WO2017104423A1 - ゴム組成物及びタイヤ - Google Patents
ゴム組成物及びタイヤ Download PDFInfo
- Publication number
- WO2017104423A1 WO2017104423A1 PCT/JP2016/085668 JP2016085668W WO2017104423A1 WO 2017104423 A1 WO2017104423 A1 WO 2017104423A1 JP 2016085668 W JP2016085668 W JP 2016085668W WO 2017104423 A1 WO2017104423 A1 WO 2017104423A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- rubber
- conjugated diene
- polymer
- rubber component
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
Definitions
- the present invention relates to a rubber composition and a tire using the rubber composition that achieves a higher level of wet grip, low heat build-up, and wear resistance.
- An object of the present invention is to provide a rubber composition capable of achieving both high wet grip properties, low heat generation properties, and wear resistance.
- the gist of the present invention is as follows. [1] A rubber component A containing natural rubber and a modified conjugated diene (co) polymer having a glass transition temperature of ⁇ 50 ° C. or lower, a rubber component B having a glass transition temperature of ⁇ 35 ° C. or higher, and a reinforcing filler.
- the modified conjugated diene (co) polymer is a silanol group at a molecular end of the conjugated diene (co) polymer, and a functional group in the vicinity of the silanol group, and the silanol group and the reinforcement Two peaks based on each of the rubber component A and the rubber component B are observed in the temperature dispersion curve of tan ⁇ by a dynamic viscoelasticity test.
- the rubber composition characterized by the above-mentioned. [2] The rubber composition according to [1], wherein the rubber component A is contained in an amount of 50% by mass or more based on the total mass of the rubber component A and the rubber component B.
- a rubber composition according to an embodiment of the present invention includes a rubber component A containing natural rubber and a modified conjugated diene (co) polymer having a glass transition temperature of ⁇ 50 ° C. or lower, and a rubber component having a glass transition temperature of ⁇ 35 ° C. or higher. B and a reinforcing filler are blended, and the modified conjugated diene (co) polymer has a silanol group at the molecular end of the conjugated diene (co) polymer and a functional group in the vicinity of the silanol group.
- the temperature dispersion curve of tan ⁇ of the rubber component is as follows: strain 0.1%, frequency 45 Hz, measurement temperature range 65 ° C. to ⁇ 100 ° C., using a viscoelasticity tester ARES manufactured by Rheometrics Co., Ltd. It can be measured at a rate of 1 ° C./min.
- the rubber component A applicable to the rubber composition according to this embodiment includes natural rubber and a modified conjugated diene (co) polymer having a glass transition temperature of ⁇ 50 ° C. or lower.
- the ratio of the natural rubber in the rubber component A is preferably 10% by mass or more and 80% by mass or less, and more preferably 40% by mass or more and 60% by mass or less based on the total mass of the rubber component A. When the ratio of the natural rubber in the rubber component A is in the above range, good low heat build-up can be obtained. By including natural rubber in the rubber component A, it is possible to improve the wear resistance of a tire formed using the rubber composition.
- the glass transition temperature of the modified conjugated diene (co) polymer is ⁇ 50 ° C. or lower, preferably ⁇ 60 ° C. or lower. Furthermore, the glass transition temperature of the rubber component A is preferably set lower than the glass transition temperature of the rubber component B described later.
- silica is used as the reinforcing filler described later by including a modified conjugated diene (co) polymer in rubber component A
- the dispersibility of silica in rubber component A is enhanced.
- the rubber component A having a relatively low glass transition point is dispersed. Thereby, the increase in tan ⁇ at 60 ° C. caused by blending silica can be suppressed, and the rolling performance of a tire obtained using the rubber composition can be improved.
- the glass transition temperature increases when the amount of styrene and vinyl contained in the rubber component increases.
- the contribution to the increase in the glass transition temperature is considered to be greater for the styrene content than for the vinyl content. Therefore, in this embodiment, an index of (styrene amount + 1/2 vinyl amount) is used.
- the (styrene content + 1/2 vinyl content) of the modified conjugated diene (co) polymer applicable to the rubber composition according to this embodiment is preferably 35% by mass or less, and 20% by mass. % Or less is more preferable.
- the glass transition temperature of the modified conjugated diene (co) polymer can be set to ⁇ 50 ° C. or less.
- the rubber component A will show a peak in the temperature different from the rubber component B mentioned later in the temperature dispersion curve of tan-delta of a rubber composition.
- the reinforcing filler is unevenly distributed in the modified conjugated diene (co) polymer in the rubber component A, and is excellent in the rubber component A. Can be dispersed.
- the rubber component A is preferably contained in an amount of 50% by mass or more, more preferably 60% by mass or more, based on the total mass of the rubber component A and the rubber component B. More preferably, it is 80 mass% or more. From the viewpoint of maintaining the wear resistance of the rubber composition, the upper limit of the ratio of the rubber component A is 95% by mass.
- ⁇ Modified conjugated diene (co) polymer having a glass transition temperature of ⁇ 50 ° C. or lower examples include the following. That is, the active site of the conjugated diene (co) polymer having an active site has a characteristic group that generates a silanol group by hydrolysis, and (i) an addition reaction or a substitution reaction in the active site in the vicinity of the characteristic group.
- the characteristic group that generates a silanol group by hydrolysis is an alkoxysilane group, and 10% or more of the characteristic group generates a silanol group by hydrolysis.
- what is described as a conjugated diene (co) polymer includes a conjugated diene polymer and a conjugated diene copolymer.
- the characteristic group that generates a silanol group by hydrolysis needs to become a silanol group by reaction when reacting with a reinforcing filler, particularly silica, but if it is a silanol group from the beginning, the reactivity with silica is It becomes higher, and there is a great effect that dispersibility of silica in the rubber composition is improved and low exothermic property of the rubber composition is improved. Furthermore, when the characteristic group that generates a silanol group by hydrolysis is an alkoxy group, a volatile organic compound (VOC, particularly alcohol) is generated, but a silanol group is not generated.
- VOC volatile organic compound
- the functional group is present in the vicinity of a characteristic group that generates a silanol group
- the functional group is preferably 1 to 20 carbon atoms from the characteristic group in the organosilane compound.
- the range which may be through silicon atoms
- “Nearby” in the case of “silanol group and functional group in the vicinity of the silanol group” has the same meaning as above.
- the organosilane compound and the conjugated diene (co) deuterium are formed by performing (i) addition or substitution reaction on the active site in the vicinity of the characteristic group that generates a silanol group by hydrolysis.
- the silane compound is preferably an organic silane compound represented by the following general formula (1) or the following general formula (2).
- R 1 is a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms
- R 2 and R 3 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms
- —OL 1 Is a hydrolyzable functional group that forms a silanol group with Si by hydrolysis
- a 1 binds the organosilane compound and the conjugated diene (co) polymer by performing an addition or substitution reaction on the active site; Further, it is a functional group that promotes the reaction between the silanol group and the reinforcing filler after the reaction, and m is an integer of 1 to 10.
- “R 1 is a single bond” means, for example, that in the general formula (1), A 1 and Si are directly bonded by a single bond.
- R 4 , R 5 , R 6 and A 4 the same applies to R 4 , R 5 , R 6 and A 4 .
- R 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- hydrocarbon group for R 5 and R 6 are each independently a single bond, a hydrogen atom or a C 1-20
- -OL 2 represents a hydrolyzable
- a 2 is a hydrolyzable functional group that generates a silanol group together with Si
- a 2 is a functional group that reacts with the active site, or an addition or substitution reaction on the active site, thereby allowing the organosilane compound and the conjugated diene (co) heavy
- B and D are groups each independently containing at least one functional group that promotes the reaction between the silanol group and the reinforcing filler
- p and q are each independently 0 to It is an integer of 5, (p + q) is 1 or more, and n is an integer of 1 to 10.
- an alkoxy group having 1 to 20 carbon atoms for example, an alkoxy group having 1 to 20 carbon atoms, a phenoxy group, a benzyloxy group, —OM (1 / x), and the like are preferable. Can be mentioned. Of these, an alkoxy group having 1 to 20 carbon atoms is more preferable, and an alkoxy group having 1 to 12 carbon atoms is particularly preferable. Specific examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, and a tert-butoxy group.
- M is a group 1 element excluding hydrogen (ie, alkali metal); a group 2-12 element; a group 13 element excluding boron; a group excluding carbon and silicon.
- Group 14 element a metal atom selected from Group 15 elements and rare earth elements excluding nitrogen, phosphorus and arsenic, and x is the valence of the metal atom.
- Group 2 elements are Be, Mg and alkaline earth metals. Among these metal atoms, alkali metals, Mg, alkaline earth metals, Sn, Al, Ti, and Fe are more preferable, and Li, Na, K, Mg, Ca, Ba, Sn, Al, Ti, and Fe are particularly preferable. .
- the organosilane compound and the conjugated diene (co) polymer are bonded by performing an addition or substitution reaction on the active site, and after the reaction, the silanol group and the reinforcing filling
- the functional group A 1 that promotes the reaction with the material include (thio) epoxy group (including glycidoxy group), (thio) isocyanate group, nitrile group (cyano group), pyridyl group, N-alkylpyrrolidonyl Group, N-alkylimidazolyl group, N-alkylpyrazolyl group, (thio) ketone group, (thio) aldehyde group, imine residue, amide group, ketimine group, isocyanuric acid triester residue, Thio) carboxylic acid hydrocarbyl ester residue, residue of (thio) carboxylic acid metal salt having 1 to 20 carbon atoms, carboxylic acid anhydride having 1 to 20 carbon atoms Product residues, carb
- the halogen of the carboxylic acid halide residue having 1 to 20 carbon atoms is preferably chlorine, bromine or fluorine.
- a maleic anhydride residue, a phthalic anhydride residue, an acetic anhydride residue and the like are preferable. These are groups that bind to the active site of the conjugated diene (co) polymer and also promote the reaction with silica.
- a functional group that reacts with the active site or a functional group A 2 that binds the organosilane compound and the conjugated diene (co) polymer by performing an addition or substitution reaction on the active site As the following formula (2-a) -R d SiX 3 (2-a) [Wherein, R d represents a single bond, a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or —OR e (R e is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms); X represents a halogen atom or an alkoxy group having 1 to 10 carbon atoms, and a plurality of X may be the same or different. Or a (thio) epoxy group, (thio) isocyanate group, nitrile group, imidazolyl group, ketimine group, (thio) ketone group or protected primary or secondary amino group Can do.
- the functional group A 2 that reacts with the active site of the conjugated diene (co) polymer is a functional group that can chemically react with the active site.
- a 2 is preferable, and examples thereof include an alkoxy group having 1 to 20 carbon atoms, a phenoxy group, a benzyloxy group, and a halogen group.
- An alkoxy group having 1 to 20 carbon atoms is more preferable, and an alkoxy group having 1 to 12 carbon atoms is particularly preferable.
- alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, an n-butoxy group, and a tert-butoxy group.
- halogen chlorine, bromine or fluorine is preferable.
- the groups B and D containing at least one functional group that promotes the reaction between the silanol group and the reinforcing filler each independently, for example, a primary amino group, a second amino group, Amino group, protected primary or secondary amino group, tertiary amino group, cyclic amino group, oxazolyl group, imidazolyl group, aziridinyl group, (thio) ketone group, (thio) aldehyde group, amide group, (thio) Epoxy group (including glycidoxy group), (thio) isocyanate group, nitrile group (cyano group), pyridyl group, N-alkylpyrrolidonyl group, N-alkylimidazolyl group, N-alkylpyrazolyl group, imino group, amide group , Ketimine group, imine residue, isocyanuric acid triester residue, (thio) carboxylic acid hydrocarbyl ester residue
- E is an imino group, a divalent imine residue, a divalent pyridine residue or a divalent amide residue
- F is an alkylene group having 1 to 20 carbon atoms, a phenylene group or an aralkylene having 8 to 20 carbon atoms
- Group G is primary amino group, secondary amino group, protected primary or secondary amino group, tertiary amino group, cyclic amino group, oxazolyl group, imidazolyl group, aziridinyl group, ketimine group, nitrile group (cyano Group), an amide group, a pyridine group or a (thio) isocyanate group.
- the functional group represented by the general formula -EFFG include, for example, -NH-C 2 H 4 -NH 2 , -NH-C 2 H 4 -N (CH 3 ) 2 , and these Examples thereof include a functional group in which —C 2 H 4 — is replaced with —C 6 H 12 — or a phenylene group.
- the silicon-containing group in which a halogen atom or an alkoxy group is bonded to a silicon atom, and the —R d SiX 3 group represented by the formula (2-a) are the activity of the conjugated diene (co) polymer.
- (thio) epoxy group, (thio) isocyanate group, nitrile group, imidazolyl group, ketimine group, (thio) ketone group or protected primary or secondary amino group is silica It is a group that promotes the reaction.
- the reinforcing filler particularly the hydroxy group on the silica surface, the silanol group, and the silanol group react with the reinforcing filler. It can be considered that a stable structure is formed by the three atoms (oxygen atom, sulfur atom or nitrogen atom) having unpaired electrons in the functional group to be promoted, and the reactivity of the silanol group to silica is improved. Thereby, the low exothermic property of the rubber composition of the present invention using the modified conjugated diene (co) polymer of the present invention is improved.
- a hydrocarbon having 1 to 20 carbon atoms which is R 5 when R 1 , R 4 or p is 1 or R 6 when q is 1 in the above general formula (1) and (2)
- Specific examples of the group include methylene group, ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane-1,3-diyl group, pentane.
- octane-1,8- Examples thereof include a diyl group, a nonane-1,9-diyl group, a decane-1,10-diyl group, a cyclopentane-1,3-diyl group, and a cyclohexane-1,4-diyl group.
- the propane-1,3-diyl group is particularly preferred.
- R 5 when p is 0 and R 6 when q is 0 are a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms in the same manner as R 2 and R 3 . That is, the valence of R 5 is (p + 1), and the valence of R 6 is (q + 1).
- R 2 , R 3 , p 5 is 0, or R 5 is q 0 and R 6 is C 1-20
- the monovalent hydrocarbon group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n -Heptyl group, n-octyl group, stearyl group and the like.
- a methyl group or an ethyl group is particularly preferable.
- organosilane compound represented by the above general formula (1) examples include (2-glycidoxyethyl) dimethylmethoxysilane, (2-glycidoxyethyl) diethylmethoxy as (thio) epoxy group-containing silane compounds.
- Silane (2-glycidoxyethyl) dimethylethoxysilane, (2-glycidoxyethyl) diethylethoxysilane, (3-glycidoxypropyl) dimethylmethoxysilane, (3-glycidoxypropyl) diethylmethoxysilane, (3-glycidoxypropyl) dimethylethoxysilane, (3-glycidoxypropyl) diethylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (dimethyl) methoxysilane, 2- (3,4-epoxycyclohexyl) ) Ethyl (diethyl) methoxysilane, 2- 3,4-epoxycyclohexyl) ethyl (dimethyl) ethoxysilane, an epoxy group in the 2- (3,4-epoxycyclohexyl) ethyl (diethyl) eth
- (3-glycidoxypropyl) dimethylmethoxysilane, (3-glycidoxypropyl) diethylmethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (dimethyl) methoxysilane and 2- ( 3,4-epoxycyclohexyl) ethyl (diethyl) methoxysilane is preferred.
- organic silane compound represented by the general formula (1) is N- (1,3-dimethylbutylidene) -3- (dimethylethoxysilyl)- 1-propanamine, N- (1,3-dimethylbutylidene) -3- (diethylethoxysilyl) -1-propanamine, N- (1-methylethylidene) -3- (dimethylethoxysilyl) -1-propane Amines, N- (1-methylethylidene) -3- (diethylethoxysilyl) -1-propanamine, N-ethylidene-3- (dimethylethoxysilyl) -1-propanamine, N-ethylidene-3- (diethylethoxy) Silyl) -1-propanamine, N- (1-methylpropylidene) -3- (dimethylethoxysilyl) -1-propan N- (1-methylpropylidene) -3- (di
- organosilane compound represented by the general formula (1) as an imino (amidine) group-containing compound, 1- [3- (dimethylethoxysilyl) propyl] -4,5-dihydroimidazole, -[3- (diethylethoxysilyl) propyl] -4,5-dihydroimidazole, 1- [3- (dimethylmethoxysilyl) propyl] -4,5-dihydroimidazole, 1- [3- (diethylmethoxysilyl) propyl ] -4,5-dihydroimidazole, 3- [10- (dimethylethoxysilyl) decyl] -4-oxazoline, 3- [10- (diethylethoxysilyl) decyl] -4-oxazoline, 3- (1-hexamethylene Imino) propyl (dimethylethoxy) silane, 3- (1-hexamethyleneimino
- organic silane compound represented by the general formula (1) as the carboxylic acid ester group-containing compound, (3-methacryloyloxypropyl) dimethylethoxysilane, (3-methacryloyloxypropyl) Diethylethoxysilane, (3-methacryloyloxypropyl) dimethylmethoxysilane, (3-methacryloyloxypropyl) diethylmethoxysilane, (3-methacryloyloxypropyl) dimethylisopropoxysilane, (3-methacryloyloxypropyl) diethyl Examples thereof include isopropoxysilane, and among these, (3-methacryloyloxypropyl) dimethylmethoxysilane and (3-methacryloyloxypropyl) diethylmethoxysilane are preferable.
- organic silane compound represented by the general formula (1) as the isocyanate group-containing compound, (3-isocyanatopropyl) dimethylmethoxysilane, (3-isocyanatopropyl) diethylmethoxysilane, (3-isocyanatopropyl) dimethylethoxysilane, (3-isocyanatopropyl) diethylethoxysilane, (3-isocyanatopropyl) dimethylisopropoxysilane, (3-isocyanatopropyl) diethylisopropoxysilane, etc.
- (3-isocyanatopropyl) dimethylethoxysilane and (3-isocyanatopropyl) diethylethoxysilane are preferred.
- organic silane compound represented by the above general formula (1) includes 3- (dimethylethoxy) silylpropylsuccinic anhydride, 3- (diethylethoxy) silyl as a carboxylic acid anhydride-containing compound.
- 3- (dimethylethoxy) silyl is preferable.
- Propyl succinic anhydride and 3- (diethylethoxy) silylpropyl succinic anhydride is preferable.
- organosilane compound represented by the general formula (2) examples include a trialkylsilyl group in which a protecting group is represented by —SiR a R b R c (where R a , R b and R c are each independently a carbon number). And a hydrocarbyloxysilane compound having a protected primary amino group having two alkyl groups of 1 to 12 alkyl groups, preferably a methyl group, an ethyl group, a propyl group, a propyl group or a butyl group.
- hydrocarbyloxysilane compound having a protected primary amino group examples include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, N Preferred examples include N, N-bis (trimethylsilyl) aminoethylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldiethoxysilane, and the like. Among these, N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane or N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane is particularly preferable.
- a trialkylsilyl group (R a , R b and R c are the same as above) in which the protecting group is represented by —SiR a R b R c And a hydrocarbyloxysilane compound having a protected secondary amino group.
- hydrocarbyloxysilane compound having a protected secondary amino group examples include N, N-methyl (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-ethyl (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N N-methyl (trimethylsilyl) aminopropylmethyldiethoxysilane, N, N-ethyl (trimethylsilyl) aminopropylmethyldiethoxysilane, N, N-methyl (trimethylsilyl) aminoethylmethyldimethoxysilane, N, N-ethyl (trimethylsilyl) Preferred examples include aminoethylmethyldimethoxysilane, N, N-methyl (trimethylsilyl) aminoethylmethyldiethoxysilane, and N, N-ethyl (trimethylsilyl) aminoethylmethyldiethoxysilane. That.
- organosilane compound represented by the general formula (2) is, for example, N- (1,3-dimethylbutylidene) -3- (methyldiethoxysilyl) -1-propanamine, N- (1-methylethylidene) -3- (methyldiethoxysilyl) -1-propanamine, N-ethylidene-3- (methyldiethoxysilyl) -1-propanamine, N- (1-methylpropylidene) -3- (Methyldiethoxysilyl) -1-propanamine, N- (4-N, N-dimethylaminobenzylidene) -3- (methyldiethoxysilyl) -1-propanamine, N- (cyclohexylidene) -3- (methyldiethoxysilyl) -1-propanamine and methyldimethoxysilyl compounds corresponding to these methyldiethoxysilyl compounds, Preferable examples include imine residue-containing hydrocarbyloxy
- N- (1-methylpropylidene) -3- (methyldiethoxy) is particularly preferable.
- Silyl) -1-propanamine and N- (1,3-dimethylbutylidene) -3- (methyldiethoxysilyl) -1-propanamine are preferred.
- organic silane compound represented by the general formula (2) examples include, for example, 3-dimethylaminopropyl (diethoxy) methylsilane, 3-dimethylaminopropyl (dimethoxy) methylsilane, 3-diethylaminopropyl (diethoxy).
- Preferred examples include non-cyclic tertiary amino group-containing hydrocarbyloxysilane compounds such as methylsilane, 3-diethylaminopropyl (dimethoxy) methylsilane, 2-dimethylaminoethyl (diethoxy) methylsilane, and 2-dimethylaminoethyl (dimethoxy) methylsilane.
- 3-dimethylaminopropyl (dimethoxy) methylsilane and 3-dimethylaminopropyl (diethoxy) methylsilane are particularly preferred.
- organic silane compound represented by the general formula (2) include, for example, 3-methylaminopropyl (diethoxy) methylsilane, 3-methylaminopropyl (dimethoxy) methylsilane, 3-ethylaminopropyl ( Preferred examples include non-cyclic secondary amino group-containing hydrocarbyloxysilane compounds such as diethoxy) methylsilane, 3-ethylaminopropyl (dimethoxy) methylsilane, 2-methylaminoethyl (diethoxy) methylsilane, 2-methylaminoethyl (dimethoxy) methylsilane, and the like.
- 3-methylaminopropyl (diethoxy) methylsilane and 3-methylaminopropyl (dimethoxy) methylsilane are particularly preferable.
- aminopropyl (diethoxy) methylsilane can be preferably used.
- organic silane compound represented by the general formula (2) include, for example, 3- (1-hexamethyleneimino) propyl (methyldiethoxy) silane, 3- (1-hexamethyleneimino) Propyl (methyldimethoxy) silane, (1-hexamethyleneimino) methyl (methyldimethoxy) silane, (1-hexamethyleneimino) methyl (methyldiethoxy) silane, 2- (1-hexamethyleneimino) ethyl (methyldiethoxy) ) Silane, 2- (1-hexamethyleneimino) ethyl (methyldimethoxy) silane, 3- (1-pyrrolidinyl) propyl (methyldiethoxy) silane, 3- (1-pyrrolidinyl) propyl (methyldimethoxy) silane, 3- (1-heptamethyleneimino) propyl (methyldiethoxy) silane, -(1-dodecamethyleneimino) propyl (methyldiethoxy) silane, -
- organosilane compound represented by the general formula (2) is, for example, N- (3-methyldimethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-methyldiethoxy Examples include amidine group-containing hydrocarbyloxysilane compounds such as (silylpropyl) -4,5-dihydroimidazole, and among these, N- (3-methyldiethoxysilylpropyl) -4,5-dihydroimidazole is preferable.
- organosilane compound represented by the general formula (2) include, for example, (2-glycidoxyethyl) methyldimethoxysilane, (2-glycidoxyethyl) methyldiethoxysilane, ( 2-glycidoxyethyl) ethyldimethoxysilane, (2-glycidoxyethyl) ethyldiethoxysilane, (3-glycidoxypropyl) methyldimethoxysilane, (3-glycidoxypropyl) methyldiethoxysilane, ( 3-glycidoxypropyl) ethyldimethoxysilane, (3-glycidoxypropyl) ethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyldimethoxy) silane, 2- (3,4-exicyclohexyl) ) Ethyl (methyldiethoxy) silane 2- (3,
- (3) -Glycidoxypropyl) methyldimethoxysilane and (3-glycidoxypropyl) methyldiethoxysilane are preferred.
- An epithio group-containing hydrocarbyloxysilane compound obtained by replacing the epoxy group of the epoxy group-containing hydrocarbyloxysilane compound with an epithio group can also be preferably exemplified.
- organic silane compound represented by the general formula (2) include, for example, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, and 3-methacryloyloxy.
- examples include hydrocarbyloxysilane compounds containing carboxylic acid hydrocarbyl ester residues such as propylethyldimethoxysilane, 3-methacryloyloxypropylethyldiethoxysilane, and 3-methacryloyloxypropylmethyldiisopropoxysilane. Loyloxypropylmethyldimethoxysilane and 3-methacryloyloxypropylmethyldiethoxysilane are preferred.
- organosilane compound represented by the general formula (2) include, for example, 3- (methyldiethoxysilyl) propyl succinic anhydride, 3- (methyldimethoxysilyl) propyl succinic anhydride Examples thereof include hydrocarbyloxysilane compounds containing carboxylic acid anhydride residues such as 3- (methyldiethoxysilyl) propyl succinic anhydride. Further, 2- (methyldimethoxysilylethyl) pyridine, 2- (methyldiethoxysilylethyl) pyridine, 2-cyanoethylmethyldiethoxysilane and the like can be mentioned.
- a hydrocarbyloxysilane compound having an amino group or an imine residue is preferable from the viewpoint of improving low heat build-up, and among them, the above-mentioned protected
- a hydrocarbyloxysilane compound having a primary amino group is particularly preferred. This is because introduction of a primary amino group into the molecular chain terminal of the modified conjugated diene (co) polymer greatly improves the low heat buildup of the rubber composition containing the modified conjugated diene (co) polymer.
- the method for producing a modified conjugated diene (co) polymer may optionally include hydrocarbyl at the active site of the conjugated diene (co) polymer before the modification reaction step of reacting the organosilane compound.
- a pre-denaturing reaction step of reacting the oxysilane compound may be further included.
- the hydrocarbyloxysilane compound used in the preliminary modification reaction step preferably has a plurality of hydrocarbyloxysilyl groups. Even if one hydrocarbyloxysilyl group is consumed by reaction with the active site of the conjugated diene (co) polymer, the remaining hydrocarbyloxysilyl group is used to produce the modified conjugated diene (co) polymer in the present invention. This is because the modification reaction step necessary for the above can be carried out.
- conjugated diene monomer used to obtain a conjugated diene (co) polymer that can be used in the production of a modified conjugated diene (co) polymer examples include 1,3-butadiene, isoprene, and 1,3-pentadiene. 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-hexadiene and the like. These may be used alone or in combination of two or more. Of these, 1,3-butadiene is particularly preferred.
- aromatic vinyl monomer used in the conjugated diene (co) polymer examples include styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 3-vinyltoluene, ethylvinylbenzene, divinylbenzene, 4-cyclohexane.
- examples include hexyl styrene and 2,4,6-trimethyl styrene. These may be used alone or in combination of two or more. Of these, styrene is particularly preferred.
- the conjugated diene (co) polymer may be polybutadiene, polyisoprene, butadiene-isoprene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer or styrene-isoprene-butadiene terpolymer.
- polybutadiene and styrene-butadiene copolymer are particularly preferable.
- the styrene-butadiene copolymer that can be used as the conjugated diene (co) polymer preferably has a weight average molecular weight (Mw) before or after the modification reaction described later of 100,000 to 800,000. 150,000 to 700,000 is more preferable.
- Mw weight average molecular weight
- the elastic modulus of the vulcanizate is reduced and the increase in hysteresis loss is suppressed to obtain excellent fracture resistance, and the rubber composition containing SBR has excellent kneading workability. can get.
- a weight average molecular weight is obtained by standard polystyrene conversion based on GPC method.
- the styrene-butadiene copolymer may be emulsion polymerization SBR or solution polymerization SBR.
- the styrene-butadiene copolymer may be represented as SBR, and the modified styrene-butadiene copolymer may be represented as modified SBR.
- the following method may be used for producing the modified styrene-butadiene copolymer. That is, in order to react and modify a hydrocarbyloxysilane compound, particularly a hydrocarbyloxysilane compound containing nitrogen and silicon, on the active terminal of the styrene-butadiene copolymer, the styrene-butadiene copolymer contains at least 10% polymer.
- the chain has a living property or pseudo-living property.
- a polymerization reaction having a living property a reaction in which an organic alkali metal compound is used as an initiator and styrene and butadiene are anionically polymerized in an organic solvent is preferable.
- a high conjugated diene moiety vinyl bond content can be obtained, and the glass transition temperature Tg can be adjusted to a desired temperature.
- Heat resistance can be improved by increasing the vinyl bond content, and fuel efficiency can be improved by increasing the cis-1,4 bond content.
- an organic lithium compound is preferable as the organic alkali metal compound used as the initiator for the above-mentioned anionic polymerization.
- the organolithium compound is not particularly limited, but hydrocarbyl lithium or lithium amide compound is preferably used.
- hydrocarbyl lithium When the former hydrocarbyl lithium is used, it has a hydrocarbyl group at the polymerization initiation terminal and the other terminal has polymerization activity. A styrene-butadiene copolymer as a site is obtained, and the above-described hydrocarbyloxysilane compound is reacted with the active terminal as a polymerization active site to be modified.
- the modified SBR according to the present invention can be obtained without modification with the above-described hydrocarbyloxysilane compound, but the hydrocarbyloxysilane compound, particularly nitrogen and silicon, are included at the active terminal that is the polymerization active site.
- the hydrocarbyl lithium that is a polymerization initiator preferably has a hydrocarbyl group having 2 to 20 carbon atoms.
- n-butyllithium is particularly preferable.
- lithium amide compound as a polymerization initiator examples include lithium hexamethylene imide, lithium pyrrolidide, lithium piperide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethyl amide, lithium diethyl amide, lithium dibutyl amide, lithium Dipropylamide, lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiverazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide, Examples include lithium methylphenethylamide.
- lithium hexamethylene imide lithium pyrrolidide
- lithium piperidide lithium heptamethylene imide
- lithium dodecamethylene imide lithium hexamethylene imide and lithium pyrrolidide are suitable.
- lithium amide compounds those prepared in advance from secondary amines and lithium compounds can be used for polymerization, but they can also be prepared in-polymerization in situ.
- the amount of the polymerization initiator used is preferably selected in the range of 0.2 to 20 mmol per 100 g of monomer.
- a method for producing a styrene-butadiene copolymer by anionic polymerization using the organolithium compound as a polymerization initiator is not particularly limited, and a conventionally known method can be used.
- the lithium compound is polymerized with a conjugated diene compound and an aromatic vinyl compound in an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as an aliphatic, alicyclic or aromatic hydrocarbon compound.
- a styrene-butadiene copolymer having a target active end can be obtained by anionic polymerization in the presence of a randomizer used as an initiator, if desired.
- the hydrocarbon solvent is preferably one having 3 to 8 carbon atoms.
- the monomer concentration in the solution is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
- the content of the aromatic vinyl compound in the charged monomer mixture is preferably 5 to 55% by mass, more preferably 6 to 45% by mass. .
- the randomizer used as desired is control of the microstructure of the styrene-butadiene copolymer, such as an increase in 1,2 bonds in the butadiene portion in the butadiene-styrene copolymer, an increase in 3,4 bonds in the isoprene polymer, etc.
- a compound having an action of controlling the composition distribution of monomer units in a conjugated diene-aromatic vinyl copolymer for example, randomizing butadiene units or styrene units in a butadiene-styrene copolymer.
- any one of known compounds generally used as a conventional randomizer can be appropriately selected and used.
- One of these randomizers may be used alone, or two or more thereof may be used in combination.
- the amount used is preferably selected in the range of 0.01 to 1000 molar equivalents per mole of lithium compound.
- the temperature in this polymerization reaction is preferably selected in the range of 0 to 150 ° C, more preferably 20 to 130 ° C.
- the polymerization reaction can be carried out under generated pressure, but it is usually desirable to operate at a pressure sufficient to keep the monomer in a substantially liquid phase. That is, the pressure depends on the particular material being polymerized, the polymerization medium used and the polymerization temperature, but higher pressures can be used if desired, such pressure being a gas that is inert with respect to the polymerization reaction. Can be obtained by an appropriate method such as pressurizing.
- a polymerization catalyst system for coordination anion polymerization As a polymerization catalyst system for coordination anionic polymerization, a catalyst containing a lanthanum series rare earth element compound in an organic solvent is used. As a catalyst containing a lanthanum series rare earth element compound, A component: a rare earth element-containing compound having an atomic number of 57 to 71 in the periodic table, or a reaction product of these compounds with a Lewis base, Component B: the following general formula (5): AlR 7 R 8 R 9 (5) (Wherein R 7 and R 8 are the same or different and are a hydrocarbyl group having 1 to 10 carbon atoms or a hydrogen atom, and R 9 is a hydrocarbyl group having 1 to 10 carbon atoms, provided that R 9 is R 7 or And may be the same as or different from R 8 ), and C component: a complex compound of Lewis acid, metal halide and Lewis base, and an organic compound containing an active halogen. It is preferred to polymerize
- an organoaluminum oxy compound so-called aluminoxane as a D component
- the catalyst system is preliminarily prepared in the presence of the component A, component B, component C, component D and conjugated diene monomer.
- the component A of the catalyst system containing the lanthanum series rare earth element compound is a compound containing a rare earth element having an atomic number of 57 to 71 in the periodic table, or a reaction product of these compounds with a Lewis base.
- the rare earth elements having atomic numbers of 57 to 71 neodymium, praseodymium, cerium, lanthanum, gadolinium, samarium, or a mixture thereof is preferable, and neodymium is particularly preferable.
- the rare earth element-containing compound is preferably a salt soluble in a hydrocarbon solvent, and specific examples include carboxylates, alkoxides, ⁇ -diketone complexes, phosphates and phosphites of the rare earth elements. Of these, carboxylates and phosphates are preferable, and carboxylates are particularly preferable.
- examples of the hydrocarbon solvent include saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane, saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as cyclopentane and cyclohexane, -Monoolefins such as butene, 2-butene, aromatic hydrocarbons such as benzene, toluene, xylene, methylene chloride, chloroform, trichloroethylene, perchloroethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene, chlorotoluene, etc.
- a halogenated hydrocarbon is mentioned.
- R 10 is a hydrocarbyl group having 1 to 20 carbon atoms, and M 1 is a rare earth element having an atomic number of 57 to 71 in the periodic table).
- R 10 may be saturated or unsaturated, is preferably an alkyl group or an alkenyl group, and may be linear, branched, or cyclic.
- the carboxyl group is bonded to a primary, secondary or tertiary carbon atom.
- carboxylate specifically, octanoic acid, 2-ethylhexanoic acid, oleic acid, neodecanoic acid, stearic acid, benzoic acid, naphthenic acid, versatic acid [trade names of Shell Chemical Co., Ltd. , A carboxylic acid in which a carboxyl group is bonded to a tertiary carbon atom] and the like.
- salts of 2-ethylhexanoic acid, neodecanoic acid, naphthenic acid, and versatic acid are preferable.
- R 11 is a hydrocarbyl group having 1 to 20 carbon atoms
- M 2 is a rare earth element having an atomic number of 57 to 71 in the periodic table.
- R 11 O examples include 2-ethyl-hexyloxy group, oleyloxy group, stearyloxy group, phenoxy group, benzyloxy group and the like. Of these, 2-ethyl-hexyloxy group and benzyloxy group are preferable.
- the rare earth element ⁇ -diketone complex examples include the rare earth element acetylacetone complex, benzoylacetone complex, propionitrileacetone complex, valerylacetone complex, and ethylacetylacetone complex. Among these, an acetylacetone complex and an ethylacetylacetone complex are preferable.
- rare earth element phosphate and phosphite examples include the rare earth element, bis (2-ethylhexyl) phosphate, bis (1-methylheptyl phosphate), bis (p-nonylphenyl) phosphate, phosphorus Bis (polyethylene glycol-p-nonylphenyl), phosphoric acid (1-methylheptyl) (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl), 2-ethylhexylphosphonic acid mono-2-ethylhexyl 2-ethylhexylphosphonic acid mono-p-nonylphenyl, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, bis (p-nonylphenyl) phosphinic acid, (1-methylheptyl) (2 -Ethylhexyl
- the rare earth elements bis (2-ethylhexyl) phosphate, bis (1-methylheptyl) phosphate, mono-2-ethylhexyl 2-ethylhexylphosphonate, A salt with bis (2-ethylhexyl) phosphinic acid is preferred.
- neodymium phosphate and neodymium carboxylate are more preferable, and in particular, neodymium branching such as neodymium 2-ethylhexanoate, neodymium neodecanoate, neodymium versatate, etc.
- Carboxylate is most preferred.
- the component A may be a reaction product of the rare earth element-containing compound and a Lewis base.
- the reaction product has improved solubility of the rare earth element-containing compound in the solvent due to the Lewis base, and can be stably stored for a long period of time.
- the Lewis base is used in a proportion of 0 to 30 mol, preferably 1 to 10 mol, per mol of the rare earth element. Or as a mixture of the two or as a product obtained by reacting both in advance.
- examples of the Lewis base include acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenyl ether, triethylamine, an organic phosphorus compound, and a monovalent or divalent alcohol.
- the above-mentioned rare earth element-containing compounds as the component A or the reaction product of these compounds with a Lewis base can be used singly or as a mixture of two or more.
- the organoaluminum compound represented by the above general formula (5) which is the B component of the catalyst system used for the polymerization of the terminal active polymer includes trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropyl Aluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, trihexylaluminum, tricyclohexylaluminum, trioctylaluminum; diethylaluminum hydride, di-n-propylaluminum hydride, Di-n-butylaluminum hydride, diisobutylaluminum hydride, dihexylaluminum hydride, diisohexylaluminum hydride, dioctylaluminum hydride, hydrogenated dii Octyl aluminum, ethyl aluminum dihydr
- the component C of the catalyst system used for the polymerization of the terminal active polymer is at least one selected from the group consisting of Lewis acids, complex compounds of metal halides and Lewis bases, and organic compounds containing active halogens. Halogen compound.
- the Lewis acid has Lewis acidity and is soluble in hydrocarbons. Specifically, methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl bromide Aluminum, diethylaluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, Examples include antimony pentachloride, phosphorus trichloride, phosphorus pentachloride, tin tetrachloride, and silicon tetrachloride.
- diethylaluminum chloride, sesquiethylaluminum chloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, and ethylaluminum dibromide are preferable.
- a reaction product of an alkylaluminum and a halogen such as a reaction product of triethylaluminum and bromine can be used.
- the metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine.
- a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol, and the like are preferable.
- tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol, lauryl alcohol are preferred.
- the above Lewis base is usually reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per 1 mol of the metal halide.
- the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
- the organic compound containing the active halogen include benzyl chloride.
- Examples of the D component aluminoxane include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, chloroaluminoxane, and the like.
- aluminoxane as the D component, the molecular weight distribution becomes sharp and the activity as a catalyst is improved.
- each component of the catalyst system used in the present invention is appropriately selected according to its purpose or necessity.
- the component A is preferably used in an amount of 0.00001 to 1.0 mmol, more preferably 0.0001 to 0.5 mmol, per 100 g of 1,3-butadiene.
- the ratio of the A component to the B component is a molar ratio, and the A component: B component is usually 1: 1 to 1: 700, preferably 1: 3 to 1: 500.
- the ratio of the halogen in the A component and the C component is, as a molar ratio, usually 1: 0.1 to 1:30, preferably 1: 0.2 to 1:15, more preferably 1: 2.0 to 1: 5.0.
- the ratio of aluminum to the A component in the D component is usually 1: 1 to 700: 1, preferably 3: 1 to 500: 1 in terms of molar ratio.
- a small amount of a conjugated diene monomer such as 1,3-butadiene is optionally added. You may use it in the ratio of 0-1000 mol per 1 mol of compounds of a component.
- a conjugated diene monomer such as 1,3-butadiene as a catalyst component is not essential, but when used in combination, there is an advantage that the catalytic activity is further improved.
- the A component to the C component are dissolved in a solvent, and a conjugated diene monomer such as 1,3-butadiene is reacted as necessary.
- a conjugated diene monomer such as 1,3-butadiene
- the addition order of each component is not specifically limited, Furthermore, you may add aluminoxane as D component.
- the aging temperature is about 0 to 100 ° C., preferably 20 to 80 ° C.
- the aging time is not particularly limited, and can be ripened by contacting in the line before adding to the polymerization reaction tank. Usually, 0.5 minutes or more is sufficient, and stable for several days.
- conjugated diene (co) polymer having terminal activity a conjugated diene monomer alone or a conjugated diene monomer is used in an organic solvent using a catalyst system containing the lanthanum series rare earth element-containing compound. It can be obtained by solution polymerization of other conjugated diene monomers.
- an inert organic solvent is used as the polymerization solvent.
- the inert organic solvent examples include saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane, saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as cyclopentane and cyclohexane, 1- Monoolefins such as butene and 2-butene, aromatic hydrocarbons such as benzene, toluene and xylene, methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene, chloro And halogenated hydrocarbons such as toluene.
- saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane
- saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as
- aliphatic hydrocarbons and alicyclic hydrocarbons having 5 to 6 carbon atoms are particularly preferable. These solvents may be used alone or in a combination of two or more.
- the monomer concentration in the solution used for this coordinated anionic polymerization is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
- the temperature in the coordination anion polymerization reaction is preferably selected in the range of ⁇ 80 to 150 ° C., more preferably ⁇ 20 to 120 ° C.
- the polymerization reaction can be carried out under generated pressure, but it is usually desirable to operate at a pressure sufficient to keep the monomer in a substantially liquid phase. That is, the pressure depends on the particular material being polymerized, the polymerization medium used and the polymerization temperature, but higher pressures can be used if desired, such pressure being a gas that is inert with respect to the polymerization reaction. Can be obtained by an appropriate method such as pressurizing.
- the hydrocarbyloxysilane compound is reacted in advance in the above-described pre-modification reaction step, followed by hydrolysis.
- an organic silane compound and the conjugated diene (co) polymer are bonded to each other by performing an addition or substitution reaction on the active site in the vicinity of the characteristic group. It is modified by reacting an organosilane compound having a functional group that promotes the reaction between the silanol group and the reinforcing filler or (ii) a functional group that promotes the reaction between the silanol group and the reinforcing filler. This is preferable from the viewpoint of smoothly promoting the reaction.
- anionic polymerization and coordination anionic polymerization all the raw materials involved in the polymerization such as polymerization initiator, solvent, monomer, and the like have removed reaction inhibitors such as water, oxygen, carbon dioxide, and protic compounds. It is desirable to use one.
- the polymerization reaction may be carried out either batchwise or continuously. In this way, a conjugated diene (co) polymer having an active end is obtained.
- the conjugated diene (co) polymer having an active terminal obtained as described above is added to the above-described general formula (1) or
- the organosilane compound represented by the general formula (2) is preferably added in a stoichiometric amount or in excess to the active terminal of the conjugated diene (co) polymer and bonded to the polymer. React with active end.
- the modification reaction step and the preliminary modification reaction step in the present invention are usually carried out under the same temperature and pressure conditions as in the polymerization reaction.
- the hydrolysis step of the method for producing a modified conjugated diene (co) polymer will be described.
- the hydrolysis reaction is performed under acidic, neutral or alkaline conditions in the presence of water.
- the hydrolyzable functional group bonded to the modified conjugated diene (co) polymer is efficiently hydrolyzed, and a silanol group is generated at the terminal or side chain of the modified conjugated diene (co) polymer.
- the amount of water used in this hydrolysis reaction is preferably an excess molar amount, for example, 2 to 4 times the molar amount of the initiator such as Li.
- the hydrolysis time is usually about 10 minutes to several hours.
- an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, preferably sodium hydroxide as the basic compound
- the hydrolysis reaction under acidic conditions.
- an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid, a carboxylic acid such as acetic acid or formic acid, silicon tetrachloride or the like.
- a condensation reaction step for performing a condensation reaction in the presence of a condensation accelerator can be provided between the modification reaction step and the hydrolysis step or after the hydrolysis step.
- the condensation accelerator used in the condensation reaction is preferably added after the modification reaction and before the start of the condensation reaction.
- a direct reaction with the active end may occur, and a hydrocarboxy group may not be introduced at the active end.
- the condensation accelerator may not be uniformly dispersed and the catalyst performance may be lowered.
- As the addition timing of the condensation accelerator when a condensation reaction step is provided between the modification reaction step and the hydrolysis step, usually 5 minutes to 5 hours after the start of the modification reaction, preferably 15 minutes to 1 hour after the start of the modification reaction. Later.
- a condensation reaction step is provided after the hydrolysis step, it is usually 5 minutes to 5 hours, preferably 10 minutes to 2 hours after the start of the hydrolysis reaction.
- the condensation accelerator preferably contains a metal element, and more preferably a compound containing at least one metal belonging to Groups 2 to 15 of the periodic table.
- the condensation accelerator containing the metal element preferably contains at least one selected from Ti, Sn, Bi, Zr and Al, and is an alkoxide, carboxylate or acetylacetonate complex of the metal. is there.
- an alkoxide of titanium (Ti), a carboxylate, and an acetylacetonate complex salt are preferably used.
- Ti titanium
- a carboxylate titanium
- an acetylacetonate complex salt preferably used.
- tetrakis (2-ethyl-1,3-hexanediolato) titanium, tetrakis (2-ethylhexoxy) titanium, and titanium di-n-butoxide (bis-2,4-pentanedionate) are preferable.
- an oxidation number 2 tin compound represented by Sn (OCOR 31 ) 2 (wherein R 31 is an alkyl group having 2 to 19 carbon atoms), R 32 x SnA 5 y B 1 4- yx tin compound having an oxidation number of 4 (wherein R 32 is an aliphatic hydrocarbon group having 1 to 30 carbon atoms, x is an integer of 1 to 3, y is 1) Or 2, A 5 is a carboxyl group having 2 to 30 carbon atoms, a ⁇ -dicarbonyl group having 5 to 20 carbon atoms, a hydrocarbyloxy group having 3 to 20 carbon atoms, and a hydrocarbyl group and / or carbon having 1 to 20 carbon atoms.
- a group selected from siloxy groups tri-substituted with a hydrocarbyloxy group of 1 to 20 and B 1 is a hydroxyl group or a halogen group).
- the tin carboxylate includes divalent tin dicarboxylate, tetravalent dihydrocarbyltin dicarboxylate (including bis (hydrocarbyldicarboxylic acid) salt), bis ( ⁇ -Diketonates), alkoxy halides, monocarboxylate hydroxides, alkoxy (trihydrocarbylsiloxides), alkoxy (dihydrocarbylalkoxysiloxides), bis (trihydrocarbylsiloxides), bis (dihydrocarbylalkoxysiloxides), etc. It can be used suitably.
- the hydrocarbyl group bonded to tin preferably has 4 or more carbon atoms, and particularly preferably has 4 to 8 carbon atoms.
- condensation accelerator for example, alkoxide, carboxylic acid, or acetylacetonate complex salt of these metals
- Zr, Bi, or Al examples of the condensation accelerator (for example, alkoxide, carboxylic acid, or acetylacetonate complex salt of these metals) containing Zr, Bi, or Al as a metal component include the following (a) to (e).
- tris (2-ethylhexanoate) bismuth tris (laurate) bismuth, tris (naphthenate) bismuth, tris (stearate) bismuth, tris (oleate) bismuth, tris (linoleate) bismuth, tetraethoxyzirconium , Tetra-n-propoxyzirconium, tetraisopropoxyzirconium, tetra-n-butoxyzirconium, tetrasec-butoxyzirconium, tetratert-butoxyzirconium, tetra (2-ethylhexoxy) zirconium, zirconium tributoxyzirate, zirconium tributoxyacetylacetonate , Zirconium butoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetyl Aceton
- the blending amount (use amount) of the condensation accelerator is preferably such that it is 0.1 to 10 parts by weight, based on 100 parts by weight of the rubber component in the rubber composition described later, and 0.5 to 5 parts by weight. Part is more preferred.
- the condensation reaction is preferably carried out in an aqueous solution, and the temperature during the condensation reaction is preferably 85 to 180 ° C., more preferably 100 to 170 ° C., and particularly preferably 110 to 150 ° C.
- the temperature during the condensation reaction is preferably 85 to 180 ° C., more preferably 100 to 170 ° C., and particularly preferably 110 to 150 ° C.
- the condensation reaction time is preferably about 5 minutes to 10 hours, more preferably about 15 minutes to 5 hours. By setting the condensation reaction time within the above range, the condensation reaction can be completed smoothly.
- the pressure of the reaction system during the condensation reaction is preferably 0.01 to 20 MPa, more preferably 0.05 to 10 MPa.
- limiting in particular about the form of a condensation reaction You may carry out by a continuous type using apparatuses, such as a batch type reactor and a multistage continuous reactor. Moreover, you may perform this condensation reaction and desolvent simultaneously.
- BHT 2,6-di-t-butyl-p-cresol
- the modified conjugated diene (co) polymer of the present invention is obtained through a desolvation treatment such as steam stripping for reducing the partial pressure of the solvent by blowing water vapor or a vacuum drying treatment.
- a desolvation treatment such as steam stripping for reducing the partial pressure of the solvent by blowing water vapor or a vacuum drying treatment.
- deprotection treatment is performed simultaneously to remove the protecting group of the protected nitrogen atom to generate a primary amino group.
- it is converted to the free primary amino group by hydrolyzing the protecting group on the primary amino group by various methods as necessary, and derived from the hydrocarbyloxysilane compound
- the deprotection treatment of the protected primary amino group can be performed.
- the modified conjugated diene (co) polymer I in the present invention is a molecule comprising a silanol group and a functional group in the vicinity of the silanol group, which promotes the reaction between the silanol group and the reinforcing filler. At the chain end.
- the modified conjugated diene (co) polymer I in the present invention is more specifically a modified conjugated diene (co) polymer represented by the following general formula (3) or the following general formula (4).
- R 1 is a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms
- R 2 and R 3 are each independently hydrogen or a monovalent hydrocarbon group having 1 to 20 carbon atoms
- a 3 is a silanol A functional group that promotes the reaction between the group and the reinforcing filler, and m is an integer of 1 to 10.
- R 4 is a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- R 5 and R 6 are each independently a single bond, hydrogen or a hydrocarbon group having 1 to 20 carbon atoms
- a 4 is a single bond, carbon Functional groups that promote the reaction between the hydrocarbon group or silanol group of formula 1 to 20 and the reinforcing filler
- B and D are each independently at least one functional group that promotes the reaction between the silanol group and the reinforcing filler.
- P and q each independently represents an integer of 0 to 5, and (p + q) is 1 or more.
- n is an integer of 1 to 10, preferably an integer of 1 to 6. Note that (Polymer)-is a polymer chain of a modified conjugated diene (co) polymer.
- R 1 , R 4 , R 5 when p is 1 or R 6 when q is 1 is a divalent having 1 to 20 carbon atoms
- R 1 , R 4 and p in the general formula (1) and the general formula (2) are 1 or R 6 in the case where q is 1 and The same specific example is given.
- R 2 , R 3 , p 5 is 0, or R 5 is q 0 and R 6 is C 1-20
- Specific examples of the monovalent hydrocarbon group include R 5 when R 2 , R 3 , and p in the general formula (1) and the general formula (2) are 0 or R when q is 0. Specific examples thereof are the same as the monovalent hydrocarbon group having 6 to 20 carbon atoms which is 6 .
- the functional groups A 3 and A 4 that promote the reaction between the silanol group and the reinforcing filler each independently, for example, a (thio) ether bond, A divalent functional group having at least one bond selected from (thio) urethane bond, imino bond and amide bond, and nitrile group (cyano group), pyridyl group, N-alkylpyrrolidonyl group, N-alkyl Imidazolyl group, N-alkylpyrazolyl group, (thio) ketone group, (thio) aldehyde group, isocyanuric acid triester residue, (thio) carboxylic acid hydrocarbyl ester residue having 1 to 20 carbon atoms, 1 to 20 carbon atoms (Thio) carboxylic acid metal salt residue, carboxylic acid anhydride residue having 1 to 20 carbon atoms, carboxylic acid halide residue having 1 to 20 carbon atoms, and dicarbon
- the divalent functional group having at least one bond selected from (thio) ether bond, (thio) urethane bond, imino bond and amide bond is (thio) ether bond, (thio) urethane bond, It may be an imino bond or an amide bond, or a divalent hydrocarbon group having 1 to 20 carbon atoms having a (thio) ether bond, a (thio) urethane bond, an imino bond and / or an amide bond.
- Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms include R 5 or q in the case where R 1 , R 4 , and p in the general formula (1) and the general formula (2) are 1, Specific examples are the same as R 6 in a certain case.
- the groups B and D containing at least one functional group that promotes the reaction between the silanol group and the reinforcing filler are each independently a primary amino group, a secondary amino group, and a protected group.
- E is an imino group, a divalent imine residue, a divalent pyridine residue or a divalent amide residue
- F is an alkylene group having 1 to 20 carbon atoms, a phenylene group or an aralkylene having 8 to 20 carbon atoms
- Group G is primary amino group, secondary amino group, protected primary or secondary amino group, tertiary amino group, cyclic amino group, oxazolyl group, imidazolyl group, aziridinyl group, ketimine group, nitrile group (cyano Group), an amide group, a pyridine group or a (thio) isocyanate group.
- Specific examples of the functional group represented by the general formula -EFFG are as described above.
- the protected functional group capable of leaving the primary or secondary amino group may remain in the modified conjugated diene (co) polymer of the present invention without being deprotected.
- the modified conjugated diene (co) polymer of the present invention preferably has only one silanol group in the molecular chain. This is because when two or more silanol groups are present in the molecular chain, the silanol groups are condensed with each other, and the viscosity of the modified conjugated diene (co) polymer is increased, which may make the kneading operation difficult.
- the modified conjugated diene (co) polymer has both a silanol group and a functional group that promotes the reaction between the silanol group and the reinforcing filler in the vicinity of the silanol group. Only modified conjugated diene (co) polymers that do not have functional groups that promote the reaction between silanol groups and reinforcing filler, and functional groups that promote the reaction between silanol groups and reinforcing filler. As compared with the modified conjugated diene (co) polymer having no silanol group, both the silica-containing rubber composition and the carbon black-containing rubber composition improve the low heat build-up.
- the modified conjugated diene (co) polymer does not limit the vinyl bond content of the conjugated diene part, but is preferably 70% or less. If it is 70% or less, the fracture characteristics and the wear characteristics are improved when used for a tire tread.
- the styrene content is preferably 0 to 50% by mass. This is because if it is 50% by mass or less, the balance between low heat build-up and wet skid performance is improved.
- the vinyl bond content is determined by calculating the integral ratio of the spectrum by infrared method (Morero method) and the styrene content by 1 H-NMR.
- the rubber component B applicable to the rubber composition according to this embodiment has a glass transition temperature of ⁇ 35 ° C. or higher.
- the glass transition point of the rubber component B is preferably higher than the glass transition point of the rubber component A.
- the glass transition temperature of the rubber component B is more preferably ⁇ 30 ° C. or higher, and further preferably ⁇ 25 ° C. or higher.
- the styrene content + 1/2 vinyl content of the rubber component B is preferably 45% by mass or more, and more preferably 50% by mass or more. If the rubber component B has the above properties, sufficient wet grip performance can be obtained.
- the rubber composition according to this embodiment preferably contains 30 to 150 parts by mass of reinforcing filler, and 40 to 120 parts by mass with respect to 100 parts by mass in total of rubber component A and rubber component B. It is more preferable to contain. If it is 30 parts by mass or more, the wear resistance is improved, and if it is 150 parts by mass or less, the fuel efficiency is improved.
- the reinforcing filler is preferably silica and / or carbon black.
- the filler is preferably silica alone or silica and carbon black, and the content ratio of silica to carbon black (silica: carbon black) is (100: 0) to (30:70) in mass ratio.
- the compounding amount of silica is preferably 10 to 100 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the rubber component. If it is this range, low-fuel-consumption property and abrasion resistance can be improved further.
- silica examples include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. Among them, wet is most effective in achieving both wet performance and wear resistance. Silica is preferred.
- the BET specific surface area (measured in accordance with ISO 5794/1) of silica is preferably 80 m 2 / g or more, more preferably 120 m 2 / g or more, and particularly preferably 150 m 2 / g or more. Although there is no restriction
- carbon black There is no restriction
- HAF, N339, IISAF, 1 SAF, SAF etc. are used.
- the specific surface area (measured in accordance with N 2 SA, JIS K 6217-2: 2001) of the nitrogen adsorption method of carbon black is preferably 70 to 180 m 2 / g, more preferably 80 to 180 m 2 / g.
- DBP oil absorption amount JIS K 6217-4: measured according to 2008
- improvement effects such as fracture resistance and wear resistance are increased.
- N339, IISAF, ISAF, and SAF, which are excellent in wear resistance are particularly preferable.
- One type of silica and / or carbon black may be used, or two or more types may be used in combination.
- silane coupling agent In the rubber composition according to the present embodiment, if desired, when silica is used as one of the reinforcing fillers, a silane coupling agent is used for the purpose of further improving the reinforcing property and fuel efficiency of the rubber composition. It is preferable to mix.
- silane coupling agents include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl).
- Ethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarba Yl tetrasulfide, 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide,
- bis (3-triethoxysilylpropyl) polysulfide, 3-octanoylthiopropyl propyltriethoxysilane and 3-trimethoxysilylpropyl benzothiazyl tetrasulfide are preferable.
- One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
- the preferable blending amount of this silane coupling agent is such that the mass ratio (silane coupling agent / silica) is (1/100) to (20/100). It is preferable. If it is (1/100) or more, the effect of improving the low heat build-up of the rubber composition will be more suitably exhibited. If it is (20/100) or less, the cost of the rubber composition will be reduced, and the economic efficiency will be reduced. This is because it improves. Further, a mass ratio (3/100) to (20/100) is more preferable, and a mass ratio (4/100) to (10/100) is particularly preferable.
- a vulcanizing agent In the rubber composition according to the present embodiment, various chemicals usually used in the rubber industry, for example, a vulcanizing agent, a vulcanization accelerator, a process oil, and an aging as long as the effects of the present invention are not impaired.
- An inhibitor, a scorch inhibitor, zinc white, stearic acid and the like can be contained.
- the vulcanizing agent include sulfur.
- the amount of the vulcanizing agent used is preferably 0.1 to 10.0 parts by weight, more preferably 1.0 to 5.0 parts by weight, based on 100 parts by weight of the rubber component. If the amount is less than 0.1 parts by mass, the fracture strength, wear resistance, and fuel efficiency of the vulcanized rubber may be reduced. If the amount exceeds 10.0 parts by mass, the rubber elasticity is lost.
- Examples of the vulcanization accelerator that can be used in the rubber composition according to this embodiment include M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), and CZ (N-cyclohexyl-2-benzothiazylsulfenamide). ), Thiazole series, guanidine series such as DPG (diphenylguanidine), or thiuram series vulcanization accelerators such as TOT (tetrakis (2-ethylhexyl) thiuram disulfide).
- the amount is preferably 0.1 to 5.0 parts by weight, more preferably 0.2 to 3.0 parts by weight, based on 100 parts by weight of the rubber component.
- an aromatic oil is used from the viewpoint of compatibility with SBR.
- naphthenic oil or paraffinic oil is used from the viewpoint of emphasizing low temperature characteristics.
- the amount used is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component, and if it is 100 parts by mass or less, the deterioration of the tensile strength and low fuel consumption (low heat generation) of the vulcanized rubber is suppressed. can do.
- Examples of the anti-aging agent that can be used in the rubber composition according to this embodiment include 3C (N-isopropyl-N′-phenyl-p-phenylenediamine, 6C [N- (1,3-dimethylbutyl) -N′- Phenyl-p-phenylenediamine], AW (6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline), high-temperature condensate of diphenylamine and acetone, etc.
- the amount used is rubber. The amount is preferably from 0.1 to 5.0 parts by weight, more preferably from 0.3 to 3.0 parts by weight, based on 100 parts by weight of the component.
- the rubber composition according to this embodiment can be obtained by kneading the above-described various components and additives using a kneader such as a Banbury mixer, a roll, or an internal mixer. That is, in the rubber composition according to the present embodiment, the rubber component A, the rubber component B, and the reinforcing filler are kneaded in the first stage of kneading, and then the vulcanizing agent and vulcanization acceleration are performed in the final stage of kneading. It can produce by mixing an agent.
- a kneader such as a Banbury mixer, a roll, or an internal mixer. That is, in the rubber composition according to the present embodiment, the rubber component A, the rubber component B, and the reinforcing filler are kneaded in the first stage of kneading, and then the vulcanizing agent and vulcanization acceleration are performed in the final stage of kneading. It can produce by mixing an agent
- the rubber component A contains a modified conjugated diene (co) polymer having a high affinity with a reinforcing filler such as silica
- the rubber component A and the rubber component B out of the rubber component A and the rubber component B are mixed.
- the reinforcing filler can be well dispersed in component A.
- the obtained rubber composition is further molded and then vulcanized to produce a tread of a pneumatic tire, particularly a tread grounding portion.
- a tire is manufactured by a normal tire manufacturing method using the rubber composition according to the present embodiment for a tread.
- the rubber composition containing the above-mentioned various chemicals is processed into each member at an unvulcanized stage, and is pasted and molded by a normal method on a tire molding machine to form a raw tire.
- the green tire is heated and pressed in a vulcanizer to obtain a tire. In this way, a tire having low heat build-up and good wear resistance, particularly a pneumatic tire can be obtained.
- Production Example 1 Production of Modified SBR1 Modified SBR1 described later was produced as follows. That is, 2750 g of cyclohexane, 29.5 g of tetrahydrofuran, 50 g of styrene, and 450 g of 1,3-butadiene were charged into an autoclave reactor having an internal volume of 5 liters purged with nitrogen. After adjusting the temperature of the reactor contents to 10 ° C., 215 mg of n-butyllithium was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 85 ° C.
- the polymerization conversion rate reached 99%, 10 g of butadiene was added, and polymerization was further performed for 5 minutes. From the reactor, a small amount of the polymer solution was sampled in 30 g of a cyclohexane solution to which 1 g of methanol was added, and then 1129 mg of aminopropylmethyldiethoxysilane was added and the modification reaction was carried out for 15 minutes to obtain a modified SBR1.
- the obtained modified SBR1 had a styrene content of 10%, a vinyl content of the diene compound portion of 40%, and a Tg of about -70 ° C.
- Production Example 2 Production of Modified SBR2 A 5-liter autoclave reactor that had been dried and purged with nitrogen was charged with 2500 g of cyclohexane, 25 g of tetrahydrofuran, 100 g of styrene, and 390 g of 1,3-butadiene. After adjusting the temperature of the reactor contents to 10 ° C., 375 mg of n-butyllithium (BuLi) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions and the maximum temperature reached 85 ° C.
- BuLi n-butyllithium
- Production Example 3 Production of modified BR A glass bottle with a rubber cap of about 1 liter was dried and purged with nitrogen, and a cyclohexane solution of butadiene that had been purified by drying and dry cyclohexane were added thereto, respectively. A state where 330 g of a cyclohexane solution was charged was used. To this was added 0.513 mmol of hexamethyleneimine (HMI). Next, 0.36 mL of tert-butyllithium (1.57M) and 0.057 mL of 2,2-di (2-tetrahydrofuryl) propane (0.2N) were added and the mixture was 4.5 hours in a 50 ° C. water bath. Polymerization was performed.
- HMI hexamethyleneimine
- Table 1 shows the properties of the rubber components used in the production of the rubber composition of the specimen.
- Rubber compositions having the composition shown in Table 2 were prepared, and pneumatic rubber tires (tire size 195 / 60R15) for passenger cars were manufactured according to conventional methods using these rubber compositions in the tread portion. The performance of each of the obtained specimen tires was evaluated by the method described above.
- Silane coupling agent bis (3-triethoxysilylpropyl) disulfide (average sulfur chain length: 2.35), manufactured by Evonik, trade name “Si75”
- Process oil Aromatic oil, “Aromax # 3” manufactured by Fuji Kosan Co., Ltd. * 15
- Anti-aging agent 6C N- (1,3-dimethyl) -N′-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd. “NOCRACK 6C” * 16
- Vulcanization accelerator DM Dibenzothiazyl sulfide, manufactured by Ouchi Shinsei Chemical Co., Ltd., “Noxeller DM-P”
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
天然ゴム及びガラス転移温度が-50℃以下の変性共役ジエン(共)重合体を含むゴム成分Aと、ガラス転移温度が-35℃以上のゴム成分Bと、補強性充填材とが配合されてなり、前記変性共役ジエン(共)重合体が、共役ジエン(共)重合体の分子末端に、シラノール基と、該シラノール基の近傍にある官能基であって該シラノール基と該補強性充填材との反応を促進する官能基とを有しており、動的粘弾性試験によるtanδの温度分散曲線において、前記ゴム成分A及び前記ゴム成分Bの各々に基づく2つのピークが観測されることを特徴とするゴム組成物を用いることにより、低発熱性と耐摩耗性とをより高度に両立させるゴム組成物を提供する。
Description
本発明は、ウエットグリップ性、低発熱性及び耐摩耗性をより高度に両立させるゴム組成物及びそれを用いたタイヤに関する。
近年、地球環境への負荷の低減という社会的要請によって、自動車の低燃費化や長寿命化に対する要求はより過酷なものとなりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の減少、耐摩耗性の向上が求められている。
タイヤの転がり抵抗を下げる手法としては、タイヤ構造の最適化による手法と併せて、ゴム組成物として、より発熱の少ない材料を用いて低発熱性を向上させることが最も一般的な手法として行われている。この手法の一例として、ブロックコポリマーと、互いに非相溶であるジエン系ゴム及びシリカ用末端変性ジエン系ゴムとを含むゴム成分に、シリカが配合されてなるゴム組成物が提案されている(特許文献1参照)。
タイヤの転がり抵抗を下げる手法としては、タイヤ構造の最適化による手法と併せて、ゴム組成物として、より発熱の少ない材料を用いて低発熱性を向上させることが最も一般的な手法として行われている。この手法の一例として、ブロックコポリマーと、互いに非相溶であるジエン系ゴム及びシリカ用末端変性ジエン系ゴムとを含むゴム成分に、シリカが配合されてなるゴム組成物が提案されている(特許文献1参照)。
特許文献1に記載されたゴム組成物は、低転がり抵抗性及び耐摩耗性を向上させることができる。しかし、さらに高いレベルで、タイヤ性能を高めることが要求されている。本発明は、ウエットグリップ性、低発熱性及び耐摩耗性をより高度に両立させることのできるゴム組成物を提供することを課題とする。
本発明の要旨は下記のとおりである。
[1]天然ゴム及びガラス転移温度が-50℃以下の変性共役ジエン(共)重合体を含むゴム成分Aと、ガラス転移温度が-35℃以上のゴム成分Bと、補強性充填材とが配合されてなり、前記変性共役ジエン(共)重合体が、共役ジエン(共)重合体の分子末端に、シラノール基と、該シラノール基の近傍にある官能基であって該シラノール基と前記補強性充填材との反応を促進する官能基とを有しており、動的粘弾性試験によるtanδの温度分散曲線において、前記ゴム成分A及び前記ゴム成分Bの各々に基づく2つのピークが観測されることを特徴とするゴム組成物。
[2]前記ゴム成分Aと前記ゴム成分Bとの合計質量基準において、前記ゴム成分Aが50質量%以上含まれる[1]に記載のゴム組成物。
[3]前記ゴム成分Aにおける前記天然ゴムの比率が、ゴム成分Aの総質量基準で、10質量%以上80質量%以下である[1]又は[2]に記載のゴム組成物。
[4][1]~[3]のいずれかに記載のゴム組成物を含むタイヤ。
[1]天然ゴム及びガラス転移温度が-50℃以下の変性共役ジエン(共)重合体を含むゴム成分Aと、ガラス転移温度が-35℃以上のゴム成分Bと、補強性充填材とが配合されてなり、前記変性共役ジエン(共)重合体が、共役ジエン(共)重合体の分子末端に、シラノール基と、該シラノール基の近傍にある官能基であって該シラノール基と前記補強性充填材との反応を促進する官能基とを有しており、動的粘弾性試験によるtanδの温度分散曲線において、前記ゴム成分A及び前記ゴム成分Bの各々に基づく2つのピークが観測されることを特徴とするゴム組成物。
[2]前記ゴム成分Aと前記ゴム成分Bとの合計質量基準において、前記ゴム成分Aが50質量%以上含まれる[1]に記載のゴム組成物。
[3]前記ゴム成分Aにおける前記天然ゴムの比率が、ゴム成分Aの総質量基準で、10質量%以上80質量%以下である[1]又は[2]に記載のゴム組成物。
[4][1]~[3]のいずれかに記載のゴム組成物を含むタイヤ。
本発明によれば、ウエットグリップ性、低発熱性及び耐摩耗性を、より高度に両立させるゴム組成物を提供できる。
[ゴム組成物]
本発明の実施形態に係るゴム組成物は、天然ゴム及びガラス転移温度が-50℃以下の変性共役ジエン(共)重合体を含むゴム成分Aと、ガラス転移温度が-35℃以上のゴム成分Bと、補強性充填材とが配合されてなり、前記変性共役ジエン(共)重合体が、共役ジエン(共)重合体の分子末端に、シラノール基と、該シラノール基の近傍にある官能基であって該シラノール基と前記補強性充填材との反応を促進する官能基とを有しており、動的粘弾性試験によるtanδの温度分散曲線において、前記ゴム成分A及び前記ゴム成分Bの各々に基づく2つのピークが観測されることを特徴とする。
なお、上記ゴム成分のtanδの温度分散曲線は、レオメトリックス(株)製の粘弾性試験機ARESを用いて、歪み0.1%、周波数45Hz、測定温度範囲65℃~-100℃、昇温速度1℃/分の条件で測定することができる。
本発明の実施形態に係るゴム組成物は、天然ゴム及びガラス転移温度が-50℃以下の変性共役ジエン(共)重合体を含むゴム成分Aと、ガラス転移温度が-35℃以上のゴム成分Bと、補強性充填材とが配合されてなり、前記変性共役ジエン(共)重合体が、共役ジエン(共)重合体の分子末端に、シラノール基と、該シラノール基の近傍にある官能基であって該シラノール基と前記補強性充填材との反応を促進する官能基とを有しており、動的粘弾性試験によるtanδの温度分散曲線において、前記ゴム成分A及び前記ゴム成分Bの各々に基づく2つのピークが観測されることを特徴とする。
なお、上記ゴム成分のtanδの温度分散曲線は、レオメトリックス(株)製の粘弾性試験機ARESを用いて、歪み0.1%、周波数45Hz、測定温度範囲65℃~-100℃、昇温速度1℃/分の条件で測定することができる。
[ゴム成分A]
本実施形態に係るゴム組成物に適用可能なゴム成分Aは、天然ゴムと、ガラス転移温度が-50℃以下の変性共役ジエン(共)重合体とを含む。
ゴム成分Aにおける天然ゴムの比率は、ゴム成分Aの総質量基準で、10質量%以上80質量%以下が好ましく、40質量%以上60質量%以下がより好ましい。ゴム成分A中における天然ゴムの比率が上記範囲であると、良好な低発熱性が得られる。
ゴム成分Aに天然ゴムが含まれることにより、ゴム組成物を用いて形成されるタイヤの耐摩耗性を向上させることができる。
ゴム成分Aのうち、前記変性共役ジエン(共)重合体のガラス転移温度は-50℃以下であり、-60℃以下であると好ましい。さらに、ゴム成分Aのガラス転移温度は、後述するゴム成分Bのガラス転移温度よりも低く設定されていることが好ましい。
ゴム成分Aに変性共役ジエン(共)重合体が含まれることにより、後述の補強性充填材としてシリカを用いた場合には、シリカのゴム成分Aへの分散性が高められることから、シリカは、ガラス転移点が相対的に低いゴム成分Aに分散させられる。これにより、シリカを配合することによって生じる60℃におけるtanδの上昇を抑えることができ、該ゴム組成物を用いて得られるタイヤの転がり性能を向上させることができる。
また、ゴム成分に含まれるスチレン量及びビニル量が多くなると、ガラス転移温度が上昇することが知られている。ガラス転移温度の上昇への寄与度は、スチレン量の方がビニル量よりも大きいと考えられる。そこで、本実施形態では、(スチレン量+1/2ビニル量)という指標を使用している。
上記観点に基づけば、本実施形態に係るゴム組成物に適用可能な変性共役ジエン(共)重合体の(スチレン量+1/2ビニル量)は、35質量%以下であることが好ましく、20質量%以下であることがより好ましい。変性共役ジエン(共)重合体のスチレン量+1/2ビニル量が35質量%以下であれば、変性共役ジエン(共)重合体のガラス転移温度を-50℃以下に設定することができる。
また、上記性状を有するものであれば、ゴム組成物のtanδの温度分散曲線において、ゴム成分Aは後述するゴム成分Bと異なる温度にピークを示す。また、ゴム成分Aが変性共役ジエン(共)重合体を含むことにより、補強性充填材をゴム成分A中の変性共役ジエン(共)重合体において偏在させて、かつゴム成分A中に良好に分散させることができる。
本実施形態に係るゴム組成物では、ゴム成分Aとゴム成分Bとの合計質量基準で、該ゴム成分Aが50質量%以上含まれることが好ましく、より好ましくは、60質量%以上であり、さらに好ましくは、80質量%以上である。ゴム組成物の耐摩耗性を維持する観点から、ゴム成分Aの比率の上限値は、95質量%である。
本実施形態に係るゴム組成物に適用可能なゴム成分Aは、天然ゴムと、ガラス転移温度が-50℃以下の変性共役ジエン(共)重合体とを含む。
ゴム成分Aにおける天然ゴムの比率は、ゴム成分Aの総質量基準で、10質量%以上80質量%以下が好ましく、40質量%以上60質量%以下がより好ましい。ゴム成分A中における天然ゴムの比率が上記範囲であると、良好な低発熱性が得られる。
ゴム成分Aに天然ゴムが含まれることにより、ゴム組成物を用いて形成されるタイヤの耐摩耗性を向上させることができる。
ゴム成分Aのうち、前記変性共役ジエン(共)重合体のガラス転移温度は-50℃以下であり、-60℃以下であると好ましい。さらに、ゴム成分Aのガラス転移温度は、後述するゴム成分Bのガラス転移温度よりも低く設定されていることが好ましい。
ゴム成分Aに変性共役ジエン(共)重合体が含まれることにより、後述の補強性充填材としてシリカを用いた場合には、シリカのゴム成分Aへの分散性が高められることから、シリカは、ガラス転移点が相対的に低いゴム成分Aに分散させられる。これにより、シリカを配合することによって生じる60℃におけるtanδの上昇を抑えることができ、該ゴム組成物を用いて得られるタイヤの転がり性能を向上させることができる。
また、ゴム成分に含まれるスチレン量及びビニル量が多くなると、ガラス転移温度が上昇することが知られている。ガラス転移温度の上昇への寄与度は、スチレン量の方がビニル量よりも大きいと考えられる。そこで、本実施形態では、(スチレン量+1/2ビニル量)という指標を使用している。
上記観点に基づけば、本実施形態に係るゴム組成物に適用可能な変性共役ジエン(共)重合体の(スチレン量+1/2ビニル量)は、35質量%以下であることが好ましく、20質量%以下であることがより好ましい。変性共役ジエン(共)重合体のスチレン量+1/2ビニル量が35質量%以下であれば、変性共役ジエン(共)重合体のガラス転移温度を-50℃以下に設定することができる。
また、上記性状を有するものであれば、ゴム組成物のtanδの温度分散曲線において、ゴム成分Aは後述するゴム成分Bと異なる温度にピークを示す。また、ゴム成分Aが変性共役ジエン(共)重合体を含むことにより、補強性充填材をゴム成分A中の変性共役ジエン(共)重合体において偏在させて、かつゴム成分A中に良好に分散させることができる。
本実施形態に係るゴム組成物では、ゴム成分Aとゴム成分Bとの合計質量基準で、該ゴム成分Aが50質量%以上含まれることが好ましく、より好ましくは、60質量%以上であり、さらに好ましくは、80質量%以上である。ゴム組成物の耐摩耗性を維持する観点から、ゴム成分Aの比率の上限値は、95質量%である。
<ガラス転移温度が-50℃以下の変性共役ジエン(共)重合体>
上述した本実施形態に係るゴム組成物のゴム成分Aに用いることのできるガラス転移温度が-50℃以下の変性共役ジエン(共)重合体としては、次のものが挙げられる。
すなわち、活性部位を有する共役ジエン(共)重合体の該活性部位に、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加反応もしくは置換反応を行って有機シラン化合物と該共役ジエン(共)重合体とを結合させ、該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物を反応させる変性反応工程と、変性反応工程終了後に施される加水分解工程と、好ましくは、さらに縮合促進剤の存在下に縮合反応させる縮合反応工程とを経ることにより製造される(共)重合体である。
本実施形態においては、前記加水分解によりシラノール基を生成する特性基がアルコキシシラン基であって、加水分解により、その10%以上がシラノール基を生成するものであることが好ましい。
なお、本発明において、共役ジエン(共)重合体と記載するものは、共役ジエン重合体と共役ジエン共重合体とを包含するものである。
上述した本実施形態に係るゴム組成物のゴム成分Aに用いることのできるガラス転移温度が-50℃以下の変性共役ジエン(共)重合体としては、次のものが挙げられる。
すなわち、活性部位を有する共役ジエン(共)重合体の該活性部位に、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加反応もしくは置換反応を行って有機シラン化合物と該共役ジエン(共)重合体とを結合させ、該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物を反応させる変性反応工程と、変性反応工程終了後に施される加水分解工程と、好ましくは、さらに縮合促進剤の存在下に縮合反応させる縮合反応工程とを経ることにより製造される(共)重合体である。
本実施形態においては、前記加水分解によりシラノール基を生成する特性基がアルコキシシラン基であって、加水分解により、その10%以上がシラノール基を生成するものであることが好ましい。
なお、本発明において、共役ジエン(共)重合体と記載するものは、共役ジエン重合体と共役ジエン共重合体とを包含するものである。
前記加水分解によりシラノール基を生成する特性基は、補強性充填材、特にシリカと反応する場合、反応によりシラノール基になる必要があるが、最初からシラノール基であれば、シリカとの反応性はより高くなり、ゴム組成物中のシリカの分散性が向上し、且つゴム組成物の低発熱性が向上するという大きな効果を奏する。さらに、加水分解によりシラノール基を生成する特性基がアルコキシ基である場合は揮発性有機化合物(VOC、特にアルコール)を発生するが、シラノール基は発生しないので、作業環境上好ましい。
なお、本発明において、「官能基がシラノール基を生成する特性基の近傍に存在する」とは、有機シラン化合物の中で、該官能基が該特性基から好ましくは炭素数で1から20の範囲(珪素原子を介しても良い)内に、より好ましくは炭素数で1から15の範囲(珪素原子を介しても良い)内に、さらに好ましくは炭素数で1から12の範囲(珪素原子を介しても良い)内に、特に好ましくは炭素数で1から10の範囲(珪素原子を介しても良い)内に、さらに特に好ましくは炭素数で1から5の範囲(珪素原子を介しても良い)内に、存在することをいう。
「シラノール基と、該シラノール基の近傍にある官能基」の場合の「近傍」も上記と同義である。
「シラノール基と、該シラノール基の近傍にある官能基」の場合の「近傍」も上記と同義である。
本実施形態において、前記加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)前記活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と前記共役ジエン(共)重合体とを結合させ、且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物が、下記一般式(1)又は下記一般式(2)により表わされる有機シラン化合物であることが好ましい。
ここで、R1は単結合又は炭素数1~20の二価の炭化水素基;R2及びR3はそれぞれ独立に水素原子又は炭素数1~20の一価の炭化水素基;-OL1は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A1は前記活性部位に付加もしくは置換反応を行う事によって前記有機シラン化合物と前記共役ジエン(共)重合体とを結合させ、且つ該反応後に前記シラノール基と前記補強性充填材との反応を促進する官能基であり、mは1~10の整数である。なお、「R1は単結合」とは、例えば、上記一般式(1)において、A1とSiが直接単結合にて結合することをいう。以下、R4、R5、R6及びA4の場合も同様である。
ここで、R4は単結合又は炭素数1~20の炭化水素基;R5及びR6はそれぞれ独立に単結合、水素原子又は炭素数1~20の炭化水素基;-OL2は加水分解によりSiと共にシラノール基を生成する加水分解性官能基;A2は前記活性部位と反応する官能基又は前記活性部位に付加もしくは置換反応を行う事によって前記有機シラン化合物と前記共役ジエン(共)重合体とを結合させる官能基;B及びDはそれぞれ独立に前記シラノール基と前記補強性充填材との反応を促進する官能基を少なくとも一つ含む基であり;p及びqはそれぞれ独立に0~5の整数であり、(p+q)が1以上であり、nは1~10の整数である。
ここで、加水分解によりSiと共にシラノール基を生成する加水分解性官能基としては、例えば、炭素数1~20のアルコキシ基、フェノキシ基、ベンジルオキシ基、-OM(1/x)等が好適に挙げられる。これらの内、炭素数1~20のアルコキシ基がさらに好ましく、炭素数1~12のアルコキシ基が特に好ましい。炭素数1~20のアルコキシ基としては、具体的には、メトシキ基、エトシキ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基等を挙げることができる。
上記の式-OM(1/x)において、Mは、水素を除く第1族元素(即ち、アルカリ金属);第2~12族元素;ホウ素を除く第13族元素;炭素及びケイ素を除く第14族元素;窒素、リン及びヒ素を除く第15族元素及び希土類元素から選ばれる金属原子であり、xはその金属原子の価数である。第2族元素は、Be、Mg及びアルカリ土類金属である。これらの金属原子の内、アルカリ金属、Mg、アルカリ土類金属、Sn、Al、Ti、Feがより好ましく、Li、Na、K、Mg、Ca、Ba、Sn、Al、Ti、Feが特に好ましい。
上記の式-OM(1/x)において、Mは、水素を除く第1族元素(即ち、アルカリ金属);第2~12族元素;ホウ素を除く第13族元素;炭素及びケイ素を除く第14族元素;窒素、リン及びヒ素を除く第15族元素及び希土類元素から選ばれる金属原子であり、xはその金属原子の価数である。第2族元素は、Be、Mg及びアルカリ土類金属である。これらの金属原子の内、アルカリ金属、Mg、アルカリ土類金属、Sn、Al、Ti、Feがより好ましく、Li、Na、K、Mg、Ca、Ba、Sn、Al、Ti、Feが特に好ましい。
前記一般式(1)において、前記活性部位に付加もしくは置換反応を行う事によって前記有機シラン化合物と前記共役ジエン(共)重合体とを結合させ、且つ該反応後に前記シラノール基と前記補強性充填材との反応を促進する官能基A1としては、例えば、(チオ)エポキシ基(グリシドキシ基を含む)、(チオ)イソシアネート基、ニトリル基(シアノ基)、ピリジル基、N-アルキルピロリドニル基、N-アルキルイミダゾリル基、N-アルキルピラゾリル基、(チオ)ケトン基、(チオ)アルデヒド基、イミン残基、アミド基、ケチミン基、イソシアヌル酸トリエステル残基、炭素数1~20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1~20の(チオ)カルボン酸金属塩の残基、炭素数1~20のカルボン酸無水物残基、炭素数1~20のカルボン酸ハロゲン化物残基又は炭酸ジヒドロカルビルエステル残基が挙げられる。炭素数1~20のカルボン酸ハロゲン化物残基のハロゲンとしては、塩素、臭素又はフッ素が好ましい。炭素数1~20のカルボン酸無水物残基としては、無水マレイン酸残基、無水フタル酸残基、無水酢酸残基等が好ましい。これらは、共役ジエン(共)重合体の活性部位に結合する基であると共に、シリカとの反応を促進させる基でもある。
前記一般式(2)において、前記活性部位と反応する官能基又は前記活性部位に付加もしくは置換反応を行う事によって該有機シラン化合物と前記共役ジエン(共)重合体とを結合させる官能基A2としては、下記式(2-a)
-RdSiX3 ・・・・・(2-a)
[式中、Rdは単結合、炭素数1~10の置換もしくは無置換のアルキレン基又は-ORe(Reは炭素数1~10の置換もしくは無置換のアルキレンである。)を示し、Xはハロゲン原子又は炭素数1~10のアルコキシ基を示し、複数のXは同一でも異なっていてもよい。]で表される官能基、あるいは(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、イミダゾリル基、ケチミン基、(チオ)ケトン基又は保護された第1もしくは第2アミノ基などを挙げることができる。
-RdSiX3 ・・・・・(2-a)
[式中、Rdは単結合、炭素数1~10の置換もしくは無置換のアルキレン基又は-ORe(Reは炭素数1~10の置換もしくは無置換のアルキレンである。)を示し、Xはハロゲン原子又は炭素数1~10のアルコキシ基を示し、複数のXは同一でも異なっていてもよい。]で表される官能基、あるいは(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、イミダゾリル基、ケチミン基、(チオ)ケトン基又は保護された第1もしくは第2アミノ基などを挙げることができる。
また、本発明に用いられる変性共役ジエン(共)重合体の製造において、共役ジエン(共)重合体の活性部位と反応する官能基A2とは、活性部位と化学的に反応し得る官能基A2をいい、例えば、炭素数1~20のアルコキシ基、フェノキシ基、ベンジルオキシ基、ハロゲン基等が好適に挙げられる。炭素数1~20のアルコキシ基がさらに好ましく、炭素数1~12のアルコキシ基が特に好ましい。炭素数1~20のアルコキシ基としては、具体的には、メトシキ基、エトシキ基、プロピルオキシ基、イソプロピルオキシ基、n-ブトキシ基、tert-ブトキシ基等を挙げることができる。ハロゲンとしては、塩素、臭素又はフッ素が好ましい。
また、前記一般式(2)において、シラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基B及びDとしては、それぞれ独立に、例えば、第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、(チオ)ケトン基、(チオ)アルデヒド基、アミド基、(チオ)エポキシ基(グリシドキシ基を含む)、(チオ)イソシアネート基、ニトリル基(シアノ基)、ピリジル基、N-アルキルピロリドニル基、N-アルキルイミダゾリル基、N-アルキルピラゾリル基、イミノ基、アミド基、ケチミン基、イミン残基、イソシアヌル酸トリエステル残基、炭素数1~20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1~20の(チオ)カルボン酸金属塩の残基、炭素数1~20のカルボン酸無水物残基、炭素数1~20のカルボン酸ハロゲン化物残基、炭酸ジヒドロカルビルエステル残基又は一般式-E-F-Gで表わされる官能基が挙げられる。
ここで、Eはイミノ基、2価のイミン残基、2価のピリジン残基又は2価のアミド残基、Fは炭素数1~20のアルキレン基、フェニレン基又は炭素数8~20のアラルキレン基、Gは第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、ケチミン基、ニトリル基(シアノ基)、アミド基、ピリジン基又は(チオ)イソシアネート基である。
一般式-E-F-Gで表わされる官能基の具体例としては、例えば、-NH-C2H4-NH2、-NH-C2H4-N(CH3)2、及びこれらの-C2H4-を-C6H12-又はフェニレン基に置き換えた官能基等が挙げられる。
ここで、Eはイミノ基、2価のイミン残基、2価のピリジン残基又は2価のアミド残基、Fは炭素数1~20のアルキレン基、フェニレン基又は炭素数8~20のアラルキレン基、Gは第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、ケチミン基、ニトリル基(シアノ基)、アミド基、ピリジン基又は(チオ)イソシアネート基である。
一般式-E-F-Gで表わされる官能基の具体例としては、例えば、-NH-C2H4-NH2、-NH-C2H4-N(CH3)2、及びこれらの-C2H4-を-C6H12-又はフェニレン基に置き換えた官能基等が挙げられる。
前記一般式(2)において、ケイ素原子にハロゲン原子又はアルコキシ基が結合したケイ素含有基、及び式(2-a)で示される-RdSiX3基は、共役ジエン(共)重合体の活性部位に結合する基であり、一方、(チオ)エポキシ基、(チオ)イソシアネート基、ニトリル基、イミダゾリル基、ケチミン基、(チオ)ケトン基又は保護された第1もしくは第2アミノ基は、シリカとの反応を促進させる基である。
シラノール基と補強性充填材との反応を促進する官能基がシラノール基の近傍に存在すると、補強性充填材、特にシリカ表面のヒドロキシ基、シラノール基及びシラノール基と補強性充填材との反応を促進する官能基中の不対電子を有する原子(酸素原子、硫黄原子又は窒素原子)の三者により安定構造をとることが考えられ、シラノール基のシリカへの反応性が向上する。これにより、本発明における変性共役ジエン(共)重合体を用いた、本発明のゴム組成物の低発熱性が向上することとなる。
上記一般式(1)及び上記一般式(2)において、R1、R4、pが1である場合のR5又はqが1である場合のR6である炭素数1~20の炭化水素基の具体例としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,3-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,3-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,3-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基等が挙げられる。これらの中で、プロパン-1,3-ジイル基が特に好ましい。
ここで、pが0である場合のR5及びqが0である場合のR6は、R2及びR3と同様に水素原子又は炭素数1~20の一価の炭化水素基となる。即ち、R5の価数は(p+1)であり、R6の価数は(q+1)である。
ここで、pが0である場合のR5及びqが0である場合のR6は、R2及びR3と同様に水素原子又は炭素数1~20の一価の炭化水素基となる。即ち、R5の価数は(p+1)であり、R6の価数は(q+1)である。
また、上記一般式(1)及び上記一般式(2)において、R2、R3、pが0である場合のR5又はqが0である場合のR6である炭素数1~20の一価の炭化水素基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、ステアリル基等が挙げられる。これらの中で、メチル基又はエチル基が特に好ましい。
上記一般式(1)により表わされる有機シラン化合物の具体例としては、(チオ)エポキシ基含有シラン化合物として、(2-グリシドキシエチル)ジメチルメトキシシラン、(2-グリシドキシエチル)ジエチルメトキシシラン、(2-グリシドキシエチル)ジメチルエトキシシラン、(2-グリシドキシエチル)ジエチルエトキシシラン、(3-グリシドキシプロピル)ジメチルメトキシシラン、(3-グリシドキシプロピル)ジエチルメトキシシラン、(3-グリシドキシプロピル)ジメチルエトキシシラン、(3-グリシドキシプロピル)ジエチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(ジメチル)メトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(ジエチル)メトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(ジメチル)エトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(ジエチル)エトキシシラン及びこれらの化合物におけるエポキシ基をチオエポキシ基に置き換えたものを挙げることができる。これらの中で、特に(3-グリシドキシプロピル)ジメチルメトキシシラン、(3-グリシドキシプロピル)ジエチルメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(ジメチル)メトキシシラン及び2-(3,4-エポキシシクロヘキシル)エチル(ジエチル)メトキシシランが好適である。
また、上記一般式(1)により表わされる有機シラン化合物の別の具体例としては、イミン残基含有シラン化合物として、N-(1,3-ジメチルブチリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミン、N-(1-メチルエチリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-(1-メチルエチリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(ジエチルエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミン等を挙げることができる。これらの中で特に、N-(1-メチルプロピリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(ジメチルエトキシシリル)-1-プロパンアミン及びN-(1,3-ジメチルブチリデン)-3-(ジエチルエトキシシリル)-1-プロパンアミンが好適である。
上記一般式(1)により表わされる有機シラン化合物の別の具体例としては、イミノ(アミジン)基含有化合物として、1-〔3-(ジメチルエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジエチルエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジメチルメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジエチルメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、3-〔10-(ジメチルエトキシシリル)デシル〕-4-オキサゾリン、3-〔10-(ジエチルエトキシシリル)デシル〕-4-オキサゾリン、3-(1-ヘキサメチレンイミノ)プロピル(ジメチルエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(ジエチルエトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(ジメチルメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(ジエチルメトキシ)シラン、1-〔3-(ジメチルエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジエチルエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジメチルメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール及び1-〔3-(ジエチルメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール等を挙げることができるが、これらの中で、3-(1-ヘキサメチレンイミノ)プロピル(ジメチルエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(ジエチルエトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(ジメチルメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(ジエチルメトキシ)シラン、1-〔3-(ジメチルエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジエチルエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(ジメチルメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール及び1-〔3-(ジエチルメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾールを好ましく挙げることができる。
そして、上記一般式(1)により表わされる有機シラン化合物の別の具体例としては、カルボン酸エステル基含有化合物として、(3-メタクリロイロキシプロピル)ジメチルエトキシシラン、(3-メタクリロイロキシプロピル)ジエチルエトキシシラン、(3-メタクリロイロキシプロピル)ジメチルメトキシシラン、(3-メタクリロイロキシプロピル)ジエチルメトキシシラン、(3-メタクリロイロキシプロピル)ジメチルイソプロポキシシラン、(3-メタクリロイロキシプロピル)ジエチルイソプロポキシシラン等が挙げられ、これらの内、好ましいのは(3-メタクリロイロキシプロピル)ジメチルメトキシシラン及び(3-メタクリロイロキシプロピル)ジエチルメトキシシランである。
さらに、上記一般式(1)により表わされる有機シラン化合物の別の具体例としては、イソシアネート基含有化合物として、(3-イソシアナトプロピル)ジメチルメトキシシラン、(3-イソシアナトプロピル)ジエチルメトキシシラン、(3-イソシアナトプロピル)ジメチルエトキシシラン、(3-イソシアナトプロピル)ジエチルエトキシシラン、(3-イソシアナトプロピル)ジメチルイソプロポキシシラン、(3-イソシアナトプロピル)ジエチルイソプロポキシシラン等が挙げられ、これらの内、好ましいのは(3-イソシアナトプロピル)ジメチルエトキシシラン及び(3-イソシアナトプロピル)ジエチルエトキシシランである。
また、上記一般式(1)により表わされる有機シラン化合物の別の具体例としては、カルボン酸無水物含有化合物として、3-(ジメチルエトキシ)シリルプロピルサクシニック無水物、3-(ジエチルエトキシ)シリルプロピルサクシニック無水物、3-(ジメチルメトキシ)シリルプロピルサクシニック無水物、3-(ジエチルメトキシ)シリルプロピルサクシニック無水物等が挙げられ、これらの内、好ましいのは3-(ジメチルエトキシ)シリルプロピルサクシニック無水物及び3-(ジエチルエトキシ)シリルプロピルサクシニック無水物である。
上記一般式(2)により表わされる有機シラン化合物としては、保護基が-SiRaRbRcで表わされるトリアルキルシリル基(ここで、Ra、Rb及びRcはそれぞれ独立に炭素数1~12のアルキル基であり、メチル基、エチル基、プロピル基、プロピル基又はブチル基が好ましい。)を2つ有する、保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物が挙げられる。この保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物の具体例としては、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン等を好ましく挙げることができる。これらの中で、特に好ましくは、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン又はN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランである。
上記一般式(2)により表わされる有機シラン化合物の別の例として、保護基が-SiRaRbRcで表わされるトリアルキルシリル基(Ra、Rb及びRcは上記と同じである。)を1つ有する、保護された第二アミノ基を有するヒドロカルビルオキシシラン化合物が挙げられる。この保護された第二アミノ基を有するヒドロカルビルオキシシラン化合物の具体例としては、N,N-メチル(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-エチル(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-メチル(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-エチル(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-メチル(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N-エチル(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N-メチル(トリメチルシリル)アミノエチルメチルジエトキシシラン、N,N-エチル(トリメチルシリル)アミノエチルメチルジエトキシシラン等を好ましく挙げることができる。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、N-(1,3-ジメチルブチリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン、N-(1-メチルエチリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(メチルジエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン及びこれらのメチルジエトキシシリル化合物に対応するメチルジメトキシシリル化合物、エチルジエトキシシリル化合物、エチルジメトキシシリル化合物等のイミン残基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で特に、N-(1-メチルプロピリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン及びN-(1,3-ジメチルブチリデン)-3-(メチルジエトキシシリル)-1-プロパンアミンが好適である。
さらに、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、3-ジメチルアミノプロピル(ジエトキシ)メチルシラン、3-ジメチルアミノプロピル(ジメトキシ)メチルシラン、3-ジエチルアミノプロピル(ジエトキシ)メチルシラン、3-ジエチルアミノプロピル(ジメトキシ)メチルシラン、2-ジメチルアミノエチル(ジエトキシ)メチルシラン、2-ジメチルアミノエチル(ジメトキシ)メチルシラン等の非環状第三アミノ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で特に、3-ジメチルアミノプロピル(ジメトキシ)メチルシラン及び3-ジメチルアミノプロピル(ジエトキシ)メチルシランが好適である。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、3-メチルアミノプロピル(ジエトキシ)メチルシラン、3-メチルアミノプロピル(ジメトキシ)メチルシラン、3-エチルアミノプロピル(ジエトキシ)メチルシラン、3-エチルアミノプロピル(ジメトキシ)メチルシラン、2-メチルアミノエチル(ジエトキシ)メチルシラン、2-メチルアミノエチル(ジメトキシ)メチルシラン等の非環状第二アミノ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で特に、3-メチルアミノプロピル(ジエトキシ)メチルシラン及び3-メチルアミノプロピル(ジメトキシ)メチルシランが好適である。
なお、非環状第一アミノ基含有ヒドロカルビルオキシシラン化合物としては、アミノプロピル(ジエトキシ)メチルシランを好ましく用いることができる。
なお、非環状第一アミノ基含有ヒドロカルビルオキシシラン化合物としては、アミノプロピル(ジエトキシ)メチルシランを好ましく用いることができる。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、3-(1-ヘキサメチレンイミノ)プロピル(メチルジエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(メチルジメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(メチルジメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(メチルジエトキシ)シラン、2-(1-ヘキサメチレンイミノ)エチル(メチルジエトキシ)シラン、2-(1-ヘキサメチレンイミノ)エチル(メチルジメトキシ)シラン、3-(1-ピロリジニル)プロピル(メチルジエトキシ)シラン、3-(1-ピロリジニル)プロピル(メチルジメトキシ)シラン、3-(1-ヘプタメチレンイミノ)プロピル(メチルジエトキシ)シラン、3-(1-ドデカメチレンイミノ)プロピル(メチルジエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(エチルジエトキシ)シラン、3-〔10-(メチルジエトキシシリル)デシル〕-4-オキサゾリン等の環状第三アミノ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で、3-(1-ヘキサメチレンイミノ)プロピル(メチルジエトキシ)シラン及び(1-ヘキサメチレンイミノ)メチル(メチルジメトキシ)シランをより好ましく挙げることができる。特に、3-(1-ヘキサメチレンイミノ)プロピル(メチルジエトキシ)シランが好適である。
そして、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、N-(3-メチルジメトキシシリルプロピル〕-4,5-ジヒドロイミダゾール、N-(3-メチルジエトキシシリルプロピル)-4,5-ジヒドロイミダゾール等のアミジン基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも、N-(3-メチルジエトキシシリルプロピル)-4,5-ジヒドロイミダゾールが好ましい。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、(2-グリシドキシエチル)メチルジメトキシシラン、(2-グリシドキシエチル)メチルジエトキシシラン、(2-グリシドキシエチル)エチルジメトキシシラン、(2-グリシドキシエチル)エチルジエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、(3-グリシドキシプロピル)メチルジエトキシシラン、(3-グリシドキシプロピル)エチルジメトキシシラン、(3-グリシドキシプロピル)エチルジエトキシシラン、2-(3、4-エポキシシクロヘキシル)エチル(メチルジメトキシ)シラン、2-(3,4-エキシシクロヘキシル)エチル(メチルジエトキシ)シラン2-(3、4-エポキシシクロヘキシル)エチル(エチルジメトキシ)シラン、2-(3,4-エキシシクロヘキシル)エチル(エチルジエトキシ)シラン等のエポキシ基含有ヒドロカルビルオキシシラン化合物を好ましく挙げることができるが、これらの中で、特に(3-グリシドキシプロピル)メチルジメトキシシラン及び(3-グリシドキシプロピル)メチルジエトキシシランが好適である。
そして、上記のエポキシ基含有ヒドロカルビルオキシシラン化合物のエポキシ基をエピチオ基に置き換えたエピチオ基含有ヒドロカルビルオキシシラン化合物をも好ましく挙げることができる。
そして、上記のエポキシ基含有ヒドロカルビルオキシシラン化合物のエポキシ基をエピチオ基に置き換えたエピチオ基含有ヒドロカルビルオキシシラン化合物をも好ましく挙げることができる。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、(3-イソシアナトプロピル)メチルジメトキシシラン、(3-イソシアナトプロピル)メチルジエトキシシラン、(3-イソシアナトプロピル)エチルジメトキシシラン、(3-イソシアナトプロピル)エチルジエトキシシラン、(3-イソシアナトプロピル)メチルジイソプロポキシシラン、3-(イソシアナトプロピル)エチルジイソプロポキシシラン等のイソシアネート基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも(3-イソシアナトプロピル)メチルジエトキシシランが好ましい。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、3-メタクリロイロキシプロピルメチルジエトキシシラン、3-メタクリロイロキシプロピルメチルジメトキシシラン、3-メタクリロイロキシプロピルエチルジメトキシシラン、3-メタクリロイロキシプロピルエチルジエトキシシラン、3-メタクリロイロキシプロピルメチルジイソプロポキシシラン等のカルボン酸ヒドロカルビルエステル残基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも、3-メタクリロイロキシプロピルメチルジメトキシシラン、3-メタクリロイロキシプロピルメチルジエトキシシランが好ましい。
また、上記一般式(2)により表わされる有機シラン化合物の別の具体例としては、例えば、3-(メチルジエトキシシリル)プロピルコハク酸無水物、3-(メチルジメトキシシリル)プロピルコハク酸無水物等のカルボン酸無水物残基含有ヒドロカルビルオキシシラン化合物が挙げられ、その中でも、3-(メチルジエトキシシリル)プロピルコハク酸無水物が好ましい。
さらに、2-(メチルジメトキシシリルエチル)ピリジン、2-(メチルジエトキシシリルエチル)ピリジン、2-シアノエチルメチルジエトキシシラン等を挙げることができる。
さらに、2-(メチルジメトキシシリルエチル)ピリジン、2-(メチルジエトキシシリルエチル)ピリジン、2-シアノエチルメチルジエトキシシラン等を挙げることができる。
上述の上記一般式(2)により表わされる各種有機シラン化合物の中で、アミノ基又はイミン残基を有するヒドロカルビルオキシシラン化合物が低発熱性向上の観点から好ましく、それらの中でも、上述の保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物が特に好ましい。第一アミノ基を変性共役ジエン(共)重合体の分子鎖末端に導入することにより、変性共役ジエン(共)重合体を配合するゴム組成物の低発熱性を大幅に向上するからである。
本実施形態において、変性共役ジエン(共)重合体の製造方法は、所望により、前記有機シラン化合物を反応させる変性反応工程の前に、前記共役ジエン(共)重合体の前記活性部位に、ヒドロカルビルオキシシラン化合物を反応させる予備変性反応工程をさらに含んでも良い。
ここで、予備変性反応工程で用いられるヒドロカルビルオキシシラン化合物は、複数のヒドロカルビルオキシシリル基を有することが好ましい。前記共役ジエン(共)重合体の前記活性部位との反応により一つのヒドロカルビルオキシシリル基が消費されても、残ったヒドロカルビルオキシシリル基により、本発明における変性共役ジエン(共)重合体の製造方法に必要な変性反応工程を実施することができるからである。
ここで、予備変性反応工程で用いられるヒドロカルビルオキシシラン化合物は、複数のヒドロカルビルオキシシリル基を有することが好ましい。前記共役ジエン(共)重合体の前記活性部位との反応により一つのヒドロカルビルオキシシリル基が消費されても、残ったヒドロカルビルオキシシリル基により、本発明における変性共役ジエン(共)重合体の製造方法に必要な変性反応工程を実施することができるからである。
変性共役ジエン(共)重合体の製造に用いることのできる共役ジエン(共)重合体を得るために用いられる共役ジエン単量体としては、例えば1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン等が挙げられる。これらは単独で用いてもよく、二種以上組み合わせて用いてもよい。これらの中では、1,3-ブタジエンが特に好ましい。
また、共役ジエン(共)重合体に用いられる芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロへキシルスチレン、2,4,6-トリメチルスチレン等が挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中では、スチレンが特に好ましい。
共役ジエン(共)重合体としては、ポリブタジエン、ポリイソプレン、ブタジエン-イソプレン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体又はスチレン-イソプレン-ブタジエン三元共重合体であることが好ましく、これらの中で、ポリブタジエン及びスチレン-ブタジエン共重合体が特に好ましい。
また、共役ジエン(共)重合体に用いられる芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、1-ビニルナフタレン、3-ビニルトルエン、エチルビニルベンゼン、ジビニルベンゼン、4-シクロへキシルスチレン、2,4,6-トリメチルスチレン等が挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中では、スチレンが特に好ましい。
共役ジエン(共)重合体としては、ポリブタジエン、ポリイソプレン、ブタジエン-イソプレン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体又はスチレン-イソプレン-ブタジエン三元共重合体であることが好ましく、これらの中で、ポリブタジエン及びスチレン-ブタジエン共重合体が特に好ましい。
共役ジエン(共)重合体として使用することのできるスチレン-ブタジエン共重合体としては、後述する変性反応の前又は後の重量平均分子量(Mw)が100,000~800,000であることが好ましく、150,000~700,000であることが更に好ましい。重量平均分子量をこの範囲内にすることによって、加硫物の弾性率の低下、ヒステリシスロスの上昇を抑えて優れた耐破壊特性を得るとともに、SBRを含むゴム組成物の優れた混練作業性が得られる。重量平均分子量は、GPC法に基づき、標準ポリスチレン換算により得られる。スチレン-ブタジエン共重合体は、乳化重合SBRであってもよいし、溶液重合SBRであってもよい。
なお、スチレン-ブタジエン共重合体をSBRと表し、変性スチレン-ブタジエン共重合体を変性SBRと表すことがある。
なお、スチレン-ブタジエン共重合体をSBRと表し、変性スチレン-ブタジエン共重合体を変性SBRと表すことがある。
変性スチレン-ブタジエン共重合体の製造には下記の方法が挙げられる。すなわち、スチレン-ブタジエン共重合体の活性末端に、ヒドロカルビルオキシシラン化合物、特に窒素及びケイ素を含むヒドロカルビルオキシシラン化合物を反応させて変性させるには、スチレン-ブタジエン共重合体は、少なくとも10%のポリマー鎖がリビング性又は擬似リビング性を有するものが好ましい。このようなリビング性を有する重合反応としては、有機アルカリ金属化合物を開始剤とし、有機溶媒中でスチレンとブタジエンとをアニオン重合させる反応が好ましい。アニオン重合により、共役ジエン部のビニル結合含有量の高いものを得ることができ、ガラス転移温度Tgを所望する温度に調節することができる。ビニル結合量を高くすることによって耐熱性を向上させることができ、シス-1,4結合含有量を高くすることにより低燃費性を向上させることができる。
上述のアニオン重合の開始剤として用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。有機リチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム又はリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位であるスチレン-ブタジエン共重合体が得られ、重合活性部位である活性末端に、上述のヒドロカルビルオキシシラン化合物を反応させて変性させる。
また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位であるスチレン-ブタジエン共重合体が得られる。リチウムアミド化合物の場合は、上述のヒドロカルビルオキシシラン化合物により変性しなくても、本発明に係る変性SBRが得られるが、重合活性部位である活性末端にヒドロカルビルオキシシラン化合物、特に窒素及びケイ素を含むヒドロカルビルオキシシラン化合物を反応させて変性させると、所謂、両末端変性スチレン-ブタジエン共重合体が得られ、カーボンブラック、シリカ等の充填材の分散性及び補強性を更に高めることができるので、更に好ましい。
重合開始剤であるヒドロカルビルリチウムとしては、炭素数2~20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等が挙げられるが、これらの中で、特にn-ブチルリチウムが好適である。
また、重合開始剤であるリチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド等の環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
これらのリチウムアミド化合物は、一般に、第二アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in-situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2~20ミリモルの範囲で選定される。
これらのリチウムアミド化合物は、一般に、第二アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in-situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2~20ミリモルの範囲で選定される。
前記有機リチウム化合物を重合開始剤として用い、アニオン重合によってスチレン-ブタジエン共重合体を製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有するスチレン-ブタジエン共重合体が得られる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有するスチレン-ブタジエン共重合体が得られる。
前記炭化水素系溶剤としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-へキセン、2-へキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
また、溶液中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含有量は5~55質量%が好ましく、6~45質量%がより好ましい。
また、溶液中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含有量は5~55質量%が好ましく、6~45質量%がより好ましい。
また、所望により用いられるランダマイザーとは、スチレン-ブタジエン共重合体のミクロ構造の制御、例えばブタジエン-スチレン共重合体におけるブタジエン部分の1,2結合、イソプレン重合体における3,4結合の増加等、あるいは共役ジエン-芳香族ビニル共重合体における単量体単位の組成分布の制御、例えば、ブタジエン-スチレン共重合体におけるブタジエン単位、スチレン単位のランダム化等の作用を有する化合物のことである。
このランダマイザーとしては、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ビス(2-テトラヒドロフリル)-プロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピぺリジノエタン等のエーテル類及び第三アミン類等を挙げることができる。また、カリウムt-アミレート、カリウムt-ブトキシド等のカリウム塩類、ナトリウムt-アミレート等のナトリウム塩類も用いることができる。
このランダマイザーとしては、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ビス(2-テトラヒドロフリル)-プロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、N,N,N’,N’-テトラメチルエチレンジアミン、1,2-ジピぺリジノエタン等のエーテル類及び第三アミン類等を挙げることができる。また、カリウムt-アミレート、カリウムt-ブトキシド等のカリウム塩類、ナトリウムt-アミレート等のナトリウム塩類も用いることができる。
これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その使用量は、リチウム化合物1モル当たり、好ましくは0.01~1000モル当量の範囲で選択される。
この重合反応における温度は、好ましくは0~150℃、より好ましくは20~130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
この重合反応における温度は、好ましくは0~150℃、より好ましくは20~130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
次に、配位アニオン重合の重合触媒系について説明する。配位アニオン重合の重合触媒系としては、有機溶媒中でランタン系列希土類元素化合物を含む触媒が用いられる。
ランタン系列希土類元素化合物を含む触媒としては、
A成分:周期律表の原子番号57~71の希土類元素含有化合物、又はこれらの化合物とルイス塩基との反応物、
B成分:下記一般式(5):
AlR7R8R9 ・・・(5)
(ここで、R7及びR8は同一又は異なり、炭素数1~10のヒドロカルビル基又は水素原子で、R9は炭素数1~10のヒドロカルビル基であり、但し、R9は上記R7又はR8と同一又は異なっていても良い)で表される有機アルミニウム化合物、並びに
C成分:ルイス酸、金属ハロゲン化物と、ルイス塩基との錯化合物、及び活性ハロゲンを含む有機化合物の少なくとも一種からなる触媒系を用い、共役ジエン単量体を重合するのが好ましい。
ランタン系列希土類元素化合物を含む触媒としては、
A成分:周期律表の原子番号57~71の希土類元素含有化合物、又はこれらの化合物とルイス塩基との反応物、
B成分:下記一般式(5):
AlR7R8R9 ・・・(5)
(ここで、R7及びR8は同一又は異なり、炭素数1~10のヒドロカルビル基又は水素原子で、R9は炭素数1~10のヒドロカルビル基であり、但し、R9は上記R7又はR8と同一又は異なっていても良い)で表される有機アルミニウム化合物、並びに
C成分:ルイス酸、金属ハロゲン化物と、ルイス塩基との錯化合物、及び活性ハロゲンを含む有機化合物の少なくとも一種からなる触媒系を用い、共役ジエン単量体を重合するのが好ましい。
また、本発明において、ランタン系列希土類元素化合物を含む触媒系には、上記A成分~C成分の他に、さらにD成分として、有機アルミニウムオキシ化合物、所謂アルミノキサンを添加するのが好ましい。ここで、前記触媒系は、前記A成分、B成分、C成分、D成分及び共役ジエン単量体の存在下で予備調製されてなるのが、さらに好ましい。
本発明において、ランタン系列希土類元素化合物を含む触媒系のA成分は、周期律表の原子番号57~71の希土類元素を含有する化合物、又はこれらの化合物とルイス塩基との反応物である。ここで、原子番号57~71の希土類元素の中でも、ネオジム、プラセオジム、セリウム、ランタン、ガドリニウム、サマリウム等、又はこれらの混合物が好ましく、ネオジムが特に好ましい。
前記希土類元素含有化合物としては、炭化水素溶媒に可溶な塩が好ましく、具体的には、前記希土類元素のカルボン酸塩、アルコキサイド、β-ジケトン錯体、リン酸塩及び亜リン酸塩が挙げられ、これらの中でも、カルボン酸塩及びリン酸塩が好ましく、カルボン酸塩が特に好ましい。
ここで、炭化水素溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4~10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5~20の飽和脂環式炭化水素、1-ブテン、2-ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、トリクロロエチレン、パークロロエチレン、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。
ここで、炭化水素溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4~10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5~20の飽和脂環式炭化水素、1-ブテン、2-ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、トリクロロエチレン、パークロロエチレン、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。
上記希土類元素のカルボン酸塩としては、下記一般式(6):
(R10-CO2)3M1 ・・・(6)
(式中、R10は炭素数1~20のヒドロカルビル基で、M1は周期律表の原子番号57~71の希土類元素である)で表される化合物が挙げられる。ここで、R10は、飽和又は不飽和でもよく、アルキル基及びアルケニル基が好ましく、直鎖状、分岐状及び環状のいずれでも良い。また、カルボキシル基は、1級、2級又は3級の炭素原子に結合している。該カルボン酸塩として、具体的には、オクタン酸、2-エチルヘキサン酸、オレイン酸、ネオデカン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸[シェル化学(株)製の商品名であって、カルボキシル基が3級炭素原子に結合しているカルボン酸]等の塩が挙げられ、これらの中でも、2-エチルヘキサン酸、ネオデカン酸、ナフテン酸、バーサチック酸の塩が好ましい。
(R10-CO2)3M1 ・・・(6)
(式中、R10は炭素数1~20のヒドロカルビル基で、M1は周期律表の原子番号57~71の希土類元素である)で表される化合物が挙げられる。ここで、R10は、飽和又は不飽和でもよく、アルキル基及びアルケニル基が好ましく、直鎖状、分岐状及び環状のいずれでも良い。また、カルボキシル基は、1級、2級又は3級の炭素原子に結合している。該カルボン酸塩として、具体的には、オクタン酸、2-エチルヘキサン酸、オレイン酸、ネオデカン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸[シェル化学(株)製の商品名であって、カルボキシル基が3級炭素原子に結合しているカルボン酸]等の塩が挙げられ、これらの中でも、2-エチルヘキサン酸、ネオデカン酸、ナフテン酸、バーサチック酸の塩が好ましい。
上記希土類元素のアルコキサイドとしては、下記一般式(7):
(R11O)3M2 ・・・(7)
(式中、R11は炭素数1~20のヒドロカルビル基で、M2は周期律表の原子番号57~71の希土類元素である)で表される化合物が挙げられる。R11Oで表されるアルコキシ基としては、2-エチル-ヘキシルオキシ基、オレイルオキシ基、ステアリルオキシ基、フェノキシ基、ベンジルオキシ基等が挙げられる。これらの中でも、2-エチル-ヘキシルオキシ基、ベンジルオキシ基が好ましい。
(R11O)3M2 ・・・(7)
(式中、R11は炭素数1~20のヒドロカルビル基で、M2は周期律表の原子番号57~71の希土類元素である)で表される化合物が挙げられる。R11Oで表されるアルコキシ基としては、2-エチル-ヘキシルオキシ基、オレイルオキシ基、ステアリルオキシ基、フェノキシ基、ベンジルオキシ基等が挙げられる。これらの中でも、2-エチル-ヘキシルオキシ基、ベンジルオキシ基が好ましい。
上記希土類元素のβ-ジケトン錯体としては、上記希土類元素のアセチルアセトン錯体、ベンゾイルアセトン錯体、プロピオニトリルアセトン錯体、バレリルアセトン錯体、エチルアセチルアセトン錯体等が挙げられる。これらの中でも、アセチルアセトン錯体、エチルアセチルアセトン錯体が好ましい。
上記希土類元素のリン酸塩及び亜リン酸塩としては、上記希土類元素と、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、(1-メチルヘプチル)(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸等との塩が挙げられ、これらの中でも、上記希土類元素と、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、ビス(2-エチルヘキシル)ホスフィン酸との塩が好ましい。
上記希土類元素含有化合物の中でも、ネオジムのリン酸塩、及びネオジムのカルボン酸塩がさらに好ましく、特にネオジムの2-エチルヘキサン酸塩、ネオジムのネオデカン酸塩、ネオジムのバーサチック酸塩等のネオジムの分岐カルボン酸塩が最も好ましい。
また、A成分は、上記希土類元素含有化合物とルイス塩基との反応物でも良い。該反応物は、ルイス塩基によって、希土類元素含有化合物の溶剤への溶解性が向上しており、また、長期間安定に貯蔵することができる。上記希土類元素含有化合物を溶剤に容易に可溶化させるため、また、長期間安定に貯蔵するために用いられるルイス塩基は、希土類元素1モル当り0~30モル、好ましくは1~10モルの割合で、両者の混合物として、又は予め両者を反応させた生成物として用いられる。ここで、ルイス塩基としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N-ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、1価又は2価のアルコールが挙げられる。
以上に述べたA成分としての希土類元素含有化合物又はこれらの化合物とルイス塩基との反応物は、一種単独で使用することも、二種以上を混合して用いることもできる。
本発明において、末端活性重合体の重合に用いる触媒系のB成分である上記一般式(5)で表される有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べたB成分としての有機アルミニウム化合物は、一種単独で使用することも、二種以上を混合して用いることもできる。
本発明において、末端活性重合体の重合に用いる触媒系のC成分は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物、及び活性ハロゲンを含む有機化合物からなる群から選択される少なくとも一種のハロゲン化合物である。
上記ルイス酸は、ルイス酸性を有し、炭化水素に可溶である。具体的には、二臭化メチルアルミニウム、二塩化メチルアルミニウム、二臭化エチルアルミニウム、二塩化エチルアルミニウム、二臭化ブチルアルミニウム、二塩化ブチルアルミニウム、臭化ジメチルアルミニウム、塩化ジメチルアルミニウム、臭化ジエチルアルミニウム、塩化ジエチルアルミニウム、臭化ジブチルアルミニウム、塩化ジブチルアルミニウム、セスキ臭化メチルアルミニウム、セスキ塩化メチルアルミニウム、セスキ臭化エチルアルミニウム、セスキ塩化エチルアルミニウム、二塩化ジブチルスズ、三臭化アルミニウム、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化ケイ素等が例示できる。これらの中でも、塩化ジエチルアルミニウム、セスキ塩化エチルアルミニウム、二塩化エチルアルミニウム、臭化ジエチルアルミニウム、セスキ臭化エチルアルミニウム、及び二臭化エチルアルミニウムが好ましい。
また、トリエチルアルミニウムと臭素の反応生成物のようなアルキルアルミニウムとハロゲンの反応生成物を用いることもできる。
また、トリエチルアルミニウムと臭素の反応生成物のようなアルキルアルミニウムとハロゲンの反応生成物を用いることもできる。
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチル-ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチル-ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、通常0.01~30モル、好ましくは0.5~10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
また、D成分であるアルミノキサンとしては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、クロロアルミノキサン等が挙げられる。D成分としてアルミノキサンを加えることで、分子量分布がシャープになり、触媒としての活性も向上する。
本発明で使用する触媒系の各成分の量又は組成比は、その目的又は必要性に応じて適宜選択される。このうち、A成分は、1,3-ブタジエン100gに対し、0.00001~1.0ミリモル用いるのが好ましく、0.0001~0.5ミリモル用いるのがさらに好ましい。A成分の使用量を上記範囲内にすることによって優れた重合活性が得られ、脱灰工程の必要性がなくなる。
また、A成分とB成分の割合は、モル比で、A成分:B成分が通常1:1~1:700、好ましくは1:3~1:500である。
さらに、A成分とC成分中のハロゲンの割合は、モル比で、通常1:0.1~1:30、好ましくは1:0.2~1:15、さらに好ましくは1:2.0~1:5.0である。
また、D成分中のアルミニウムとA成分との割合は、モル比で、通常1:1~700:1、好ましくは3:1~500:1である。これらの触媒量又は構成成分比の範囲内にすることで、高活性な触媒として作用し、また、触媒残渣を除去する工程の必要性がなくなるため好ましい。
また、上記のA成分~C成分以外に、重合体の分子量を調節する目的で、水素ガスを共存させて重合反応を行っても良い。
また、A成分とB成分の割合は、モル比で、A成分:B成分が通常1:1~1:700、好ましくは1:3~1:500である。
さらに、A成分とC成分中のハロゲンの割合は、モル比で、通常1:0.1~1:30、好ましくは1:0.2~1:15、さらに好ましくは1:2.0~1:5.0である。
また、D成分中のアルミニウムとA成分との割合は、モル比で、通常1:1~700:1、好ましくは3:1~500:1である。これらの触媒量又は構成成分比の範囲内にすることで、高活性な触媒として作用し、また、触媒残渣を除去する工程の必要性がなくなるため好ましい。
また、上記のA成分~C成分以外に、重合体の分子量を調節する目的で、水素ガスを共存させて重合反応を行っても良い。
触媒成分として、上記のA成分、B成分、C成分及び必要により用いられるD成分以外に、必要に応じて、1,3-ブタジエン等の共役ジエン単量体を少量、具体的には、A成分の化合物1モル当り0~1000モルの割合で用いても良い。触媒成分としての1,3-ブタジエン等の共役ジエン単量体は必須ではないが、これを併用すると、触媒活性が一段と向上する利点がある。
上記触媒の製造は、例えば、溶媒にA成分~C成分を溶解させ、さらに必要に応じて、1,3-ブタジエン等の共役ジエン単量体を反応させる。
その際、各成分の添加順序は、特に限定されず、さらにD成分としてアルミノキサンを添加しても良い。重合活性の向上、重合開始誘導期間の短縮の観点からは、これら各成分を、予め混合して、反応させ、熟成させることが好ましい。
ここで、熟成温度は、0~100℃程度であり、20~80℃が好ましい。0℃未満では、充分に熟成が行われにくく、100℃を超えると、触媒活性の低下や、分子量分布の広がりが起こる場合がある。
また、熟成時間は、特に制限なく、重合反応槽に添加する前にライン中で接触させることでも熟成でき、通常は、0.5分以上あれば充分であり、数日間は安定である。
その際、各成分の添加順序は、特に限定されず、さらにD成分としてアルミノキサンを添加しても良い。重合活性の向上、重合開始誘導期間の短縮の観点からは、これら各成分を、予め混合して、反応させ、熟成させることが好ましい。
ここで、熟成温度は、0~100℃程度であり、20~80℃が好ましい。0℃未満では、充分に熟成が行われにくく、100℃を超えると、触媒活性の低下や、分子量分布の広がりが起こる場合がある。
また、熟成時間は、特に制限なく、重合反応槽に添加する前にライン中で接触させることでも熟成でき、通常は、0.5分以上あれば充分であり、数日間は安定である。
上記末端活性を有する共役ジエン(共)重合体の製造においては、前記ランタン系列希土類元素含有化合物を含む触媒系を用いて有機溶媒中で、共役ジエン単量体単独又は、共役ジエン単量体と他の共役ジエン単量体の溶液重合を行なうことによって得られる。ここで、重合溶媒としては、不活性の有機溶媒を用いる。不活性の有機溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4~10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5~20の飽和脂環式炭化水素、1-ブテン、2-ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。
これらの中でも、炭素数5~6の脂肪族炭化水素、脂環式炭化水素が特に好ましい。これらの溶媒は、一種単独で使用してもよく、二種以上を混合して使用しても良い。
この配位アニオン重合に用いられる溶液中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。
これらの中でも、炭素数5~6の脂肪族炭化水素、脂環式炭化水素が特に好ましい。これらの溶媒は、一種単独で使用してもよく、二種以上を混合して使用しても良い。
この配位アニオン重合に用いられる溶液中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。
本発明において、配位アニオン重合反応における温度は、好ましくは-80~150℃、より好ましくは-20~120℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
配位アニオン重合反応により得られた活性末端を有する共役ジエン(共)重合体の該活性末端を変性する場合は、上述の予備変性反応工程において予めヒドロカルビルオキシシラン化合物を反応させた後、加水分解によりシラノール基を生成する特性基と、該特性基の近傍に(i)該活性部位に付加もしくは置換反応を行う事によって有機シラン化合物と該共役ジエン(共)重合体とを結合し且つ該反応後に該シラノール基と補強性充填材との反応を促進する官能基又は(ii)該シラノール基と補強性充填材との反応を促進する官能基とを有する有機シラン化合物を反応させることが、変性反応を円滑に進める見地から好ましい。
上述のアニオン重合及び配位アニオン重合においては、重合開始剤、溶媒、単量体等、重合に関与する全ての原材料は、水、酸素、二酸化炭素、プロトン性化合物等の反応阻害物質を除去したものを用いることが望ましい。
上記重合反応は、回分式及び連続式のいずれで行っても良い。
このようにして活性末端を有する共役ジエン(共)重合体が得られる。
上記重合反応は、回分式及び連続式のいずれで行っても良い。
このようにして活性末端を有する共役ジエン(共)重合体が得られる。
本発明における変性共役ジエン(共)重合体の製造方法の変性反応工程においては、以上のようにして得られた活性末端を有する共役ジエン(共)重合体に、上述の一般式(1)又は一般式(2)により表わされる有機シラン化合物を、該共役ジエン(共)重合体の活性末端に対して、好ましくは化学量論的量又はそれより過剰に加え、該重合体に結合している活性末端と反応させる。
本発明における変性反応工程及び予備変性反応工程は、通常、重合反応と同じ温度、圧力条件で実施される。
本発明における変性反応工程及び予備変性反応工程は、通常、重合反応と同じ温度、圧力条件で実施される。
次に、変性共役ジエン(共)重合体の製造方法の加水分解工程を説明する。加水分解工程においては、変性反応工程終了後、水の存在下、酸性、中性又はアルカリ性の条件で加水分解反応が行われる。これにより、変性共役ジエン(共)重合体に結合した加水分解性官能基が効率よく加水分解され、シラノール基が変性共役ジエン(共)重合体の末端又は側鎖に生成する。
この加水分解反応に用いる水の量は、開始剤のLiなどのモル量より過剰なモル量、例えば2~4倍のモル量であることが好ましい。加水分解時間は、通常10分~数時間程度である。
なお、アルカリ性条件で加水分解反応を行う場合には、塩基性化合物として、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属、好ましくは水酸化ナトリウムを加えることが望ましく、酸性条件で加水分解反応を行う場合には、酸性化合物として、塩酸、硫酸、硝酸などの無機酸、酢酸、ギ酸などのカルボン酸、四塩化ケイ素などを加えることが望ましい。
この加水分解反応に用いる水の量は、開始剤のLiなどのモル量より過剰なモル量、例えば2~4倍のモル量であることが好ましい。加水分解時間は、通常10分~数時間程度である。
なお、アルカリ性条件で加水分解反応を行う場合には、塩基性化合物として、水酸化ナトリウム、水酸化カリウムなどの水酸化アルカリ金属、好ましくは水酸化ナトリウムを加えることが望ましく、酸性条件で加水分解反応を行う場合には、酸性化合物として、塩酸、硫酸、硝酸などの無機酸、酢酸、ギ酸などのカルボン酸、四塩化ケイ素などを加えることが望ましい。
本発明においては、前記変性反応工程と加水分解工程との間、又は加水分解工程後に、さらに縮合促進剤の存在下に縮合反応させる縮合反応工程を設けることができる。
縮合反応で用いる縮合促進剤は、変性反応後、および縮合反応開始前に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端にヒドロカルビロキシ基が導入されない場合がある。また、縮合反応開始後に添加した場合、縮合促進剤が均一に分散せずその触媒性能が低下する場合がある。
縮合促進剤の添加時期としては、変性反応工程と加水分解工程との間に縮合反応工程を設ける場合には、通常変性反応開始5分~5時間後、好ましくは変性反応開始15分~1時間後である。加水分解工程後に縮合反応工程を設ける場合には、通常加水分解反応開始5分~5時間後、好ましくは10分~2時間後である。
縮合促進剤の添加時期としては、変性反応工程と加水分解工程との間に縮合反応工程を設ける場合には、通常変性反応開始5分~5時間後、好ましくは変性反応開始15分~1時間後である。加水分解工程後に縮合反応工程を設ける場合には、通常加水分解反応開始5分~5時間後、好ましくは10分~2時間後である。
縮合促進剤としては、金属元素を含むものが好ましく、周期律表の2族~15族に属する金属の少なくとも一種を含有する化合物であることがより好ましい。
前記金属元素を含む縮合促進剤としては、Ti、Sn、Bi、Zr及びAlの中から選ばれる少なくとも一種を含み、かつ前記金属のアルコキシド、カルボン酸塩又はアセチルアセトナート錯塩であるものが好適である。
前記金属元素を含む縮合促進剤としては、Ti、Sn、Bi、Zr及びAlの中から選ばれる少なくとも一種を含み、かつ前記金属のアルコキシド、カルボン酸塩又はアセチルアセトナート錯塩であるものが好適である。
Tiを金属成分として含む縮合促進剤としては、チタン(Ti)のアルコキシド、カルボン酸塩及びアセチルアセトナート錯塩が好ましく用いられる。
具体的には、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-メチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-プロピル-1,3-ヘキサンジオラト)チタン、テトラキス(2-ブチル-1,3-ヘキサンジオラト)チタン、テトラキス(1,3-ヘキサンジオラト)チタン、テトラキス(1,3-ペンタンジオラト)チタン、テトラキス(2-メチル-1,3-ペンタンジオラト)チタン、テトラキス(2-エチル-1,3-ペンタンジオラト)チタン、テトラキス(2-プロピル-1,3-ペンタンジオラト)チタン、テトラキス(2-ブチル-1,3-ペンタンジオラト)チタン、テトラキス(1,3-ヘプタンジオラト)チタン、テトラキス(2-メチル-1,3-ヘプタンジオラト)チタン、テトラキス(2-エチル-1,3-ヘプタンジオラト)チタン、テトラキス(2-プロピル-1,3-ヘプタンジオラト)チタン、テトラキス(2-ブチル-1,3-ヘプタンジオラト)チタン、テトラキス(2-エチルヘキソキシ)チタン、テトラメトキシチタン、テトラエトキシチタン、テトラ-n-プロポキシチタン、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラ-n-ブトキシチタンオリゴマー、テトライソブトキシチタン、テトラ-sec-ブトキシチタン、テトラ-tert-ブトキシチタン、ビス(オレエート)ビス(2-エチルヘキサノエート)チタン、チタンジプロポキシビス(トリエタノールアミネート)、チタンジブトキシビス(トリエタノールアミネート)、チタントリブトキシステアレート、チタントリプロポキシステアレート、チタントリプロポキシアセチルアセトネート、チタンジプロポキシビス(アセチルアセトネート)、チタントリプロポキシ(エチルアセトアセテート)、チタンプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタントリブトキシアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)、チタントリブトキシエチルアセトアセテート、チタンブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタンテトラキス(アセチルアセトネート)、チタンジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)チタンオキサイド、ビス(ラウレート)チタンオキサイド、ビス(ナフテネート)チタンオキサイド、ビス(ステアレート)チタンオキサイド、ビス(オレエート)チタンオキサイド、ビス(リノレート)チタンオキサイド、テトラキス(2-エチルヘキサノエート)チタン、テトラキス(ラウレート)チタン、テトラキス(ナフテネート)チタン、テトラキス(ステアレート)チタン、テトラキス(オレエート)チタン、テトラキス(リノレート)チタン、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)、チタンオキサイドビス(ステアレート)、チタンオキサイドビス(テトラメチルヘプタンジオネート)、チタンオキサイドビス(ペンタンジオネート)、チタンテトラ(ラクテート)などが挙げられる。
なかでも、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-エチルヘキソキシ)チタン、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)が好ましい。
具体的には、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-メチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-プロピル-1,3-ヘキサンジオラト)チタン、テトラキス(2-ブチル-1,3-ヘキサンジオラト)チタン、テトラキス(1,3-ヘキサンジオラト)チタン、テトラキス(1,3-ペンタンジオラト)チタン、テトラキス(2-メチル-1,3-ペンタンジオラト)チタン、テトラキス(2-エチル-1,3-ペンタンジオラト)チタン、テトラキス(2-プロピル-1,3-ペンタンジオラト)チタン、テトラキス(2-ブチル-1,3-ペンタンジオラト)チタン、テトラキス(1,3-ヘプタンジオラト)チタン、テトラキス(2-メチル-1,3-ヘプタンジオラト)チタン、テトラキス(2-エチル-1,3-ヘプタンジオラト)チタン、テトラキス(2-プロピル-1,3-ヘプタンジオラト)チタン、テトラキス(2-ブチル-1,3-ヘプタンジオラト)チタン、テトラキス(2-エチルヘキソキシ)チタン、テトラメトキシチタン、テトラエトキシチタン、テトラ-n-プロポキシチタン、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラ-n-ブトキシチタンオリゴマー、テトライソブトキシチタン、テトラ-sec-ブトキシチタン、テトラ-tert-ブトキシチタン、ビス(オレエート)ビス(2-エチルヘキサノエート)チタン、チタンジプロポキシビス(トリエタノールアミネート)、チタンジブトキシビス(トリエタノールアミネート)、チタントリブトキシステアレート、チタントリプロポキシステアレート、チタントリプロポキシアセチルアセトネート、チタンジプロポキシビス(アセチルアセトネート)、チタントリプロポキシ(エチルアセトアセテート)、チタンプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタントリブトキシアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)、チタントリブトキシエチルアセトアセテート、チタンブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタンテトラキス(アセチルアセトネート)、チタンジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)チタンオキサイド、ビス(ラウレート)チタンオキサイド、ビス(ナフテネート)チタンオキサイド、ビス(ステアレート)チタンオキサイド、ビス(オレエート)チタンオキサイド、ビス(リノレート)チタンオキサイド、テトラキス(2-エチルヘキサノエート)チタン、テトラキス(ラウレート)チタン、テトラキス(ナフテネート)チタン、テトラキス(ステアレート)チタン、テトラキス(オレエート)チタン、テトラキス(リノレート)チタン、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)、チタンオキサイドビス(ステアレート)、チタンオキサイドビス(テトラメチルヘプタンジオネート)、チタンオキサイドビス(ペンタンジオネート)、チタンテトラ(ラクテート)などが挙げられる。
なかでも、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-エチルヘキソキシ)チタン、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)が好ましい。
Snを金属成分として含む縮合促進剤としては、Sn(OCOR31)2で表される酸化数2のスズ化合物(式中、R31は炭素数2~19のアルキル基である)、R32
xSnA5
yB1
4-y-xで表される酸化数4のスズ化合物(式中、R32は炭素数1~30の脂肪族炭化水素基、xは1~3の整数、yは1又は2、A5は炭素数2~30のカルボキシル基、炭素数5~20のβ-ジカルボニル基、炭素数3~20のヒドロカルビルオキシ基、及び炭素数1~20のヒドロカルビル基及び/又は炭素数1~20のヒドロカルビルオキシ基で三置換されたシロキシ基から選ばれる基、B1はヒドロキシル基又はハロゲンである)が好ましい。
より具体的には、前記スズのカルボン酸塩としては、二価のスズのジカルボン酸塩や、四価のジヒドロカルビルスズのジカルボン酸塩(ビス(ヒドロカルビルジカルボン酸)塩を含む)、ビス(β-ジケトネート)、アルコキシハライド、モノカルボン酸塩ヒドロキシド、アルコキシ(トリヒドロカルビルシロキシド)、アルコキシ(ジヒドロカルビルアルコキシシロキシド)、ビス(トリヒドロカルビルシロキシド)、ビス(ジヒドロカルビルアルコキシシロキシド)、等を好適に用いることができる。スズに結合したヒドロカルビル基としては炭素数が4以上のものが望ましく、炭素数4から炭素数8のものが特に好ましい。
また、Zr、Bi、又はAlを金属成分として含む縮合促進剤(例えば、これら金属のアルコキシド、カルボン酸、又はアセチルアセトナート錯塩)としては、下記(a)~(e)が挙げられる。
(a)ビスマスのカルボン酸塩
(b)ジルコニウムのアルコキシド
(c)ジルコニウムのカルボン酸塩
(d)アルミニウムのアルコキシド
(e)アルミニウムのカルボン酸塩
(b)ジルコニウムのアルコキシド
(c)ジルコニウムのカルボン酸塩
(d)アルミニウムのアルコキシド
(e)アルミニウムのカルボン酸塩
具体的には、トリス(2-エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテネート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス、テトラエトキシジルコニウム、テトラn-プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラn-ブトキシジルコニウム、テトラsec-ブトキシジルコニウム、テトラtert-ブトキシジルコニウム、テトラ(2-エチルヘキソキシ)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテネート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2-エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテネート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム、トリエトキシアルミニウム、トリn-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリn-ブトキシアルミニウム、トリsec-ブトキシアルミニウム、トリtert-ブトキシアルミニウム、トリ(2-エチルヘキソキシ)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテネート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等が挙げられる。
これらの中で、トリス(2-エチルヘキサノエート)ビスマス、テトラn-プロポキシジルコニウム、テトラn-ブトキシジルコニウム、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、トリイソプロポキシアルミニウム、トリsec-ブトキシアルミニウム、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ステアレート)アルミニウム、ジルコニウムテトラキス(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)が好ましい。
縮合促進剤の配合量(使用量)としては、後述のゴム組成物におけるゴム成分100質量部に対し0.1~10質量部になるような量であることが好ましく、0.5~5質量部がより好ましい。縮合促進剤の使用量を上記範囲にすることによって縮合反応が効率よく進行する。
縮合反応は、水溶液中で行うことが好ましく、縮合反応時の温度は85~180℃が好ましく、さらに好ましくは100~170℃、特に好ましくは110~150℃である。縮合反応時の温度を上記範囲にすることによって、縮合反応を効率よく進行完結することができ、得られる変性共役ジエン系重合体の経時変化によるポリマーの老化反応などによる品質の低下などを抑えることができる。
なお、縮合反応時間は、好ましくは5分~10時間、より好ましくは15分~5時間程度である。縮合反応時間を上記範囲にすることによって縮合反応を円滑に完結することができる。
縮合反応時の反応系の圧力は、好ましくは0.01~20MPa、より好ましくは0.05~10MPaである。
縮合反応の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器などの装置を用いて連続式で行ってもよい。また、この縮合反応と脱溶媒を同時に行ってもよい。
縮合反応時の反応系の圧力は、好ましくは0.01~20MPa、より好ましくは0.05~10MPaである。
縮合反応の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器などの装置を用いて連続式で行ってもよい。また、この縮合反応と脱溶媒を同時に行ってもよい。
上述の加水分解工程又は加水分解工程と縮合反応工程とを終了後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール溶液等を重合反応系に加えて、重合反応を停止する。
その後、水蒸気を吹き込んで溶剤の分圧を下げるスチームストリッピング等の脱溶媒処理や真空乾燥処理を経て本発明の変性共役ジエン(共)重合体が得られる。
ここで、前記変性反応工程において、上記一般式(2)により表わされる有機シラン化合物として保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物を用いる場合は、上述した加水分解工程やスチームストリッピング等の水蒸気を用いる脱溶媒処理工程において保護された窒素原子の保護基を脱離させ第一アミノ基を生成する脱保護処理が同時になされるが、それ以外に、変性反応工程終了後から、脱溶媒して乾燥ポリマーとなるまでのいずれかの段階において必要に応じて種々の方法で第一アミノ基上の保護基を加水分解することによって遊離した第一アミノ基に変換し、ヒドロカルビルオキシシラン化合物由来の保護された第一アミノ基の脱保護処理を行うことができる。
その後、水蒸気を吹き込んで溶剤の分圧を下げるスチームストリッピング等の脱溶媒処理や真空乾燥処理を経て本発明の変性共役ジエン(共)重合体が得られる。
ここで、前記変性反応工程において、上記一般式(2)により表わされる有機シラン化合物として保護された第一アミノ基を有するヒドロカルビルオキシシラン化合物を用いる場合は、上述した加水分解工程やスチームストリッピング等の水蒸気を用いる脱溶媒処理工程において保護された窒素原子の保護基を脱離させ第一アミノ基を生成する脱保護処理が同時になされるが、それ以外に、変性反応工程終了後から、脱溶媒して乾燥ポリマーとなるまでのいずれかの段階において必要に応じて種々の方法で第一アミノ基上の保護基を加水分解することによって遊離した第一アミノ基に変換し、ヒドロカルビルオキシシラン化合物由来の保護された第一アミノ基の脱保護処理を行うことができる。
次に、上述の製造方法により得られる変性共役ジエン(共)重合体(以下、変性共役ジエン(共)重合体Iと称する。)について説明する。
[変性共役ジエン(共)重合体I]
本発明における変性共役ジエン(共)重合体Iは、シラノール基と、該シラノール基の近傍にある官能基であって、該シラノール基と補強性充填材との反応を促進する官能基とを分子鎖末端に有する。
また、本発明における変性共役ジエン(共)重合体Iは、より具体的には、下記一般式(3)又は下記一般式(4)により表わされる変性共役ジエン(共)重合体である。
[変性共役ジエン(共)重合体I]
本発明における変性共役ジエン(共)重合体Iは、シラノール基と、該シラノール基の近傍にある官能基であって、該シラノール基と補強性充填材との反応を促進する官能基とを分子鎖末端に有する。
また、本発明における変性共役ジエン(共)重合体Iは、より具体的には、下記一般式(3)又は下記一般式(4)により表わされる変性共役ジエン(共)重合体である。
ここで、R1は単結合又は炭素数1~20の二価の炭化水素基;R2及びR3はそれぞれ独立に水素又は炭素数1~20の一価の炭化水素基;A3はシラノール基と補強性充填材との反応を促進する官能基であり、mは1~10の整数である。
ここで、R4は単結合又は炭素数1~20の炭化水素基;R5及びR6はそれぞれ独立に単結合、水素又は炭素数1~20の炭化水素基;A4は単結合、炭素数1~20の炭化水素基又はシラノール基と補強性充填材との反応を促進する官能基;B及びDはそれぞれ独立にシラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基;p及びqはそれぞれ独立に0~5の整数であり、(p+q)が1以上である。nは1~10の整数であり、好ましくは1~6の整数である。
なお、(Polymer)- は変性共役ジエン(共)重合体のポリマー鎖である。
上記一般式(3)及び上記一般式(4)において、R1、R4、pが1である場合のR5又はqが1である場合のR6である炭素数1~20の二価の炭化水素基の具体例としては、前記一般式(1)及び前記一般式(2)におけるR1、R4、pが1である場合のR5又はqが1である場合のR6と同じ具体例が挙げられる。
また、上記一般式(3)及び上記一般式(4)において、R2、R3、pが0である場合のR5又はqが0である場合のR6である炭素数1~20の一価の炭化水素基の具体例としては、前記一般式(1)及び前記一般式(2)におけるR2、R3、pが0である場合のR5又はqが0である場合のR6である炭素数1~20の一価の炭化水素基と同じ具体例が挙げられる。
また、上記一般式(3)及び上記一般式(4)において、R2、R3、pが0である場合のR5又はqが0である場合のR6である炭素数1~20の一価の炭化水素基の具体例としては、前記一般式(1)及び前記一般式(2)におけるR2、R3、pが0である場合のR5又はqが0である場合のR6である炭素数1~20の一価の炭化水素基と同じ具体例が挙げられる。
上記一般式(3)及び上記一般式(4)において、シラノール基と補強性充填材との反応を促進する官能基A3及びA4としては、それぞれ独立に、例えば、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合及びアミド結合の中から選ばれる少なくとも一種の結合を有する二価の官能基、並びにニトリル基(シアノ基)、ピリジル基、N-アルキルピロリドニル基、N-アルキルイミダゾリル基、N-アルキルピラゾリル基、(チオ)ケトン基、(チオ)アルデヒド基、イソシアヌル酸トリエステル残基、炭素数1~20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1~20の(チオ)カルボン酸金属塩の残基、炭素数1~20のカルボン酸無水物残基、炭素数1~20のカルボン酸ハロゲン化物残基及び炭酸ジヒドロカルビルエステル残基の中から選ばれる官能基由来の二価の官能基からなる群から選ばれる少なくとも一種の二価の官能基である。
ここで、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合及びアミド結合の中から選ばれる少なくとも一種の結合を有する二価の官能基は、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合又はアミド結合であっても良いし、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合及び/又はアミド結合を有する炭素数1~20の二価の炭化水素基であっても良い。この炭素数1~20の二価の炭化水素基としては、前記一般式(1)及び前記一般式(2)におけるR1、R4、pが1である場合のR5又はqが1である場合のR6と同じ具体例が挙げられる。
ここで、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合及びアミド結合の中から選ばれる少なくとも一種の結合を有する二価の官能基は、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合又はアミド結合であっても良いし、(チオ)エーテル結合、(チオ)ウレタン結合、イミノ結合及び/又はアミド結合を有する炭素数1~20の二価の炭化水素基であっても良い。この炭素数1~20の二価の炭化水素基としては、前記一般式(1)及び前記一般式(2)におけるR1、R4、pが1である場合のR5又はqが1である場合のR6と同じ具体例が挙げられる。
上記一般式(3)及び一般式(4)におけるA3及びA4は、それぞれ一般式(1)のA1及び一般式(2)のA2が、変性共役ジエン(共)重合体の活性部位に結合した官能基を示し、加水分解反応工程で形成したシラノール基と補強性充填材との反応を促進させる作用を有している。
上記一般式(4)において、シラノール基と補強性充填材との反応を促進する官能基を少なくとも一つ含む基B及びDとしては、それぞれ独立に第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、(チオ)ケトン基、(チオ)アルデヒド基及びアミド基、(チオ)エポキシ基、グリシドキシ基、(チオ)イソシアネート基、ニトリル基(シアノ基)、ピリジル基、N-アルキルピロリドニル基、N-アルキルイミダゾリル基、N-アルキルピラゾリル基、イミノ基、アミド基、ケチミン基、イミン残基、イソシアヌル酸トリエステル残基、炭素数1~20の(チオ)カルボン酸ヒドロカルビルエステル残基、炭素数1~20の(チオ)カルボン酸金属塩の残基、炭素数1~20のカルボン酸無水物残基、炭素数1~20のカルボン酸ハロゲン化物残基、炭酸ジヒドロカルビルエステル残基及び一般式-E-F-Gで表わされる官能基の中から選ばれる少なくとも一種の官能基が挙げられる。
ここで、Eはイミノ基、2価のイミン残基、2価のピリジン残基又は2価のアミド残基、Fは炭素数1~20のアルキレン基、フェニレン基又は炭素数8~20のアラルキレン基、Gは第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、ケチミン基、ニトリル基(シアノ基)、アミド基、ピリジン基又は(チオ)イソシアネート基である。
一般式-E-F-Gで表わされる官能基の具体例は上述の通りである。
なお、保護された第一又は第二アミノ基の脱離可能な官能基は、脱保護されることなく本発明の変性共役ジエン(共)重合体に残留していても良い。
ここで、Eはイミノ基、2価のイミン残基、2価のピリジン残基又は2価のアミド残基、Fは炭素数1~20のアルキレン基、フェニレン基又は炭素数8~20のアラルキレン基、Gは第一アミノ基、第二アミノ基、保護された第一もしくは第二アミノ基、第三アミノ基、環状アミノ基、オキサゾリル基、イミダゾリル基、アジリジニル基、ケチミン基、ニトリル基(シアノ基)、アミド基、ピリジン基又は(チオ)イソシアネート基である。
一般式-E-F-Gで表わされる官能基の具体例は上述の通りである。
なお、保護された第一又は第二アミノ基の脱離可能な官能基は、脱保護されることなく本発明の変性共役ジエン(共)重合体に残留していても良い。
上記一般式(3)又は上記一般式(4)に示すように、本発明の変性共役ジエン(共)重合体は、分子鎖中に存在するシラノール基は一つのみであることが好ましい。分子鎖中にシラノール基が二つ以上存在するとシラノール基同士が縮合を起こし、変性共役ジエン(共)重合体の粘度が高くなり混練り作業が困難となる場合があるからである。
また、本実施形態において、変性共役ジエン(共)重合体は、シラノール基と、シラノール基の近傍にシラノール基と補強性充填材との反応を促進する官能基との双方を有するので、シラノール基のみを有し、シラノール基と補強性充填材との反応を促進する官能基を有しない変性共役ジエン(共)重合体や、シラノール基と補強性充填材との反応を促進する官能基のみを有し、シラノール基を有しない変性共役ジエン(共)重合体と比較して、シリカ配合ゴム組成物とカーボンブラック配合ゴム組成物のいずれにおいても、低発熱性が向上する。
本実施形態において、変性共役ジエン(共)重合体は、共役ジエン部のビニル結合含有量を限定するものではないが、70%以下であることが好ましい。70%以下であればタイヤトレッドに用いた場合破壊特性や摩耗特性が向上するので好ましい。また、スチレン含有量が0~50質量%であることが好ましい。50質量%以下であれば、低発熱性とウエットスキッド性能のバランスが良くなるからである。
なお、ビニル結合含有量は、赤外法(モレロ法)により、スチレン含有量は1H-NMRでスペクトルの積分比を算出することにより求められる。
なお、ビニル結合含有量は、赤外法(モレロ法)により、スチレン含有量は1H-NMRでスペクトルの積分比を算出することにより求められる。
[ゴム成分B]
本実施形態に係るゴム組成物に適用可能なゴム成分Bは、ガラス転移温度が-35℃以上のものである。また、ゴム成分Bのガラス転移点は、ゴム成分Aのガラス転移点よりも高いことが好ましい。
ゴム成分Bのガラス転移温度が、-35℃未満であると、十分なウエットグリップ性能が得られなくなる。この観点から、ゴム成分Bのガラス転移温度は、より好ましくは、-30℃以上であり、さらに好ましくは、-25℃以上である。
また、ゴム成分Bのスチレン量+1/2ビニル量は、45質量%以上であることが好ましく、50質量%以上であることがより好ましい。ゴム成分Bが上記性状を有するものであれば、十分なウエットグリップ性能が得られる。
ゴム成分Bとして用いることのできるジエン系ゴムとしては、天然ゴム、ポリブタジエンゴム、合成ポリイソプレンゴム、スチレン-イソプレンゴム、エチレン-ブタジエン共重合体ゴム、プロピレン-ブタジエン共重合体ゴム、エチレン-プロピレン-ブタジエン共重合体ゴム、エチレン-α-オレフィン-ジエン共重合体ゴム、ブチルゴム、ハロゲン化ブチルゴム、ハロゲン化メチル基を持つスチレンとイソブチレンとの共重合体、クロロプレンゴム等が挙げられる。
本実施形態に係るゴム組成物に適用可能なゴム成分Bは、ガラス転移温度が-35℃以上のものである。また、ゴム成分Bのガラス転移点は、ゴム成分Aのガラス転移点よりも高いことが好ましい。
ゴム成分Bのガラス転移温度が、-35℃未満であると、十分なウエットグリップ性能が得られなくなる。この観点から、ゴム成分Bのガラス転移温度は、より好ましくは、-30℃以上であり、さらに好ましくは、-25℃以上である。
また、ゴム成分Bのスチレン量+1/2ビニル量は、45質量%以上であることが好ましく、50質量%以上であることがより好ましい。ゴム成分Bが上記性状を有するものであれば、十分なウエットグリップ性能が得られる。
ゴム成分Bとして用いることのできるジエン系ゴムとしては、天然ゴム、ポリブタジエンゴム、合成ポリイソプレンゴム、スチレン-イソプレンゴム、エチレン-ブタジエン共重合体ゴム、プロピレン-ブタジエン共重合体ゴム、エチレン-プロピレン-ブタジエン共重合体ゴム、エチレン-α-オレフィン-ジエン共重合体ゴム、ブチルゴム、ハロゲン化ブチルゴム、ハロゲン化メチル基を持つスチレンとイソブチレンとの共重合体、クロロプレンゴム等が挙げられる。
[補強性充填材]
本実施形態に係るゴム組成物は、ゴム成分A及びゴム成分Bの合計100質量部に対して、補強性充填材が30~150質量部含有されていることが好ましく、40~120質量部を含有することがより好ましい。30質量部以上であれば、耐摩耗性が向上し、150質量部以下であれば、低燃費性が向上する。
補強性充填材は、シリカ及び/又はカーボンブラックであることが好ましい。特に、充填材が、シリカ単独、又はシリカ及びカーボンブラックであることが好ましく、シリカとカーボンブラックとの含有比(シリカ:カーボンブラック)が、質量比で(100:0)~(30:70)であることが好ましく、(100:0)~(50:50)であることがより好ましい。シリカの配合量は、ゴム成分100質量部に対して、10~100質量部であることが好ましく、30~80質量部であることがより好ましい。この範囲であれば、低燃費性及び耐摩耗性を一層向上することができる。
本実施形態に係るゴム組成物は、ゴム成分A及びゴム成分Bの合計100質量部に対して、補強性充填材が30~150質量部含有されていることが好ましく、40~120質量部を含有することがより好ましい。30質量部以上であれば、耐摩耗性が向上し、150質量部以下であれば、低燃費性が向上する。
補強性充填材は、シリカ及び/又はカーボンブラックであることが好ましい。特に、充填材が、シリカ単独、又はシリカ及びカーボンブラックであることが好ましく、シリカとカーボンブラックとの含有比(シリカ:カーボンブラック)が、質量比で(100:0)~(30:70)であることが好ましく、(100:0)~(50:50)であることがより好ましい。シリカの配合量は、ゴム成分100質量部に対して、10~100質量部であることが好ましく、30~80質量部であることがより好ましい。この範囲であれば、低燃費性及び耐摩耗性を一層向上することができる。
シリカとしては、例えば湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウムなどが挙げられるが、中でもウエット性能及び耐摩耗性の両立効果が最も顕著である湿式シリカが好ましい。
シリカのBET比表面積(ISO 5794/1に準拠して測定する)としては80m2/g以上のものが好ましく、より好ましくは120m2/g以上、特に好ましくは150m2/g以上である。BET比表面積の上限値には特に制限はないが、通常450m2/g程度である。このようなシリカとしては東ソー・シリカ株式会社製、商品名「ニップシールAQ」(BET比表面積=205m2/g)、「ニップシールKQ」、デグッサ社製、商品名「ウルトラジルVN3」(BET比表面積 =175m2/g)等の市販品を用いることができる。
シリカのBET比表面積(ISO 5794/1に準拠して測定する)としては80m2/g以上のものが好ましく、より好ましくは120m2/g以上、特に好ましくは150m2/g以上である。BET比表面積の上限値には特に制限はないが、通常450m2/g程度である。このようなシリカとしては東ソー・シリカ株式会社製、商品名「ニップシールAQ」(BET比表面積=205m2/g)、「ニップシールKQ」、デグッサ社製、商品名「ウルトラジルVN3」(BET比表面積 =175m2/g)等の市販品を用いることができる。
カーボンブラックとしては特に制限はなく、例えば、HAF、N339、IISAF、1SAF、SAFなどが用いられる。カーボンブラックの窒素吸着法比表面積(N2SA、JIS K 6217-2:2001に準拠して測定する)は、好ましくは70~180m2/g、より好ましくは80~180m2/gである。また、DBP吸油量(JIS K 6217-4:2008に準拠して測定する)は、好ましくは70~160cm3/100g、より好ましくは90~160cm3/100gである。カーボンブラックを用いることにより、耐破壊特性、耐摩耗性等の改良効果は大きくなる。耐摩耗性に優れるN339、IISAF、ISAF、SAFが特に好ましい。
シリカ及び/又はカーボンブラックは、それぞれ、1種用いてもよく2種以上を組み合わせて用いてもよい。
シリカ及び/又はカーボンブラックは、それぞれ、1種用いてもよく2種以上を組み合わせて用いてもよい。
[シランカップリング剤]
本実施形態に係るゴム組成物においては、所望により、補強用充填材の一つとしてシリカを用いる場合は、ゴム組成物の補強性及び低燃費性を更に向上させる目的で、シランカップリッグ剤を配合することが好ましい。
シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシランなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、3-オクタノイルチオプロピルトリエトキシシラン及び3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
本実施形態に係るゴム組成物においては、所望により、補強用充填材の一つとしてシリカを用いる場合は、ゴム組成物の補強性及び低燃費性を更に向上させる目的で、シランカップリッグ剤を配合することが好ましい。
シランカップリング剤としては、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオプロピルトリエトキシシランなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィド、3-オクタノイルチオプロピルトリエトキシシラン及び3-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
カップリング剤としての効果及びゲル化防止などの点から、このシランカップリング剤の好ましい配合量は、質量比(シランカップリング剤/シリカ)が(1/100)~(20/100)であることが好ましい。(1/100)以上であれば、ゴム組成物の低発熱性向上の効果をより好適に発揮することとなり、(20/100)以下であれば、ゴム組成物のコストが低減し、経済性が向上するからである。更には質量比(3/100)~(20/100)であることがより好ましく、質量比(4/100)~(10/100)であることが特に好ましい。
[その他の添加剤]
本実施形態に係るゴム組成物には、本発明の効果が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば、加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有させることができる。
加硫剤としては、硫黄等が挙げられる。加硫剤の使用量は、ゴム成分100質量部に対し、硫黄分として0.1~10.0質量部が好ましく、更に好ましくは1.0~5.0質量部である。0.1質量部未満では加硫ゴムの破壊強度、耐摩耗性、低燃費性が低下するおそれがあり、10.0質量部を超えるとゴム弾性が失われる原因となる。
本実施形態に係るゴム組成物には、本発明の効果が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば、加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有させることができる。
加硫剤としては、硫黄等が挙げられる。加硫剤の使用量は、ゴム成分100質量部に対し、硫黄分として0.1~10.0質量部が好ましく、更に好ましくは1.0~5.0質量部である。0.1質量部未満では加硫ゴムの破壊強度、耐摩耗性、低燃費性が低下するおそれがあり、10.0質量部を超えるとゴム弾性が失われる原因となる。
本実施形態に係るゴム組成物に使用できる加硫促進剤は、例えば、M(2-メルカプトベンゾチアゾール)、DM(ジベンゾチアジルジスルフィド)、CZ(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)等のチアゾール系、DPG(ジフェニルグアニジン)等のグアニジン系、あるいはTOT(テトラキス(2-エチルへキシル)チウラムジスルフィド)等のチウラム系の加硫促進剤等を挙げることができ、その使用量は、ゴム成分100質量部に対し、0.1~5.0質量部が好ましく、更に好ましくは0.2~3.0質量部である。
また、本実施形態に係るゴム組成物に使用できる軟化剤として用いられるプロセスオイルとしては、SBRとの相溶性の観点から、芳香族系オイルが用いられる。また、低温特性を重視する観点から、ナフテン系オイル又はパラフィン系オイルが用いられる。その使用量は、ゴム成分100質量部に対して、0~100質量部が好ましく、100質量部以下であれば加硫ゴムの引張強度、低燃費性(低発熱性)が悪化するのを抑制することができる。
本実施形態に係るゴム組成物に使用できる老化防止剤としては、例えば3C(N-イソプロピル-N’-フェニル-p-フェニレンジアミン、6C[N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン]、AW(6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン)、ジフェニルアミンとアセトンの高温縮合物等を挙げることができる。その使用量は、ゴム成分100質量部に対して、0.1~5.0質量部が好ましく、更に好ましくは0.3~3.0質量部である。
[ゴム組成物の調製、空気入りタイヤの作製]
本実施形態に係るゴム組成物は、上述した各種成分及び添加剤を、バンバリーミキサー、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られる。
すなわち、本実施形態に係るゴム組成物は、混練の第一段階で、ゴム成分Aとゴム成分Bと補強性充填材とを混練した後、混練の最終段階で、加硫剤及び加硫促進剤を混合することによって作製できる。
ゴム成分Aには、シリカのような補強性充填材と親和性の高い変性共役ジエン(共)重合体が含まれているため、上記混練りによって、ゴム成分Aとゴム成分Bのうち、ゴム成分A中に補強性充填材を良好に分散させることができる。
得られたゴム組成物を、さらに成形加工した後、加硫を行って、空気入りタイヤのトレッド、特にトレッド接地部を作製することができる。
また、本実施形態に係るゴム組成物をトレッドに用いて通常のタイヤの製造方法によってタイヤが製造される。すなわち、上述の各種薬品を含有させたゴム組成物が未加硫の段階で各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。このようにして、低発熱性及び耐摩耗性の良好なタイヤ、特に空気入りタイヤを得ることができる。
本実施形態に係るゴム組成物は、上述した各種成分及び添加剤を、バンバリーミキサー、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られる。
すなわち、本実施形態に係るゴム組成物は、混練の第一段階で、ゴム成分Aとゴム成分Bと補強性充填材とを混練した後、混練の最終段階で、加硫剤及び加硫促進剤を混合することによって作製できる。
ゴム成分Aには、シリカのような補強性充填材と親和性の高い変性共役ジエン(共)重合体が含まれているため、上記混練りによって、ゴム成分Aとゴム成分Bのうち、ゴム成分A中に補強性充填材を良好に分散させることができる。
得られたゴム組成物を、さらに成形加工した後、加硫を行って、空気入りタイヤのトレッド、特にトレッド接地部を作製することができる。
また、本実施形態に係るゴム組成物をトレッドに用いて通常のタイヤの製造方法によってタイヤが製造される。すなわち、上述の各種薬品を含有させたゴム組成物が未加硫の段階で各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。このようにして、低発熱性及び耐摩耗性の良好なタイヤ、特に空気入りタイヤを得ることができる。
以下、本発明を、実施例を用いて詳細に説明する。本発明は、実施例に限定されない。
[測定方法]
各特性を、下記の方法にしたがって評価した。
<タイヤ性能>
タイヤのトレッドから加硫ゴムサンプルを切り出して、以下の評価を行った。
(ウエットグリップ性能)
粘弾性スペクトロメーター(東洋精機株式会社製)を用い、周波数52Hz、初期歪10%、測定温度0℃、動歪1%でtanδを測定し、比較例1のtanδ値を100として以下の式により指数で表示した。この指数の値が大きい程、ウエットグリップ性能が良好である。
ウエット性能指数={(供試タイヤのtanδ値)/(比較例1のtanδ値)}×100
[測定方法]
各特性を、下記の方法にしたがって評価した。
<タイヤ性能>
タイヤのトレッドから加硫ゴムサンプルを切り出して、以下の評価を行った。
(ウエットグリップ性能)
粘弾性スペクトロメーター(東洋精機株式会社製)を用い、周波数52Hz、初期歪10%、測定温度0℃、動歪1%でtanδを測定し、比較例1のtanδ値を100として以下の式により指数で表示した。この指数の値が大きい程、ウエットグリップ性能が良好である。
ウエット性能指数={(供試タイヤのtanδ値)/(比較例1のtanδ値)}×100
(低発熱性)
粘弾性スペクトロメーター(東洋精機株式会社製)を用い、周波数52Hz、初期歪10%、測定温度60℃、動歪1%でtanδを測定し、比較例1のtanδ値の逆数を100として以下の式により指数で表示した。この指数の値が大きい程、低発熱性が良好である。
低発熱性指数={(比較例1のtanδ値)/(供試タイヤのtanδ値)}×100
粘弾性スペクトロメーター(東洋精機株式会社製)を用い、周波数52Hz、初期歪10%、測定温度60℃、動歪1%でtanδを測定し、比較例1のtanδ値の逆数を100として以下の式により指数で表示した。この指数の値が大きい程、低発熱性が良好である。
低発熱性指数={(比較例1のtanδ値)/(供試タイヤのtanδ値)}×100
(耐摩耗性)
タイヤトレッドから加硫ゴムサンプルを切り出して、JIS K6264に従い、ランボーン型摩耗試験機を用い、室温におけるスリップ率60%の摩耗量を測定し、比較例1の摩耗量の逆数を100として、以下の式により指数で表示した。この指数の値が大きいほど、耐摩耗性が良好である。
耐摩耗指数={(比較例1の摩耗量)/(供試タイヤの摩耗量)}×100
タイヤトレッドから加硫ゴムサンプルを切り出して、JIS K6264に従い、ランボーン型摩耗試験機を用い、室温におけるスリップ率60%の摩耗量を測定し、比較例1の摩耗量の逆数を100として、以下の式により指数で表示した。この指数の値が大きいほど、耐摩耗性が良好である。
耐摩耗指数={(比較例1の摩耗量)/(供試タイヤの摩耗量)}×100
[製造例]
・製造例1:変性SBR1の製造
後述する変性SBR1を下記のように製造した。すなわち、窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2750g、テトラヒドロフラン29.5g、スチレン50g、1,3-ブタジエン450gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム215mgを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
重合転化率が99%に達した時点で、ブタジエン10gを追加し、更に5分重合させた。リアクターから、メタノール1gを添加したシクロヘキサン溶液30g中に、ポリマー溶液を少量サンプリングした後、アミノプロピルメチルジエトキシシラン1129mgを加えて、変性反応を15分間行って、変性SBR1を得た。
得られた変性SBR1のスチレン量は10%、ジエン化合物部分のビニル量は40%、Tgはおよそ-70℃であった。
・製造例1:変性SBR1の製造
後述する変性SBR1を下記のように製造した。すなわち、窒素置換された内容積5リットルのオートクレーブ反応器に、シクロヘキサン2750g、テトラヒドロフラン29.5g、スチレン50g、1,3-ブタジエン450gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム215mgを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。
重合転化率が99%に達した時点で、ブタジエン10gを追加し、更に5分重合させた。リアクターから、メタノール1gを添加したシクロヘキサン溶液30g中に、ポリマー溶液を少量サンプリングした後、アミノプロピルメチルジエトキシシラン1129mgを加えて、変性反応を15分間行って、変性SBR1を得た。
得られた変性SBR1のスチレン量は10%、ジエン化合物部分のビニル量は40%、Tgはおよそ-70℃であった。
・製造例2:変性SBR2の製造
乾燥し、窒素置換された5リットルのオートクレーブ反応器に、シクロヘキサン2500g、テトラヒドロフラン25g、スチレン100g、1,3-ブタジエン390gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(BuLi)375mgを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、四塩化ケイ素100mgを加えて5分反応を行い、続けてN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン1020mgを加えて15分間反応を行った。反応後の重合体溶液に、2,6-ジ-t-ブチル-p-クレゾール(BHT)を添加して反応を停止させた。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥して、変性SBR2を得た。
得られた変性SBR2のスチレン量は25%、ジエン化合物部分のビニル量は55%、Tgはおよそ-15℃であった。
乾燥し、窒素置換された5リットルのオートクレーブ反応器に、シクロヘキサン2500g、テトラヒドロフラン25g、スチレン100g、1,3-ブタジエン390gを仕込んだ。反応器内容物の温度を10℃に調整した後、n-ブチルリチウム(BuLi)375mgを添加して重合を開始した。重合は断熱条件で実施し、最高温度は85℃に達した。重合転化率が99%に達した時点で、ブタジエン10gを追加し、さらに5分重合させた後、四塩化ケイ素100mgを加えて5分反応を行い、続けてN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン1020mgを加えて15分間反応を行った。反応後の重合体溶液に、2,6-ジ-t-ブチル-p-クレゾール(BHT)を添加して反応を停止させた。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥して、変性SBR2を得た。
得られた変性SBR2のスチレン量は25%、ジエン化合物部分のビニル量は55%、Tgはおよそ-15℃であった。
・製造例3:変性BRの製造
容積約1リットルのゴム栓付きガラスびんを乾燥・窒素置換し、ここに乾燥精製したブタジエンのシクロヘキサン溶液及び乾燥シクロヘキサンを各々投入し、ブタジエン15.0質量%のシクロヘキサン溶液が330g投入された状態とした。これにヘキサメチレンイミン(HMI)0.513mmolを投入した。次に、tert-ブチルリチウム(1.57M)0.36mL、2,2-ジ(2-テトラヒドロフリル)プロパン(0.2N)0.057mLを添加し、50℃の水浴中で4.5時間重合を行った。その後、50℃にて四塩化錫(SnCl4)を0.10mmol添加し、1時間反応させた。微量のNS-5を含むイソプロパノール中で再沈殿した後、ドラムにて乾燥することでほぼ100%の収率で変性BRを得た。
容積約1リットルのゴム栓付きガラスびんを乾燥・窒素置換し、ここに乾燥精製したブタジエンのシクロヘキサン溶液及び乾燥シクロヘキサンを各々投入し、ブタジエン15.0質量%のシクロヘキサン溶液が330g投入された状態とした。これにヘキサメチレンイミン(HMI)0.513mmolを投入した。次に、tert-ブチルリチウム(1.57M)0.36mL、2,2-ジ(2-テトラヒドロフリル)プロパン(0.2N)0.057mLを添加し、50℃の水浴中で4.5時間重合を行った。その後、50℃にて四塩化錫(SnCl4)を0.10mmol添加し、1時間反応させた。微量のNS-5を含むイソプロパノール中で再沈殿した後、ドラムにて乾燥することでほぼ100%の収率で変性BRを得た。
[実施例及び比較例]
供試体のゴム組成物の製造に用いたゴム成分の性状を第1表に示した。第2表に示す配合組成を有するゴム組成物を調製し、これらのゴム組成物をトレッド部に用いて、常法に従って、それぞれ乗用車用空気入りラジアルタイヤ(タイヤサイズ195/60R15)を製造した。得られた供試体タイヤ各々の性能について、上述した方法により評価した。
供試体のゴム組成物の製造に用いたゴム成分の性状を第1表に示した。第2表に示す配合組成を有するゴム組成物を調製し、これらのゴム組成物をトレッド部に用いて、常法に従って、それぞれ乗用車用空気入りラジアルタイヤ(タイヤサイズ195/60R15)を製造した。得られた供試体タイヤ各々の性能について、上述した方法により評価した。
[注]
*1 NR:天然ゴム
*2 SBR1:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量40%、ジエン化合物部分のビニル量19%、ガラス転移温度-31℃)
*3 SBR2:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量45%、ジエン化合物部分のビニル量19%、ガラス転移温度-24℃)
*4 SBR3:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量37%、ジエン化合物部分のビニル量19%、ガラス転移温度-38℃)
*5 SBR4:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量24%、ジエン化合物部分のビニル量19%、ガラス転移温度-55℃)
*6 SBR5:JSR株式会社製、溶液重合SBR「S-SBR」(スチレン量39%、ジエン化合物部分のビニル量40%、ガラス転移温度-15℃)
*7 変性SBR1:製造例1にて得られたものを用いた。
*8 未変性BR:旭化成株式会社製「ジエンNF35R」
*9 変性SBR2:製造例2にて得られたものを用いた。
*10 変性BR:製造例3にて得られたものを用いた。
*11 東ソー・シリカ株式会社製、商品名「ニップシールAQ」(BET比表面積=205m2/g)
*12 カーボンブラック:旭カーボン株式会社製、「旭#70(N330)」
*13 シランカップリング剤:ビス(3-トリエトシキシリルプロピル)ジスルフィド(平均硫黄鎖長:2.35)、Evonik社製、商品名「Si75」
*14 プロセスオイル:アロマティックオイル、富士興産社製「アロマックス#3」
*15 老化防止剤6C:N-(1,3-ジメチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業株式会社製、「ノクラック6C」
*16 加硫促進剤DM:ジベンゾチアジルスルフィド、大内新興化学工業株式会社製、「ノクセラーDM-P」
*1 NR:天然ゴム
*2 SBR1:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量40%、ジエン化合物部分のビニル量19%、ガラス転移温度-31℃)
*3 SBR2:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量45%、ジエン化合物部分のビニル量19%、ガラス転移温度-24℃)
*4 SBR3:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量37%、ジエン化合物部分のビニル量19%、ガラス転移温度-38℃)
*5 SBR4:JSR株式会社製、乳化重合SBR「E-SBR」(スチレン量24%、ジエン化合物部分のビニル量19%、ガラス転移温度-55℃)
*6 SBR5:JSR株式会社製、溶液重合SBR「S-SBR」(スチレン量39%、ジエン化合物部分のビニル量40%、ガラス転移温度-15℃)
*7 変性SBR1:製造例1にて得られたものを用いた。
*8 未変性BR:旭化成株式会社製「ジエンNF35R」
*9 変性SBR2:製造例2にて得られたものを用いた。
*10 変性BR:製造例3にて得られたものを用いた。
*11 東ソー・シリカ株式会社製、商品名「ニップシールAQ」(BET比表面積=205m2/g)
*12 カーボンブラック:旭カーボン株式会社製、「旭#70(N330)」
*13 シランカップリング剤:ビス(3-トリエトシキシリルプロピル)ジスルフィド(平均硫黄鎖長:2.35)、Evonik社製、商品名「Si75」
*14 プロセスオイル:アロマティックオイル、富士興産社製「アロマックス#3」
*15 老化防止剤6C:N-(1,3-ジメチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業株式会社製、「ノクラック6C」
*16 加硫促進剤DM:ジベンゾチアジルスルフィド、大内新興化学工業株式会社製、「ノクセラーDM-P」
[評価結果]
第1表及び第2表に示す結果によれば、ガラス転移点が-35℃以上のゴム成分と、これよりも低いゴム成分とを使用し、かつ互いに非相溶のものを使用することにより、ウエットグリップ性能が向上する。また、相対的にガラス転移点の低い変性SBRを用いることにより、補強性充填材であるシリカの分散性を向上することができる。これにより低発熱性が向上する。
第1表及び第2表に示す結果によれば、ガラス転移点が-35℃以上のゴム成分と、これよりも低いゴム成分とを使用し、かつ互いに非相溶のものを使用することにより、ウエットグリップ性能が向上する。また、相対的にガラス転移点の低い変性SBRを用いることにより、補強性充填材であるシリカの分散性を向上することができる。これにより低発熱性が向上する。
Claims (4)
- 天然ゴム及びガラス転移温度が-50℃以下の変性共役ジエン(共)重合体を含むゴム成分Aと、ガラス転移温度が-35℃以上のゴム成分Bと、補強性充填材とが配合されてなり、
前記変性共役ジエン(共)重合体が、共役ジエン(共)重合体の分子末端に、シラノール基と、該シラノール基の近傍にある官能基であって該シラノール基と前記補強性充填材との反応を促進する官能基とを有しており、
動的粘弾性試験によるtanδの温度分散曲線において、前記ゴム成分A及び前記ゴム成分Bの各々に基づく2つのピークが観測されることを特徴とするゴム組成物。 - 前記ゴム成分Aと前記ゴム成分Bとの合計質量基準において、前記ゴム成分Aが50質量%以上含まれる請求項1に記載のゴム組成物。
- 前記ゴム成分Aにおける前記天然ゴムの比率が、ゴム成分Aの総質量基準で、10質量%以上80質量%以下である請求項1又は2に記載のゴム組成物。
- 請求項1~3のいずれか1項に記載のゴム組成物を用いたタイヤ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017555967A JP6816919B2 (ja) | 2015-12-15 | 2016-12-01 | ゴム組成物及びタイヤ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015244079 | 2015-12-15 | ||
JP2015-244079 | 2015-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017104423A1 true WO2017104423A1 (ja) | 2017-06-22 |
Family
ID=59056384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/085668 WO2017104423A1 (ja) | 2015-12-15 | 2016-12-01 | ゴム組成物及びタイヤ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6816919B2 (ja) |
WO (1) | WO2017104423A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019088210A1 (ja) * | 2017-10-31 | 2019-05-09 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
WO2019220627A1 (en) * | 2018-05-18 | 2019-11-21 | Compagnie Generale Des Etablissements Michelin | A composition for a tire tread |
WO2020121745A1 (ja) * | 2018-12-12 | 2020-06-18 | 株式会社ブリヂストン | 共重合体、共重合体の製造方法、ゴム組成物、タイヤ、樹脂組成物及び樹脂製品 |
WO2021235400A1 (ja) | 2020-05-21 | 2021-11-25 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2022124147A1 (ja) * | 2020-12-09 | 2022-06-16 | 株式会社ブリヂストン | ゴム組成物、ゴム組成物の製造方法及びタイヤ |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001131343A (ja) * | 1999-11-08 | 2001-05-15 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2011046875A (ja) * | 2009-08-28 | 2011-03-10 | Sumitomo Rubber Ind Ltd | タイヤ用ゴム組成物及び空気入りタイヤ |
JP2011093989A (ja) * | 2009-10-28 | 2011-05-12 | Bridgestone Corp | タイヤ |
WO2012160938A1 (ja) * | 2011-05-25 | 2012-11-29 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
WO2013077018A1 (ja) * | 2011-11-24 | 2013-05-30 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
WO2013099324A1 (ja) * | 2011-12-26 | 2013-07-04 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
JP2014205842A (ja) * | 2014-05-29 | 2014-10-30 | 株式会社ブリヂストン | タイヤ |
-
2016
- 2016-12-01 JP JP2017555967A patent/JP6816919B2/ja active Active
- 2016-12-01 WO PCT/JP2016/085668 patent/WO2017104423A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001131343A (ja) * | 1999-11-08 | 2001-05-15 | Bridgestone Corp | ゴム組成物及びそれを用いた空気入りタイヤ |
JP2011046875A (ja) * | 2009-08-28 | 2011-03-10 | Sumitomo Rubber Ind Ltd | タイヤ用ゴム組成物及び空気入りタイヤ |
JP2011093989A (ja) * | 2009-10-28 | 2011-05-12 | Bridgestone Corp | タイヤ |
WO2012160938A1 (ja) * | 2011-05-25 | 2012-11-29 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
WO2013077018A1 (ja) * | 2011-11-24 | 2013-05-30 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
WO2013099324A1 (ja) * | 2011-12-26 | 2013-07-04 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
JP2014205842A (ja) * | 2014-05-29 | 2014-10-30 | 株式会社ブリヂストン | タイヤ |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019088210A1 (ja) * | 2017-10-31 | 2019-05-09 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JPWO2019088210A1 (ja) * | 2017-10-31 | 2020-11-19 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JP7125413B2 (ja) | 2017-10-31 | 2022-08-24 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
WO2019220627A1 (en) * | 2018-05-18 | 2019-11-21 | Compagnie Generale Des Etablissements Michelin | A composition for a tire tread |
WO2020121745A1 (ja) * | 2018-12-12 | 2020-06-18 | 株式会社ブリヂストン | 共重合体、共重合体の製造方法、ゴム組成物、タイヤ、樹脂組成物及び樹脂製品 |
WO2021235400A1 (ja) | 2020-05-21 | 2021-11-25 | 住友ゴム工業株式会社 | 空気入りタイヤ |
WO2022124147A1 (ja) * | 2020-12-09 | 2022-06-16 | 株式会社ブリヂストン | ゴム組成物、ゴム組成物の製造方法及びタイヤ |
Also Published As
Publication number | Publication date |
---|---|
JP6816919B2 (ja) | 2021-01-20 |
JPWO2017104423A1 (ja) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5827705B2 (ja) | ゴム組成物及びタイヤ | |
JP5914572B2 (ja) | タイヤ | |
JP5756248B2 (ja) | タイヤ | |
JP4159993B2 (ja) | 変性重合体の製造方法、その方法で得られた変性重合体及びゴム組成物 | |
JP5657855B2 (ja) | 変性共役ジエン系重合体の製造方法、その方法によって得られた変性共役ジエン系重合体とそのゴム組成物 | |
JP2014098162A5 (ja) | ||
JP5952560B2 (ja) | 変性剤、該変性剤を用いた変性共役ジエン系重合体の製造方法及びその変性共役ジエン系重合体 | |
JP6085077B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
US20110112212A1 (en) | Tire | |
JP2010260920A (ja) | タイヤ | |
JPWO2006101025A1 (ja) | 変性重合体の製造方法、その方法によって得られた変性重合体とそのゴム組成物 | |
JP6816919B2 (ja) | ゴム組成物及びタイヤ | |
JP5703066B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP5319108B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP5663146B2 (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、ゴム組成物、空気入りタイヤ | |
JP2011093989A (ja) | タイヤ | |
JP2010260919A (ja) | タイヤ | |
JP2006249189A (ja) | 変性重合体及びそれを用いたゴム組成物及びタイヤ | |
JP2010209254A (ja) | ゴム組成物及び空気入りタイヤ | |
JP2010270175A (ja) | ゴム組成物及び空気入りタイヤ | |
JP2010280865A (ja) | ゴム組成物及びそれを用いたタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16875406 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017555967 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16875406 Country of ref document: EP Kind code of ref document: A1 |