-CH2-, 2H), 1.34 (sext., J = 7.3 Hz, -CH2-CH2-CH3, 2H), 0.86 (t, J = 7.3 Hz, -CH2-CH3, 3H). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 223.3, 166.3, 137.4, 134.0, 131.5, 129.1, 39.0, 36.3, 29.6, 21.4, 13.4. ESI-MS (methanol, negative mode): calcd. for [M - H]-, m/z = 343.01; found m/z = 343.03。
 実施例1:高分子化合物1(PtBA54)の合成
Figure JPOXMLDOC01-appb-C000034
 合成例4で得た化合物2(67.9 mg, 0.197 mmol)及びt-ブチルアクリレート(2.0 g, 15.8 mmol)をテトラヒドロフラン(4.5 mL)に溶解させ、溶液にアゾビスイソブチロニトリル(AIBN)のトルエン溶液(0.1 M, 985μL, 98.5μmol)を加えた。溶液を凍結脱気し酸素を除いた後、フラスコを60℃のオイルバスに浸して撹拌しながら120分反応させた。反応後、溶液をメタノール/水の混合溶媒(30 mL, メタノール: 水=8: 2)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。この操作を二回繰り返して残留モノマーを除き、得られたポリマーを減圧下70℃で16時間乾燥させ、高分子化合物1(PtBA54)を得た(750 mg)。
GPC測定結果(THF, polystyrene standards):Mn,AC = 6700(D= 1.14).
1H NMR (400 MHz, CDCl3): δ (ppm) 8.62 (s, 1H), 8.13 (m, 2H), 4.68 (m, 1H), 3.33 (m, 2H), 2.86-2.62 (m, 2H), 2.44-2.12 (52.7H), 2.09-1.12 (m), 0.93 (m, 3H).
重合度(DP) n= 53.7 (1H NMRより算出)。
 実施例2:高分子化合物2(PtBA272)の合成
Figure JPOXMLDOC01-appb-C000035
 合成例4で得た化合物2(25 mg, 72.6μmol)及びt-ブチルアクリレート(2.8 g, 21.8 mmol)をテトラヒドロフラン(2.5 mL)に溶解させ、溶液にアゾビスイソブチロニトリル(AIBN)のトルエン溶液(0.1 M, 363μL, 36.3μmol)を加えた。溶液を凍結脱気し酸素を除いた後、フラスコを60℃のオイルバスに浸して撹拌しながら120分反応させた。反応後、溶液をメタノール/水の混合溶媒(30 mL, メタノール:水=8: 2)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。この操作を二回繰り返して残留モノマーを除き、得られたポリマーを減圧下70℃で16時間乾燥させ、高分子化合物2(PtBA272)を得た(1.66 g)。
GPC測定結果(THF, polystyrene standards):Mn,AC = 21800(D= 1.27).
1H NMR (400 MHz, CDCl3): δ (ppm) 8.61 (s, 1H), 8.11 (m, 2H), 4.69 (m, 1H), 3.34 (m, 2H), 2.85-2.62 (m, 2H), 2.50-2.11 (270.5H), 2.08-1.12 (m), 0.92 (m, 3H). 
重合度(DP)n= 271.5(1H NMRより算出)。
 実施例3:高分子化合物3(PnBA56)の合成
Figure JPOXMLDOC01-appb-C000036
 合成例4で得た化合物2(67.9 mg, 0.197 mmol)及びn-ブチルアクリレート(2.0 g, 15.8 mmol)をテトラヒドロフラン(4.5 mL)に溶解させ、溶液にアゾビスイソブチロニトリル(AIBN)のトルエン溶液(0.1 M, 985μL, 98.5μmol)を加えた。溶液を凍結脱気し酸素を除いた後、フラスコを60℃のオイルバスに浸して撹拌しながら120分反応させた。反応後、溶液をメタノール/水の混合溶媒(30 mL, メタノール:水=1: 1)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。この操作を二回繰り返して残留モノマーを除き、得られたポリマーを減圧下70℃で16時間乾燥させ、高分子化合物3(PnBA56)を得た(1.1 g)。
GPC測定結果(THF, polystyrene standards):Mn,AC = 6100(D= 1.23).
1H NMR (400 MHz, CDCl3): δ (ppm) 8.62 (s, 1H), 8.11 (s, 2H), 4.82 (m, 1H), 4.03 (m, 111.9H), 3.35 (m, 2H), 2.74 (br, 2H), 2.44-2.21 (55.0H), 2.08-1.86 (m, 31.0H), 1.75-1.29 (m), 0.92 (m, 171H).
重合度(DP)n= 56.0(1H NMRより算出)。
 実施例4:スターポリマー1(SP-PtBA54)の合成
 実施例1で得た高分子化合物1(PtBA54, 38 mg, 5μmol)のN-メチルピロリドン溶液(NMP, 0.5 mL)に酢酸銅一水和物(1.5 mg, 7.5μmol)のNMP溶液(0.5 mL)を加え、室温で1時間撹拌し、スターポリマー1(SP-PtBA54)を得た。反応溶液を少量取り、GPC分析を行った。
 実施例5:スターポリマー2(SP-PtBA272)の合成
 実施例2で得た高分子化合物2(PtBA272, 221 mg, 5μmol)のN-メチルピロリドン溶液(NMP, 0.5 mL)に酢酸銅一水和物(1.5 mg, 7.5μmol)のNMP溶液(0.5 mL)を加え、室温で1時間撹拌し、スターポリマー2(SP-PtBA272)を得た。反応溶液を少量取り、GPC分析を行った。
 実施例6:スターポリマー3(SP-PnBA56= 0.6/PtBA272= 0.4)の合成
 実施例3で得た高分子化合物3(PnBA56, 28 mg, 3μmol)及び実施例2で得た高分子化合物2(PtBA272, 88 mg, 2μmol)をN-メチルピロリドン溶液(NMP, 0.5 mL)中で混合し、その溶液に酢酸銅一水和物(1.5 mg, 7.5μmol)のNMP溶液(0.5 mL)を加え、室温で1時間撹拌した。反応溶液を少量取り、GPC分析を行った。反応溶液をメタノール/水の混合溶媒(25 mL, メタノール:水=8: 2)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。ポリマーを再びテトラヒドロフラン(3 mL)へ溶解させ、溶液をメタノール/水の混合溶媒(25 mL, メタノール:水=9.5: 0.5)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。得られたポリマーを減圧下25℃で16時間乾燥させ、スターポリマー3(SP-PnBA56= 0.6/PtBA272= 0.4)を得た(68 mg)。
 実施例7:スターポリマー4(SP-PnBA56= 0.5/PtBA272= 0.5)の合成
 実施例3で得た高分子化合物3(PnBA56)の添加量を28 mg(3μmol)とし、実施例2で得た高分子化合物2(PtBA272)の添加量を88 mg(2μmol)としたこと以外は実施例6と同様に処理を行い、スターポリマー4(SP-PnBA56= 0.5/PtBA272= 0.5)を得た(68 mg)。なお、得られたポリマーの分析は、実施例6と同様に、処理の途中で得た反応溶液のGPC分析により行った。
 実施例8:スターポリマー5(SP-PtBA54= 0.5/tBipa= 0.5)の合成
 実施例1で得た高分子化合物1(PtBA54, 48.2 mg, 6μmol)及び5-t-ブチルイソフタル酸(tBipa, 1.3 mg, 6μmol)をN-メチルピロリドン溶液(NMP, 0.5 mL)中で混合し、その溶液に酢酸銅一水和物(3.6 mg, 18μmol)のNMP溶液(0.5 mL)を加え、室温で1時間撹拌した。反応溶液を少量取り、GPC分析を行った。反応溶液をメタノール/水の混合溶媒(25 mL, メタノール:水=8: 2)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。ポリマーを再びテトラヒドロフラン(3 mL)へ溶解させ、溶液をメタノール/水の混合溶媒(25 mL, メタノール:水=9: 1)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。得られたポリマーを減圧下25℃で16時間乾燥させ、スターポリマー5(SP- SP-PtBA54= 0.5/tBipa= 0.5)を得た(25 mg)。
 実施例9:スターポリマー6(SP-PtBA54= 0.75/tBipa= 0.25)の合成
 実施例1で得た高分子化合物1(PtBA54)の添加量を72 mg(9μmol)とし、5-t-ブチルイソフタル酸(tBipa)の添加量を0.67 mg(3μmol)としたこと以外は実施例8と同様に処理を行い、スターポリマー6(SP-PtBA54= 0.75/tBipa= 0.25)を得た(36 mg)。なお、得られたポリマーの分析は、実施例8と同様に、処理の途中で得た反応溶液のGPC分析により行った。
 実施例10:スターポリマー7(SP-PtBA54= 0.25/tBipa= 0.75)の合成
 実施例1で得た高分子化合物1(PtBA54)の添加量を24 mg(3μmol)とし、5-t-ブチルイソフタル酸(tBipa)の添加量を2.0 mg(9μmol)としたこと以外は実施例8と同様に処理を行い、スターポリマー7(SP-PtBA54= 0.25/tBipa= 0.75)を得た(14 mg)。なお、得られたポリマーの分析は、実施例8と同様に、処理の途中で得た反応溶液のGPC分析により行った。
 実施例11:スターポリマー8(SP-PtBA54= 0.167/tBipa= 0.833)の合成
 実施例1で得た高分子化合物1(PtBA54)の添加量を16.1 mg(2μmol)とし、5-t-ブチルイソフタル酸(tBipa)の添加量を2.2 mg(1μmol)としたこと以外は実施例8と同様に処理を行い、スターポリマー8(SP-PtBA54= 0.167/tBipa= 0.833)を得た(8 mg)。なお、得られたポリマーの分析は、実施例8と同様に、処理の途中で得た反応溶液のGPC分析により行った。
 実施例12:スターポリマー9(SP-PtBA54= 0.125/tBipa= 0.875)の合成
 実施例1で得た高分子化合物1(PtBA54)の添加量を12 mg(1.5μmol)とし、5-t-ブチルイソフタル酸(tBipa)の添加量を2.3 mg(10.5μmol)としたこと以外は実施例8と同様に処理を行い、スターポリマー9(SP-PtBA54= 0.125/tBipa= 0.875)を得た(8 mg)。なお、得られたポリマーの分析は、実施例8と同様に、処理の途中で得た反応溶液のGPC分析により行った。
 比較例1:化合物7(SP- tBipa= 1.0)の合成
 実施例1で得た高分子化合物1を使用せず、5-t-ブチルイソフタル酸(tBipa)の添加量を  1.4 mg(6.2μmol)としたこと以外は実施例8と同様に処理を行い、化合物7(SP- tBipa)を得た(10 mg)。なお、得られた化合物の分析は、実施例8と同様に、処理の途中で得た反応溶液のGPC分析により行った。
 試験例1
 実施例1の高分子化合物1と実施例4のスターポリマー1のGPC分析の結果を図1に示す。この結果、実施例4のスターポリマー1では実施例1の高分子化合物1がほとんど消失していることが理解できる。このため、実施例4の処理により、実施例1の高分子化合物1が集まってスターポリマーを形成していることが理解できる。
 試験例2
 実施例2で得た高分子化合物2(PtBA272)、実施例3で得た高分子化合物3(PnBA56)、実施例6で得たスターポリマー3(SP-PnBA56= 0.6/PtBA272= 0.4)のGPC分析の結果を図2に示す。この結果、実施例6のスターポリマー3では実施例2の高分子化合物2及び実施例3の高分子化合物3がほとんど消失していることが理解できる。このため、実施例6の処理により、実施例2の高分子化合物2及び実施例3の高分子化合物3が集まって、異種高分子鎖からなるスターポリマーを形成していることが理解できる。
 試験例3
 実施例5で得たスターポリマー2(SP-PtBA272)の原子間力顕微鏡(AFM)画像を図3に示す。その結果、スターポリマー2は、いずれにおいても中心部分(コア)と外側部分(コロナ)とから構成されていることが理解できる。この外側部分は、高分子鎖からなる部分である。また、AFM上の高さプロファイルによれば、スターポリマー2の直径が2.7 nm程度であることが理解できる。
 試験例4
 実施例4~8のスターポリマーは、高分子鎖同士が絡み合っておらず1本ずつ単独で存在しているため、テトラヒドロフラン(THF)又は重アセトン溶媒中、N,N,N',N'',N''-ペンタメチルジエチレントリアミン(PMDETA)又は重塩酸を少量(例えば1滴)加えることで高分子鎖を1本ずつ分解することができる。例えば、実施例4で得たスターポリマー1の高分子鎖からなるポリマーは以下のように合成できる。
 実施例4で得たスターポリマー1(SP-PtBA54, 5 mg)のTHF溶液(1 mL)に、N,N,N',N'',N''-ペンタメチルジエチレントリアミン(PMDETA, 1 mol/mL)のTHF溶液(20μL)を加え、10秒程静置することで高分子鎖を分解し、高分子化合物を得た。実施例5~7のスターポリマーについて上記と同様の処理を行って高分子鎖からなるポリマーを得た。なお、得られたポリマーの解析には、GPC(THF溶媒)及びNMR(重アセトン溶媒)を用いた。
 実施例4~7のスターポリマーと、その高分子鎖からなるポリマー(腕高分子)について、GPC分析の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000037
 試験例5
 スターポリマーを合成する際に、本発明の高分子化合物(例えば、実施例1~3の高分子化合物)だけでなく、他の配位子化合物(例えば、イソフタル酸骨格を有する化合物)も添加すると、他の配位子化合物の添加割合によって、得られるスターポリマーの高分子鎖の本数を低減する。このため、本発明の高分子化合物と他の配位子化合物との配合割合によっては、得られるスターポリマの高分子鎖の本数を容易に調整することができる。
 具体的には、実施例1及び8~12で得たスターポリマー、比較例1で得た化合物について行った分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000038
 合成例5:化合物7の合成
Figure JPOXMLDOC01-appb-C000039
 化合物7は、既報(European Journal of Organic Chemistry 2010, 1324-1332)の手順で合成し、収率82%で得た。
 合成例6:化合物8の合成
Figure JPOXMLDOC01-appb-C000040
 合成例5で得た化合物7(2.0 g, 11.0 mmol)をTHF(40 mL)に溶解し、塩化チオニル(3.2 mL, 43.9 mmol)を加えて窒素雰囲気下で3時間還流し反応させた。溶媒及び未反応の塩化チオニルを減圧下で留去し、褐色のオイル状物質を得た。この物質をAとする。一方、THF(40 mL)にカリウムt-ブトキシド(4.9 g, 44 mmol)を加え0℃に冷却した溶液を調製し、そこに撹拌しながらAのTHF溶液(20 mL)を少しずつ滴下した。滴下後、さらに撹拌を続けながら徐々に室温へと昇温し、室温で16時間撹拌した。フラスコに氷水(約20 mL)を加えて反応を止め、溶液を酢酸エチル(30 mL)で抽出し有機層を水で2回洗浄した。有機相を硫酸マグネシウムで乾燥させ、ロータリーエバポレーターで溶媒を減圧留去後、得られる粗生成物をシリカゲルカラムクロマトグラフィーで精製し、目的化合物8を得た(収率82%)。
1H NMR (400 MHz, CDCl3): δ (ppm) 8.47 (t, J = 1.4 Hz, isophH, 1H), 7.87 (d, J = 1.4 Hz, isophH, 2H), 2.08 (s, -CBr(CH3)2, 6H), 1.60 (s, -C(CH3)3, 18H). 13C NMR (100 MHz, CDCl3): δ (ppm) 170.6, 164.1, 150.6, 133.9, 128.3, 126.1, 82.2, 54.9, 30.7, 28.2。
 合成例7:高分子化合物4(PMMA158)の合成
Figure JPOXMLDOC01-appb-C000041
 合成例6で得た化合物8(200 mg, 0.452 mmol)をアニソール(1 mL)に溶解させ、メチルメタクリレート(4.5 g, 45.2 mmol)、Cu(I)Br (64.8 mg, 0.452 mmol)、PMDETA(94.4μL, 0.452 mmol)を加えた。溶液を凍結脱気し酸素を除いた後、フラスコを80℃のオイルバスに浸して撹拌しながら10分反応させた。反応後、溶液をTHF(10 mL)で希釈し、Al2O3カラムで処理して触媒を除いた。ポリマー溶液をメタノール(30 mL)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。この操作を二回繰り返して残留モノマーを除き、得られたポリマーを減圧下70℃で16時間乾燥させた(収量1.6 g)。次に、得られたポリマーの粉体 (300 mg)を再びジクロロメタン(3 mL)に溶解させ、トリフルオロ酢酸(TFA, 1 mL)を加えて16時間室温で撹拌した。溶液をメタノール(30 mL)へ注ぎ、析出したポリマーを超遠心分離機(15000 rpm, 10 min)により回収した。この操作を二回繰り返して残留TFAを除き、得られたポリマーを減圧下70℃で16時間乾燥させ高分子化合物4(PMMA158)を得た(収量280 mg)。
GPC測定結果(THF, polystyrene standards):Mn, AC = 17300(D= 1.05).
1H NMR (400 MHz, CDCl3): δ (ppm) 8.72 (s, 1H), 8.03 (m, 2H), 3.60 (s, 470.6H), 2.17-1.55 (m, 309H), 1.50-1.30 (m), 1.28-1.15 (m), 1.10-0.65 (m).
重合度(DP)n= 158(1H NMRより算出)。
 実施例13:スターポリマー10(SP-PMMA158)の合成
 合成例7で得た高分子化合物4(PMMA158, 50 mg, 3.1μmol)のN-メチルピロリドン溶液(NMP, 0.5 mL)に酢酸銅一水和物(0.94 mg, 4.7μmol)のNMP溶液(0.5 mL)を加え、室温で4時間撹拌し、スターポリマー(SP-PMMA158)を得た。反応溶液を少量取り、GPC分析を行った。結果を図4に示す。その結果、ATRP法によって得られたイソフタル酸末端を有するPMMAと、酢酸銅を反応させても、同様にスターポリマーを合成できることが理解できる。
 試験例6
 スターポリマーを合成する際に、本発明の高分子化合物だけでなく、他の配位子化合物も添加すると、他の配位子化合物の添加割合によって、得られるスターポリマーの高分子鎖の本数を低減する。このため、本発明の高分子化合物と他の配位子化合物との配合割合によっては、得られるスターポリマーの高分子鎖の本数を容易に調整することができる。
 具体的には、実施例2で得た高分子化合物2(PtBA272)と以下の化合物Aとを1:1(モル比)で混合した。
Figure JPOXMLDOC01-appb-C000042
 高分子化合物2(PtBA272, 223 mg, 5μmol)及び化合物A(1.3 mg, 5μmol)をN-メチルピロリドン溶液(NMP, 0.5 mL)中で混合し、その溶液に酢酸銅一水和物(1.5 mg, 7.5μmol)のNMP溶液(0.5 mL)を加え、室温で1時間撹拌した。反応溶液を少量取り、GPC分析を行った。結果を図5に示す。
 その結果、化合物Aを共配位子として用いたSP-PtBA272/化合物Aは計6本の腕を持つ。GPCクロマトグラフにおいて、計24本の腕高分子をもつSP-PtBA272よりもSP-PtBA272/化合物Aが低分子量側にピークを与える。すなわち、化合物Aを加えることで腕本数が減少し、SP-PtBA272/化合物Aのスターポリマーが実際に合成できていることがわかる。
 合成例8:高分子化合物5(Cb-PEG900)の合成
Figure JPOXMLDOC01-appb-C000043
 Cb-tBu(8.17g, 22.2mmol)をKOH水溶液(85質量%, 1.47g, 22.2mmol)とTHFの混合溶液(50mL)中、50℃で3時間撹拌し、そこへ市販のポリ(エチレングリコール)メチルエーテルトシレート(Mw = 900; 4g, 4.44mmol)のTHF溶液(30mL)を加えて50℃で20時間反応させた。その後、エバポレーターで溶媒を留去し、シリカゲルカラム(酢酸エチル/ヘキサン)で精製し、2.4gのCb-tBu-PEG900を得た。
Figure JPOXMLDOC01-appb-C000044
 Cb-tBu-PEG900(4.0g, 3.67mmol)のジクロロメタン溶液(40mL)に、トリフルオロ酢酸(4.2mL, 5.5mmol)を加え、18時間加熱還流させた。エバポレーターで溶媒を留去し、化合物を氷冷エーテル中で再沈殿を繰り返し精製した。40℃で真空乾燥させ、2.7gのCb-PEG900を得た。
1H NMR (400 MHz, DMSO-d6) : δ 8.84 (d, J=1.5Hz, Cz-H, 2H), δ 8.09 (dd, J=8.6, 1.5Hz, Cz-H, 2H), δ 7.75 (d, J=8.6Hz, isophH, 2H), δ 4.64 (t, J=5.2, -NCH2CH2O-, 2H), δ 3.84 (t, J=5.2, -NOCH2CH2O-, 2H), δ 3.29-3.55 (m, PEGchain-H, 64H), δ 3.24 (s, -OCH3, 3H).
13C NMR (400 MHz, DMSO-d6): δ 167.7, 143.6, 127.4, 122.4, 122.3, 122.0, 109.9, 71.2, 69.7, 68.7, 57.9。
 実施例14:スターポリマー11の合成
Figure JPOXMLDOC01-appb-C000045
 合成例8で得た高分子化合物5(Cb-PEG900, 1g, 0.86mmol)のテトラヒドロフラン溶液(THF, 30mL)に酢酸銅一水和物(173mg, 0.86mmol)のTHF溶液(30mL)を加え、室温で30分間撹拌し、スターポリマー(SP-Cb-PEG900)を得た。反応溶液を少量取り、GPC分析を行った。結果を図6に示す。反応直後、70℃で一晩乾燥後、ヘキサン及びTHFの混合溶媒中に沈殿処理(3回)を行って精製した後、前記精製後に70℃で一晩乾燥後のいずれにおいても、配位子(高分子化合物5)のピークが著しく低減しており、スターポリマーを合成できることが理解できる。
 合成例9:高分子化合物6(Ip-PEG410)の合成
Figure JPOXMLDOC01-appb-C000046
 Ip-Me(79.6g, 378.7mmol)、ポリ(エチレングリコール)メチルエーテルトシレート(Mw = 410; 19.3g, 30mmol)、及びK2CO3(52.3g, 378.7mmol)をアセトニトリル(1L)へ溶解し、20時間加熱還流させた。その後、不溶物を濾過後、エバポレーターで溶媒を留去し、シリカゲルカラム(酢酸エチル/ヘキサン)で精製し、15gのIp-Me-PEG410を得た。
Figure JPOXMLDOC01-appb-C000047
 Ip-Me-PEG410(13g, 21mmol)のメタノール溶液(200mL)に、2M KOH水溶液(105mL, 210mmol)を加え、80℃で18時間加熱還流した。溶液を氷冷しながら6N塩酸を加え、溶液を酸性とした後、エバポレーターで溶媒を留去した。化合物を再びジクロロメタンへ溶解させ、不溶物を濾過して精製した。濾液から溶媒を除き、70℃で真空乾燥させ、11.3gのIp-PEG410を得た。
1H NMR (400 MHz, DMSO-d6) : δ 13.2-13.4 (br, -CO2H, 2H), δ 8.08 (t, J=1.6Hz, isophH, 1H), δ 7.65 (d, J=1.6Hz, isophH, 2H), δ 4.22 (t, J=4.2, Ph-OCH2CH2O-, 2H), δ 3.77 (t, J=4.2, Ph-OCH2CH2O-, 2H), δ 3.40-3.61 (m, PEGchain-H, 32H), δ 3.23 (s, -OCH3, 3H).
13C NMR (400 MHz, DMSO-d6): δ 166.4, 158.7, 132.6, 122.3, 119.2, 71.3, 69.8, 68.8, 67.9, 58.0。
 実施例15:スターポリマー12の合成
Figure JPOXMLDOC01-appb-C000048
 合成例9で得た高分子化合物6(Ip-PEG410, 1g, 1.6mmol)のテトラヒドロフラン溶液(THF,   30mL)に酢酸銅一水和物(336mg, 1.6mol)のTHF溶液(30mL)を加え、室温で30分間撹拌し、スターポリマー(SP-Ip-PEG410)を得た。反応溶液を少量取り、GPC分析を行った。結果を図7に示す。反応直後、ヘキサン及びTHFの混合溶媒中に沈殿処理(3回)を行って精製した後、前記精製後に70℃で一晩乾燥後のいずれにおいても、配位子(高分子化合物6)のピークが著しく低減しており、スターポリマーを合成できることが理解できる。
 合成例10:高分子化合物7(Ip-PEG900)の合成
Figure JPOXMLDOC01-appb-C000049
 Ip-Me(46.7g, 222.2mmol)、ポリ(エチレングリコール)メチルエーテルトシレート(Mw = 900; 10g, 11.1mmol)をK2CO3(30.7g, 222.2mmol)をアセトニトリル(1L)へ溶解し、20時間加熱還流させた。その後、不溶物を濾過後、エバポレーターで溶媒を留去し、シリカゲルカラム(酢酸エチル/ヘキサン)で精製し、9.4gのIp-Me-PEG900を得た。
Figure JPOXMLDOC01-appb-C000050
 Ip-Me-PEG900(9.4g, 10mmol)のメタノール溶液(200mL)に、2M KOH水溶液(50mL, 100mmol)を加え、18時間加熱還流した。溶液を氷冷しながら6N塩酸を加え、溶液を酸性とした後、エバポレーターで溶媒を留去した。化合物を再びジクロロメタンへ溶解させ、不溶物を濾過して精製した。濾液から溶媒を除き、60℃で真空乾燥させ、9.0gのIp-PEG900を得た。
1H NMR (400 MHz, DMSO-d6): δ 13.1-13.4 (br, -CO2H, 2H) , δ 8.08 (t, J=1.2Hz, isophH, 1H), δ 7.66 (d, J=1.2Hz, isophH, 2H), δ 4.22 (t, J=4.3, Ph-OCH2CH2O-, 2H), δ 3.78 (t, J=4.3, Ph-OCH2CH2O-, 2H), δ 3.42-3.62 (m, PEGchain-H, 64H), δ 3.24 (s, -OCH3, 3H).
13C NMR (400 MHz, DMSO-d6): δ 166.3, 158.6, 132.6, 122.2, 119.1, 71.2, 69.7, 68.8, 67.8, 58.0。
 実施例16:スターポリマー13の合成
Figure JPOXMLDOC01-appb-C000051
 合成例10で得た高分子化合物7(Ip-PEG900, 1g, 0.9mmol)のテトラヒドロフラン溶液(THF, 30mL)に酢酸銅一水和物(184mg, 0.9mmol)のTHF溶液(30mL)を加え、室温で30分間撹拌し、スターポリマー(SP-Ip-PEG900)を得た。反応溶液を少量取り、GPC分析を行った。結果を図8に示す。反応直後、ヘキサン及びTHFの混合溶媒中に沈殿処理(3回)を行って精製した後、前記精製後に70℃で一晩乾燥後のいずれにおいても、配位子(高分子化合物6)のピークが著しく低減しており、スターポリマーを合成できることが理解できる。
 実施例15及び16で得たスターポリマー(スターポリマー12及び13)と、原料となる配位子(高分子化合物6及び7)のGPC分析の結果を比較して図9に示す。この結果、分子量の大きい原料(配位子)を使用するほど、スターポリマーの腕部分の分子量が大きくなり、結果的にスターポリマーの分子量が大きくなることが理解できる。
 次に、実施例15及び16で得たスターポリマー(スターポリマー12及び13)と、原料となる配位子(高分子化合物6及び7)のIRスペクトルを比較して図10に示す。この結果、Cu2+との錯形成反応前後で、配位子のカルボン酸に由来するC=O伸縮振動が消滅し、Cuイオンと配位したカルボキシレートの逆対称及び対称伸縮振動に由来するピークの生成が確認されたことから、スターポリマー構造が形成されたことが示唆される。
 次に、実施例15及び16で得たスターポリマー(スターポリマー12及び13)と、原料となる配位子(高分子化合物6及び7)のUVスペクトルを比較して図11に示す。いずれの試料も、THF中、293Kにて、I = 1.0cmで測定した。この結果、いずれのスターポリマーも、690nm付近の銅二核錯体のバンド(I)吸収が観測され、コアのケージ型構造に重要な銅二核錯体骨格を有することが示唆される。
 さらに、実施例15及び16で得たスターポリマー(スターポリマー12及び13)の室温における粉末X線回折スペクトルを図12に示す。いずれの試料においても、ポリエチレングリコール(PEG)結晶に特徴的なピークは観測されず、化合物は非晶質であることが明らかとなった。
 試験例7
 実施例15及び16で得たスターポリマー(スターポリマー12及び13)を、2mLのトルエン又はTHFに100mg溶解し、市販の多孔質メンブレンへ含浸させ、40℃で一晩乾燥させることで、ガス分離膜を得た。なお、実施例15の試料はTHFに溶解させ、実施例16の試料はトルエンに溶解させた。その外観を図13に示す。
 次に、実施例16で得たスターポリマー13からなる膜と、PEG750(スターポリマーなし)からなる同様の膜をそれぞれ調製し、二酸化炭素、ヘリウム及び窒素の透過率(Performance)を測定し、選択性(Selectivity)を算出した。結果を表3に示す。この結果、二酸化炭素の透過率と窒素の透過率との比(CO2/N2)について、スターポリマーなしの膜と比較し、本発明のスターポリマーを使用したガス分離膜は約10倍の選択性を示しており、ガス分離膜として有用であることが示唆される。
Figure JPOXMLDOC01-appb-T000052

Claims (15)

  1. 2価以上の金属イオンと、有機配位子とを含有し、且つ、前記金属イオンと前記有機配位子とが交互に配位結合されたスターポリマーであって、
    前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を2種類以上含有している、スターポリマー。
  2. 前記有機配位子は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Yはハロゲン原子、置換されていてもよい芳香族基、又は-S(C=S)R{Rは置換されていてもよい芳香族基、又は-R(R(Rは硫黄原子、炭素原子、酸素原子又は窒素原子を示す。Rは置換されていてもよいアルキル基又はアリール基を示す。mはRの種類に依存し、1~3の整数を示す。mが複数の場合、複数のRは同一でも異なっていてもよい。)で表される基を示す。}で表される基を示す。Y’は芳香族炭化水素環又は複素芳香環を示す。Rは単結合又は2価の基を示す。n個のZは同一又は異なって、重合高分子のモノマー単位を示す。nは5~20000を示す。]
    で表される配位子を2種類以上含有している、請求項1に記載のスターポリマー。
  3. 前記Y’は、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、若しくはチオフェン環からなる単環、又は前記単環に1個又は2個以上のベンゼン環が縮合した縮合環であり、
    前記単環又は縮合環とCOO基との結合中に、一般式(7):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは同一又は異なって、炭素原子又は窒素原子を示す。Rは置換されていてもよい2価の芳香族炭化水素基を示す。kは0~2の整数を示す。]
    で表される基が含まれていてもよい、請求項1又は2に記載のスターポリマー。
  4. 前記有機配位子は、一般式(1-1A):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R、Z及びnは前記に同じである。]
    で表される有機配位子を2種類以上含有する、請求項2又は3に記載のスターポリマー。
  5. 前記金属イオンと、前記有機配位子とからなる、請求項1~4のいずれかに記載のスターポリマー。
  6. 前記Rが置換されていてもよい芳香族基又は-SRで表される基である、請求項2~5のいずれかに記載のスターポリマー。
  7. 前記Rが置換されていてもよいアルキレン基である、請求項2~6のいずれかに記載のスターポリマー。
  8. 前記金属イオンを4個以上含有し、且つ、前記有機配位子を4個以上含有する、請求項1~7のいずれかに記載のスターポリマー。
  9. 前記金属イオンが2価の金属イオンである、請求項1~8のいずれかに記載のスターポリマー。
  10. 前記Zがメタクリル酸若しくはその誘導体残基、アクリル酸若しくはその誘導体残基、スチレン若しくはその誘導体残基、4-ビニルピリジン残基、酢酸ビニル残基、並びにビニルアルコール残基よりなる群から選ばれる少なくとも1種である、請求項1~9のいずれかに記載のスターポリマー。
  11. 平均直径が2nm~400nmである、請求項1~10のいずれかに記載のスターポリマー。
  12. 2価以上の金属イオンと、有機配位子とを含有し、前記金属イオンと前記有機配位子とが交互に配位結合され、且つ、前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を含有するスターポリマーの製造方法であって、
    2個のカルボキシ基を有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した高分子化合物と、2価以上の金属を含む金属化合物とを反応させる反応工程
    を備える、製造方法。
  13. 前記反応工程の前に、
    2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環を有する化合物と、モノマー化合物とを用いて、リビング重合を施す重合工程
    を備える、請求項12に記載の製造方法。
  14. 2価以上の金属イオンと、有機配位子とを含有し、前記金属イオンと前記有機配位子とが交互に配位結合され、且つ、前記有機配位子は、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した配位子を含有するスターポリマーが有する高分子鎖の本数を調製する方法であって、
    2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環に高分子鎖を有する基が結合した高分子化合物と、2個のカルボキシアニオンを有する芳香族炭化水素環又は複素芳香環を有する化合物と、2価以上の金属を含む金属化合物とを反応させる反応工程
    を備える、方法。
  15. 一般式(3):
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは置換されていてもよい芳香族基、又は-R(R(Rは硫黄原子、炭素原子、酸素原子又は窒素原子を示す。Rは置換されていてもよいアルキル基又はアリール基を示す。mはRの種類に依存し、1~3の整数を示す。mが複数の場合、複数のRは同一でも異なっていてもよい。)で表される基を示す。Rは単結合又は2価の基を示す。n個のZは同一又は異なって、重合高分子のモノマー単位を示す。nは5~20000を示す。]
    で表される高分子化合物。
PCT/JP2016/087317 2015-12-14 2016-12-14 スターポリマー WO2017104724A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556111A JPWO2017104724A1 (ja) 2015-12-14 2016-12-14 スターポリマー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243639 2015-12-14
JP2015-243639 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017104724A1 true WO2017104724A1 (ja) 2017-06-22

Family

ID=59056789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087317 WO2017104724A1 (ja) 2015-12-14 2016-12-14 スターポリマー

Country Status (2)

Country Link
JP (1) JPWO2017104724A1 (ja)
WO (1) WO2017104724A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012373A1 (ja) * 2013-07-26 2015-01-29 国立大学法人京都大学 Pcp複合体
WO2015170506A1 (ja) * 2014-05-08 2015-11-12 国立大学法人北海道大学 ゲスト放出制御可能な金属有機構造体-刺激応答性ポリマー複合体
WO2016143876A1 (ja) * 2015-03-10 2016-09-15 国立大学法人京都大学 配位子化合物、並びにそれを用いた単孔性若しくは多孔性配位高分子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012373A1 (ja) * 2013-07-26 2015-01-29 国立大学法人京都大学 Pcp複合体
WO2015170506A1 (ja) * 2014-05-08 2015-11-12 国立大学法人北海道大学 ゲスト放出制御可能な金属有機構造体-刺激応答性ポリマー複合体
WO2016143876A1 (ja) * 2015-03-10 2016-09-15 国立大学法人京都大学 配位子化合物、並びにそれを用いた単孔性若しくは多孔性配位高分子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOSONO NOBUHIKO ET AL., POLYMER GRAFTED METAL-ORGANIC POLYHEDRA, 11 March 2015 (2015-03-11), pages 777, ISSN: 0285-7626 *

Also Published As

Publication number Publication date
JPWO2017104724A1 (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
KR101763009B1 (ko) 블록 공중합체
TW448189B (en) Process for the controlled radical polymerization or copolymerization of (meth)acrylic and vinyl monomers
CN108409954B (zh) 一种二氧化碳基聚碳酸酯嵌段共聚物的合成方法
WO2016143876A1 (ja) 配位子化合物、並びにそれを用いた単孔性若しくは多孔性配位高分子
EP3271155B1 (en) Method of additive manufacturing using photoregulated radical polymerization
JP2002293830A (ja) ビニル−フェニルピリジン単量体およびそれを用いて製造した高分子
Wani et al. Heteroleptic 1D coordination polymers: 5-Coordinated zinc (II) polymer as an efficient transesterification catalyst
WO2017104724A1 (ja) スターポリマー
JP7113509B2 (ja) 高分子金属錯体の製造方法
WO2009113148A1 (ja) 鉄錯体を触媒とする重合体の製造方法
Giachi et al. Pd (II)‐pyridine macrocomplexes based on poly (lactide)
Chu et al. Synthesis of thiophene-containing acyclic alkoxyamine for nitroxide-mediated radical polymerization of acrylates and styrene
JP7150265B2 (ja) 片末端修飾ポリチオフェンの製造方法
Chen et al. Facile synthesis of cylindrical molecular brushes via Lewis pair-mediated polymerization
WO2012001601A1 (fr) Ligands supportes a haute densite locale d'atomes coordinants
Saravanamoorthy et al. Transition metal complexes of tridentate Schiff base ligand as efficient reusable catalyst for the synthesis of polycaprolactone and polylactide
JP4200466B2 (ja) 鉄錯体を触媒とする重合体の製造方法
WO2000078740A1 (en) Solid-supported initiators and functional polymers for use in organic synthesis and combinatorial chemistry
JP2015172120A (ja) 多孔性金属錯体を用いたポリマーの製造方法
JP2008189586A (ja) ビニル基を有する遷移金属配位化合物及びその製造方法、並びに該遷移金属配位化合物を使用した遷移金属分子インプリントポリマーの製造方法
JP5761817B2 (ja) スターポリマー及びその製法
JP2005200384A (ja) 側鎖を有する高分子錯体の製造方法
KR101821723B1 (ko) 블록공중합체 제조 방법 및 고분자 필름 제조방법
JP2007023136A (ja) ビニル系ポリマーの製造方法
CN117510884A (zh) 一种多孔配位聚合物及制备、及其利用温度切换实现分子识别选择性

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875701

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017556111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875701

Country of ref document: EP

Kind code of ref document: A1